# PROBABILITY DENSITY FUNCTIONS 

## CALCULATIONS

Created by T Madas

Question 1 (***)
The lifetime of a certain brand of battery, in tens of hours, is modelled by the continuous random variable $X$ with probability density function $f(x)$ given by
(a)

$$
f(x)=\left\{\begin{array}{lc}
\frac{2}{75} x & 0 \leq x \leq 5 \\
\frac{2}{15} & 5<x \leq 10 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Sketch $f(x)$ for all $x$.
b) Determine $\mathrm{P}(X>4)$.

Two such batteries are needed by a piece of electronic equipment. This equipment will only operate if both batteries are still functional.
c) If two new batteries are fitted to this equipment, determine the probability that this equipment will stop working within the next 40 hours.

Question 2 (***)
The lengths of telephone conversations, in minutes, by sales reps of a certain company are modelled by the continuous random variable $T$.

The probability density function of $T$ is denoted by $f(t)$, and is given by
a) Show that $k=\frac{1}{72}$.

$$
f(t)= \begin{cases}k t & 0 \leq t \leq 12 \\ 0 & \text { otherwise }\end{cases}
$$

b) Determine $\mathrm{P}(T>5)$.
c) Show by calculation that $\mathrm{E}(T)=\operatorname{Var}(T)$.
d) Sketch $f(t)$ for all $t$.

A statistician suggests that the probability density function $f(t)$ as defined above, might not provide a good model for $T$.
e) Give a reason for his suggestion.
$\square$
$\qquad$ , $\mathrm{E}(T)=\operatorname{Var}(T)=8$


e)

 Hhee is scan


Created by T Madas

Question 3 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
2 x+k & 3 \leq x \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show that $k=-6$.
b) Sketch $f(x)$ for all $x$.
c) State the mode of $X$.
d) Calculate, showing detailed workings, the value of ...
i. $\quad . . \mathrm{E}(X)$.
ii. ... $\operatorname{Var}(X)$.
iii. ... the median of $X$.
e) Determine with justification the skewness of the distribution.
(1), $\operatorname{mode}=4, \mathrm{E}(X)=\frac{11}{3} \approx 3.67, \operatorname{Var}(X)=\frac{1}{18} \approx 0.0556$,
median $=3+\frac{\sqrt{2}}{2} \approx 3.71$, mean $<$ median $<$ mode $\Rightarrow$ negative skew


Created by T Madas

Question 4 (****)
A continuous random variable $X$ has probability density function $f(x)$ given by

$$
f(x) \equiv\left\{\begin{array}{cc}
m x & 0 \leq x \leq 4 \\
k & 4 \leq x \leq 9 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $m$ and $k$ are positive constants.

Find as an exact simplified fraction the value of $\mathrm{E}(X)$.

Question 5 (****+)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
k x\left(16-x^{2}\right) & 0 \leq x \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show that $k=\frac{1}{64}$.
b) Calculate, showing detailed workings, the value of
i. $\ldots \mathrm{E}(X)$.
ii. $\quad . \quad \operatorname{Var}(X)$.
c) Show by calculation, that the median is 2.165 , correct to 3 decimal places.
d) Use calculus to find the mode of $X$.
e) Sketch the graph of $f(x)$ for all $x$.
f) Determine with justification the skewness of the distribution.
$\square$ $\mathrm{E}(X)=\frac{32}{15} \approx 2.13, \operatorname{Var}(X)=\frac{176}{225} \approx 0.782$, mode $\approx 2.31$, mean $<$ median $<$ mode $\Rightarrow$ negative skew

c) THE MDDinN SATISFIIES THE PYUATON $\int_{a}^{m} f(x) d e=\frac{1}{2}$
$\Rightarrow \int_{0}^{\pi} \frac{1}{6_{4} x}\left(16-x^{2}\right) d x=\frac{1}{2}$
$\Rightarrow \int_{0}^{4} 16 x-x^{3} d x=32$
$\Rightarrow\left[8 a^{2}-\frac{1}{4} x^{4}\right]_{0}^{4}=32$
$\Rightarrow\left(8 m^{2}-\frac{1}{4} m^{4}\right)-0=32$
$\Rightarrow 32 m^{2}-2 m^{4}=126$
$\Rightarrow D=m^{4}-32 m^{2}+128$
$\frac{\text { Qunaratic Bervica de countrinatite sponet }}{2}$
$\Rightarrow\left(m^{2}-16\right)^{2}-16^{2}+128=0$
$\Rightarrow \quad\left(m^{2}-16\right)^{2}=12 B$
$\Rightarrow \quad m^{2}-16= \pm \sqrt{128}$

$\rightarrow \quad m=+\sqrt{16-\sqrt{128}} \approx 2.165$ p pteremp
d)

By Differantation
$f(x)=\frac{1}{4 x} x\left(b-x^{2}\right)=\frac{1}{4}\left(16 x-x^{3}\right)$
$f^{\prime}(x)=1\left(k-3 x^{2}\right)$
$f^{\prime}(x)=\frac{1}{6 t}\left(k-3 x^{2}\right)$


## Created by T Madas

## Question 6 (****+)

The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
k x(a-x) & 0 \leq x \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $k$ and $a$ are positive constants.

A statistician claims that $a \geq 4$.
a) Justify the statistician's claim.
b) Show clearly that

$$
k=\frac{3}{8(3 a-8)} .
$$

It is further given that $\mathrm{E}(X)=2.4$.
c) Show further that

$$
k=\frac{9}{80(a-3)} .
$$

d) Hence determine the value of $a$ and the value of $k$.
e) Sketch the graph of $f(x)$ for all $x$ and hence state the mode of $X$.


Question 7 ( ${ }^{* * * *+) ~}$
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{2}{21} x & 0 \leq x \leq k \\
\frac{2}{15}(6-x) & k<x \leq 6 \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine the value of the positive constant $k$, and hence or otherwise find

$$
\mathrm{P}\left[\left.X<\frac{1}{3} k \right\rvert\, X<k\right] .
$$

$\square$ , $k=3.5, \quad \mathrm{P}\left[\left.X<\frac{1}{3} k \right\rvert\, X<k\right]=\frac{1}{9}$
$\square$ - SGETGHNG THE P.DF NEXT

2 OANG THEF FACT $\int_{a} f(x) d x=1$
$\Rightarrow \int_{0}^{k} \frac{2}{2 x} x d x+\int_{k}^{6} \frac{2}{15}(6-x) d x=1$
Withlor Acont nitwatlons of Cobstulits (smilcte TenANGFi)
$\Rightarrow \int_{0}^{k} 10 x d x+\int_{t}^{6} 14(6-x) d x=105$
$\Longrightarrow \int_{0}^{k} 10 x d x+\int_{k}^{6} 84-14 x d x=105$
$\Rightarrow\left[5 x^{2}\right]_{0}^{k}+\left[84 x-2 x^{2}\right]_{k}^{6}=105$
$\Rightarrow\left(5 k^{2}-0\right)+\left[(504-252)-\left(84-7 k^{2}\right)\right]=105$
$\Rightarrow 5 k^{2}+252-84 k+7 k^{2}=105$
$\Rightarrow 12 k^{2} 84 k+147-0 \quad \div 3$

$$
\Rightarrow P\left(\left.x<\frac{1}{3} t \right\rvert\, x<k\right)=\frac{1}{9}
$$

 $=\frac{1}{21}(3.5)^{2}-0=\frac{7}{12}$

- $P\left(x<\frac{1}{3} k\right)=P\left(x<\frac{3.5}{3}\right)-P\left(x<\frac{7}{6}\right)=\int_{0}^{\frac{7}{6}} \frac{2}{24} x d x$ $=\left\lceil\frac{1}{24} x^{2}\right]_{0}^{\frac{7}{6}}=\frac{1}{4}\left(\frac{7}{6}\right)^{2}-0=\frac{7}{108}$ - $P\left(\left.x<\frac{1}{3} k \right\rvert\, x<k\right)=\frac{\frac{7}{68}}{\frac{7}{12}}=\frac{7 \times 12}{7 \times 108}=\frac{12}{108}=\frac{1}{9} / / / A 5$ Bffet

Created by T Madas
Question 8 (****+)


The figure above shows the graph of the probability density function $f(x)$ of a continuous random variable $X$.

The graph consists of the curved segment $O P$ with equation

$$
f(x)=k x^{2}, \quad 0 \leq x \leq 4
$$

where $k$ is a positive constant.

The graph of $f(x)$ further consists ofm a straight line segment from $P$ to $Q(a, 0)$, for $4<x \leq a$, where $a$ is a positive constant.

For all other values of $x, f(x)=0$.
a) State the mode of $X$.

It is given that the mode of $X$ is equal to the median of $X$.
b) Show that $k=\frac{3}{128}$, and find the value of $a$.
[continued from overleaf]

It is further given that $\mathrm{E}(X)=\frac{71}{18}$.
c) Determine with justification the skewness of the distribution.
$\square$ , mode $=4, a=\frac{20}{3}$, mean $<$ median $=$ mode $\Rightarrow$ negative skew
by insfection
ma $m a 0 t=4$
 $\int_{0}^{x^{2}}$ $\Rightarrow \int_{0}^{4} k x^{2} d x=\frac{1}{2}$ $\Rightarrow \frac{64}{3} k=-\frac{1}{2}$ $\Rightarrow \quad k=\frac{3}{128} / /$ * 2puncho
$\qquad$ $\frac{\text { IF } k=\frac{3}{12 B} \Rightarrow \quad y=\frac{3}{128} x^{2}}{y \|_{x-4}=\frac{3}{128} \times 4^{2}=\frac{3}{8}}$ Finaly UNING. Tite Trinatat
$\Rightarrow \frac{1}{2}(a-4) \times \frac{3}{8}=\frac{1}{2}$ $\begin{aligned} & \frac{1}{2}(a-4) \times \frac{3}{8}-\frac{1}{2} \\ \Rightarrow & \frac{3}{B}(a-4)=1\end{aligned}$ $\Rightarrow \quad a-4=\frac{8}{3}$ $\Rightarrow a=\frac{20}{3}$
LEANG MISIAN \& MAAN
$\xrightarrow[\substack{\text { Mrion } \\ \frac{7}{6}-3.4}]{ }$

${ }_{10}^{763+4} \quad 4 \quad 4$
f(MAOST Symutiliane
As $3.94 \approx 4=4$

Created by T Madas


The figure above shows the graph of a probability density function $f(x)$ of a continuous random variable $X$.

The graph consists of two straight line segments of equal length joined up at the point where $x=3$.

The probability density function $f(x)$ is fully specified as

$$
f(x)= \begin{cases}a x & 0 \leq x \leq 3 \\ b+c x & 3<x \leq 6 \\ 0 & \text { otherwise }\end{cases}
$$

where $a, b$ and $c$ are non zero constants.
a) Show that $b=\frac{2}{3}, c=-\frac{1}{9}$ and find the value of $a$.
b) State the value of $\mathrm{E}(X)$.
c) Show that $\operatorname{Var}(X)=1.5$.
[continued from overleaf]
d) Determine the upper and lower quartile of $X$.

A statistician claims that $P(|X-\mu|<\sigma)>0.5$.
e) Show that the statistician's claim is correct.
$\square$ $, a=\frac{1}{9}, \quad \mathrm{E}(X)=3, Q_{1} \approx 2.121, Q_{3} \approx 3.879$


Created by T Madas

Question 10 (****+)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)= \begin{cases}k x & 0 \leq x \leq a \\ 0 & \text { otherwise }\end{cases}
$$

where $a$ and $k$ are positive constants.

Show, by a detailed method, that
$\square$ , proof


Created by T. Madas

# P.D.F. to C.D.F 

## CALCULATIONS

Created by T Madas

Question 1 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{2}{9}(5-x) & 2 \leq x \leq 5 \\
0 & \text { otherwise }
\end{array}\right.
$$

The cumulative distribution function of $X$, is denoted by $F(x)$.
a) Find and specify fully $F(x)$.
b) Use $F(x)$, to show that the lower quartile of $X$ is approximately 2.40 , and find the value of the upper quartile.
c) Given that the median of $X$ is 2.88, comment on the skewness of $X$.
Q $F(x)=\left\{\begin{array}{cc}0 & x<2 \\ -\frac{1}{9}(x-8)(x-2) & 2 \leq x \leq 5 \\ 1 & x>5\end{array}, Q_{3}=3.5\right.$,

$$
Q_{2}-Q_{1}<Q_{3}-Q_{2} \Rightarrow+\text { ve skew }
$$


b)


Created by T Madas

Question 2 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
k x(x-3) & 3 \leq x \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Use integration to show that $k=\frac{6}{11}$.
b) Calculate the value of $\mathrm{E}(X)$.
c) Show that $\operatorname{Var}(X)=0.053$, correct to three decimal places.

The cumulative distribution function of $X$, is denoted by $F(x)$.
d) Find and specify fully $F(x)$.
e) Show that the median of $X$ lies between 3.70 and 3.75 .


Created by T. Madas

Question 3 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
k(x+2)^{2} & -2 \leq x \leq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show clearly that $k=\frac{3}{8}$.
b) Find the value of $\mathrm{E}(X)$.
c) Show that $\operatorname{Var}(X)=0.15$.

The cumulative distribution function of $X$, is denoted by $F(x)$.
d) Find and specify fully $F(x)$.
e) Determine $P(-1 \leq X \leq 1)$.


Question 4 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by:

$$
f(x)=\left\{\begin{array}{lr}
\frac{1}{60} x^{3} & 2 \leq x \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Find the value of $\mathrm{E}(X)$.
b) Show that the standard deviation of $X$ is 0.516 , correct to 3 decimal places.

The cumulative distribution function of $X$, is denoted by $F(x)$.
c) Find and specify fully $F(x)$.
d) Determine $P(X>3.5)$.
e) Calculate the median of $X$, correct to two decimal places.


## Created by T Madas

## Question 5 (****)

The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
k x(6-x) & 0 \leq x \leq 5 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show clearly that $k=\frac{3}{100}$.
b) Calculate the value of $\mathrm{E}(X)$.
c) Find the mode of $X$.

The cumulative distribution function of $X$, is denoted by $F(x)$.
d) Find and specify fully $F(x)$.
e) Verify that the median of $X$ lies between 2.85 and 2.9 .
f) Determine with justification the skewness of the distribution.

mean $<$ median $<$ mode $\Rightarrow$ negative skew

## Created by T Madas

## Question 6 (****)

The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
k(x-1)(x-4) & 1 \leq x \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show clearly that $k=-\frac{2}{9}$
b) Sketch the graph of $f(x)$, for all $x$.
c) State the value of $\mathrm{E}(X)$.
d) Calculate the $\operatorname{Var}(X)$.

The cumulative distribution function of $X$, is denoted by $F(x)$.
e) Find and specify fully $F(x)$.
f) Determine with justification the skewness of the distribution.


Created by T. Madas

Question 7 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{2+x}{k} & 2 \leq x \leq 5 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show clearly that $k=\frac{33}{2}$.
b) Find the value of $\mathrm{E}(X)$.
c) Show that $\operatorname{Var}(X)=0.731$, correct to three decimal places.

The cumulative distribution function of $X$, is denoted by $F(x)$.
d) Find and specify fully $F(x)$.
e) Determine the median of $X$.
$\square$ , $\mathrm{E}(X)=\frac{40}{11}$,
$F(x)=\left\{\begin{array}{cr}0 & x<2 \\ \frac{1}{33}(x+6)(x-2) & 2 \leq x \leq 5 \\ 1 & x>5\end{array}\right.$, median $\approx 3.70$
d) $\left.\begin{array}{rl} & \frac{\operatorname{csin} a f(x)=\int_{a}^{x} f(a) d x}{f(x)}=\int_{2}^{x} \frac{2}{23}(2+x) d x=\frac{2}{33} \int_{2}^{x} 2+x d x=\frac{2}{33}\left[2 x+\frac{1}{2} x^{2}\right]_{2}^{x} \\ & =\frac{2}{33}\left[\left(2 x+\frac{1}{2} x^{2}\right)-(4+2)\right]=\frac{2}{33}\left[\frac{1}{2} x^{2}+x-6\right]\end{array}\right\} \begin{array}{cc}0 & x<2 \\ \therefore F(x) & =\left\{\begin{array}{cc}\frac{1}{33}\left(x^{2}+4 x-12\right)=\frac{1}{33}(x-4)(x-6) & 2 \leq x \leq 5 \\ 1 & x>5\end{array}\right.\end{array}$
e) $\operatorname{soc} \sin G \quad f(x)=\frac{1}{2}$
$\rightarrow \frac{1}{33}\left(x^{2}+42-12\right)=\frac{1}{2}$
$\Rightarrow \quad x^{2}+42-12=16.5$
$\Rightarrow 2 x^{2}+6 x-2 t=33$
$\Rightarrow x^{2}+0 x-5 z=0$
By THe quapatic Foerma
$\alpha=\frac{-8 \pm \sqrt{8^{2}-4 \times 2(-57)}}{2 \times 2}=\frac{-8 \pm \sqrt{520}}{4}=<\begin{aligned} & 3.70 \\ & -7 \times 6\end{aligned}$
$\therefore$ MROAN $=3.70$

Created by T Madas

Question 8 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{3} & 0 \leq x \leq 2 \\
\frac{4}{195} x^{3} & 2<x \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show that $\mathrm{E}(X)=1.532$, correct to three decimal places.

The cumulative distribution function of $X$, is denoted by $F(x)$.
b) Find and specify fully $F(x)$.
c) Calculate the median of $X$.
d) Determine with justification the skewness of the distribution.


a) $E(x)=\int_{2}^{2}+(t a d x$
$E(X)=\int_{0}^{3} x f(x) d x=\int_{0}^{2} x(t) d x+\int_{2}^{3} x\left(\frac{4}{4 s_{1}} x^{2}\right) d x$
$=\int_{0}^{2} \frac{1}{3} x d x+\int_{2}^{3} \frac{4}{455} x^{*} d x=\left[\frac{1}{6} x^{2}\right]_{0}^{2}+\left[\frac{4}{7 \pi} x^{x}\right]_{2}^{3}$
$=\left(\frac{2}{3}-0\right)+\left(\frac{324}{325}-\frac{128}{975}\right)=\frac{498}{325} \simeq 1.532$
b) $f(x)=\int_{a}^{x} f(x) d x$

- Ge orexer

- $f(2)=\frac{1}{2}$

$=\frac{2}{3}+\left[\frac{1}{195} x^{2}-\frac{6}{1955}\right]=\frac{1}{195} x^{4}-\frac{38}{65}=\frac{1}{95}\left[2^{4}-114\right]$
$F(x)=\left\{\begin{array}{cc}0 & x<0 \\ \frac{1}{3} x & 0 \leq x \leq 2 \\ \frac{1}{9 / 2 x-14)} & 2<x \leqslant 3 \\ 1 & x>3\end{array}\right.$

$$
\begin{aligned}
& \text { c) For utain } F(x)=\frac{1}{2} \\
& \Rightarrow \text { MbITN LLSS in THE FIRT SATWN, } \sin \text { CE } F(2)=\frac{2}{3} \\
& \Rightarrow \frac{1}{3} x=\frac{1}{2} \\
& \begin{array}{l}
\Rightarrow x=\frac{3}{2} \\
\Rightarrow Q_{2}=1.5
\end{array}
\end{aligned}
$$

> (MODE) $<$ MFOITN $<$ MFAN
> $\therefore$ (suatr) postut skow

Created by T Madas

Question 9 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
f(x)=\left\{\begin{array}{lc}
\frac{1}{4} x & 0 \leq x \leq 2 \\
k x^{3} & 2<x \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show clearly that $k=\frac{1}{120}$.

The cumulative distribution function of $X$, is denoted by $F(x)$.
b) Find and specify fully $F(x)$.
c) State the median of $X$.
d) Show that $\mathrm{E}(X)=\frac{58}{25}$.
e) Calculate the interquartile range of $X$.


Created by T. Madas

Question 10 (****)
The continuous random variable $X$ has probability density function $f(x)$, given by

$$
\begin{array}{ll}
f(x)=\left\{\begin{array}{cl}
k\left(x^{2}-2 x+3\right) & 0 \leq x<2 \\
\frac{1}{3} k & 2 \leq x \leq 3 \\
0 & \text { otherwise }
\end{array}\right. \\
\text { that } k=1
\end{array}
$$

a) Show clearly that $k=\frac{1}{5}$.

The cumulative distribution function of $X$, is denoted by $F(x)$.
b) Find and specify fully $F(x)$.
c) Show that $\mathrm{E}(X)=\frac{11}{10}$.
d) Show that the median of $X$ lies between 1.05 and 1.1 .

呢 $\quad \square, \begin{array}{cc}0 & x<0 \\ \frac{1}{15} x\left(x^{2}-3 x+9\right) & 0 \leq x<2 \\ \frac{1}{15}(x+12) & 2 \leq x \leq 3 \\ 1 & x>4\end{array}$

Question 11 (****+)
The continuous random variable $X$ has probability density function $f(x)$, given by:

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{10} x & 0 \leq x<4 \\
2-\frac{2}{5} x & 4 \leq x \leq 5 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Sketch the graph of $f(x)$ for all $x$.
b) State the mode of $X$.
c) Show clearly that $\mathrm{E}(X)=3$.
d) Calculate the value of $\operatorname{Var}(X)$.
e) Find and specify fully the cumulative distribution function of $X, F(x)$.


|  |
| :---: |
|  |
|  |  |
|  |  |
|  |  |
|  |  |

Created by T. Madas

Question 12 (****+)
The continuous random variable $X$ has probability density function $f(x)$, defined by the piecewise continuous function

a) Sketch the graph of $f(x)$, for all values of $x$.

The cumulative distribution function of $X$, is denoted by $F(x)$.
b) Show by detailed calculations that
[continued from overleaf]
c) Calculate the median of $X$.
d) Determine the value of $P(2<X<4) \cup P(5<X<9)$.
e) Find the value for $\mathrm{E}(X)$.
$\square$ , median $=5$, $P(2<X<4) \cup P(5<X<9)=\frac{37}{48}, \quad \mathrm{E}(X)=\frac{61}{12}$

b) Procend +5 forawo s

If, $1 \leqslant x \leqslant 3$
If $1 \leqslant x \leqslant 3$
$F_{1}(x)=\int_{1}^{x} \frac{1}{2}\left(x-11 d x=\int_{1}^{x} \frac{1}{12}+-\frac{1}{2} d x-\left[\frac{1}{2 x^{2}}-\frac{1}{2}\right]_{1}^{x}\right.$
$=\left(\frac{1}{24} x^{2}-\frac{1}{12} x\right)-\left(\frac{1}{24}-\frac{1}{4}\right)=\frac{1}{42} x^{2}-\frac{1}{12} x+\frac{1}{24}$.
If $3<x \leq 6$
$F_{1}(3)=\frac{1}{24} \times 3^{2}-\frac{1}{12} \times 3+\frac{1}{24}=\frac{1}{6}$
$F_{2}(x)=\frac{1}{6}+\int_{3}^{x} \frac{1}{6} d x=\frac{1}{6}+\left[\frac{1}{6} x\right]_{3}^{x}=\frac{1}{6}+\left(\frac{1}{6} x-\frac{1}{2}\right)$
$=\frac{1}{\frac{1}{x}}-\frac{1}{2}$
if $6<x \leqslant 10$
$F_{3}(x)=\frac{2}{3}+\int_{6}^{x} \frac{5}{2}-\frac{1}{24} x d x=\frac{2}{3}+\left[\frac{5}{\frac{1}{2} x}-\frac{1}{4 \theta^{2}}\right]_{6}^{x}$
$=\frac{2}{3}+\left[\left(\frac{5}{2} 2-\frac{1}{49^{2}} x^{2}\right)-\left(\frac{5}{2}-\frac{3}{4}\right)\right]$
$=\frac{5}{2} x-\frac{1}{48} x^{2}-\frac{13}{12}$
d)

USING THE C.D.F
: $P(2<x<4)$ ソ $P(5<x<9)$
$=[P(x<4)-P(x<2)]+[P(x<9)-P(x<5)]$
$=F(4)-F(2)+F(9)-F(5)$
$=[F(4)+F(9)]-[F(2)+F(5)]$
$\left.=\left[\left(\frac{1}{6} \times 4-\frac{1}{3}\right)+\left(-\frac{1}{48} \times 9^{2}+\frac{5}{2} \times 9-\frac{13}{12}\right)\right]-\left[\frac{1}{2} x^{2} x^{2}-\frac{1}{2} \times 2+\frac{1}{24}\right)+\left(\frac{1}{6} \times 5-\frac{1}{3}\right)\right]$
$=\left(\frac{1}{5}+\frac{\pi}{46}\right)-\left(\frac{1}{4}+5\right)$
$=$ =


# C.D.F. to P.D.F CALCULATIONS 

Question 1 (***)
The cumulative distribution function, $F(x)$, of a continuous random variable $X$ is given by the following expression

$$
F(x)=\left\{\begin{array}{cc}
0 & x<1 \\
k\left(x^{4}+2 x^{2}-3\right) & 1 \leq x \leq 3 \\
1 & x>3
\end{array}\right.
$$

where $k$ is a positive constant.
a) Show clearly that $k=\frac{1}{96}$.
b) Find $\mathrm{P}(X>2)$.
c) Determine the probability density function of $X$, for all values of $x$.


Question 2 (***)
The cumulative distribution function, $F(x)$, of a continuous random variable $X$ is given by

$$
F(x)=\left\{\begin{array}{cc}
0 & x<-3 \\
k(x+3) & -3 \leq x \leq 8 \\
1 & x>8
\end{array}\right.
$$

where $k$ is a positive constant.
a) Show clearly that $k=\frac{1}{11}$.
b) Calculate $\mathrm{P}(X<1)$.
c) Find $\mathrm{P}(X=1)$.
d) Define the probability density function of $X$, for all values of $x$.
e) State the name of this probability distribution.
f) Determine the value of $\mathrm{E}(X)$ and the value of $\operatorname{Var}(X)$.

$$
\begin{array}{r}
\square, \frac{\mathrm{P}(X<1)=\frac{4}{11}}{}, \mathrm{P}(X=1)=0, f(x)=\left\{\begin{array}{cc}
\frac{1}{11} & -3 \leq x \leq 8 \\
0 & \text { otherwise }
\end{array}\right. \\
\text { uniform continuous, } \mathrm{E}(X)=\frac{5}{2}, \operatorname{Var}(X)=\frac{121}{12}
\end{array}
$$

## Created by T Madas

## Question 3 (***)

The continuous random variable $T$ represents the lifetime, in tens of hours, for a certain brand of battery.

The cumulative distribution function $F(t)$ of the variable $T$ is given by

$$
F(t)=\left\{\begin{array}{cr}
0 & t<2 \\
\frac{1}{20}(t+6)(t-2) & 2 \leq t \leq 4 \\
1 & t>4
\end{array}\right.
$$

a) Calculate the value of ...
i. $\quad . \quad \mathrm{P}(T>3.5)$.
ii. $\ldots \mathrm{P}(T=3)$.
b) Show that the median of $T$ is 3.10 , correct to three significant figures.
c) Define the probability density function of $T$, for all values of $t$.

Four new batteries, whose lifetime is modelled by $T$, are fitted to a road hazard lantern. This lantern will only remain operational if all four batteries are working.
d) Determine the probability that the lantern will operate for more than 35 hours.


Question 4 (***)
The cumulative distribution function, $F(y)$, of a continuous random variable $Y$ is given by

$$
F(y)= \begin{cases}0 & y<0 \\ k y^{3} & 0 \leq y \leq b \\ 1 & y>b\end{cases}
$$

It is further given that $\mathrm{P}(1<Y<3)=\frac{13}{32}$.
a) Find the value of $k$ and hence determine the probability density function of $Y$ for all $y$.
b) Calculate the median of $Y$.
c) State the mode of $Y$ and hence comment on the skewness of the distribution. median $<$ mode $\Rightarrow$ negative skew


Question 5 (***)
The cumulative distribution function $F(x)$ of a continuous random variable $X$ is given by the following expression

$$
F(x)=\left\{\begin{array}{cr}
0 & x<0 \\
k x(x+2) & 0 \leq x \leq 2 \\
1 & x>2
\end{array}\right.
$$

where $k$ is a positive constant.
a) Find the value of $k$.
b) Show that the median of $X$ is 1.236 , correct to 3 decimal places.
c) Calculate $\mathrm{P}(X>1.5)$.
d) Define the probability density function of $X, f(x)$, for all $x$.
e) Sketch the graph of $f(x)$ for all $x$, and hence state the mode of $X$.


Question $6{ }^{(* * *+)}$
The time, in weeks, a patient has to wait for an appointment to see a psychiatrist in a certain hospital, is modelled by the continuous random variable $T$.

The cumulative distribution function of $T$ is given by

a) Find, to the nearest day, the time within which $80 \%$ of the patients have been given an appointment.
b) Define the probability density function of $T$, for all values of $t$.

It is given that $\mathrm{E}(T)=9$ and $\mathrm{E}\left(T^{2}\right)=86.4$.
c) Determine the probability that the time a patient has to wait for an appointment, is more than one standard deviation above the mean.

Question 7 (***+)
The time, in hours, spent on a piece of homework by a group of students is modelled by the continuous random variable $T$.

The cumulative distribution function of $T$ is given by

$$
F(t)=\left\{\begin{array}{cc}
0 & t<0 \\
k\left(2 t^{3}-t^{4}\right) & 0 \leq t \leq b \\
1 & t>b
\end{array}\right.
$$

where $k$ is a positive constant.
a) If the probability that a student from this group took between one quarter and three quarters of an hour to complete the homework is $\frac{8}{27}$, show that $k=\frac{16}{27}$.
b) Find the proportion of students who spent over an hour in their homework.
c) Verify that the median is 0.921 , correct to 3 decimal places.
d) Define the probability density function of $T$, for all values of $t$.

$\mathrm{P}(T>1)=\frac{11}{27}$,

$$
f(t)=\left\{\begin{array}{cc}
\frac{32}{27}\left(3 t^{2}-2 t^{3}\right) & 0 \leq t \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$



Created by T. Madas

Question 8 (***+)
A continuous random variable $X$ has the following cumulative distribution function $F(x)$, defined by
a) Find $\mathrm{P}(X>0.5)$.
b) Define $f(x)$, the probability density function of $X$, for all values of $x$.

A skewness coefficient can be calculated by the formula

$$
\frac{\text { mean }- \text { mode }}{\text { standard deviation }} ?
$$

c) Given that $\mathrm{E}(X)=\frac{16}{25}$ and $\mathrm{E}\left(X^{2}\right)=\frac{7}{15}$, evaluate the skewness coefficient for this distribution.

Question 9 (****)
The cumulative distribution function, $F(x)$, of a continuous random variable $X$ is given by the following expression

$$
F(x)=\left\{\begin{array}{cr}
0 & x<1 \\
k\left(-x^{3}+6 x^{2}-5\right), & 1 \leq x \leq 4 \\
1 & x>4
\end{array}\right.
$$

where $k$ is a positive constant.
a) Show clearly that $k=\frac{1}{27}$.
b) Define $f(x)$, the probability density function of $X$, for all values of $x$.
c) Sketch the graph of $f(x)$ for all $x$, and hence state the mode of $X$.
d) Given that $\mathrm{E}(X)=2.25$, show that the median of $X$ lies between its mode and its mean.
e) State the skewness of the distribution.
$f(x)=\left\{\begin{array}{cc}\frac{1}{9} x(4-x) & 1 \leq x \leq 4 \\ 0 & \text { otherwise }\end{array}\right.$, mode $=2$, positive skew


Created by T. Madas

## Created by T Madas

## Question 10 (****)

The cumulative distribution function, $F(x)$, of a continuous random variable $X$ is given by the following expression

$$
F(x)=\left\{\begin{array}{cc}
0 & x<1 \\
(3-x)(x-1)^{2} & \begin{array}{c}
1 \leq x \leq 2 \\
1
\end{array} \\
x>2
\end{array}\right.
$$

a) Find $\mathrm{P}(X>1.2)$.
b) Show that the median of $X$ lies between 1.59 and 1.60 .
c) Show that for $1 \leq x \leq 2$, the probability density function of $X, f(x)$, is

$$
f(x)=(1-x)(3 x-7)
$$

d) Show further that the mean of $X$ is $\frac{19}{12}$.
e) Given that the variance of $X$ is $\frac{43}{720}$, find the exact value of $\mathrm{E}\left(X^{2}\right)$.
f) Find the mode of $X$.


Question 11 (****+)
The cumulative distribution function, $F(x)$, of a continuous random variable $X$ is given by

$$
F(x)=\left\{\begin{array}{cc}
0 & x<3 \\
k\left(a-36 x+b x^{2}-x^{3}\right) & 3 \leq x \leq 6 \\
1 & x>6
\end{array}\right.
$$

where $k, a$ and $b$ are non zero constants.
Determine the value of $k$, given that the mode of $X$ is 4 .


Question 12 ( $* * * * *$ )
The continuous random variable $X$ has the following cumulative distribution function

$$
F(x)=\left\{\begin{array}{cc}
0 & x<0 \\
a x-b x^{2} & 0 \leq x \leq k \\
1 & x>k
\end{array}\right.
$$

where vehicles $a, b$ and $k$ are positive constants.
The variable $Y$ is related to $X$ by

$$
Y=3 X-2
$$

Determine the value of $a, b$ and $k$ given further that $\mathrm{E}(Y)=2$ and $\operatorname{Var}(Y)=8$.
$\square$ $, a=\frac{1}{2}, \quad b=\frac{1}{16}, k=4$
$\square$


