GENERATING FUNCTIONS MASIRALISCOM LYCCB. MRRIESERALISCOM LYCCB. MRRIESER

Createu NA PROBABILITY FRATING ALASTRATISCOM A STRATISCOM STRATI

Question 1 (**)

The discrete random variable X has probability generating function

$$G_X(t) = k + \frac{1}{5}(t^2 + t^3 + t^5),$$

where k is a positive constant.

- **a**) State the value of *k*.
- **b**) Determine the value of P(X > 4).
- c) Use $G_X(t)$ to calculate the mean and variance of X.

No credit will be given if the mean and variance of X are obtained from calculations based on the probability mass function of X.

Question 2 (**)

The discrete random variable X has probability generating function

$$\mathbf{G}_{X}(t) = k \left(1+t\right)^{7},$$

where k is a positive constant.

- a) State, with justification, the least and greatest value that X can take.
- **b**) State the name of the distribution, fully specifying any parameters.
- c) Determine the value of P(X = 5).
- **d**) Use $G_X(t)$ to calculate the mean and variance of X.

No credit will be given if the mean and variance of X are obtained by alternative methods.

 $X_{\min} = 0$, $X_{\max} = 7$, $X \sim B(7, 0.5)$, $P(X = 5) = \frac{21}{128}$, E(X) = 3.5Var(X) = 1.75

۵)	THE HIGHEST VANNE (M) ONLY SE 7 (HIGHEST POWRE OF T) THE LEAST VANNE IL ZEGIO $_14\%$ to construct il Possible
Р)	$\begin{array}{c} \underbrace{(\underline{cres},\underline{ure},A,\underline{caupact},\underline{ure},A,$
	$\begin{array}{c c} & & & \\ & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \\$
c)	$\frac{d(\Delta u)}{2} \times \sqrt{u} \left(\frac{1}{2} \sqrt{\frac{1}{2}} \right)^2 = \frac{21}{2}$
d)	USING THE P.G.F & $\underline{E(x)} = \underline{G(x)}$ & $\underline{Vor(x)} = \underline{G_x^2(x)} + \underline{G_x^2(x)} - \underline{G(x)}]^2$
	$\begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{16}C(t+t)^{\mathbf{x}} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}\\ G_{\mathbf{x}}^{\prime}(t) = \frac{1}{16}C(t+t)^{\mathbf{x}} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}\\ G_{\mathbf{x}}^{\prime}(t) = \frac{1}{26}C(t+t)^{\mathbf{x}} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}\\ G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}C(t+t)^{\mathbf{x}} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}C(t+t)^{\mathbf{x}} & \end{array} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}C(t+t)^{\mathbf{x}} & \end{array} & \end{array} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}C(t+t)^{\mathbf{x}} & \end{array} & \end{array} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}C(t+t)^{\mathbf{x}} & \end{array} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}C(t+t)^{\mathbf{x}} & \end{array} & \begin{array}{lll} G_{\mathbf{x}}^{\prime}(t) = \frac{1}{2}C(t+t)^{\mathbf{x}} & \end{array} &$
	$E(x) = G_{x}(1) = \frac{7}{2} = \frac{3.5}{2}$ $Var(X) = \frac{21}{2} + \frac{7}{2} - (\frac{7}{2})^{2} = \frac{4}{4} - \frac{43}{4} = \frac{7}{4} = \frac{1.75}{2}$

Question 3 (**+)

The discrete random variable X has distribution

 $X \sim \operatorname{Po}(\lambda)$.

a) Derive from first principles $G_X(t)$, the probability generating function of X.

b) Use $G_X(t)$ to show that the mean and variance of X are both λ .

Another discrete random variable Y has distribution

$Y \sim \operatorname{Po}(\mu)$.

c) Use a method involving generating functions to show that

$\mathrm{E}(X+Y)=\lambda+\mu.$

SHELLTY MUSS FONDRON FOR E(x)=2 & E(Y)=H $\sum [P(X = x)t^{*}]$ ET W= X+ Y $G_{\mathbf{k}}(t) =$ $\sum_{i=1}^{\infty} \left(\frac{e^{2i} \lambda^2}{2i} \right) t^2$ $\widetilde{G}_{\mathbf{y}}(t) = \widetilde{G}_{\mathbf{x}}(t) \, \widetilde{G}_{\mathbf{y}}(t)$ $G_{ij}(t) = e^{\lambda(t-i)} e^{\mu(t-i)}$ Z eyder $C_{\mu}(t) = e^{\lambda(t-1) + \mu(t-1)}$ $G_{w}(t) = e^{(q_t+q_t)(t-1)}$ Ot)' $G_{W}(t) = e^{(\lambda + \mu)t - (\lambda + \mu)}$ IAL FUNDTION - POWER SERIES IS $G_{\vec{d}} = -\frac{\Theta_i}{\tilde{n}_a} + \frac{i}{\tilde{n}_i} + \frac{\overline{\sigma}_i}{\tilde{n}_i} + \frac{g_i}{\tilde{n}_j} + \cdots = \sum_{m=1}^{lma} \frac{L_i}{\tilde{n}_i}$ DIFFERENTIATE WITH READED TO E $G'_{W}(t) = (\lambda + \mu) e^{(\lambda + \mu)t - (\lambda + \mu)}$ $\sum_{\lambda=0}^{2n} \frac{(\lambda t)^{\lambda}}{\lambda !} = e^{\lambda} e^{\lambda t} = e^{\lambda t - \lambda}$ $G'_{w}(t) = (\lambda + \mu) e^{(\lambda + \mu) - (\lambda + \mu)}$ $\Rightarrow (F_x(t) = -e^2)$ G' (1) = (21)/2 ante-17 6'40) = 2 + p -FRONT TWO DEPENDENCIES OF GLICP WINH REPORT TO t E(w) = E(x) + E(y)st-l · G* (1) = X e X - X $E(x) = G'_{k}(t) = \lambda_{\mu}$ $Var(X) = G'_X(i) + G'_X(i) - [G'(i)]^2$ $= \lambda^2 + \lambda - \lambda^2$

 $\mathbf{G}_{X}(t) = \mathrm{e}^{\lambda(t-1)}$

Question 4 (**+)

The discrete random variable X has distribution

 $X \sim B(n, p).$

a) Derive from first principles $G_X(t)$, the probability generating function of X.

b) Use $G_X(t)$ to calculate the mean and variance of X.

Question 5 (***)

The discrete random variable X has probability generating function

$$G_X(t) = k(1+3t+3t^2+t^3)^3$$

where k is a positive constant.

a) State the name of the distribution, fully specifying any parameters.

b) Use $G_X(t)$ to calculate the mean and variance of X.

No credit will be given if the mean and variance of X are obtained by alternative methods.

	the second se
a	LOOKING AT THE EXPRESSION
	$(1+t_1)^3 = 1+3t_1+3t_2+t_3$
	HACCE WE HAVE
	$\begin{array}{l} G_{\mathbf{x}}(\mathbf{t}) = k \left(1 + 3k + 4k^2 + \frac{1}{2}k^2 \right)^2 \\ G_{\mathbf{x}}(\mathbf{t}) = k \left[\left(1 + t \right)^4 \right]^2 \\ G_{\mathbf{x}}(\mathbf{t}) = k \left[C_1 + t \right)^4 \end{array}$
	COMPARE WITH THE DINGMIAL $(q_1 \pm)$ with $G_k(t) = (i - \pm r \pm t)^{q}$
	$G_{\chi}(t) = \left(\frac{1}{2} + \frac{1}{2}t\right)^{q} = \frac{1}{2^{q}} \left(1 + t\right)^{q} = \frac{1}{512} \left(2 + t\right)^{q} (t \ t = \frac{1}{512})^{q}$
	$\therefore \times \sim B(q, \pm)$
6)	(1) = (1)
	LING Gr (t)= L CI+t)9
	$G'_{\chi}(t) = \frac{g_{\chi}}{q} C_{1+} C_{1$
	$G_{V}^{0}(t) = \frac{q}{2}(1+t)^{7}$ $G_{V}^{0}(t) = 18$

 $+ \frac{1}{6} - (\frac{1}{2})_{5}$ $+ \frac{1}{6}(0) - [6(0)]_{1}$

 $X \sim B(9,0.5)$, E(X) = 4.5, Var(X) = 2.25

: E(x) = G(i) =

Question 6 (***)

The discrete random variable X has probability generating function

$$G_X(t) = k(1+2t+3t^2)^2$$
,

where k is a positive constant.

- **a**) State, with justification, the least and greatest value that X can take.
- **b**) Determine the value of P(X = 2).
- c) Use $G_X(t)$ to calculate the mean and variance of X.

No credit will be given if the mean and variance of X are obtained by alternative methods.

d) Find a probability generating function for 3X - 2

Give the answer in the form $k[f(t)]^2$

 $[X_{\min} = 0], [X_{\max} = 4], P(X = 2) = \frac{5}{18}], E(X) = \frac{8}{3}, Var(X) = \frac{10}{9}$ $\frac{1}{36} (t^{-1} + 2t^2 + 3t^5)^2$

a) him is a a maximum and	re is 4, the matter wave of www.
HRHEST WALVES OF THE POW	ses of t, million roug exprimeted
b) USING (1)=1	EXPANDING TOUY
(C1+2+3)2=1	$G_{\chi}(t) = \frac{1}{36} \left[1 + 4t^{2} + 9t^{4} + 4t_{-} + 12t^{2} + 6t_{-}^{2} \right]$
36K = 1 K = ±	= $\frac{1}{36} \left[1 + 4 t + 10 t^2 + 10 t^2 + 9 t^4 \right]$
	· P(X=2)- 10/2 - 10/2
C) DIFFECASTIATE G _X (t) with a	Hareor to Ł
$G_{\mathbf{x}}(t) = \frac{1}{36}(1+4t+10t)$	2+12t3+9t4)
$G'_{\chi}(t) = \frac{1}{36} (4+206+36)$	(2+36 (3)
$G'_{x}(1) = \frac{1}{36}(4+26+36+3)$	5) = <u>8</u> <u>3</u>
	$\therefore E(x) = \frac{B}{3}$
DIFFERENTIATE ONCE MORE	//
Gx(t)=16(+20+36+36+36+36+36+36+36+36+36+36+36+36+36+	- 36t ³)
$G_{\chi}^{\chi}(t) = \frac{1}{26}(30+72t+108+$	2)
$G_{n}^{X}(t) = \frac{2}{2}(50+25+108)$	- <u>%</u>
** Var(x) = (~(j) + ($f_{2}(i) = [0_{1}(i)]^{2}$
$\ln(v) = \frac{52}{2} \pm \frac{3}{2}$	(8)3

 $\int dt(x) = \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20}$

$$\begin{split} & G_{\lambda}(f) = \frac{1}{66} \left((+2\xi + 3\xi^2)^2 \right) \\ & G_{\lambda}(t) = -t^{-2} \times \frac{1}{66} \left[(+2\xi(t^2) + \xi(t^2))^2 \right]^2 \\ & (f - y = i\lambda \xi + b - G_{\lambda}(t) = \frac{1}{6} \frac{\xi}{6} \frac{\xi}{6} \left((+2\xi + 3\xi + 1)^2 \right) \\ & G_{\lambda}(t) = -\frac{\xi}{66} \frac{\xi}{6} \left[(+2\xi^2 + 3\xi + 1)^2 \right] \\ & G_{\lambda}(t) = -\frac{\xi}{66} \left((-\xi^2 + 2\xi^2 + 3\xi + 1)^2 \right) \\ & G_{\lambda}(t) = -\frac{\xi}{66} \left((-\xi^2 + 2\xi^2 + 3\xi + 1)^2 \right) \end{split}$$

FINALLY WE HAVE IF

Question 7 (***)

The discrete random variable X has probability generating function

$$G_X(t) = k \left[t^2 (2t^2 + 3) + (t+1)^4 \right]$$

where k is a positive constant.

a) Determine the value of P(1 < X < 4).

b) Use $G_X(t)$ to calculate the mean and variance of X.

No credit will be given if the mean and variance of X are obtained from calculations based on the probability mass function of X.

 $P(1 < X < 4) = \frac{13}{21}, \quad E(X) = \frac{46}{21} \approx 2.19, \quad Var(X) = \frac{488}{441} \approx 1.11$

(2×12+3)+(1+1)4] $\tilde{P}_{x}(t) = \frac{1}{21} \left[1 + 4t + 9t^{2} + 4t^{3} + 3t^{4} \right]$ $P(1 < x < 4) = P(2 \le x \le 3) = P(x - 2,3)$ = $\frac{1}{21}\left(\frac{q}{4}\frac{u}{2}\right) = \frac{13}{24}$ $G_{1}(t) = \pm (1+4t+4t^{2}+4t^{3}+3t^{4})$ ± (4+18€+12t²+12t²) G'(1)= 462 • $G''_{x}(t) = \frac{1}{24} (18 + 24t + 36t^{4})$ · Gx(1) = 26/-· E(x) = E'(1) = 4 $G'_{\mathbf{x}}(\mathbf{0}) - \left[G'_{\mathbf{x}}(\mathbf{0}) \right]$ - (46)2

(***) **Question 8**

The discrete random variables, X and Y, are independent of one another and have respective probability generating functions

 $\mathbf{G}_{X}(t) = \alpha (2+t)^{4}$ and $G_Y(t) = \beta (2+t)^5$

where α and β are a positive constants.

- a) Use $G_X(t)$ to calculate the mean and variance of X.
- **b**) Find a probability generating function for X + Y and use it to find the mean and variance of X + Y.

 $\left|\frac{1}{19683}(2+t)^9\right|, \left|\mathbf{E}(X)=3\right|, \left|\mathbf{Var}(X)=2\right|$ $|E(X) = \frac{4}{3}|, |Var(X) = \frac{8}{9}|,$

$\implies G_{x+y}(t) = \frac{1}{19685} (2+t)^{9}$
$\implies G'_{x,y}(y) = \frac{1}{2(87)}(x+t)^8$
$\rightarrow G_{x+y}^{\sqrt{4}} = \frac{B}{2187} (2+t)^7$
these are now those
$E(X) = G'_{X}(C_{1}) = \frac{1}{2187} x (2+1)^{8} < 3$
$\operatorname{Var}(k) = G_{k}^{\mathscr{I}}(1) + G_{k}^{\mathscr{I}}(1) - [G_{k}^{\mathscr{I}}(1)]^{2}$
$Vac(\hat{x}) = \frac{0}{2107} \times 3^7 + 3 - 3^2$
$Var(X) = \Theta + 3 - 9$
$Var(x) \approx 2$
and the second second

Question 9 (***)

A fair six-sided die is rolled repeatedly until a 6 is obtained.

The discrete random variable X represents the number of rolls required until the first 6 is obtained.

a) Derive from first principles $G_X(t)$, the probability generating function of X.

Give the answer in its simplest form.

b) Use $G_X(t)$ to calculate the mean and variance of X.

No credit will be given if the mean and variance of X are obtained by alternative methods.

 $G_X(t) = \frac{t}{6-5t}$, E(X) = 6, Var(X) = 30

AW! WE HAVE 4 GEDMETRIC DE $E(x) = G'_{x(1)} = 6$ $P(X=x) = \left(\frac{5}{5}\right) \left(\frac{1}{5}\right)$ $Var(x) = G'_{x}(1) + G'_{x}(1) - (G'_{x}(1))^{2}$ $Var(x) = 60 + 6 - 6^{2}$ $\sum_{x=1}^{\infty} P(X \circ x) t^{x} = G_{x}(t)$ 2 [[[] +] = 5,4 VarGe) = 30 5.41= tt $\Rightarrow G_{x}(t) = tt \left[\frac{1}{1 - \frac{1}{2}t} \right]$ - Sa - a $\Rightarrow G_x(t) = \frac{1}{6}t\left(\frac{6}{6-5t}\right)$ $G_{\chi}(t) = \frac{1}{6}$ DIFFERENTIATE & NOF STINIOHOD RESOLD $G'_{x}(x) = \frac{(6-st)-t(-s)}{(c-st)^{2}}$ (QUETHES RULE) $G'_{X}(x) = \frac{G}{(G-St)^{2}} = G(G-St)^{2}$ $G_{\chi}^{(x)} = Go(G-2E)^3 = \frac{Go}{(G-2E)^3}$ G'(1) = 6

Question 10 (***+)

 $G_X(t)$ is the probability generating function of a discrete random variable X.

$$G_X(t) = t^4 + \frac{2+6t+9t^2+9t^3+kt^4}{2e^3}$$

where k is a non zero constant.

- **a**) Determine the value of k.
- **b**) Calculate P[X > E(X)], correct to four decimal places.

c) Find the value of Var(X), correct to two decimal places.

	<i>a</i> .
(a) <u>Dave The Art $G_{k}(t) = 1$</u> $\Rightarrow (+ \frac{2+6+9+2+k}{2e^{k}} = 1)$ $\Rightarrow \frac{2e+k}{2e^{k}} = 1$ $\Rightarrow \frac{2e+k}{2e^{k}} = 1$ $\Rightarrow \frac{2e-k}{2e^{k}} = 1$ $\Rightarrow \frac{2e^{k}}{2e^{k}} = 2e^{k}$ $\Rightarrow E(X) = 4t^{-1} + \frac{e^{-k}t^{-1} + 2e^{k}}{2e^{k}} = 2e^{k}$ $\Rightarrow P(X > E(X)) = P(X > 2e^{k}) = P(X = 2, 4)$	() <u>Differential from for the set of the se</u>
$= \frac{2}{2e^3} + \left(1 - \frac{2}{2e_0}\right)$ $= \frac{1}{2e_0}$ $= 1 - \frac{1}{2e_0}$ $\simeq 0.5168$	

k = -26, ≈ 0.5768 , ≈ 1.52

2

Created I	by T.	Madas
-----------	-------	-------

Question 11 (***+)

The discrete random variable X has probability mass function

$$P(X = x) = \frac{x^2}{k}, x = 1, 2, 3, 4, 5$$

where k is a positive constant.

The probability generating function of X is $G_X(t)$.

- a) Find an expression for $G_X(t)$, in terms of k. Give the answer in simplified sigma $[\Sigma]$, notation.
- **b)** Find $\frac{d^2}{dt^2} [G_X(t)]$, in terms of k.

Give the answer in simplified sigma $[\Sigma]$, notation.

- c) State the value of k.
- d) Use G_X(t) and its derivatives to calculate the value of Var(X).
 No credit will be given if the value of Var(X) is obtained from calculations based on the probability mass function of X.

Question 12 (****)

The discrete random variable X has probability generating function $G_X(t)$.

a) Show, with detailed workings, that ...

i. ... $E(X) = G'_X(1)$.

ii. ...
$$\operatorname{Var}(X) = G''_X(1) + G'_X(1) - [G'_X(1)]^2$$

It is further given that

$$\mathbf{G}_{X}(t) = \frac{kt}{1 - 0.2t^{2}}$$

where k is a positive constant.

b) Determine the value of $P(6 \le X \le 8)$.

c) Use $G_X(t)$ to calculate the mean and variance of X.

 $P(6 \le X \le 8) = 0.0064$, E(X) = 1.5, Var(X) = 1.25

6) FIRSTLY TOD K

 $(\text{AT US NOTE THAT } E(fo)) = \sum P(X=x) \cdot f(x)$ $\Longrightarrow G_{x}(t) = \sum [P(x=x)f] = [t^{x}) (a \text{ obset})$ $T) \xrightarrow{\text{infiguration (integration of t)}} \oplus \mathbb{G}_{x}^{(t)} = \sum \left[\int_{-\infty}^{\infty} \mathbb{P}(x_{-x}) f^{x-1} \right] = \mathbb{E}(x t^{x-1})$ $\Rightarrow G'_{x}G) = \sum \left[a P(x = x) \right] = E(x) \quad E \stackrel{\sim}{\underset{=}{\overset{\sim}}} E$ E(x)= G'(G) I) DIFFERENTIATE WITH RESPECT TO t ONCE MORE $= G'_{\mathbf{x}}(t) = \sum_{i} \left[x_{i}^{p}(X_{i=1}) t^{2-i} \right] = E(X_{i}t^{2-i})$ $= G'_{\mathbf{x}}(t) = \sum_{i} \left[x_{i}(t_{i}) f_{i}(x_{i}) t^{2-i} \right] = E(X_{i}(t_{i}) t^{2-i})$ $\Rightarrow G_{X}^{*}(t) = \sum \left[\chi^{2} P(\chi_{=X}) t^{X-1} - \chi P(\chi_{=X}) t^{X-1} \right]$ $\implies G_{X}^{\prime\prime}(t) = \sum \left[x^{2} P(X \cdot x) t^{\lambda \cdot t} \right] - \sum \left[t P(X \cdot x) t^{\lambda \cdot t} \right]$ $\Rightarrow G_{\lambda}^{*}(t) = E(\chi^{2}t^{\lambda-1}) - E(\chi^{t}t^{\lambda-1})$ EVAWATE AT 5-1 GUES $G_x^{\ell}(I) = E(X^2) - E(X) -$ But $Var(X) = E(X^2) - [E(X)]^2$

 \Rightarrow Var(x) = G''_x(1) + G'_x(1) - (G'(1))^2

$$\begin{split} & \zeta(t) = t \implies \frac{k}{1-c_2} = t \\ & \implies \frac{k}{1-c_2} = t \\ & \implies \frac{k}{1-c_2} = 0 \\ & = 0 \\ \hline & = 0 \\ & = 0 \\ \hline & = 0 \\ & =$$

 $\begin{array}{c} c) & \underset{(\zeta_{1}+1)^{2}}{\underset{(\zeta_{2}-1$

$$\begin{split} & \underbrace{\mathsf{G}_{M}\mathsf{W}\mathsf{W}\mathsf{T}}_{\mathbf{A}\mathsf{T}} \xrightarrow{\mathsf{C}_{M}} \left[\begin{array}{c} \mathsf{G}_{M}^{\mathsf{C}}(t) \\ \mathsf{G}_{M}^{\mathsf{C}}(t) \\ \end{array} \right] \approx \frac{2}{M} \xrightarrow{\mathsf{G}_{M}^{\mathsf{C}}(t)} = \mathbb{Z}, \\ & \underbrace{\mathsf{G}_{M}\mathsf{U}\mathsf{L}}_{\mathbf{A}} \xrightarrow{\mathsf{D}}_{\mathbf{A}} \xrightarrow{\mathsf{G}_{M}^{\mathsf{C}}} \left[\begin{array}{c} \mathsf{G}_{M}^{\mathsf{C}}(t) \\ \end{array} \right] \approx \mathbb{Z}, \\ & \underbrace{\mathsf{G}_{M}^{\mathsf{C}}(x) \\ \mathsf{U}_{M}^{\mathsf{C}}(x) \\ \end{array} \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}} \mathbb{Z}, \\ & \underbrace{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ \mathsf{C}_{M}^{\mathsf{C}}(x) \\ \end{array} \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}} \left[\begin{array}{c} \mathsf{G}_{M}^{\mathsf{C}}(t) \\ \mathsf{G}_{M}^{\mathsf{C}}(x) \\ \end{array} \right] \approx \mathbb{Z}, \\ & \underbrace{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ \mathsf{C}_{M}^{\mathsf{C}}(x) \\ \end{array} \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}} \mathbb{Z}, \\ & \underbrace{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ \mathsf{C}_{M}^{\mathsf{C}}(x) \\ \end{array} \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ } \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ \end{array} \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ \end{array} \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ } \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ \end{array} \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ } \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ \end{array} \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ } \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ } \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ } \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) } \xrightarrow{\mathsf{C}_{M}^{\mathsf{C}}(x) \\ } \xrightarrow{\mathsf{C}_{M}^{$$

Question 13 (*****)

The discrete random variable X has probability mass function

$$P(X = x) = \frac{x^2}{k}, x = 1, 2, 3, 4, 5, ..., N$$

where k is a positive constant.

The probability generating function of X is $G_X(t)$.

a) Find an expression for $G_X(t)$, in terms of k and N. Give the answer in simplified sigma $[\Sigma]$, notation.

- **b**) Find the value of k in terms of N.
- c) Use $G_X(t)$ to show that

$$\mathrm{E}(X) = \frac{3N(N+1)}{2(2N+1)}.$$

d) Show further that the value of Var(X) is

$$\frac{3N^4 + 6N^3 - N^2 - 4N - 4}{20(2N+1)^2}$$

You may assume without proof $\sum_{r=1}^{n} r^4 = \frac{1}{30}n(n+1)(6n^3+9n^2+n-1)$

$$G_X(t) = \frac{1}{k} \sum_{x=1}^{N} (x^2 t^x), \quad k = \frac{1}{6} N (N+1) (2N+1)$$

[solution overleaf]

4281

⁴45]

Months Comment Montes Comment Neration Neration Ladas MOMENI GENERATING NCTIONS Chastralls.com 1.Y.C.B. Malastralls.com 1.Y.C.B. Malastralls.com 1.Y.C.B. Malastra

STRAILS COM I.Y.C.B. MARASTRAILS COM I.Y.C.B. MARASTRAIL

T. T. G.B. HIRIBSHRIER BURGER I. Y. G. HIRIBBARKAN I. Y. G. HIRIBBARKAN I. Y. G. HIRIBBARKAN I. Y. G. HIRIBBARKAN I. Y. HIRI MASINGUS COM LANCER MARINESSINGUS COM LANCER MARINESSINGUS LANCER MARINESSINGUS LANCER MARINESSINGUS LANCER MARINESSING