RECTANGUA DISTRIBUTIO

Question 1 (***)

An 8 a.m. scheduled bus is known to arrive at a certain bus stop at any random time between 07:57 and 08:13.

The random variable X is used to model the arrival time of the bus after 07:57, where X is measured in minutes.

- a) State the name of a suitable distribution that could be used to model X
- **b**) State the mean arrival time for this bus.
- c) Find the value of Var(X).

The cumulative distribution function of X, is denoted by F(x).

d) Find and specify fully F(x).

Marcus will be late for work if the bus arrives after 08:10.

e) Find the probability that Marcus will be late for work.

Question 2 (***)

The cumulative distribution function F(x) of a continuous random variable X is given by

$$F(x) = \begin{cases} 0 & x < -x \\ k(x+3) & -3 \le x \le 5 \\ 1 & x > 5 \end{cases}$$

-3

where k is a positive constant.

- **a**) Show that $k = \frac{1}{8}$.
- **b**) Calculate P(X < 1).
- c) State the value of P(X=1).
- **d**) Find the probability density function of X for all x.
- e) State the name of the probability distribution represented by the probability density function of part (d).
- f) Determine E(X) and Var(X).

$$P(X < 1) = \frac{1}{2}, P(X = 1) = 0, f(x) = \begin{cases} \frac{1}{8} & -3 \le x \le 5\\ 0 & \text{otherwise} \end{cases}, \text{ uniform continuous}, \\ \hline E(X) = 1, Var(X) = \frac{16}{3} \end{cases}$$

Question 3 (***)

20

The continuous random variable X is uniformly distributed in the interval $a \le x \le b$.

Given that E(X) = 6 and Var(X) = 12 determine the value of a and the value of b.

I.V.G.B. a = 0, b = 12madasmaths, $+4 \Rightarrow \begin{bmatrix} b+a = 12 \\ b-a = \pm 12 \end{bmatrix}$ ISMATHS.COM 2017 COM I.C.B. Madasman I.Y.C.B. Madasmarks.Com I.F.G.B. I.V.C.B. Madasm 6 11303ST131 COM INCOMINATION IN THE REAL OF THE REAL O COM I.Y.C.B. COM I.F.G.B. P.C.P. Created by T. Madas

Question 4 (***+)

An automatic coffee dispenser pours coffee into cups. The amount of coffee dispensed into the cup is electronically controlled and is cut off randomly at some point between 240 ml and 260 ml.

The continuous random variable X represents the amount of coffee, in ml, dispensed into a cup.

- a) Specify the probability density function of X.
- **b**) Find the value of P(X > 248).
- c) State the value of P(X = 248).
- **d**) Determine the value of x_0 such that

$$P(X > x_0) = 3P(X < x_0).$$

e) State the statistical name of x_0 .

$$f(x) = \begin{cases} \frac{1}{20} & 240 \le x \le 250\\ 0 & \text{otherwise} \end{cases}, \quad \boxed{0.6}, \quad \boxed{0}, \quad \boxed{x_0 = 245}, \quad \boxed{x_0 = \text{lower quartile}} \end{cases}$$

Created by T. Madas

Question 5 (***+)

Olson has a rope which is 180 cm long. The tip of one of the two ends of the rope is dyed red. Olson cuts his rope at a random point so he now has two pieces.

The random variable X represents the length, in cm, of the piece of the rope whose tip is dyed red.

- a) Determine the value of ...
 - i. ... P(X < 70).
 - **ii.** ... E(X).
 - **iii.** ... the standard deviation of X.
- **b**) Calculate the probability that the length of the **shorter** piece of the rope is less than 70 cm.

Question 6 (***+)

- The continuous random variable X is uniformly distributed in the interval $a \le x \le b$.
 - a) Given that E(X) = 36 and Var(X) = 300 determine the value of a and the value of b.

It is further given that P(X > c) = 0.44, where a < c < b.

b) Calculate P(29 < X < c).

Question 7 (****)

The continuous random variable X is uniformly distributed in the interval $a \le x \le b$.

Given further that

Var(X) = 27 and $P(X > 9) = \frac{1}{3}$,

determine the value of a and the value of b.

1 6-4		
	a 9 b	
	• $\operatorname{Var}(\times) = \frac{(b-a)^2}{12}$	• $\mathbb{P}(X > 9) = \frac{1}{3}$
	$27 = (b-a)^2$	(b-9)×1==+
	$(b-a)^{2} = 324$	6-9
	b-a = 18 $(b>a)$	6-9 - L
		18 - 3 6-9 - 6
		21 = d
		a = b - HB

Question 8 (****)

The stock control manager in a warehouse, measures the lengths of curtain poles and records their lengths to the nearest cm.

- a) Suggest a suitable model to represent the difference between the actual length and the recorded length of a curtain pole. Specify any parameters.
- **b**) Determine the probability that for a randomly chosen curtain pole its actual length will be within 0.3 cm of its recorded length.

Three curtain poles are chosen at random.

c) Find the probability that only two of these poles will be within 0.3 cm of their recorded lengths.

2

0

(x) =

0.6, 0.432

 $0 \le x \le 0.5$

otherwise

Question 9 (****)

The radius r of a circle is a continuous random variable R uniformly distributed in the interval $7 \le r \le 11$.

a) State the mean and variance of R.

The circumference of the circle is denoted by C.

- **b**) Determine, in terms of π , the mean and variance of *C*.
- c) Calculate P(C > 53).

The area of the circle is denoted by A.

d) Find the mean of A.

E(R) = 9, $Var(R) = \frac{4}{3}$, $E(C) = 18\pi$, $Var(C) = \frac{16}{3}\pi^2$, $P(C > 53) \approx 0.6412$

 $\begin{array}{l} 0 \quad \mathbb{R} \sim U(\gamma_{t} \mathbf{i}) \\ \mathrm{E}(\mathbb{R}) &= \frac{\alpha_{t} \mathbf{b}}{2} + \frac{T \mathbf{b}_{t} \mathbf{i}}{2} + \frac{T}{2} \frac{1}{2} + \frac{\eta}{2} \\ \mathrm{Vor}(\mathbb{R}) &= \frac{(\mathbf{b} + \alpha)^{2}}{12} + \frac{\mathbf{b}}{2} \\ \end{array} \\) \quad \mathrm{E}(\mathbf{c}) &= \mathrm{E}(2\pi \mathbb{R}) = 2\pi \mathrm{E}(\mathbb{R}) = \pi\pi \times \mathbf{q} + 18\pi \\ \mathrm{Var}(\mathbf{c}) &= \mathrm{Var}(2\pi \mathbb{R}) = 2\pi \mathrm{E}(\mathbb{R}) = 4\pi^{2} \times \frac{1}{2} + \frac{U}{2} \pi^{2} \end{array}$

 $|E(A) = \frac{247}{2}$

 $\pi \approx 259$

- $P(C > 23) = P(2\pi K > 23) = P(K > \frac{1}{2\pi K}) = 0.6412$
- $E(A) = E(\pi R^2) = \pi E(R^2)$

$$\begin{split} & \text{New} \quad \text{Var}\left(E \right) & = \quad \text{E}(2^{2}) - \left(\frac{1}{2}(2^{2}) - \frac{1}{2^{2}} \right)^{2} \\ & \quad \frac{4}{3} & = \quad \text{E}(2^{2}) \\ & \quad \frac{247}{3} & = \quad \text{E}(2^{2}) \\ & \quad \text{i} \quad \text{E}(\lambda) & = \quad \text{T} \quad \text{E}(2^{2}) \\ & \quad \text{i} \quad \text{i}$$

Question 10 (****)

A piece of string of length a, where a is a positive constant, is cut into 2 pieces at a random point. The continuous random variable X represents the length of the longer piece of the string.

a) Assuming that X is uniformly distributed show by integration that

 $\operatorname{Var}(X) = \frac{a^2}{48}$

b) Find the probability that the length of the longer piece is more than 4 times the length of the shorter piece.

 $\frac{2}{5}$

Question 11 (****)

Ĉ.P.

I.C.B.

The continuous random variable X is uniformly distributed over the interval [a,b].

- a) Determine $P\left(X > \frac{1}{4}a + \frac{3}{4}b\right)$.
- **b**) Given further that E(X) = b 8, show that $E(3X^2 256) = 3b(b 16)$.

256 = 12 E(X) -12(b-8)2 64 = 3€(X*) - 3(b-8)2 $64 = E(3X^2) - 3(b^2 - 16b + 64)$ E(aX)= aE(X) $64 = E(3x^2) - 3b^2 + 48b - 192$ $P(X > \frac{1}{4}a + \frac{3}{4}b) = P(X > \frac{a+3b}{4}) = \frac{1}{4}$ $O = E(3X^{2}) - 3b^{2} + 48b - 256$ 362 - 486 1= E(3x2) - 196 $P(x > \frac{1}{4}a + \frac{3}{4}b) = P(x > \frac{a + 3b}{4}) = (b - \frac{a+3b}{4}) \times \frac{1}{b-a}$ $3b^2 - 48b = E(3x^2 - 256)$ $= \frac{4b - a - 2b}{4} \times \frac{1}{b - a} = \frac{b - a}{4} \times \frac{1}{b - a} =$ $E(3X^2-256) = 3b(b-16)$ $\underline{STRETING WRH} \quad Vor(X) = E(X^2) - [E(X)]^2 \quad 4 \quad E(X) = b - 8$ 6) $\implies \frac{(b-a)^2}{|2} = E(X^2) - (b-8)^2$ $(b - a)^2 = 12 E(X^2) - 12(b - B)^2$ <u>B</u>π E(x) = b -8 $\frac{a+b}{2} = b-8$ a+b = 26-16 a 1.16 = 16 a = 6-16 $= b - (p - p) \int_{y}^{y} = b f(x_{3}) - 12(p-B)^{2}$

 $P\left(X > \frac{1}{4}a + \frac{3}{4}b\right)$

Y.C.P.

na

Question 12 (****)

The continuous random variable X is uniformly distributed in the interval [a,b], where a and b are constants.

The 45^{th} and 90^{th} percentiles are 51 and 78, respectively.

a) Determine the probability density function of X.

The sum, denoted by S, of 100 random observations of X is obtained.

x

b) Calculate P(S > 5750).

12	I	20	>	
۵)	$1 2u_{A}symmet 3\mu TA, 2u_{A}stadd = \frac{1}{2} \frac{1}{2}$	$\frac{1}{b_{m}} = \frac{1}{b_{m}} + $	ы) мн • Е • 5 РС.	$\frac{49403}{2} + \frac{45}{2} = 54 + \frac{4540}{2} = 54$ $\frac{49403}{2} + \frac{45}{2} = 54 + \frac{40}{2} + \frac{86}{2} = 54$ $\frac{3}{2} + \frac{3}{2} +$
2	$\frac{\xi(\mathbf{r},\mathbf{h},\mathbf{h},\mathbf{h},\mathbf{h},\mathbf{h},\mathbf{h},\mathbf{h},h$	$\frac{5_{1-\alpha}}{0+5} = \frac{78-\alpha}{0+5}$ $\frac{569-040_{1}}{10-8} = 35.1 - 0450_{1}$ $10-8 = 0.450_{1}$ $\alpha = 24$	unter S	$x = 1 - P(2 < \frac{574 - 5^{2}}{63^{2}})$ - 1 - $\frac{1}{2}(2 \circ x^{2})$ = 1 - $6 \cdot 478^{2}$ = 0.0217 > 8 - 14145 THE DUI JUGTTY (
	$\begin{array}{c} \underline{(\Delta\mu)} \in \Pi \# 2 \ \mathrm{QOARDOW} \ \mathrm{Wall} \ \mathrm{QOARDOW} \ \mathrm{QOARDOW} \ \mathrm{Wall} \ \mathrm{QOARDOW} \ \mathrm{Wall} \ \mathrm{QOARDOW} \ \mathrm{QOARDOW} \ \mathrm{QOARDOW} \ \mathrm{Wall} \ \mathrm{QOARDOW} \ QO$	-{1)-{ 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	PC	$ \begin{array}{l} z = 0 \\ z = 0 $
				11.10

60

24 < *x* < 84

otherwise

 $P(S > 5750) \approx 0.217$

(84-24)2 =

Question 13 (****+)

The continuous random variables X and Y represent the sides of a rectangle, and A denotes its area.

X is uniformly distributed in the interval [0,10] and Y is also uniformly distributed in the interval [10,20], with the additional constraint X + Y = 20.

- **a**) Find the value of E(A).
- **b**) Determine P(A > 64)

a) (Ya)P(Fa)T (a)	
a) function with	~ Re[10120) 3
• E(X)= 0+10 = 5	$2I = \frac{05+01}{5} = (V)3$
 Var(X) = (10-0)² = 100 = 25 12 = 25 	• $Var(Y) = \frac{2n-10}{12} = \frac{25}{3}$
1/1011) X+Y=20 So A= XY=	× (20-×) = 20×-×2
$E(4) \sim E(2c_X \cdot X^2)$	mum
$= 20 E(x) - E(x^2)$	$Var(x) = E(x^2) - [E(x)]^2$
$= 20 \times 5 - \frac{100}{3}$	$\frac{3}{22} = E(X_5) - Z_5$
$= \frac{1}{2} - \frac{1}{2}$	$E(x^2) = \frac{100}{3}$
= 200	hanning
-/	
b) NEXT TO FIND THE PIDBABIUTY	
P(A>64) = P(XY>64)	
$= P(20X - X^2 > 64)$	
= P(20x-X ² -64>0	
$= P(\chi^2 - 20x + 64 < 0)$	
= P[(x-4)(x-4)(x-4)(x-4)(x-4)(x-4)(x-4)(x-4)	٥]
	7
	××
ò io	
= P(4<×<10)	
= 6 = 0.6	

Question 14 (****+)

A rectangle ABCD has a fixed perimeter of 20 cm.

The continuous random variable X cm represents the length of AB.

X is uniformly distributed in the interval (0,10).

The continuous random variable $W \text{ cm}^2$ represents the area of ABCD.

- **a**) Find the value of E(W).
- b) Determine the probability that W is more than three times the area of a square whose side has length X.

 $\frac{1}{4}$

Question 15 (****+)

A wire of length 32 cm is cut into 2 pieces at a random point.

- a) Find the probability that the longer piece of the wire will be smaller than 20 cm.
- **b**) Determine the probability that the longer piece of the wire will be 20 cm, correct to the nearest cm.

Each piece of the wire, after it is randomly cut, is bent to form the outline of a square.

c) Find the probability that the difference in the area between these squares will be greater than 32 cm².

L= laveral or the lawore piece. L~ UNINGEN (K,32)
$= \frac{1}{4}$
6) P(L= 20 NHARTT CH) = P(19.5 < L < 20.5)
4) <u>L= laughr piece</u> (L>16) 32-L= Slondur piece
P(Jufffence in Aeras) > 32)
$= \mathbb{P}\left[\left(\frac{L}{4}\right)^2 - \left(\frac{32-L}{4}\right)^2 > 32\right]$
$= P[L^{2} - (32-L)^{2} > 16 \times 32]$ = P[L^{2} - (1024-64L+L^{2}) > S12]
= {[GIL - 1024. > 512.]
= P(L>24)
$= (22-24) \times \frac{1}{16}$
= 05

Question 16 (****+)

The continuous random variable X is uniformly distributed.

It is further given that

P(X > 27) = 0.75 \bullet Var(X) = 300 \bullet 4P(X < k-10) = P(X > k+20)

Determine the value of k.

.C.B.

I.C.B.

201
DIFINE AN INTRUCH (a,b), by a AND DATION + SIGNAT
$\begin{array}{c} \sum_{k=1}^{p} \sum_{m=1}^{p-m} \in \\ \sum_{k=1}^{p-m} \sum_{m=1}^{p-m} \in \\ \sum_{k=1}^{p-m} \sum_{m=1}^{p-m} \sum_{$
NEXT USE THE DARIANCE COMBINE EQUATIONS NEXT
$\begin{array}{cccc} & \longrightarrow kat(\chi) = 3d_{2} & & \implies \frac{ k-2 ^{2}}{2} = \frac{1}{4} \\ & \Rightarrow \frac{ k-a ^{2}}{(k-a)^{2}} = 3d_{2} & & \implies k-17 = \frac{3}{4} \langle k-a \rangle \\ & \Rightarrow & (k-a)^{2} = 3d_{2} & & \implies k-27 = \frac{3}{4} \langle k-a \rangle \\ & \Rightarrow & (k-a)^{2} = 3d_{2} & & \implies k-27 = \frac{3}{4} \langle k-a \rangle \\ & \Rightarrow & (k-a)^{2} = \frac{3}{4} \langle k-a \rangle \\ $
NO SUDASTA a= 12
FRUARY DEALURIS TWO GOARGETS DIGERAMS
a t-0 2. a tio 72
$\widehat{T}(X \leq k-10) = \frac{k-10-12}{60} = \frac{k-22}{60} \qquad \widehat{T}(X > k+20) = \frac{7-1(k+20)}{60} = \frac{32}{60} = \frac{32}{60}$
FINALLY THE HAVE
$ \Rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

I.C.B.

k = 28

1+

Question 17 (****+)

The length, X cm, of one of the sides of a rectangle is uniformly distributed in the interval between 2 cm and 9 cm.

Given that the perimeter of the rectangle is 24 cm, determine the probability that the length of the shorter side of the rectangle is less than 4 cm.

• P(subtraction of the subscription of the su

 $\frac{3}{7}$

Question 18 (****+)

A dot of negligible dimensions can appear at random anywhere on a rectangular screen which measures 50 cm in width, measured from "left to right" and 25 cm in height, measured from "bottom to top".

Determine the probability that the dot will next appear within 5 cm of the left of the screen or within 5 cm of the top of the screen.

Question 19 (*****)

I.Y.C.I.

F.G.B.

I.C.B.

The continuous random variable X is uniformly distributed in the interval $a \le x \le b$.

Use integration to show that

 $E(X) = \frac{1}{2}(a+b)$ and $Var(X) = \frac{1}{12}(b-a)^2$

fa)= $E(x) = \int_{a}^{b} x f(x) dx = \int_{a}^{b} \frac{1}{b-a} x dx = \frac{1}{b-a} \int_{a}^{b} x dx$ $= \frac{1}{b-a} \left[\frac{1}{2} x^2 \right]_a^b = \frac{1}{2} \times \frac{1}{b-a} \left[\frac{b^2}{2} - \frac{a^2}{2} \right] = \frac{b^2 - a^2}{2(b-a)}$ $= \frac{(b-a)(b+a)}{2(b-a)} = \frac{a+b}{2}$ $E(\chi^2) = \int_a^b x^2 f(x) \, dx = \int_a^b \frac{1}{b-a} x^2 \, dx = \frac{1}{b-a} \int_a^b x^2 \, dx$ $= \frac{1}{\frac{1}{b-a}} \left(\frac{1}{3} \chi^2 \right)_{q}^{b} = \frac{1}{3} \cdot \frac{1}{b-a} \left[b^2 - q^2 \right] = \frac{b^3 - q^3}{3 \left(b - q \right)}$ $= \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} = \frac{b^{2}+ab+a^{2}}{3}$ $Var(\chi) = E(\chi^2) - (E(\chi))^2 = \frac{b^2 + ab + q^2}{2} - (\frac{a+b}{2})^2$ $= \frac{b^2 + ab + a^2}{3} - \frac{a^2 + 2ba + b^2}{3}$ $= \frac{4b^2 + 4ab + 4a^2 - (3a^2 + 6ab + 3b^2)}{(3a^2 + 6ab + 3b^2)}$ $= \frac{a^2 + b^2 - 2ab}{a} = \frac{(b-a)^2}{a}$

proof

 $a^{3} \pm b^{3} \equiv (a \pm b)(a^{2} \mp ab + b^{2})$

F.G.B.