GOODNESS

OF FIT

DISCRETE

DATA

Question 1 (**)
The number of car immobilizations, carried out by a security company patrolling a car park, over a period of eighty days is summarized in the table below.

No of Immobilizations	No of Days
0	10
1	20
2	21
3	15
4	8
5	6
$6+$	0

Use a χ^{2} test, at 5% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with a mean of 2 immobilizations per day.

Created by T. Madas

Question 2 (**)
The number of accidents, a certain police force were asked to attend, , over a period of 86 days is summarized in the table below.

No of Accidents	No of Days
$0-2$	10
$3-4$	19
5	12
6	20
7	15
$8-10$	8
$11+$	2

Use a χ^{2} test, at 1% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with mean 6 accidents per day.

Question 3 (**)
The number of house sales achieved by an estate agent per week over a period of fifty two weeks is summarized in the table below.

No of house sales	No of weeks
0	2
1	12
2	10
3	9
4	8
5	6
$6+$	5

Use a χ^{2} test, at 10% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with a mean of 2 sales per week.
not a good fit, $23.12>7.779$
\square

Created by T. Madas

Created by T. Madas

Question 4 (**)
An airport manager believes the number of suitcases checked in by passengers follows a binomial distribution with $p=0.4$.

He records the number of suitcases checked in by a group of 50 passengers, and his results are summarized in the table below.

Number of Suitcases	Frequency
0	4
1	20
2	15
3	10
4	1

Use a χ^{2} test, at 5% level of significance, to investigate the validity of the airport manager's claim.

Created by T. Madas

Question 5 (**)
The table summarizes the results obtained by a spinner numbered with the positive integers from 1 to 8 .

Number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Frequency	16	9	9	12	8	17	16	13

Use a χ^{2} test, at 10% level of significance, to investigate whether the above data can be modelled by a Discrete Uniform distribution.
good fit, $7.2<12.017$

Question 6 (**+)
The number of shoplifting incidents, dealt by the security company patrolling a shopping centre, over a period of seventy days is summarized in the table below.

No of Incidents	No of Days
0	13
1	19
2	16
3	10
4	5
5	4
6	3

Use a χ^{2} test, at 10% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with parameter λ, where λ is the number of shoplifting incidents per day.

Created by T. Madas

Question $7 \quad(* *+)$
The admissions due to accidents, dealt by the Accident and Emergency Department of a hospital over a period of 100 hours, is summarized in the table below.

No of Accidents	No of Hourly Periods		
$0-1$	5		
$2-3$	18		
4	16		
5	20		
6	14		
7	14		
$8-11$	13		
$12+$	0		

Use a χ^{2} test, at 10% level of significance, to investigate whether the above data can be modelled by a Poisson distribution with mean λ, where λ is the mean number of accident admissions per hour.

Created by T. Madas

Question $8 \quad\left({ }^{* *}+\right)$
Peter's tutor feels he is late in 15% of the daily school registrations, which occur twice daily, i.e. 10 in total in a five day week.

The actual data is summarized in the table below

Late Registrations in a Week	No of Weeks
0	5
1	12
2	9
3	6
4	3

Use a χ^{2} test, at 1% level of significance, to investigate whether the above data can be modelled by a Binomial distribution, as claimed by Peter's tutor.
very good fit, $1.730<11.345$

Question 9 (***)
The discrete variable X is thought to have distribution $\mathrm{B}(5,0.2)$.

Some actual observations of X are summarized in the table below.

Created by T. Madas

Question 10 (***)
A bank manager investigates the number of customers served by his staff.
He records the number of customers being served in 100 consecutive five minute time intervals and his data is summarized in the table below.

Number of Customers	Frequency
0	5
1	38
2	32
3	17
4	7
5	1
6 or more	0

The manager further asserts that his data can be modelled by a Poisson distribution.

Use a χ^{2} test, at 1% level of significance, to investigate the validity of the manager's assertion.

Question 11 (***)
There are 7 periods in Lilith's school. The number of late arrivals to her lessons for a random sample of 50 days is summarized in the table below.

Late Arrivals in a Day	No of Days
0	8
1	14
2	14
3	7
4	4
5	3

Use a χ^{2} test, at 5% level of significance, to investigate whether the above data can be modelled by a Binomial distribution.

Created by T. Madas

Question 12 (***)
A scientist believes that the proportion of people in Britain whose hair colour is brown, blonde, black or red, is in the ratio $4: 3: 2: 1$.

A random sample is taken and their hair colour is recorded.

- 181 had brown hair.
- 167 had blonde hair.
- 113 had black hair.
- 39 had red hair.

Test the scientist's claim at the 10% level of significance.

claim not justified, $7.842<6.251$

Created by T. Madas

Question 13 (**+)
A spinner numbered 1,2,3 and 4 is spun 100 times and the results are summarized in the table below

Number	Frequency
1	15
2	19
3	31
4	35

Dr Pepper claims that the probability distribution of number shown on the spinner is given by the following table.

number	1	2	3	4
probability	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$

Use a χ^{2} test, at 5\% level of significance, to investigate Dr Pepper's claim.

Created by T. Madas

Question 14 (***+)

A clothes company has five shops.

The items sold and the items returned in these shops, for the month of August, are summarised in the table below.

Shop	Sold Items	Returned Items
A	7134	642
B	1650	99
C	6068	546
D	4709	485
E	3025	242

The owner claims that the mean number of returned items per 100 items sold is the same in all five shops.

Test the owner's claim, at the 1% level of significance, stating your hypotheses clearly.

Created by T. Madas

Question 15 (***+)

An investigation was carried out to determine the effectiveness of four different blood pressure lowering medications.

Each of the 100 patients who took part in the investigation was given one of the four available medications A, B, C or D.

- 10 of the 17 patients that were given medication A had a positive response.
- 16 of the 26 patients that were given medication B had a positive response.
- 15 of the 28 patients that were given medication C had a positive response.
- 11 of the 29 patients that were given medication D had a positive response.

The following claims are made.
a) Claim 1

Each patient was randomly given one of the four medications.
b) Claim 2

The patient's response is independent of the medication that was given.
Test each of these claims at the 10% level of significance.

$$
\text { claim } 1 \text { justified, } 3.6<6.251 \text {, claim } 2 \text { justified, } 3.592<6.251
$$

CONTINUOUS

DATA

Question 1 (**+)
A flock of seagulls have nests on a rock face, and when they leave their nests the direction d they headed were recorded as a bearing, using certain landscape features.

Bearing \boldsymbol{d} (degrees)	No of seagulls
$0 \leq d<45$	52
$45 \leq d<110$	50
$110 \leq d<148$	28
$148 \leq d<195$	61
$195 \leq d<233$	31
$233 \leq d<300$	18

a) Show, by using a χ^{2} test at 0.5% level of significance, that seagulls have a preferred direction when flying off their nests.
b) State with justification which are, and which are not, the preferred directions of these seagulls. not preferred: $233^{\circ} \leq d<300^{\circ}$

Created by T. Madas

Question 2 (***)
The times taken to complete a four mile charity run for a group of people is summarized in the table below.

Time (nearest minute)	No of Runners
-15	0
$15-19$	11
$20-24$	30
$25-29$	47
$30-34$	35
$35-39$	9
$40+\infty$	1

Use a χ^{2} test, at 5% level of significance, to investigate whether the above data can be modelled by a Normal distribution with mean of 27 minutes and standard deviation $5 \frac{1}{4}$ minutes.

Question 3 (***)
The time that a group of people could hold the breath, rounded to the nearest second, is summarized in the table below.

Time (nearest second)	No of People
-10	4
$11-15$	6
$16-20$	24
$21-25$	37
$26-30$	35
$31-35$	13
$36+\infty$	1

Use a χ^{2} test, at 5% level of significance, to investigate whether the above data can be modelled by a Normal distribution with mean of 23 seconds and standard deviation 5 seconds.

Question 4 (***)
The time spent waiting by 104 callers, before their call is answered by a local hospital, is summarized in the table below.

Waiting Time (t)	No of Callers
$10<t \leq 30$	5
$30<t \leq 50$	9
$50<t \leq 70$	22
$70<t \leq 90$	31
$90<t \leq 110$	24
$110<t \leq 130$	7
$130<t \leq 150$	6

Use a χ^{2} test, at 5% level of significance, to investigate whether the above data can be modelled by a Normal distribution with mean of 80 seconds and standard deviation 18 seconds.

Question 5 (***+)
It is suggested that the daily takings in a shop X, in thousands of $£$, can be modelled by the probability density function

$$
f(x)=\left\{\begin{array}{cr}
\frac{1}{30}(2 x+1) & 0 \leq x<5 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show that according to this model, $\mathrm{P}(a \leq X<a+1)=\frac{1}{15}(a+1)$.

The takings in 120 randomly selected days are summarized in the table below.

Takings $\boldsymbol{x}(\mathbf{£} \mathbf{0 0 0})$	No of days
$0 \leq x<1$	14
$1 \leq x<2$	12
$2 \leq x<3$	27
$3 \leq x<4$	38
$4 \leq x<5$	29

b) Use a χ^{2} test, at 5% level of significance, to investigate whether the daily takings in this shop could be modelled by the probability density function of part (a).

Question 6 (****)
The length of certain type of fresh water eel is investigated by a marine biologist.
The lengths of 100 such eels are summarized in the table below.

Length \boldsymbol{l} (cm)	No of Eels
$10 \leq l<15$	9
$15 \leq l<20$	12
$20 \leq l<22$	17
$22 \leq l<25$	44
$25 \leq l<30$	17
$30 \leq l<35$	1

Use a χ^{2} test, at 1% level of significance, to investigate whether the above data can be modelled by a Normal distribution.
\square

