POISSON DISTRIBUTION
INTRODUCTORY CALCULATIONS
Question 1
Accidents occur on a certain stretch of motorway at the rate of three per month.

Find the probability that on a given month there will be …

a) … no accidents.

b) … one accident.

c) … two accidents.

d) … three accidents.

e) … four accidents.

\[
\begin{array}{cccc}
0.0498 & 0.1494 & 0.2240 & 0.2240 & 0.1680
\end{array}
\]
Question 2

Cretan Airlines services which arrive late to Athens Airport on a typical week can be modelled by a Poisson distribution with mean of 4.5.

a) Determine the probability that on a given week there will be ...

i. ... four late arrivals.

ii. ... less than four late arrivals.

iii. ... at least seven late arrivals.

b) Determine the probability that on a given two week period there will be between eight and thirteen (inclusive) late arrivals.

$0.1898, 0.3423, 0.1689, 0.6022$
Question 3
Sheep are randomly scattered in a field which is divided into equal size squares.

There are three sheep on average on each square.

Determine the probability that on a given square there will be …

a) … no more than five sheep.

b) … more than two but no more than seven sheep.

0.9161, 0.5649
Question 4

Post boxes in London are randomly spaced out and on average five post boxes are found per square mile.

a) Determine the probability that on a certain square mile there will be ...

i. exactly seven post boxes.

ii. less than eight but no less than four post boxes.

The number of post boxes in a smaller area of \(\frac{1}{4} \) of a square mile, are counted.

b) Find the probability that this smaller area will contain post boxes.

\[0.1044, 0.6016, 0.7135 \]
EXAM QUESTIONS
Question 1 (**)

The water from a lake is tested and is found to contain on average three bacteria per litre of water. A sample of 250 ml is collected from the lake.

a) Determine the probability that the 250 ml water sample will contain …

i. … exactly two bacteria.

ii. … at least two bacteria.

A larger sample of two litres of water is collected from the lake.

b) Find the probability that this larger sample will contain less than ten but no less than six bacteria.

\[0.1329, 0.1734, 0.4704 \]
Question 2 (***)

A discrete random variable X has Poisson distribution with mean λ.

Given that $P(X = 8) = P(X = 9)$, determine the value of $P(4 < X \leq 10)$.

FS1-Q, 0.6510
Question 3 (***)

A shop sells a particular make of smart phone. It is assumed that the daily sales of this type of phone is a Poisson variable with mean 3.

a) Find the probability, giving the answers in terms of e, that on a particular day the shop sells …

i. … exactly 3 smart phones.

ii. … at least 4 smart phones.

It is further given that in a particular day at least 4 smart phones were sold.

b) Show that the probability that exactly 7 smart phones were actually sold that day is given by

$$\frac{243}{k(e^{3} - 13)},$$

where k is an integer to be found.

$\frac{9}{2} e^{-3} \approx 0.2240$, $1 - 13 e^{-3} \approx 0.3528$, $k = 560$
Question 4 (***+)

The number of houses sold by an estate agent follows a Poisson distribution, with a mean of 2.5 houses per week.

a) Find the probability that in the next four weeks the estate agent sells …

i. … exactly 4 houses

ii. … more than 6 houses.

The estate agent monitors the house sales in periods of 4 weeks.

b) Find the probability that in the next twelve of those four week periods there are exactly 7 four week periods in which more than 6 houses are sold.

\[0.0189, 0.8699, 0.0111 \]
Question 5 (***)

The number of errors per page typed by Lena is assumed to follow a Poisson distribution with a mean of 0.45.

a) State two conditions, for a Poisson distribution to be a suitable model for the number of errors per page, typed by Lena.

A page typed by Lena is picked at random.

b) Calculate the probability that this page will contain exactly 2 errors.

c) Calculate the probability that this page will contain at least 2 errors.

Another 20 pages typed by Lena are picked at random.

d) Determine the least integer k such that the probability of having k or more typing errors, in these 20 pages typed by Lena, is less than 1%.

Finally, 320 pages typed by Lena are picked at random.

e) Use a distributional approximation to find the probability of having less than 125 typing errors, in these 320 pages typed by Lena.

\[
\text{X} \sim \text{Poisson}(0.45), \quad \approx 0.0646, \quad \approx 0.0754, \quad k = 18, \quad \approx 0.052
\]
In a survey, along a certain coastline, plastic objects were found at a constant average rate of 250 per km.

a) Determine the probability that a 10 m length of this coastline will contain more than 4 plastic objects.

A similar survey, along the same coastline, drinks cans were found at a constant average rate of 160 per km.

b) Calculate the probability that a 30 m length of this coastline will contain exactly 5 drinks cans.

The local authority believes that in this coastline the average rate of drinks cans is higher than 160 per km.

c) Test, at the 1% level of significance, the local authority's belief.

Let T represent the total number of plastic objects and drinks cans per 100 m of the above mentioned coastline.

d) Find the approximate value of $P(T > 50)$.

\[
\begin{array}{c}
\boxed{0.1088, 0.1747, \text{not significant, } 1.73\% > 1\%}, 0.0690
\end{array}
\]
Question 7 (***)

A bakery sells chocolate birthday cakes through the internet.

Orders for chocolate cakes are random and arrive at the constant rate of 4.5 per day.

At the start of any given day, the bakery produces 6 chocolate birthday cakes and produces no more until the day after.

a) Find the probability that by the middle of a working day the bakery would have sold half the chocolate birthday cakes it produced for that day.

b) Calculate the probability that by the end of the working day the bakery would have sold all the chocolate birthday cakes it produced for the day.

c) Find the probability that if by the end of the day more than half the chocolate birthday cakes are sold, then exactly 4 were actually sold.

, 0.1382, 0.9093, \frac{5}{16}
The number of typing errors per page in the first edition of a textbook follows a Poisson distribution with mean 0.7.

a) Determine the probability that a randomly chosen page in the first edition of this textbook contains exactly 2 typing errors.

b) Calculate the probability that the fourth page of the textbook is the first page to contain typing errors.

c) If \(n \) pages are examined find the smallest value of \(n \) so that the probability of these \(n \) pages not containing errors is less than 0.0001.

\[
\text{Approximately } n = 14.
\]
Question 9 (****)

The daily number of breakdowns of taxis of a certain taxi firm can be modelled by a Poisson distribution with mean 1.5.

a) Find the probability that on a given day there will be exactly 2 breakdowns.

b) Determine the probability that in a seven day week there will be exactly 3 days without a breakdown.

\[\boxed{0.2510, 0.1416} \]
Question 10 (***)

A large office block is illuminated by light tubes which when they fail they are replaced by the block's caretaker.

The mean number of tubes that fail on a particular weekday, Monday to Friday, is 1.

The mean number of tubes that fail on a random two day weekend, is 0.5.

a) Find the probability that …

i. … exactly 4 light tubes fail on a particular Wednesday.

ii. … more than 2 light tubes fail on a particular weekend.

iii. … less than 4 light tubes fail on a particular complete, 7 day week.

The caretaker looks at his stock one Monday morning.

He wants to have the probability of running out of light tubes before the next Monday morning, less than 1%.

b) Calculate the smallest number of tubes he must have in stock.

\[[2, 0.0153, 0.0144, 0.2017, 12] \]
A car showroom salesman receives on average one call every 15 minutes.

a) Assuming a Poisson model, determine the probability that the salesman will receive exactly 6 calls between 9 a.m. and 10 a.m.

One morning the salesman received 10 calls between 9 a.m. and 11 a.m.

b) Assuming the same Poisson model, determine the probability that the salesman received exactly 6 calls between 9 a.m. and 10 a.m. on that morning.
Question 12 (***)

A village post office opens on Wednesdays at 10.00.

After that time, customers arrive at this post office at the constant rate of 4 customers every ten minutes.

a) Find the probability that more than 3 but less than 8 customers will arrive at this post office between 10.00 and 10.10.

b) Find the probability that at least 10 customers will arrive at this post office between 10.00 and 10.20.

The time period between 10.00 and 10.20 is split into four 5 minute intervals.

c) Determine the probability that in only two of these four 5 minute intervals, there will be customers arriving at this post office.

\[0.5154, 0.2834, 0.082 \]
Question 13 (****)

During rush hour commuters arrive at a busy train station at the steady rate of 7 commuters every 30 seconds.

a) Calculate the probability that in a random 30 second interval there will be more than 5 but no more than 11 commuters arriving at this station.

The next 5 minutes are monitored.

b) Show that the probability that more than 81 commuters will arrive at this station is approximately 0.085.

The next 20 minutes are divided into 4 intervals of 5 minutes.

c) Determine the probability that more than 81 commuters will arrive at this station in 2 of these intervals of 5 minutes.

\[0.6460, 0.036 \]
Question 14 (***)

Since his retirement, Fred goes fishing Monday to Friday, for 3 hours on each of these 5 days. The number of fish he catches every hour follows a Poisson distribution with mean 2.5.

a) Find the probability that Fred catches more than 9 fish on exactly 2 of the days, in a given 5 day fishing week.

Fred buys a new type of bait and decides to test whether there is any difference to the rate at which he catches fish. He tries his new bait by going fishing on a Sunday and ends up catching 14 fish in 4 hours.

b) Carry out a significance test, at the 5% level, stating your hypotheses clearly.

\[
\begin{align*}
\text{Observed} & = 14, \quad \text{Expected} = 5.87, \quad \text{not significant evidence, } 4.87\% > 2.5\%
\end{align*}
\]
Question 15

The number of disconnections experienced by a company server follows a Poisson distribution with a rate of one disconnection every four hours.

a) Find the smallest value of n, such that the probability that there is at least n disconnections in a 4 hour period is less than 0.01.

b) Determine the smallest value of h, such that the probability that there is no disconnections in h hours is less than 0.02.

c) Find the probability that in 3 consecutive 4 hour periods, there will be only one 4 hour period without any disconnections.

d) Calculate the probability that the number of disconnections in 3 consecutive 4 hour periods, will be equal to the expected number of disconnections in 3 consecutive 4 hour periods.

On a particular day there were 4 disconnections in a period of 8 hours.

e) Calculate the probability that there were more disconnections in the first 4 hours than in the last 4 hours.

$$n = 4, \ h = 16, \ 0.4410 \approx 0.2240 \approx \frac{11}{32}$$
Question 16 (****)

The number of customers \(X \) entering a shop follows a Poisson distribution with mean \(0.2t \), where \(t \) represents a time interval of \(t \) minutes.

a) Find the probability that exactly 4 customers enter this shop between 2 p.m. and 2.20 p.m.

b) If \(P(X = 4) \approx 0.14142 \), use a suitable approach to find the value of \(t \).

c) Use a **binomial approximation** with \(n = 80 \), to estimate the probability that between 2.20 p.m. and 2.35 p.m, exactly 3 customers enter this shop.

d) Use a **direct** Poisson calculation to estimate the percentage error of the answer of part (c).

A new discrete random variable \(Y \) is defined as

\[
Y = aX + b,
\]

where \(a \) and \(b \) are positive constants.

e) If the mean of \(X \) is 4 and the mean and variance of \(Y \) are both 36, explain with suitable calculations why \(Y \) cannot be Poisson distributed.
Question 17 (****)

The discrete random variable X follows a Poisson distribution with mean 2, and another discrete random variable Y also follows a Poisson distribution with mean 3.

It is further given that X and Y are independent from one another.

a) Find the value of $\text{Var}(XY)$.

b) Determine $P(XY = 4)$

\[\text{Var}(XY) = 36, \quad P(XY = 4) \approx 0.1196 \]
Question 18 (***)

The discrete random variables X and Y are independent from one another and are defined as

$$X \sim B(16, 0.25) \quad \text{and} \quad Y \sim Po(2).$$

(a) Find the value of $\text{Var}(XY)$.

(b) Determine $P(XY = 3)$

\[\text{Var}(XY) = 50, \quad P(XY = 3) = 0.0659 \]
Question 19 (****+)

It is known that during the first hour of trading, customers arrive at a garden centre at the rate of 3 customers every 10 minutes.

a) State two conditions, so that a Poisson distribution could be used to model the number of arrivals in the garden centre.

b) State one reason as to why the Poisson model might not be suitable.

Using a suitable Poisson model, and ignoring the answer to part (b), determine the probability that...

c) … exactly 4 customers arrive in the first 10 minutes of trading.

d) … exactly 8 customers arrive in the first 20 minutes of trading.

e) … exactly 4 customers arrive in the first 10 minutes of trading and a further 4 customers arrive in the next 10 minutes.

f) … the first customer will arrive 7 minutes after opening.

The first hour after opening is subdivided into 6 equal 10 minute intervals. Calculate the probability that...

g) … exactly 4 customers arrive in none of these 10 minute intervals.

h) … there will be a single 10 minute interval, where no customers arrive to the garden centre.

The garden centre claims that 98% of its seeds will germinate. It was found that in a random sample of 125 seeds, 117 seeds germinated.

i) Use a suitable approximation, to test at the 1% level of significance, whether the garden centre overstates the germination proportion of its seeds. You must state your hypotheses clearly in this part.

\[
0.1680, 0.1033, 0.0282, 0.1225, 0.3316, 0.2314
\]

significant evidence, 0.42% < 1%

[solution overleaf]
The number of customer complaints received by a company is thought to follow a Poisson distribution with a mean of 1.8 complaints per day.

In a randomly chosen 5 day week, the probability that there will be at least \(n \) customer complaints is 12.42%.

a) Determine the value of \(n \).

b) Use a distributional approximation to find the probability that in a period of 20 working days there fewer than 30 customer complaints.

A week of 5 working days is called a “bad week” if at least \(n \) customer complaints are received, where \(n \) is the value found in part (a).

c) Use a distributional approximation to find the probability that in 40 randomly chosen weeks more than 2 are “bad”.

\[n = 13, \quad 0.140, \quad 0.889 \]
The number of cars caught speeding per day, by a fixed police camera, is thought to follow a Poisson distribution with mean 1.2.

a) Find the probability that on a given 7 day week exactly 8 cars will be caught by this police camera.

A car has just been caught by the police camera.

b) Determine the probability that the period that elapses before another car gets caught is less than 48 hours.

In fact 5 cars were caught in the next 48 hours.

c) Calculate the probability that 2 cars were caught in the first 24 hours and 3 cars were caught in the next 24 hours.

\[\frac{5}{16} \]
The number of supernovae observed in a certain part of the sky in a 10 period can be modelled by a Poisson distribution with mean 1.

The probability that exactly 6 supernovae are observed in this part of the sky in a period of x years is 0.1128, correct to 4 decimal places.

Determine the possible values of x, correct to the nearest integer.

$x = 42, 83$