Maggie's Revision

Question 8 (***)

The table below shows the average midday temperature x of a seaside town, in °C, and the number of people y, that used a certain restaurant in that town.

x	17	20	25	29	27	21	20	24
у	40	42	42	43	44	39	41	45

- a) Find the value of S_{xx} , S_{yy} and S_{xy} , and hence calculate the product moment correlation coefficient between x and y.
- **b**) State the value of the product moment correlation coefficient between x and y if the temperature was measured in degrees Fahrenheit instead of Centigrade.
- c) Determine the equation of the regression line between x and y, giving the answer in the form

$$y = a + bx,$$

where a and b are constants.

- **d**) State, with a reason, which is the explanatory variable in the above described scenario and state the statistical name of the other variable.
- e) Interpret in the context of this question the physical meaning of b.
- f) Use the equation of the regression line to estimate the value of y when ...
 - **i.** ... x = 16.
 - **ii.** ... x = 35.

Comment further on the reliability of each of these two estimates.

[solution overleaf]

Question 9 (***)

The table below shows the maximum temperature $T \circ C$ on five different days and the corresponding ice cream sales, N, of a certain shop on those days.

Т	15	20	25	30	35
N	79	145	182	255	302

- **a**) Find the value of S_{TT} , S_{NN} and S_{TN} , and hence, determine the value of the product moment correlation coefficient between T and N.
- **b**) State, with a reason, which is the explanatory variable in the above described scenario and state the statistical name of the other variable.
- c) Determine the equation of the regression line between N and T, giving the answer in the form

$$N = a + bT ,$$

where a and b are constants.

- d) Interpret in the context of this question the physical meaning of b.
- e) Use the equation of the regression line to estimate the value of N when ...
 - **i.** ... $T = 18^{\circ}$ C. **ii.** ... $T = 37^{\circ}$ C. **iii.** ... $T = 45^{\circ}$ C

Comment further on the reliability of each of these estimates.

$$[S_{TT} = 250], \ S_{NN} = 31145.2], \ S_{TN} = 2780], \ r = 0.996], \ N = 11.12T - 85.4],$$
$$N_{18} \approx 115], \ N_{37} \approx 326], \ T_{45} \approx 415]$$

[solution overleaf]

Question 10 (***+)

The table below shows the amount spent per month by a car dealership on marketing and advertising m, in £1000, and the number of cars c sold that month.

1	т	7	8	9	10	11
	с	7	12	10	11	13

- a) Find the value of the product moment correlation coefficient between m and c.
- b) Determine the equation of the regression line between m and c, giving the answer in the form

$$c = a + bm$$
,

where a and b are constants.

- c) Use the equation of the regression line to estimate the number of cars that are expected to be sold in a month where the amount spent on marketing and advertising is ...
 - **i.** ... £8,800.
 - **ii.** ... £20,000.

Comment further on the reliability of each of these two estimates.

d) Interpret in the context of this question the physical meaning of a and b.

$$(1) \quad \underbrace{\text{SIMPLE BY ORTHOUNG THE SUBLINEY SIMPLATES}}_{\substack{n \in \mathbb{Z}, \mathbb{N}^{n} \leq \frac{1}{2} \leq \frac{1}{2$$

Question 8 (***)

The probability distribution of a discrete random variable X is given by

x	1	3	5	7	9
P(X=x)	0.2	а	0.2	b	0.15

where a and b are positive constants.

- a) Given that E(X) = 4.5, find the value of a and the value of b.
- **b**) Determine E(29-6X).

|--|

(a) = 1 3 5 7 (P(xax) 0.2 a 0.2 b	2
• 0.7+ a+02+b+0.15=1 [a+b=0.45] [a=0.45=b]	$ = \{(x_0)\}_{0} = \frac{4}{3} \cdot S $ $ ((x_0))_{0} ((3_{0})_{1} + (5_{0} \cdot c_{2})_{1} + (7_{0})_{1} + (7_{0} \cdot c_{3})_{2} + 5_{2} - 5_{2} $
	p = 0.2 p = 0.2 p = 0.2 p = 0.2
(a) $E(29-6X) = E(-6X+29)$	q u= 0-3
= -6E(x)+29 =	-6x 4.5+29 = 2

Question 17 (***+)

The discrete random variable X has the following probability distribution

x	0	2	3
$\mathbf{P}(X=x)$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

a) Determine E(X) and Var(X).

A game in a fun fair consists of throwing 5 darts on a small target.

If a dart lands on the central portion of the target the dart scores 3 points.

If a dart lands on the outer portion of the target the dart scores 2 points, otherwise the dart scores no points.

To win a prize, 10 or more points must be scored with 5 darts.

Paul has scored 6 points with his first 3 darts.

The likelihood of Paul scoring 0, 2 or 3 points is given by the probability distribution of part (a).

b) Find the probability that Paul will win a prize after he throws his last 2 darts.

$$E(X) = \frac{7}{6}, Var(X) = \frac{53}{36}, \frac{1}{4}$$

(1) $\frac{\alpha}{P(\chi=x)}$ $\frac{\circ}{12}$ $\frac{2}{3}$ $\frac{3}{2}$
• $E(\chi) = \sum_{\lambda} e^{0} \chi_{\pi,\lambda} = \langle \alpha_{\lambda} \frac{1}{2} \rangle + \langle 2 \times \frac{1}{2} \rangle + \langle 3 \times \frac{1}{2} \rangle = \frac{2}{6}$ • $E(\chi_{\pi}) = \sum_{\lambda} e^{0} P(\chi_{\pi,\lambda}) = \langle \alpha_{\lambda} \frac{1}{2} \rangle + \langle 2 \times \frac{1}{2} \rangle + \langle 3 \times \frac{1}{2} \rangle = \frac{1}{6}$
• $Var(X) \approx E(X^2) - [E(X)]^2 = \frac{1}{6} - (\frac{1}{6})^2 = \frac{51}{26}$ b) To will 4 PRIZE with this over a shear
HE MUST SCORE 4 OR MORTHAIS WITH → DART IF 2-2: ±x± + + Z-3: ±x± = + Z-3: ±x± = + ADMUSE Graph +
$3-2 : \frac{1}{6} \wedge \frac{1}{3} = \frac{1}{6}$ $3-3 : \frac{1}{6} \wedge \frac{1}{6} = \frac{1}{26}$

Question 18 (****)

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} k(2-x) & x = 0, 1, 2\\ \frac{1}{4} & x = 3\\ 0 & \text{otherwise} \end{cases}$$

- **a**) Show that $k = \frac{1}{4}$.
- **b**) Find the value of E(X) and $E(X^2)$.
- c) Determine $\operatorname{Var}(3-X)$.

Two independent observations of X are made, denoted by X_1 and X_2 .

- **d**) Find the probability distribution of *Y*, where $Y = X_1 + X_2$.
- e) Calculate $P(1.5 \le Y \le 3.5)$.

Question 19 (****)

The discrete random variable X has the following probability distribution

x	0	1	3
$\mathbf{P}(X=x)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$

a) Determine E(X) and Var(X).

Two independent observations of X are made, denoted by X_1 and X_2 .

- **b**) Find the probability distribution of $X_1 + X_2$.
- c) Calculate $P(X_1 > X_2)$.

 $\left(\frac{1}{3}\right) + \left(3^2 \times \frac{1}{2}\right)$

Question 5 (***)

In a certain Crown Court 95% of the defendants being tried have actually committed the crime they are being tried for.

For those who committed the crime the probability of being found guilty is 90% and for those who did not commit the crime the probability of being found guilty is 5%.

- a) Find the probability that a randomly chosen defendant will be found guilty.
- **b**) Given that a randomly chosen defendant was found guilty, find the probability that the defendant committed the crime.

Question 6 (***)

A test is developed to determine whether someone has or has not got a disease, which is known to be present in 3% of the population.

Given a person has the disease the test is positive with probability of 98%.

Given a person does not have the disease the test is positive with probability of 5%.

a) Draw a tree diagram to represent this information.

A person is selected at random from the population and tested for the disease.

b) Find the probability that this person's test is positive.

A person who tested positive is selected.

- c) Find the probability that the person does not have the disease.
- d) Comment on the effectiveness of this test with reference to the answer given in part (c).

TEST IS NOT EFFECTIVE AS IT POEDICES A "HEADAY PREDA

Question 9 (***+)

Markus is a health fanatic.

On a given day, the probabilities that he goes for a run, he uses the gym or he cycles are 0.5, 0.4 and 0.1, respectively.

Markus sometimes uses the sauna after these activities.

The probability he uses the sauna after he goes for a run is 0.1. The respective probabilities for using the sauna after using the gym or cycling are 0.6 and 0.3.

Find the probability that on a given day Markus ...

- **a)** ... will use the sauna.
- **b**) ... used the gym, given he used the sauna.
- c) ... did not go for a run, given he did not use the sauna.

a) USING	A TREE DIAGRAM
	a (200) AVALTE 110
05/	NUN 0.9 Southing (0.45) b
	4 QUL - 06 SAUNA (024) c
0.1	Dig SAWOA (0.16) d
	(0.03) SAUNA (0.03) e
- en les ontendes les tempsos	undes 0.7 - Somet (0.0() f
P(shund) =	"at c + e" = 0.05 + 0.24 + 0.03 = 0.32
6) P(GYU SAUN	$\frac{A}{P(symbol)} = \frac{C}{a+c+e} = \frac{0.24}{0.32} = \frac{0.75}{0.32}$
9 P(NORUN NO	STULA) = P(NO QUN (NO STULA)
	P(NO SKUNA)
	$= \frac{d+f}{b+d+f}$
	Jo.0 + 0.0
	0.16 + 0.07 + 0.45 < 02 1- 0.32
	= $\frac{23}{60} \approx 0.3322$
E.F. Det all	//