PROBABILITY SAMPLING DISTRIBUTIONS

Created by T. Madas

Question 1 (***)
A bag contains a large number of coins. Half of the coins are 10 pence pieces, one third are 20 pence pieces and the rest are 5 pence pieces.

A sample of two coins is selected at random.

Determine the sampling distribution of the mean of the two coins.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline \text { mean } & \frac{5}{7} & 7.5 & \frac{10}{1} & \frac{12.5}{} & 15 & \frac{20}{\mathrm{P}(\text { mean })} & \frac{1}{36} \\
\hline \frac{1}{6} & \frac{1}{4} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} \\
\hline
\end{array}
$$

Question 2 (***)

A bag contains a large number of coins. Two thirds of the coins are 20 pence pieces and the rest are 50 pence pieces.

A sample of three coins is selected at random.
Find the sampling distribution of the median of the three coins.

Median	$\frac{20}{\mathrm{P}(\text { median })}$	$\frac{50}{20}$
$\frac{7}{27}$	$\frac{7}{27}$	

Created by T. Madas

Created by T. Madas

Question 3 (***)
A bag contains a large number of coins, some 5 pence pieces and some 10 pence pieces.

The ratio of 5 pence pieces to the 10 pence pieces is $1: 4$.

A sample of three coins is selected at random.

Find the sampling distribution of the mean of the three coins.

Question 4 (***)
A large number of light bulbs are stored in the stock-room of an electrical shop.
The ratio of 60 watt bulbs to 100 watt bulbs is $1: 3$.
A sample of three light bulbs is selected at random.

Find the sampling distribution of the mode of the three bulbs.

mode	$\frac{60}{100}$	
$\mathrm{P}($ mode $)$	$\frac{5}{32}$	$\frac{27}{32}$

Created by T. Madas

Question 5 (***)
During hot days, an ice cream van sells a large number of ice cream cones containing either 1,2 or 3 scoops of ice cream.

The respective probabilities of a customer buying a 1,2 or 3 scoop ice cream cone are $\frac{1}{6}, \frac{1}{2}$ or $\frac{1}{3}$.

A random sample of 2 customers is examined, each customer having bought an ice cream cone from this van.

Determine the sampling distribution of T, where T represents the total number of scoops of ice cream bought by these 2 customers.

Question 6 (****)
A bag contains a large number of 5 pence coins and 10 pence coins.

There are twice as many 10 pence coins as there are 5 pence coins.

A random sample of size 2 is taken from the bag and the value of each coin is denoted as X_{1} and X_{2}.

A statistic Y based on this sample is defined as

$$
Y=\frac{1}{5}\left[3 X_{1}+2 X_{2}\right] .
$$

Determine the sampling distribution of Y and hence or otherwise find $\operatorname{Var}(Y)$.

$$
\square, \begin{array}{|c|c|c|c|}
\hline \mathrm{P}(Y=y) & \frac{5}{1} & \frac{7}{9} & \frac{8}{9} \\
\hline & \frac{10}{9} & \frac{4}{9} \\
\hline
\end{array}, \quad \begin{array}{|l|l|}
\hline \operatorname{ar}(Y)=\frac{26}{9} \\
\hline
\end{array}
$$

- To find THf UnUANEE OF Y - $E(y)=\left(5 \times \frac{1}{4}\right)+\left(7 \times \frac{2}{9}\right)+\left(8 \times \frac{2}{4}\right)+\left(10 \times \frac{4}{9}\right)$ $=\frac{5}{9}+\frac{14}{9}+\frac{16}{9}+\frac{40}{5}$ $=\frac{75}{9}$
- $E\left(Y^{2}\right)=\left(5^{2} \times \frac{1}{9}\right)+\left(7^{2} \times \frac{2}{9}\right)+\left(8^{2} \times \frac{2}{9}\right)+\left(10^{2} \times \frac{4}{9}\right)$ $=\frac{25}{9}+\frac{95}{9}+\frac{128}{9}+\frac{430}{9}=\frac{651}{y}$ $=\frac{217}{3}$
- $\operatorname{Var}(y)=E\left(y^{2}\right)-[E(y)]^{2}$ $=\frac{217}{3}-\left(\frac{25}{3}\right)^{2}$
$=\frac{26}{4}$ $=\frac{26}{9}$

ALLTWALTLE TO FNO UARIANCE

- | x | 5 | 10 |
| :---: | :---: | :---: |
| $f(x-x)$ | $\frac{1}{3}$ | $\frac{2}{3}$ |
- $E(X)=\left(5 \times \frac{1}{3}\right)+\left(10 \times \frac{2}{3}\right)=\frac{5}{3}+\frac{20}{3}-\frac{25}{3}$
- $E\left(x^{2}\right)=\left(5^{2} \times \frac{1}{3}\right)+\left(1^{2} \times \frac{2}{3}\right)=\frac{25}{3}+\frac{200}{3}=\frac{225}{3}=75$
e $\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}=75-\left(\frac{25}{3}\right)^{2}=\frac{50}{y}$
- $Y=\frac{1}{5}\left[3 X_{1}+2 X_{2}\right] \rightarrow \operatorname{Var}(Y)=\left(\frac{3}{5}\right)^{2} \operatorname{Var}(x)+\left(\frac{2}{5}\right)^{2} \operatorname{Var}\left(X_{2}\right)$ $\Rightarrow \operatorname{Var}(y)=\frac{9}{25} \operatorname{Var}(x)+\frac{4}{25} \operatorname{Var}(x)$ $=\frac{13}{25} \operatorname{Var}(x)$ $=\frac{18}{32} \times \frac{50}{9}$ $=\frac{25}{9}$ ru scoue

