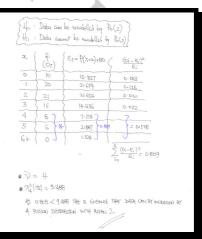
The function of the second sec ASSINGUIS COM I. Y. C.B. MARIASINGUIS COM I. Y. C.B. MARIASING

DISCRETE ATA T.Y.C.B. HRIESENSHERE IN T.Y.C.B. MARIASINGHISCON I.Y.C. ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM


Question 1 (**)

The number of car immobilizations, carried out by a security company patrolling a car park, over a period of eighty days is summarized in the table below.

No of Immobilizations	No of Days			
0	10			
	20			
2	21			
3	15			
4	8			
5	6			
6+	0			

Use a χ^2 test, at 5% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with a mean of 2 immobilizations per day.

excellent fit, 0.809 < 9.488

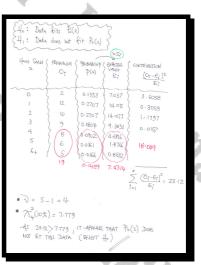
Question 2 (**)

The number of accidents, a certain police force were asked to attend, , over a period of 86 days is summarized in the table below.

10 19
10
12
20
15
8
2

Use a χ^2 test, at 1% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with mean 6 accidents per day.

good fit, 14.500 < 15.086


Question 3 (**)

The number of house sales achieved by an estate agent per week over a period of fifty two weeks is summarized in the table below.

		E
No of house sales	No of weeks	16
0	2	- S.
	12	
2	10	
3	9	
4	8	
5	6	
6+	5	0.

Use a χ^2 test, at 10% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with a mean of 2 sales per week.

not a good fit, 23.12 > 7.779

Question 4 (**)

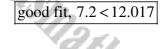
An airport manager believes the number of suitcases checked in by passengers follows a binomial distribution with p = 0.4.

He records the number of suitcases checked in by a group of 50 passengers, and his results are summarized in the table below.

Number of Suitcase	s Frequency
0	4
1.2	20
2	15
3	10
4	21 1

Use a χ^2 test, at 5% level of significance, to investigate the validity of the airport manager's claim.

, good fit, 2.142 < 6.251


4	$OBSEGNHO = O_1$	EXPRETED= E;= P(X=3;)x50	$\left[\frac{(c_i - F_i)^2}{E_i}\right]^2$
>	4.	(\$)0. \$ 06 x50 = 6.48	0.949
	20	$\binom{4}{1} \bullet 4^{1} \times 0.6^{3} \times 50 = 17.28$	0-428
2	15	$\binom{4}{2}$ $04^{2}x06^{2}x50 = 17.28$	0-301
3	10 7	$\binom{4}{3}$ 04x06x50 = 7.68 $\binom{4}{8}$	0-464
÷	1] "	$\binom{4}{4}$ • $\frac{4}{x06}$ x so = (128)	

Question 5 (**)

The table summarizes the results obtained by a spinner numbered with the positive integers from 1 to 8.

Number	1	2	3	4	5	6	7 8
Frequency	16	9	9	12	8	17	16 13
1	100 T 10.						

Use a χ^2 test, at 10% level of significance, to investigate whether the above data can be modelled by a Discrete Uniform distribution.

Ho: DATA	úcuci)	36 M		O BY	A ON	IFORM	DISCRE	
-HI : DARA								
X	ζι	2	3	4	S	6	7	8
f (0i)			9					
$E_t = \frac{L}{B} \times 100$	12.5	12.5	125	12.5	12-5	15.2	12-5	12.5
$\frac{(O_i^* - E_i^*)^2}{E_i^*}$	0-98	0-98	0.98	0.02	142	1-62	0-98	0-02
• D= 8-								
								HAPRAHES T EELES BR
• 7 ² (10%								ISTRIBUTIC
a \$ (01-E	12			(DCA	Core 11	1		

Question 6 (**+)

The number of shoplifting incidents, dealt by the security company patrolling a shopping centre, over a period of seventy days is summarized in the table below.

No of In	cidents	No of Days
(13
1		19
\mathbf{r} 2	2	16
	3	10
	Ļ	5
5	5	4
e	5	3
10 A. 1	F	The second se

Use a χ^2 test, at 10% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with parameter λ , where λ is the number of shoplifting incidents per day.

good fit, 2.653 < 6.251

Question 7 (**+)

The admissions due to accidents, dealt by the Accident and Emergency Department of a hospital over a period of 100 hours, is summarized in the table below.

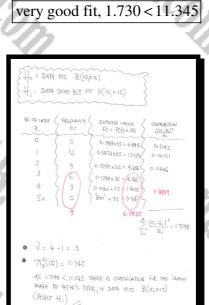
	5
No of Accidents	No of Hourly Periods
0 – 1	5
2-3	18
4	16
5	20
6	14
7	14
8 - 11	13
12+	0

Use a χ^2 test, at 10% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with mean λ , where λ is the mean number of accident admissions per hour.

$\begin{array}{c} & \begin{array}{c} & \end{array}{c} & \begin{array}{c} & \end{array}{c} & \end{array}{c} \\ & \begin{array}{c} & \end{array}{c} & \begin{array}{c} & \end{array}{c} & \end{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array}{c} & } \\$ {c} & \end{array}{c} & \end{array}{c} & } \\{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & \end{array}{c} & } \\{c} & } \\{c} & \end{array}{c} & } \end{array}{c} & } \\{c} & } \\{c} & }{c} & } \\{c} & }

excellent fit, 1.593 < 7.779

ts 1.5.13<7.779, 17 APRAD THAT DATA COULD BE WODELIND BY A ROBEN WITH MEAN 5.17 - BEHET 41


Question 8 (**+)

Peter's tutor feels he is late in 15% of the daily school registrations, which occur twice daily, i.e. 10 in total in a five day week.

The actual data is summarized in the table below

		A CONTRACT OF A
ę	Late Registrations in a Week	No of Weeks
ľ	000	5
ľ		12
	2	9
	3	6
	4	3
10.		

Use a χ^2 test, at 1% level of significance, to investigate whether the above data can be modelled by a Binomial distribution, as claimed by Peter's tutor.

Question 9 (***)

The discrete variable X is thought to have distribution B(5,0.2).

Some actual observations of X are summarized in the table below.

	<u></u>
X	Frequency
0	15
b 1	36 🚽
2	17
- 3	10
4	1
5	2, 1
5	1

Use a χ^2 test, at 5% level of significance, to investigate whether the above data can be modelled by B(5,0.2).

, not a good fit, 8.148 > 5.991

Ho:		f modfilled by B(S10; t be modfilled by B(S10;		
thukcysinus Nombse ≈	Peopusivoy Oi	с аятыл баныл Ан Банала Азробионс E; = P(X=2)×80	ринан q сайишт Солтавитался (<u>(0;-E;)</u> ² <u>E;</u>	2010-
0 1 2 3 4 5	2 8 8 7 0 7 1 3 0 7 0 7 8 0 8	0.5218 x80 = 0.032 0.5218 x80 = 0.032 0.5248 x80 = 4.036 0.5448 x80 = 4.036 0.5448 x80 = 4.036 0.5448 x80 = 4.036 0.5518 x80 = 2.188 0.5518 x80 = 2.188 x80 = 2.188 0.5518 x80 = 2.188 x80	4-797 0-319 3-952	
$\hat{V} = 3$ $\hat{\gamma}_{2}^{2}(Sx)$ $\hat{\sum}_{i=1}^{5} \frac{(o_{i} - e_{i})}{e_{i}}$ $\hat{\sum}_{i=1}^{5} \frac{(o_{i} - e_{i})}{e_{i}}$ $\hat{K} = 8 \cdot 10.8$ $By = B(S, 0)$	= 5.991) ² = 8.148 > 5.991 17 4	PRACE THAT THE DATA O	Kan →a The alog	<u>цар.</u>
• $\gamma_2^2(S_X)$ • $\sum_{i=1}^3 \frac{(o_i - e_i)}{e_i}$ * $\frac{S_i (u_i - e_i)}{e_i}$	= 5.991) ² = 8.148 > 5.991 17 4	PROS THAT THE DATA O	iould WT BE MODE	140

Question 10 (***)

A bank manager investigates the number of customers served by his staff.

He records the number of customers being served in 100 consecutive five minute time intervals and his data is summarized in the table below.

-		~ /
Number of Cust	stomers Frequency	
0	5	
1	38	
2	32)
3	2 17 9	3
4	7	\leq
5	1	
6 or more	e 0	
	10 A	

The manager further asserts that his data can be modelled by a Poisson distribution.

Use a χ^2 test, at 1% level of significance, to investigate the validity of the manager's assertion.

, not a good fit, 12.210 > 11.345

વ્ય	OBOERNO = OI	$EXPRECIPD \sim E_i \sim P(X{=}i) \times IOO$	$(\underline{O_i - \mathcal{E}_i})^{i}$
0	5	45 ≤ 15 ≤ 567	7 (73
1	36	e ^{-V&} 186v (co = 28.455	2.825
2	30	$\frac{\frac{e^{1/6}}{e_{-X}} + 9_{0}^{2}}{2}_{X \mid 0Q} = 26^{4}28$	- 2290
3	17	et # 1.8 × 100 + 16.65	0.006
4	77	e 12 x 12 x 100 =]	
5	1 8	= color = color = (1.849	1.25)
6	j ój		the contract processes
		V LESS THAN 5	
1		Sum	
		HO BY R(1.86) }	
11.35	ALL CHONG DE MO	sture by tours 3	$\sum \frac{(o_i - f_i)^2}{f_i} = 12.210$

Question 11 (***)

There are 7 periods in Lilith's school. The number of late arrivals to her lessons for a random sample of 50 days is summarized in the table below.

Late Arrivals in a Day	No of Days		
0	8		
	14		
2	14		
3	7 9		
4	4		
5	3		
	55 J		

Use a χ^2 test, at 5% level of significance, to investigate whether the above data can be modelled by a Binomial distribution.

good fit, 1.282 < 5.991

AS 1-282 < 5.391 IT APPRAS THAT THE DATH GOLD BE ALLOGIAD BY A BINOMIAN DUTUBLION (BUSH" 4)

Question 12 (***)

A scientist believes that the proportion of people in Britain whose hair colour is brown, blonde, black or red, is in the ratio 4:3:2:1.

A random sample is taken and their hair colour is recorded.

- 181 had brown hair.
- 167 had blonde hair.
- 113 had black hair.
- 39 had red hair.

Test the scientist's claim at the 10% level of significance.

claim not justified, 7.842 < 6.251

Question 13 (**+)

A spinner numbered 1, 2, 3 and 4 is spun 100 times and the results are summarized in the table below

	Number	Frequency
đ	1	15
ĺ	2	19
	3	31
	4	35

Dr Pepper claims that the probability distribution of number shown on the spinner is given by the following table.

	- G/D.		- 1 d 2		
	number	1	2	3	4
2	probability	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$

Use a χ^2 test, at 5% level of significance, to investigate Dr Pepper's claim.

good fit, 3.208 < 7.815

(Ho : Data coold be modelled by the distribution gives (H) : Data coold not be modelled by the distribution giver.)					
NUMBER (1	(2	3	74. (
FREPUGUCY O;	15	19	31	35	
Ei.	10 ×100=(D	5×100-20	3 yellon and	$\frac{2}{5} \times \infty = 4z$	
$\frac{(\underline{O_i} - \underline{E_i})^2}{\underline{E_i}}$	2.5	0.05	0.0333	0.625	
• $\sum_{i=1}^{4} \frac{(O_i - E_i)^{2_i}}{\overline{\omega}_i} = 3.208$					
• V = 4-1 = 3					
	2 ² C)				

AS 3.208 < 7.815, IT APPEAR DE PEPPER'S avinn U NOTIONS. CEREBET HIJ

Question 14 (***+)

A clothes company has five shops.

h.

The items sold and the items returned in these shops, for the month of August, are summarised in the table below.

	State of the second sec	NA MONT	
	Shop	Sold Items	Returned Items
- 4	А	7134	642
	В	1650	99
h.	С	6068	546
2	D	4709	485
201	E	3025	242

The owner claims that the mean number of returned items per 100 items sold is the same in all five shops.

Test the owner's claim, at the 1% level of significance, stating your hypotheses clearly.

, not justified, 28.788 > 13.277

SHOP	SOLD	Returned O!	-EXPIGIND EI	CASTUREATIONS <u>(Oi-Eil</u> 2 Ei
А	7134	642	2014 22586 x7134 = 636-14	0.0540
ß	1650	99	2014 × 650 = 147-13	1247-21
С	6068	246	2014 × 6068 = 541-09	0.0446
D	470%	485	22.5% × 4709 = 419-90	10.0919
E	302.5	242	- 22555 × 3025 = 269-74	2-8528
	22586	2014	and the second second	28.7884

the internation waveled of behaviors and a meridiant in the state is applied. All : THE MAN WAVEL OF BEHAVIOR TOUGHTS IS 1000 THE State in AU I Supplied

 $\eta_{11} = \eta_{11} + \eta_{12}^2 = 3.277$ $\eta_{11} = \eta_{11}^2 = 28.788...$

 $\frac{45}{10}$ 20198 > 17:27 there is defined that the main and the line of th

Question 15 (***+)

An investigation was carried out to determine the effectiveness of four different blood pressure lowering medications.

Each of the 100 patients who took part in the investigation was given one of the four available medications A, B, C or D.

- 10 of the 17 patients that were given medication A had a positive response.
- 16 of the 26 patients that were given medication *B* had a positive response.
- 15 of the 28 patients that were given medication C had a positive response.
- 11 of the 29 patients that were given medication D had a positive response.

The following claims are made.

a) Claim 1

Each patient was randomly given one of the four medications.

b) Claim 2

The patient's response is independent of the medication that was given.

Test each of these claims at the 10% level of significance.

claim 1 justified, 3.6 < 6.251, claim 2 justified, 3.592 < 6.251

(01-Ei)2 = 3.59

CONTINUE DATA DATA HEREISCON HEREISCON HEREISCON HEREISCON TREEP HEADSHALLSCOM INCOME INCOME INCOME ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARIASIN

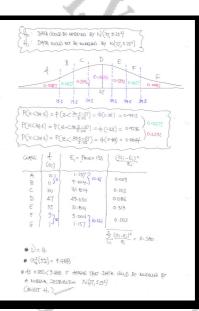
Question 1 (**+)

A flock of seagulls have nests on a rock face, and when they leave their nests the direction d they headed were recorded as a bearing, using certain landscape features.

No of seagulls			
52			
50			
28			
61			
31			
18			

- a) Show, by using a χ^2 test at 0.5% level of significance, that seagulls have a preferred direction when flying off their nests.
- **b**) State with justification which are, and which are not, the preferred directions of these seagulls.

preferred: $0^{\circ} \le d < 45^{\circ}$ & $148^{\circ} \le d < 195^{\circ}$ not preferred: $233^{\circ} \le d < 300^{\circ}$ $(4) = 0 \text{ for the constant of the series of the series of the series of the constant of the series of the series$

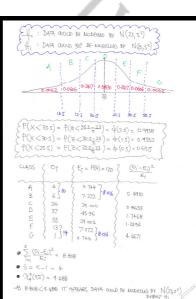

Question 2 (***)

The times taken to complete a four mile charity run for a group of people is summarized in the table below.

s the second	A
Time (nearest minute)	No of Runners
- 15	0
15 – 19	11
20 – 24	30
25 – 29	47
30 - 34	35
35 – 39	9
40 +	1
	100

Use a χ^2 test, at 5% level of significance, to investigate whether the above data can be modelled by a Normal distribution with mean of 27 minutes and standard deviation $5\frac{1}{4}$ minutes.

excellent fit, 0.580 < 9.488

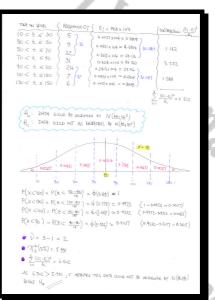

Question 3 (***)

The time that a group of people could hold the breath, rounded to the nearest second, is summarized in the table below.

	A
Time (nearest second)	No of People
- 10	4
11 – 15	6
16 – 20	24
21 – 25	37
26 - 30	35
31 – 35	13
36 +	1

Use a χ^2 test, at 5% level of significance, to investigate whether the above data can be modelled by a Normal distribution with mean of 23 seconds and standard deviation 5 seconds.

good fit, 8.808 < 9.488


Question 4 (***)

The time spent waiting by 104 callers, before their call is answered by a local hospital, is summarized in the table below.

Waiting Time (t)	No of Callers			
10 < <i>t</i> ≤ 30	5			
$30 < t \le 50$	9			
$50 < t \le 70$	22			
$70 < t \le 90$	31			
$90 < t \le 110$	24			
$110 < t \le 130$	7			
$130 < t \le 150$	6			

Use a χ^2 test, at 5% level of significance, to investigate whether the above data can be modelled by a Normal distribution with mean of 80 seconds and standard deviation 18 seconds.

not a good fit, 6.502 > 5.991

Question 5 (***+)

It is suggested that the daily takings in a shop X, in thousands of £, can be modelled by the probability density function

$$f(x) = \begin{cases} \frac{1}{30}(2x+1) & 0 \le x < 5\\ 0 & \text{otherwise} \end{cases}$$

a) Show that according to this model, $P(a \le X < a+1) = \frac{1}{15}(a+1)$.

The takings in	120 randomly se	elected days a	are summarized in	the table	below.
		<u> </u>	100	and the second	

and the second se	
Takings <i>x</i> (£ 000)	No of days
$0 \leq x < 1$	14
$1 \leq x < 2$	12
$2 \le x < 3$	27
$3 \leq x < 4$	38
$4 \le x < 5$	29

b) Use a χ^2 test, at 5% level of significance, to investigate whether the daily takings in this shop could be modelled by the probability density function of part (a).

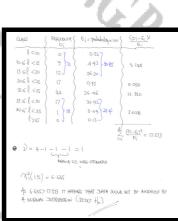
not a good fit, 10.025 > 9.488

	$\oint (x) = \frac{1}{30} (2x+1)$	$\begin{split} & \mathbb{P}\Big(\mathfrak{a} \leqslant \mathbf{X} < a(i) = \int_{\mathfrak{a}}^{a(i)} \frac{1}{\mathfrak{a}} \frac{1}{\mathfrak{a}} (\mathbf{x}(i)) \mathrm{d}\mathbf{x} = \frac{1}{2\mathfrak{a}} \Big[\mathcal{A}_{i}^{i} \mathbf{x} \Big] \\ & = \frac{1}{2\mathfrak{a}} \Big[(a(i)^{i} \mathfrak{b}(i)) - \mathfrak{a}^{i} - a \Big] \\ & = \frac{1}{2\mathfrak{a}} \Big[\mathcal{A}_{i}^{i} \mathcal{A}_{i} + j \mathscr{A}_{i}^{i} \mathcal{A}_{i}^{i} \Big] \\ & = \frac{1}{2\mathfrak{a}} \Big[\mathcal{A}_{i}^{i} \mathcal{A}_{i} + j \mathscr{A}_{i}^{i} \mathcal{A}_{i}^{i} \Big] \\ & = \frac{1}{2\mathfrak{a}} \Big[\mathcal{A}_{i}^{i} \mathcal{A}_{i} + j \mathscr{A}_{i}^{i} \mathcal{A}_{i}^{i} \Big] \\ & = \frac{1}{2\mathfrak{a}} \Big[\mathcal{A}_{i}^{i} \mathcal{A}_{i} \Big] \\ & = \frac{1}{2\mathfrak{a}} \Big[\mathcal{A}_{i} \mathcal{A}_{i}^{i} \Big] \\ & = \frac{1}{2\mathfrak{a}} \Big[\mathcal{A}_{i} \mathcal{A}_{i} \Big] \\ & = \frac{1}{2\mathfrak{a}} \Big[\mathcal{A}_$	44) 8
с (L)	$\begin{array}{c} c_{ASS} \\ o \leq x < 1 \\ 1 \leq x < 2 \\ 2 \leq x < 3 \\ 3 \leq x < 4 \\ 4 \leq x < s \end{array}$	$\begin{array}{c} \begin{array}{c} - (3) \\ (3) $	(¹ 2)
	$ \begin{array}{l} \left\{ \begin{array}{l} H_{1} & : & \text{The DATA} \\ \bullet \end{tabular} & \bullet \end{tabular} \\ \bullet \end{tabular} & = S - 1 = 4 \\ \bullet \end{tabular} & \bullet \end{tabular} \\ \bullet \end{tabular} & \left\{ \begin{array}{l} (\sigma_{1} - e_{1})^{2} \\ \Xi_{1} \end{array} \right\} \\ \bullet \end{tabular} \\ \bullet \$		

Question 6 (****)

The length of certain type of fresh water eel is investigated by a marine biologist.

The lengths of 100 such eels are summarized in the table below.


	No Western		
	Length <i>l</i> (cm)	No of Eels	
5	$10 \le l < 15$	9	
y	$15 \le l < 20$	12	
	$20 \le l < 22$	17	
	$22 \le l < 25$	44	
	$25 \le l < 30$	17	
	$30 \le l < 35$	1	
	The second se		

Use a χ^2 test, at 1% level of significance, to investigate whether the above data can be modelled by a Normal distribution.

not a good fit, 17.573 > 6.635

100001135 12-5 17-5 74 170001015 12-5 17-5 74 $\frac{1}{2}e^{-\frac{1}{2}\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = \frac{1}{2} + \frac{1$ $\phi^{2} = \frac{1}{k_{1}} \left[\sum_{\lambda} \frac{1}{2} - \frac{5\pi \xi_{\lambda}}{k_{-}} \right] = \frac{1}{33} \left[\frac{50789.75 - \frac{2\pi \xi_{\lambda}^{2}}{100}}{100} \right] = 18 \cdot 12047$ \$ = 4.257 (~N(22.155, 2.2572) ILLD BY N (22-135, 4-257? $P(3.25) = P(3 \le \frac{35-23 BC}{4-257}) = \Phi(3.02) = 0.9987$

 $\begin{array}{l} \left(\left(1, \infty \right) = \int_{0}^{1} \left(\left(x \right) - \frac{1}{2} \left(x \right) - \frac{1}{2} \left(x \right) + \frac{1}{2} \left(x \right) - \frac{1}{2} \left(x \right) + \frac{$

STRATISCORT F.Y.G.B. TRACESTRATISCORT F.Y.G.B. TRACESTRATIS

T. T. C.B. IN2023 IN2018 COM I. Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARAST