STUDENT'S t-DISTRIBUTION t-DISTRID. INTRODUCTION N. V. I.Y.G.B. Madasmanna and the madasmanna and the second secon THE MARSHARE WITH THE AND THE

Question 1 (**)

The weights, in grams, of ten bags of popcorn are shown below

91, 101, 98, 98, 103, 97, 102, 105, 94, 90.

a) Find a 95% confidence interval for the mean weight of a bag of popcorn.

The seller of the popcorn claims that the mean weight of the bags is 100 grams.

- **b**) Test at the 5% level of significance whether there is evidence that the bags of popcorn bought from this particular seller are underweight.
- c) State clearly any assumptions made.

Question 2 (**)

It is claimed by a school that the typical waiting time to see a teacher in a parents' evening is 5 minutes.

In a recent parents' evening one of the parents recorded the waiting time, in minutes, for each of his son's 9 teachers. His results are shown below

4, 12, 9, 7, 7, 6, 8, 7, 8.

- a) Find a 90% confidence interval for the mean waiting time in a parents evening in that school.
- **b**) Test at the 1% level of significance whether there is evidence that the mean waiting time in a parents evening in that school is higher than 5 minutes.
- c) State clearly any assumptions made.

Question 3 (**)

KQ,

Mark is a shot putter.

The distances, in metres, for 8 of his throws are shown below

15.82, 16.07, 15.37, 19.01, 17.52, 14.98, 15.64, 16.28.

a) Find a 99% confidence interval for the mean distance thrown.

Mark claims that his mean throwing distance is 17 metres.

- **b**) Test at the 5% level of significance whether Mark's claim is justified.
- c) State clearly any assumptions made.

(14.71,17.97), not significant, -2.365 < -1.426 < 2.365

2

Question 4 (**)

Joe disagrees with the statement made on the label of a packet of crisps, which states that the net content is 40 grams.

He weighs the content, x grams, of 10 randomly chosen packets of these crisps.

His results are summarized below.

 $\sum_{10} x = 387.5$ and $\sum_{10} x^2 = 15096.25$

Test, at the 5% level of significance, whether there is evidence to support Joe's belief.

, not significant, -2.262 < -1.3206... < 2.262

Question 5 (**+)

An industrial wood shredder must be rested for a minimum period of 20 minutes after a set usage time. The times of these rest brakes are thought to be modelled by a Normal variable T, with mean μ and standard deviation σ .

16 random of values of T are summarized below.

$$\sum t = 307.2, \qquad \sum t^2 = 5994.24.$$

a) Calculate a 95% confidence interval for μ .

For the shredder to be operated correctly, μ should not be less than 20 minutes.

b) Test at the 5% level of significance whether the shredder is operated correctly.

(17.85, 20.55), not significant, -1.265 > -1.753, \therefore correctly operated

1 m	10
(a) $\begin{array}{c} \sum t = 3i_{12} & \sum t = 3y_{14}, 24 & t_{10} & t_{10} \\ \hline t = & \sum_{i_1} & \frac{3y_{12}}{i_1} & = 0, 2 \\ & s_{i_2}^2 & = \frac{1}{i_{i_1}} & 2i_{i_2}^2 & = 0, 2 \\ & s_{i_2}^2 & = \frac{1}{i_{i_1}} & 2i_{i_2}^2 & = \frac{1}{i_{i_1}} \begin{bmatrix} 3y_{i_1}, x_{i_2} & -\frac{1}{3y_{12}} \\ & y_{i_2} & -\frac{1}{3y_{i_1}} \end{bmatrix} \end{array}$	(<u>367.2</u>] ≈ 6.4
$\begin{array}{c} \mu = \Sigma \pm \frac{g}{4\eta} \\ \mu = 192 \pm \sqrt{g} \\ \eta = 192 \pm 100 \\ \mu = 1$	t_5(25≈) 1€ × 2+131 34776
(b) $\{f_0; f_1 = 20\}$ $\{f_1, f_2, f_3 = 1, f_2, f_3 = 1, f_3, f_3 = 1, f_3 $	85, 20-5 <u>(</u>)
$T = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = -1.265$	
AS -1-265>-1-733 THEEE B NO SHOHFOND FRIDADO BE SOPPARE IN USS THAN 20 MINUTH, SO THE M CORRECTLY (RELACT H.)	e THAT MHAN TIMH AGHINE IS OPREINDD

Question 6 (**+)

In the main road, passing through the village of Cockfosters, the speed limit is 30 mph, however a speed measuring device indicated that the mean driving speed through the village was 37.2 mph.

In an attempt to reduce these excessive driving speeds a carton real size model of a police officer was placed by the side of the road, in the approach to the village.

The speeds, X mph, of a random sample of 12 vehicles were subsequently measured yielding the following summary statistics.

$$\sum_{i=1}^{12} x_i = 411 \qquad \sum_{i=1}^{12} (x_i - \overline{x})^2 = 134.75$$

Stating your hypotheses clearly, carry out a suitable test, at the 1% level of significance, to determine whether there has been a reduction in the mean speed of the vehicles passing through the village, after the placement of the police officer model.

Question 7 (***)

A machine packs peas into bags with mean weight μ grams.

The weights, in grams, of a random sample of 8 bags is shown below.

455.0, 454.1, 453.9, 456.2, 454.5, 453.7, 454.3, 453.3.

- a) Assuming the standard deviation of the weights of all bags packed by the machine is 2 grams, find a 99% confidence interval for μ .
- b) Given instead that the standard deviation of the weights of all bags packed by the machine is unknown, find another 99% confidence interval for μ .

4/%
4550 = 454·1 + 453·9 + 4562 + 16545 + 4557 + 6143 + 453.3
a) $\overline{\alpha} \sim \frac{\Sigma_{x}}{\eta} = \frac{3635}{8} = 454.075$
OBTAILING 4 CONFIDENCE INTRUCE, with σ^{-2} 4.
$ \begin{array}{c} \longrightarrow p = \overline{\alpha_{0}} \doteq \frac{\sigma_{0}}{\sigma_{1}} \underline{\delta}(\sigma_{0}) \\ \longrightarrow p = 64.3 \text{ xz} \pm \frac{\sigma_{0}}{\sigma_{1}} \underline{\gamma}(\sigma_{0}) \\ \implies \phi = 4.49.37 \pm \frac{1}{\sigma_{0}} \underline{\gamma}(\sigma_{0}) \\ \xrightarrow{\overline{\alpha}}(\sigma_{0}) \\ \xrightarrow{\overline{\alpha}}$
$\therefore C.I = (452.6, 455.2)$
DATHRMINE AN OUBLASED ESTIMATOR FOR THE UNDADICE
$ \sum_{j=1}^{j+1} \frac{1}{n-1} \sum_{\lambda j_{i}}^{j} = \frac{1}{\frac{1}{n-1}} \left[\sum_{\lambda} \frac{\lambda_{i}}{n} - \frac{\sum_{\lambda} \sum_{\lambda}}{n} \right] = \frac{1}{2} \left[\frac{1}{1650,5590} - \frac{212\pi^{2}}{6} \right] $
$= \frac{(13)}{(400)} = 0.8078510(429)$
NOOTHER OF THIS INTERNATION WITH T HIS OF THE OF TH
$ \begin{array}{c} \Rightarrow & \gamma \in \mathcal{I}_{g} + \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \downarrow} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left(\eta(S^{g}) \right) \\ \Rightarrow & \gamma \in \mathcal{I}_{g} \times \frac{d}{d_{g}} \stackrel{l}{ \to} \left($
∴ <u>C.I.</u> = (4533, 455.4) ↓(%3%)=4.3499

(453.3, 455.5)

(452.6, 456.2),

Question 8 (***)

A coffee machine, placed in the waiting room of a garage, dispenses coffee into cups. The volume of the coffee in a cup is Normally distributed with mean 250 ml.

The manager of the garage claims that the mean volume of coffee in a cup is no longer 250 ml due to the age of the machine.

He records the volume, x ml, of 10 randomly selected cups, producing the following summary statistics.

- a) Test, at the 5% significance level, the garage manager's claim.
- **b**) Carry another test, at the 5% significance level, if instead the garage manager claimed that the mean amount of coffee dispensed by the machine in every cup is less than 250 ml.

, not significant evidence, -1.821 > -2.262not significant evidence, -1.821 > -1.833

H.: H<250

1.821> -1.833 THEE

CRITICAE UAWE NOW WILL BE - 1.833. t-STAT WILL BE UNCHANDED AT - 1.821

THE WANNAPER'S CUMM - REVERT +

 $\tilde{a} = \frac{\sum_{x}}{v} = \frac{2390}{10} = 239$ $s_{1}^{2} = \sqrt{\frac{1}{9} \left[\sum_{x} 2^{2} - \frac{\sum_{x} \sum_{x}}{n} \right]} = \sqrt{\frac{1}{9} \left[574495 - \frac{2390 \times 2390}{10} \right]} = \sqrt{365}$ µ = 250 H. : 1× ≠ 20 ñ= 239 (1)-975) = -2.202 $v_1 = 10$ \$ = 1365

STUDENT'S **STUDENT'S t – DISTRIBUTION** -^ SAMPLE t-TEST ASSURABLE COUL I. Y. C.P. HARRASHARKSCOUL I. Y. C.P. HARRASHARKSCOUL I. Y. C.P. HARRASHARKSCOUL I. Y. C.P. HARRASHA

Question 1 (**+)

A Mathematics exam was given to the Year 8 pupils of a certain school.

The percentage marks for some of the boys and some of the girls that sat this exam are given below.

Boys: 67, 72, 56, 91, 55, 68, 55, 45, 80. Girls: 58, 97, 65, 69, 57, 57, 77, 69.

The Head of Maths thinks that the Year 8 boys have a different mean mark than the Year 8 girls.

Test, at the 5% level of significance, whether the claim of the Head of Maths is justified. State your hypotheses clearly, stating any additional assumptions made.

, not significant, -2.131 < -0.470 < 2.131

	1. A.	
OBTYPH SUMMARY STATISTICS ADN THE CANWLATER		$f = Statistic = (\vec{x}_{k} - \vec{x}_{c}) - (\mu_{k} - \mu_{c})$
• Σα3= 589 · Σα3= 40/89 · η1 - 9		$\beta_{\rm P} \sqrt{\frac{1}{n_{\rm a}} + \frac{1}{n_{\rm a}}}$
• ∑ x ₆ = 549 • ≥ x ₆ ² = 36947 • N ₆ = 8		(commented and
SETTING-HYPOTHESES	· · · · · · · · · · · · · · · · · · ·	= (04:944 09:625) - (6)
<u>11</u> · μ. ₌ μ		V=216 V 9 T 8
1) I B IG DUPPER & REPORT THE POPULATION IF , I AT 25% IN FACT THE , I AT 25% IN FACT THE.)	F 17511NG	= − 0.46961
CAWATING AUXILIAPIES		45 - 2.131 <- 0.470 < 2.131 THERE IS NO STATIFICATI SHUDIJG
$\overline{a}_{R} = \frac{2a_{R}}{N_{R}} = \frac{589}{9} = 65.444$		THAT THE POPULATION WHEN OF THE BOXS IS DIFFERENT TO THAT O
• $\widehat{D}_{6} = \frac{\sum x_{1_{1}}}{N} = \frac{549}{8} = .68.625$		THE GRELS - WOLFFICINT FROMULE TO REFECT H.
$\frac{y_{12}^{2}}{p_{12}^{2}} = \frac{1}{p_{12}^{2}} \left[\sum x_{12}^{2} - \frac{\sum x_{12} \sum x_{12}}{p_{12}} \right] = \frac{1}{9} \left[\frac{40109}{9} - \frac{309 \times 569}{9} \right]$	= <u>- 8695</u>	ASSUMPTIONS MADE
$s_{0}^{2} = \frac{1}{h_{c}-1} \left[\frac{s_{12}^{2}}{s_{0}^{2}} - \frac{s_{2c}}{s_{0}} \frac{s_{2c}}{s_{0}} \right] = \frac{1}{7} \left[\frac{38947}{38947} - \frac{589 \times 518}{89} \right]$	= <u>10175</u> S6	· SAMRES ARE RANDON
		· STUPLES GONE FROM NORMAL DUTERSTRANS
NEXT THE POOLED ESTIMATE OF THE WARMING		· POPULATION OMPERINGES ARE THE SHARE FOR boys of GRELS
$\beta_{p}^{2} = \frac{(n_{b-1})\beta_{a}^{2} + (n_{b-1})\beta_{a}^{2}}{n_{b} + n_{c} - 2} = \frac{8 \times \frac{3045}{16} + 7 \times \frac{50175}{56}}{9 + 8 - 2} =$	41953	
WING A + DISTRIBUTION WITH IS DEFRICES OF REFEDOM		
2,5% 233		
(S% The THILED)		
. ty(25%)= ±2-131		

Question 2 (**+)

A decathlete feels that his throwing distances have a higher mean this season than the previous one.

Two samples for his throwing distances, in m, for the last two seasons are shown in the table below.

Last season: 61,37, 57.29, 66.56, 60.91, 59.95, 61.10, 59.59, 65.45. This season: 58.99, 66.97, 70.55, 69.02, 59.54, 68.22, 68.36.

Assuming the throwing distances considered for each season are random, test at the 5% level of significance, whether the mean throwing distances of the decathlete have improved this season. State your hypotheses clearly, stating any additional assumptions made.

4= 44 4y>Ma [Sy = 46165, Sy = 30577.9335 % SIMIFICANCE • $\tilde{\Omega} = \frac{S_{\infty}}{L_{0}} = \frac{442.22}{10} = 61.5277$ $\hat{u} = \frac{5u}{10} = \frac{461.65}{100} = 65.95$ • $s_{1,2}^{2} = \frac{1}{n_{n-1}} \left[-\frac{5n^{2}}{2n} - \frac{5n^{2}5n}{n_{n-1}} \right] = \frac{1}{2} \left[-\frac{3030}{9} \cdot 508 - \frac{49222^{2}}{8} \right] = 9.35707043...$ • $s_{y}^{2} = \frac{1}{k_{y-1}} \left[\sum_{y}^{1} - \frac{\sum_{y} \sum_{y}}{\nu_{k_{y}}} \right] = \frac{1}{6} \left[30577.9335 - \frac{46(65^{2})}{7} \right] = \frac{33029}{1500} \approx 22.019$ $\frac{7\times 9.357... + 6\times 22\cdot 0193...}{18}\simeq 15\cdot 2012115\psi.$ $x^{2} + (M_{y}-1)S_{y}^{2}$ (23-33)-(43-4x) Sp V. ha + J (65.95 - 61.5275) - (15.20121....) 2.132 2.13271.771 774866-15 516 N THORNWILL DUTING A ARE GRAPH the sensor (sever the)

significant, 2.192 > 1.771

Question 3 (***)

A Mathematics exam was given to the Year 11 pupils of a certain school.

The marks for some of the boys and some of the girls that sat this exam are given in the table below.

Boys: 67, 62, 56, 91, 55, 68, 55, 45, 80. Girls: 68, 87, 55, 69, 79, 70, 77, 69.

The Head of Maths thinks that the mean of the Year 11 girls is more than 5 marks higher than the mean of the Year 11 boys.

Test, at the 10% level of significance, whether the claim of the Head of Maths is justified. State your hypotheses clearly, stating any additional assumptions made.

E YARWING UMME SOLFFULLION & DAILOS SOLLAS · Zaz= 579 · Zx2 = 3884 · Zac= 574 2323HTOPH - JUITE $s_{\mathbf{g}}^{2} = \frac{1}{h_{\mathbf{g}}} \sum_{\mathbf{g}} \frac{1}{s_{\mathbf{g}}} - \frac{1}{s_{\mathbf{g}}} \sum_{\mathbf{g}} \frac{1}{s_{\mathbf{g}}} = \frac{1}{s_{\mathbf{g}}} \sum_{\mathbf{g}} \frac{1}{s_{\mathbf{g}}} \sum_{\mathbf{g}} \frac{1}{s_{\mathbf{g}}} = \frac{1}{s_{\mathbf{g}}} \sum_{\mathbf{g}} \sum_{\mathbf{g}} \frac{1}{s_{\mathbf{g}}} \sum_{\mathbf{g}} \frac{1}{s_{\mathbf{g}}} \sum_{\mathbf{g}} \sum_{\mathbf{g}} \frac{1}{s_{\mathbf{g}}} \sum_{\mathbf{g}} \sum_$ $\frac{1}{p_{G}^{2}} = \frac{1}{p_{c-1}} \left[\sum_{k=0}^{2} - \frac{\sum_{k=0}^{k} \sum_{k=0}^{k}}{p_{k}} \right] = \frac{1}{7} \left[\frac{4180}{9} - \frac{514 \times 574}{9} \right] = \frac{125}{14}$ $\frac{(n_6-1)\beta_6^2 + (n_6-1)\beta_6^2}{n_6 + n_6-2} = \frac{8 \times 200 + 7 \times \frac{8 \times 1}{10}}{9 + 8 - 2} = \frac{8 \times 100}{30}$ 1 DISTRIBUTION WITH IS DEFREES OF FREEDOM

(10% ANY TAULO) = (10%)= 1-34

ASSULTIONS MAD H WARNER WHEINWESS

|, not significant, 0.408 < 1.341

Question 4 (***)

A factory produces batteries which are claimed to have a mean lifetime of 40 hours. The mean lifetime of a battery, in hours, is assumed to be a Normal variable, and it is denoted by X. The factory uses two identical machines for the battery manufacture.

The manager of the factory tests a random sample of 10 batteries produced by machine A, and the results are summarized below.

$$\sum x_A = 378$$
, $\sum x_A^2 = 14598$.

a) Carry out a one tail test, at the 10% level of significance, to check whether the claim of the factory is justified.

The manager of the factory next tests a random sample of 12 batteries produced by machine B, and these results are summarized below.

$$\sum x_B = 495$$
, $\sum x_B^2 = 20988$.

b) Test, at the 10% level of significance, whether the mean battery lifetime differs between the two machines, stating any additional assumptions made.

c) Make a criticism of one of the assumptions made in part (b)

], not significant, -1.186 > -1.383, not significant, -1.725 < 1.216 < 1.725

a other estimators for	NA THE STIMPLE
• $\overline{a}_{n} = \frac{5x_{n}}{N_{n}} = \frac{378}{10}$	= <u>37.8</u>
• $s_{A}^{2} = \frac{1}{N_{A}-1} \sum x_{A}$	$\frac{1}{2} = \frac{1}{23^{\circ}} \frac{23^{\circ}}{23^{\circ}} = \frac{1}{2} \left[\frac{1}{16} \frac{1}{246} - \frac{3}{230} \frac{1}{236} \right]$
	$=\frac{172}{5}=\frac{344}{5}$
SETTINE - HYPOTHERES	
Ho: 44 = 40 H1: 44 × 40	
$3_{4} = 37.8$ $S_{4}^{2} = 34.4$	t ₄ ()0%) = - F383
7,4 = 10 10% ONE TAUED	$\frac{t-signanc}{s_{n}} = \frac{\overline{\partial_{n}} - p_{n}}{s_{n}} = \frac{37.8 - 40}{\sqrt{32.8}}$
AS -1-1865-11-383 THE	84 IS NO SURVEINT THEFT THE WAY I IP-THE
(FOR THE POPULATION) IT TO RESIDENT of	2 3 40 June 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6) ASSUMING RIFT THE POP	WATTON UARIANCES ARE THE SAWY
0 323 = Soria = 195 =	= 41-25
$f_{3^{2}}^{2} = \frac{1}{n_{g^{-1}}} \left[\sum_{x_{3}^{2}} - \frac{1}{2} \right]$	$\frac{52_{8}52_{8}}{n_{8}} = \frac{1}{n} \left[20988 - \frac{495 \times 495}{12} \right] = 51.75$

ESTIMATE THE COMMON U	ARMANCE (POULD RETINATE SEP)
$S_{p}^{a} = \frac{(h_{h}-1)S_{h}^{a} + 0}{h_{h} + N_{h}}$	$\frac{\eta_{\delta^{-1}}}{2} = \frac{(9 \times 344) + (11 \times 5.75)}{10 + 12 - 2}$
	- 43.1425
SETTING HYPOTHESES	
40: MA = MB H1: MA + MB	5% 5%
JA=37.8, JB=41.25 hA=0, hB=12	> t ₂₆ (5x) = ±1.725
\$\$p = 43.9425	• t-spanse = $\frac{(x_{B} - x_{h}) - (y_{E} - \overline{y_{h}})}{\sqrt{s_{p}^{2} (\frac{1}{y_{h}} + \frac{1}{y_{h}})^{T}}}$
	• $t - \text{statustic} = \frac{4 \cdot 25 - 37 \cdot 8}{\sqrt{43 \cdot 4925} (t + \frac{1}{25})^2}$
	• t-sont = 1.21550
45 -1.725 < 1.216 < 1.7	25, THERE IS NO SIMULAND KNOWCE
THAT THE WHAN WEETINHS	ARE DIFFERED ON THE WO SAPITION SAPITAL ARE
INSUFFICINT FUIDMUE TO	REVECT -
c) data and data	
THIS TYPE OF THINKS ,	AS THE UARIANCE ESTIMATORS ARE NORY
DIFFERENT , I.E.	\$4=34.4 4 \$2 × 51.71

Smaths.com

SMaths.co.

4.6.5.

asmaths,

I.V.C.B. Madasmanna Madasmanns.Com

asmaths.com I.V.C.B. STUDENT'S t – DISTRIBUTION

Difference of Means Confidence Interval

I.Y.C.B. Madasmanna Madasmanna I.Y.C.B. Madasm

Question 1 (**+)

The table below shows the fuel consumption in mpg for a random sample of 11 cars with a 2 litre engine and a random sample of 9 cars with a 1.6 litre engine.

2 litre engine	35.6	37.6	32.3	35.0	31.7	36.5	32.5	36.6	28.7	33.4	37.1
1.6 litre engine	28.1	37.2	35.6	31.1	30.8	29.5	33.4	31.6	30.8		

Assuming that these samples come from populations with equal variance, find a 90% confidence interval for the difference in mean fuel consumption between cars with a 2 litre engine and cars with a 1.6 litre engine.

(0.054,4.470)

 $\begin{bmatrix} M_{2} = 11 & 11_{2} = 9 \\ \Rightarrow \int_{Z}^{J_{2}} = \frac{1}{10} \left[12996 \cos -\frac{377 \times 377}{11} \right] \approx 7.720 |B|B|B...$

• $\int_{-\infty}^{\infty} \frac{1}{8} \left[\frac{1}{289} - 67 - \frac{288 \cdot 1 \times 2861}{9} \right] \simeq 8.408611...$

 $\beta_{p}^{12} = \frac{(N_{h} - I)}{N_{h} + N_{h} - 2} \frac{\beta_{h}^{2}}{N_{h} + N_{h} - 2} = \frac{10 \times 7.720 I_{h} + 8 \times 8.408 f_{h}}{18} \approx 8.021$

$$\begin{split} & |\mathbf{x} - \mathbf{V}_{g} = \left(\widetilde{\mathbf{x}} - \widetilde{\mathbf{y}}_{g}\right) \triangleq \phi_{p}^{*} \sqrt{\frac{1}{\mathbf{v}_{h}} + \frac{1}{\mathbf{v}_{g}}} \times \xi_{gg}(\mathbf{q}; \mathbf{x}) \\ & |\mathbf{x} - |\mathbf{y}_{g} = \left(\widetilde{\mathbf{y}}_{g}(\mathbf{z})\mathbf{z}, \dots, \widetilde{\mathbf{z}}_{g}(\mathbf{u})\right) \triangleq \sqrt{6 \cdot \mathbf{e}_{gg}(\mathbf{x})} \sqrt{\frac{1}{\mathbf{u}} + \frac{1}{2}} \times \frac{1}{2} \mathbf{x} \\ & |\mathbf{y}_{g} - \mathbf{y}_{g}| = 2 \cdot 2616 \dots \pm 2 \cdot 2860 \end{split}$$

∴ CI = (0.054, 4.470)

Question 2 (**+)

The table below shows the lengths jumped by a triple jumper for a random sample of 6 attempts this year and the lengths jumped by the same triple jumper for a random sample of 4 attempts last year.

		All the			West of the second seco	and the second sec
Jumps this Year (m)	14.48	15.08	13.88	13.50	15.68	15.77
Jumps last Year (m)	15.45	12.32	13.69	14.25		

Assuming that the variances in the lengths of the triple jumper in both years are identical, find a 99% confidence interval for the difference in the mean length of the jumps of the athlete between this year and last year.

LET I BE ASSOCIAT	to writt this year,	AND "Y" ASSOCIATED WITH
• Za= 8839 • Zy= 5571	• Zz²= 1306.5365 • Zy²= 780.9635	• N _x = 6 • N _y = 4
290TAMITES TRAUMAN	FOR POPOLATION MAN	this of threatmace
$ \begin{array}{c} \cdot \overline{\mathbf{J}} = -\frac{\mathbf{X}_{T}}{\mathbf{N}_{h}} = \frac{\mathbf{Q}_{H}}{\mathbf{N}_{h}} \\ \cdot \overline{\mathbf{J}} = -\frac{\mathbf{X}_{H}}{\mathbf{N}_{h}} = \frac{\mathbf{Z}_{H}}{\mathbf{N}_{h}} \\ \cdot \overline{\mathbf{X}} = -\frac{\mathbf{M}_{H}}{\mathbf{N}_{h}} = \frac{\mathbf{Z}_{H}}{\mathbf{N}_{h}} \\ \cdot \overline{\mathbf{X}} = -\frac{\mathbf{M}_{H}}{\mathbf{N}_{h}} \begin{bmatrix} \mathbf{X}_{H}^{*} \\ \mathbf{X}_{H}^{*} \end{bmatrix} $	$\begin{array}{l} \frac{2a}{5} = \frac{3}{7} + \frac{3}{7} \frac{2a}{5} = \frac{3}{7} + \frac{3}{7} \frac{3}{7} \frac{3}{7} = \frac{3}{7} \frac{3}{7} \frac{3}{7} \frac{3}{7} = \frac{3}{7} \frac{3}{7} \frac{3}{7} \frac{3}{7} \frac{3}{7} = \frac{3}{7} \frac{3}{7}$	65 - <u>89.91×89.3</u> 9]≈ 0.88×90 6 - <u>50.11×55.11</u>]≈ 1.68749
POOLED ESTIMATE FOR	UARIANCE	
$s_{p}^{2} = \frac{(n_{2}-1)s_{2}^{2}}{n_{2}+1}$	$\frac{(n_y-1)S_y^2}{y^{-1}} = \frac{3\times 0.95}{c}$	8090+3×168749 + 4 - 2
ENAMY WE HAVE		
0.5%	04%	
t ₈ (91.5	;%)= 3.355 →	

~ K-H= (2-u) + \$ 1 + * x	t. (99.5.7.)
=> 1/2 - 1/4 = (4-7316-13-923) ± 1/18337 1/-	+++ × 3.205
Ph-M = 0.60H ± 2.355B	
	: C.I=(-1:55 8.16)

Question 3 (***)

The effectiveness of two teaching systems for learning Spanish, A and B, is to be compared using 9 randomly chosen suitable adults.

5 of these adults are allocated system A and 4 are allocated system B.

After a suitable testing period, all 9 are given the same test and information about their scores, x_A and x_B , is given below.

$$\overline{x}_A = 52, \quad \overline{x}_B = 56.5, \quad \sum (x_A - \overline{x}_A)^2 = 248.0, \quad \sum (x_B - \overline{x}_B)^2 = 381.0.$$

It is assumed that X_A and X_B follow normal distributions with identical variance.

Determine an 80% confidence interval for the difference in the population scores using the two methods.

(-4.50, 13.50) or (-13.50, 4.50)

STUDENT'S **STUDENT'S t – DISTRIBUTION** PAIRED 1–TEST ASSURATISCOUL I. Y. C.P. III2023SURATISCOUL I. Y. C.P. III2023SURATISCOUL I. Y. C.P. III2023SURATISCOUL I. Y. C.P. III2023CO

Question 1 (**+)

Research is conducted to investigate the effect of consumption of small amounts of alcohol in driving, by measuring the reaction times of 10 drivers before and after consuming one pint of beer. The results are summarised below.

Driver	A	B	С	D	E	F	G	H	I	J
Reaction Time Before (sec)	0.6	0.7	0.4	0.5	0.6	0.8	0.3	1.0	0.3	0.2
Reaction Time After (sec)	0.7	0.6	0.7	0.6	0.6	0.7	0.7	1.0	0.7	0.6

Test, at the 5% level of significance, whether the consumption of one pint of beer appears to increase the reaction time of drivers, stating any assumptions used.

B.C.a.	A	BC	Ð	E	F	G	#	I	J
AFTH	0.0	0.7 0.4	2.0	0-6	0.8	03	(-0	03	0 <u>2</u>
9	0.1	A1 03	0.0	00	-04	0.0	0	04	0.4
1	WHERE	\$ =	τı	A H	AFTER.	- M	at a	Hen:	•
HYPJTHE	SES A	YOKT, W	HELE	щ	PH	UTES	NH	DI LI	FFERNCE IN THE GUILLE
POPULAT	icik) di	F BOI	2SAG	CONS	ONIN	6.00	γe	Talq	
1)	0.0	0							
10 .	19								
+ti -	Pa	20							
CACULA	74 681	TMATD	2						
d =	50	_ 14	. =	0.1	5				
.2	h	Г			17		Г.		1.5 × 1.5 7 77
Fa =	1-1	290		n	e],	- 9	-Lo	41 -	10 1800
USING .	A t	DISTRIE	OTION	(0)	74)= (1, 1	T S	% SIGNIFICANCH
		_			+				3-41 0-15-D
		1	-		L	34	aic	Ē .	Stin 1 70-1800
1			1000						6
/			1		t	- STAT	STR	e :	2.29.34/

, significant, 2.293 > 1.833

Question 2 (**+)

An Examining Board claims that their 2 Mathematics papers had identical grade boundaries for achieving the top grade.

The head of Mathematics of a large school decides to test this claim by looking at a random sample of 10 students from this school, whose marks were in the region of the top grade.

The percentage marks in each of the 2 papers for these 10 students are shown below.

- <i>2 2 2</i>	National States											
Student	Α	В	С	D	Ε	F	G	Η	Ι	J		
Percentage mark in paper A	91	85	81	90	78	82	71	88	75	94		
Percentage mark in paper B	85	86	82	80	80	83	72	84	70	90		

Test, at the 10% level of significance, the Examining Board's claim

, not significant, −1.833 < 1.793 < 1.833

85 86 72 84 70 90 t-stat = 4 4= 1/2 Map" $++_{i}: \mu_{i} \neq \mu_{2}$ the 144 +0 ALL THE "HUXIWARKS" - LET "d=1-2" $\sum differences(d) = 6 - 1 - 1 + 10 - 2 - 1 - 1 + 4 + 5 + 4$ Zd = 23 512 -201 FINDING THE ESTMATORS $d = \frac{5d}{h} = \frac{23}{10}$ $s_{d}^{2} = \frac{1}{n-1} \left[\sum_{d} 2 - \frac{\sum_{d} \sum_{d} 2}{n} \right] = \frac{1}{2} \left[201 - \frac{23 \times 25}{10} \right] = 16.4557.$ USING THE + - DISTRIP t (osz)=

+5 -1-19333 < 1-7429 < 1-8333 , 74685 IS NO SIGNIGONIT GLODATE (AT 10%) THAT THE PARKES WREE OF DIFFEDST DIFFILIDITY NO SUFFICIANT FURDICE TO REJECT

Question 3 (**+)

A nutritional researcher is investigating the effect of dieting literature in promoting weight loss in overweight individuals.

The weights of random sample of 9 subjects were recorded, then they were given the dieting literature, and their weights were recorded again 9 weeks later.

The results are shown below.

Subject	Α	B	С	D	E	F	G	Η	I
Weight Before (kg)	95.2	96.0	100.2	88.2	91.7	85.0	74.3	83.7	87.0
Weight After (kg)	93.1	95.1	98.1	90.7	90.6	87.2	71.3	80.1	89.1

Test, at the 10% level of significance, whether there is evidence that the dieting literature has some effect in promoting weight loss.

not significant, 0.8499... < 1.397

AS 0.8699 < 1.397 THERE IS NO SIGNARIAN RIDA THAT THE WTRATORE IS EPREDIXE NO SUFFICINT ENDANCE TO RESEAR 4].

and and all	Ą	ß	С	D	E	F	G	H	Î
INMAL WHAT	95.2	%0	(00-2	882	917	850	743	83-7	87:0
WEIGHT AFTHE	93.1	95-1	981	90.7	906	87.2	713	80-1	89-1
SETTING OP A	PANEED	UAW	es t-	TEST	-Ler	d= ".8	Rolle	- AFTH	2."
SUBJECT	Ą	B	C	D	E	£	G	H	I
DIFFERENCE (d)	21	0.9	2.1	-2:5	1.1	-2.2	3.0	3.6	-2.
BTAN SULWAR	sn#n	SULS	F02 -	n it .	STMR	F DR	FRACEN	ŒS	
d= <u></u>	6	= 0.6	66						
	512.	- 245		-]	₩[4	33 - 6	ĉ]	= 2.	353189.
$p_{0}^{12} = \sqrt{\frac{1}{N-1}}$									

Question 4 (**+)

Five randomly chosen pairs of identical twins were each given the same puzzle to solve, and the times taken, in seconds, are summarized in the table below.

<u>></u>				1	1
Twins	Α	B	С	D	Ε
Time for first twin (sec)	37	41	58	18	29
Time for second twin (sec)	42	38	49	9	30

Test, at the 20% level of significance, whether there is a difference in the mean time taken to solve a puzzle, among identical twins, stating clearly any assumptions made.

		-0	1		1		
			6	1	F.	m.	
_			3	•		1.0	×
	FORLING & THELE	OF DI	ARREN	5) 2£)		
6	t	-A-	B	TC	4 I	TEI	0.000
Sec.	FIRST TWIN	37	41	50	18	29	EJ=53
7.8/	SECOND THINK	12	30	1.1	. d	30	Ed2= (97)
12 -	DIFFERING d	-5	3	9	9	-1.	and
-0 / ·	materials of	- 'Fie	n - 9	(CALD)"			
and the second	OBURN ANTIMATE	10					
	at Sd	15 - 7					
	• 8 = <u>h</u> = .	5		-			
	· 5 = - 512	- <u>>d2</u>	=]=	4[19	7	2 212	= 38
	SETTIN'S HYRITHIGE	P. 1440	F M.	MANTHE	THE I	Han) DI	2 (ADITA HICH (AL 31 ANT
	N	, 110	10	-			
	• $+\phi$: $h_1 = h_2$						
	· #1: 41 + 12						
	MANG A & DITTE	160Tion	W(74)	4 2460	165 OF	Reference	1. 10% Thin THULA
		+++				+ (
	100		0%	t-sr	A7 = -	d - 19-4	= 3-0 [39] = 1.0882/
		10				15	100
all a second						1.4	
-	t _r (10%)===	1-533					
n	ty(10%)==	1.533	17160	IS NO	26	ifuan	GUDANG THAT THREE
n	ty(108)=± 13 -1:533<1:088 15 /107 TMF DIFF	-1-533 K< 1-533	2774FR	IS NO	-An Soun)ificans) 25- MMM	SIDNUCE THAT THERE
$\hat{\boldsymbol{\mathcal{C}}}$	ty(108)=== #3 -1:533<1-068 15 107 TML DIFFE -1/1/1 INS/FFICINT 6	1-533 K 1-533 ENDE IN NIDEVE	2774400 2774400 27744 4 270 \$	IS NO MOBLAN SHET I	-Secon	lification TO MMAN	SUDANCE THAT THALE BE TOULD - WE
$\hat{\boldsymbol{\varsigma}}_{\boldsymbol{\lambda}}$	+(1087)=± AS -1:533 <1:088 IS ANY TIME DIFFE -ANY TIME DIFFE -ANY INS/FRUND € ASSUMPTION NADE	1-533 K< 1-533 E6032 IN BIDGVE	2774FR25 D THE 4 TO 2	IS NO NOBLAN SECT I	26 Sound)ificani) IC-MMM	STRAT THE STATE THE THE STATE THE STATE
	ty(norr)=+ AS -1:533<1:000 IS MAY TIME DIFF HAVE INSCIPTION MADE ASSUMPTION MADE - SMARES AD	5 84490)774f68 1 704€ 4 10 -\$	13 NG Nabler SHET J	Sound Sound	lification Cr MMAN	©100×36 74/47 74/48 ©10×36 74/47 74/48 ≈~ 70×10 - 10×10

Question 5 (**+)

Two juice extracting machines are tested by a consumer magazine.

Eight oranges are cut in half and one half has its juice extracted by machine 1 and the other half has its juice extracted by machine 2.

The amounts of juice extracted, in ml, are summarised in the table below.

Orange	Α	В	С	D	E	F	G	H
Machine 1	75	67	69	80	77	71	67	80
Machine 2	76	70	67	79	82	_76	73	77

Test, at the 5% level of significance, whether there is a difference in the amount of juice extracted between the two machines, stating any assumptions made.

not significa	ant, $-2.365 < 1.416 < 2.365$
/	
	FOULING A TABLE OF DIFFERINCES (2)
	A B C D E F G H SATURATION A C G O T 7 7 67 90 CONTRACT A C C O B C T 7 7 67
	DIFFERENCES (d) 2 (5 5 6
F.G.B.	$\begin{array}{c} \underline{C}(\Delta u X \text{or} I, M \text{or}) A \underline{CODDORS} (TH MATCH FOR I GE d) \\ \underline{C}(\Delta u X \text{or} I, M \text{or}) A \underline{CODDORS} (TH MATCH FOR I GE d) \\ \underline{C}(\Delta u X \text{or} I, M \text{or}) A \underline{CODDORS} (TH MATCH FOR I GE d) \\ \underline{C}(\Delta u X \text{or} I, M \text{or}) A \underline{CODDORS} (TH MATCH FOR I GE d) \\ \underline{C}(\Delta u X \text{or} I, M \text{or}) A \underline{CODDORS} (TH MATCH FOR I GE d) \\ \underline{C}(\Delta u X \text{or}) A \underline{CODDORS} (TH A C A C A C A C A C A C A C A C A C A $
2	46 -2355 < τομίστ < 2355, η 1948-1 Νο σεννισκάτι σμολιτε τηθη τηθε α. Κην σηθειλισε το τικ συ ουρο σητατηρ το της Τωρο υλαγηλίας - τουσιθισηση εκρογιστο αειδιστ - μ. - σοιοιομοίας τηδις - σοιοιομοίας ήδις 20-1004 - συθηθιας ήδις 20-1004 - συθηθιας ήδις 20-1004 - συθηθιας ήδις 20-1004

Question 6 (**+)

A new track surface is developed which is claimed to decrease the times of 100 m sprinters, compared with the old track surfaces currently used. To investigate this claim, the performances of 9 randomly chosen sprinters are measured on both surfaces. The results are summarised below.

								1	
Sprinter	Α	В	С	D	Ε	F	G	H	Ι
Time on Old Surface (sec)	10.7	11.2	11.5	10.9	11.8	12.0	10.6	13.1	12.1
Time on New Surface (sec)	10.8	11.0	11.4	11.1	11.4	11.6	10.7	12.5	12.5

Test, at the 2.5% level of significance, the claim about the new track surface.

THLETE	A	R	C	D	E	F	G	#	ř
ME ON OLD TRACK	10-7	112	2.11	809	11-8	12.0	10-6	13.1	121
HE ON NEW TRACK	108	1(-0	11-4	щ	14	114	10.7	12:5	125
FORE-XES (d)	0.1	-0-2	-0-1	0.2	-0-4	-04	0.[-0%	04
d =	New	- 0	D1						
WALT UNBLASED (6)	TMAT	2BU	907	THE.	Muth	ją.	Une	INC	f of
$d = \frac{2d}{n} = \frac{-64}{9}$	= →0	4							
$d = \frac{\geq d}{n} = \frac{-64}{9}$ $d_1^2 = \frac{1}{n-1} \left[-\sum_{j=1}^{2} d_{j}^2 - \frac{1}{n-1} \left[-\sum_{j=1}^{2} d_$	= -0 <u>Sd</u>	5d] -		69	5	(-04	1)(-0- 9	<u>n]</u>
$d = \frac{\geq d}{n} = \frac{-64}{9}$ $s_{4}^{2} = \frac{1}{n-1} \left[\sum d^{2} - \frac{1}{2} \right]$ No. +1/ROB(ESES , net)	=-0 53	5d] = 	1 B ROP	[0.9	5 20	(-04	1)(-0- 1 0_pri	1)
$d = \frac{\geq d}{n} = \frac{-64}{9}$ $d_{1}^{2} = \frac{1}{n-1} \left[\sum_{i} \frac{1}{2} + \frac{1}{$	=0 <u></u>	-1 5d 1] = 	1 8 100	[0.9 	5 5	(-0+ MH01 Pm	1)(-0- 9 0_Dil	4)
$d = \frac{\geq d}{n} = \frac{-64}{9}$ $d_{1}^{2} = \frac{-1}{n-1} \left[\sum_{i=1}^{n} \sum_{j=1}^{n-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$	=0 <u>Sd</u> (86)	2 2] = 	1 1000 1100 1100 1100	[09 	5 	<u>(-ол</u> мног Рм	1)(-0- 9 0_D/1 1712 1712	<u>4)</u>] TKR
$\begin{aligned} d &= \frac{>d}{n} = \frac{-\delta H}{n} \\ s_{3}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \right] \\ s_{3}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{4}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}^{2} &= \frac{1}{n-1} \left[\sum_{i} 2^{2} - \frac{1}{n-1} \right] \\ s_{5}$	27m	-1 <u>Sd</u> 1 1 2 2) = 	н рор На Ва	[0.9 	5 14= 14= 5.56	(-0* MHOR Pm - H,	1)(-0- 9 0_Dit 178 178 178	1) TR2
	=0 <u>- 5d</u> (ref) <u>0</u>	(1) 50 11 12 12 12 12] = . 11#	1 RAP H, H, ANIGI	[09 	- 5 - 44 - 74 - 74 - 74 - 74 - 74 - 75 - 75 - 75 - 75 - 75 - 75 - 75 - 75	(-05 MH09 Pm - H, - H,	9 9 П. р. 10 р. 11 11 11 11 11 11 11 11 11 11 11 11 11	4)
$\frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{-94}{2}$ $\frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \sum_{k=1}^{2} \sum_$	=-c <u>Sd</u> Ket j Jun	n <u>5</u> <u>4</u> 2 71)] = . 11#	HI RAP HI ATIST	[09 		(-0x Han Han - Ha - Ha	1)(-0- 1 0 Drl 1 1 1 1 1 1 1 1 1 1 1 1 1	9) Tel2

, not significant, -2.306 < 0.915 < 2.306

Question 7 (**+)

Research is conducted to investigate the effect of consumption of large amounts of caffeine in problem solving ability.

Having avoided consumption of caffeine for a number of days, ten subjects were given a puzzle to solve and their times, in seconds, were recorded.

The same individuals returned and this time before attempting similar puzzles, they consumed large amounts of caffeine.

Their times were again recorded.

This information is shown in the table below.

			P.,					All and a second se		
Subject	Α	B	С	D	E	F	G	H	Ι	J
Time without Caffeine (sec)	50	50	45	66	51	72	95	48	73	56
Time with Caffeine (sec)	53	46	52	60	52	79	90	57	73	62

Explain briefly what conclusions can be drawn from a suitable test, at the 5% level of significance.

START BY WORLAND A TABLE OF DIFFRENCES, AFTIC - BEFORE, AND OBTAMD SUMWARY STATISTICS
d:3,-4,7,-6,1,7,-5,9,0,6
• $\sum_{i} d^{i} = i \beta$ • $\sum_{i} d^{L} = 3p2$
$\begin{split} & \frac{OBTAHI}{O} = \frac{STAHTRZS}{h} \cdot \frac{SA}{10} = \frac{SA}{10} = \frac{10}{10} = 10$
Такимь цропневах али такт. Що: Ула ^{ти} манк ок улео Щ1: Ула ^{ти} Уланк улебо
$\frac{26}{\frac{1}{2}\sqrt{11}} = \frac{1}{2} \frac{1}{2$
AS 1040 C 2:22 THERE IS NO AIRCHING EMDENCE (HT CARENCE
this for effect in Problem socialis (inclusing the time for somewice) Insufficient submit to relat $H_{ m e}$

not significant, 1.040 < 2.262

Question 8 (**+)

Research is conducted to investigate the effect of some recently implemented traffic measures to improve cycling routes into a city centre.

Before the measures were implemented, the times of 10 randomly chosen cyclists into the city centre were recorded.

The times of the same 10 randomly chosen cyclists were also recorded after the measures were implemented.

Their times were again recorded and the results are summarized in the table below.

- 2 Au	1 N AL	1.			10	1 a ar				
Cyclist	Α	В	С	D	Ε	F	G	Η	Ι	J
Time before measures (min)	21	18	25	17	22	18	31	25	24	17
Time after measures (min)	20	20	20	19	21	13	26	27	19	15

Explain briefly what conclusions can be drawn from a suitable test, at the 5% level of significance.

, significant, −1.846 < −1.833

START BY WORKING - A TABLE OF DIFFERENCES, d = AFTER - BEFORE,
AND OBTIMU SUMMARY STRITTS
d: ~1,2,~5,2,~(,-5,2,-5,-2
$\bullet \sum q_z = -10$
OBTIHIN ESTIMATORS FOR THE MHAN AND UARMANCE OF THE DIFFRENCES
FOR THE POPULATION
$\mathbf{g} = \frac{\mathbf{g}}{2\mathbf{g}} = \frac{\mathbf{g}}{2\mathbf{g}} = -\mathbf{g}$
• $\varkappa_{0} = \sqrt{\frac{1}{q_{-1}}} \frac{\Sigma_{00}}{\Sigma_{00}} = \sqrt{\frac{1}{q_{-1}}} \left(\frac{118 - \frac{C^{10}}{10}}{10}\right)^{1} = 3.084008435$
FORMING HYPOTHESES AND CARRY OF THE TEST
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$t_{20} = \frac{t_{1}}{t_{1}}$
$=\frac{-12-0}{3074.}$
= -1.84G
WE -1.916 < 1828 THER IS EXAMINANT CHERRY THAT THE EXAMINY
IMPLEMENT MEASURES HAD THE DESVERD EFFRET, HOWERLAS THE THET WANT
IS VERY OUDE TO THE CRITICAL VANCE MORE THETHING MIGHT BE MORE
APPROPRIATE NEWFFICIENT ENDENCE TO READET

STRATISCORT F.Y.G.B. TRACESTRATISCORT F.Y.G.B. TRACESTRATIS

T. T. C.B. IN2023 IN2018 COM I. Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARAST