DISCR RANDON VARIABLE

Question 1 (**)

The probability distribution of a discrete random variable X is given by

						and the second s	
	x	0	1	2	3 4	4	
1	$\mathbf{P}(X=x)$	$\frac{3}{8}$	$\frac{1}{3}$	$\frac{1}{4}$	а	$\frac{1}{24}$)
				111 1			

where a is a positive constant.

- **a**) Explain why a = 0.
- **b**) Find the value of E(X).
- c) Calculate Var(X).

C.B.

$\sum P(X = x) = 1$, E(X) = 1, Var(X) = 1

Var(×) = (

Question 2 (**)

The probability distribution of a discrete random variable X is given by

		T	<u>k</u>		
	x	0	1 2	3	P
9	$\mathbf{P}(X=x)$	$\frac{1}{12}$	$\frac{1}{4}$ $\frac{1}{3}$	$\frac{1}{3}$	"(

Find, showing full workings where appropriate, the value of

- $\mathbf{a}) \quad \mathbf{P}\big(1 < X \le 3\big) \,.$
- **b**) F(1.8).
- c) E(X).
- d) Var(X).
- e) E(2X-3).
- f) Var(2X-3).

$$\begin{bmatrix} P(1 < X \le 3) = \frac{2}{3} \\ F(1.8) = \frac{1}{3} \\ F(1.8) = \frac{1}{3} \\ F(X) = \frac{23}{12} \\ F(X) = \frac{131}{144} \approx 0.910 \\ F(X) = \frac{131}{144} \approx 0.910 \\ F(X) = \frac{131}{36} \approx 3.639 \\ F(X) = \frac{131}{36} \approx 3.639$$

d E(2x−3)

2 E(x) - 3 $2 \times \frac{23}{12} - 3$ $\frac{23}{6} - 3$ $\frac{5}{5} \simeq 0.0333...$

= 5

 $= 4 \operatorname{Var}(x)$ $= 4 \times \frac{131}{144}$ $= \frac{131}{2} \approx 3.63$

 $f) \quad Var(2X-3) = 2^2 Var(\times)$

Question 3 (**)

The probability distribution of a discrete random variable X is given by

 $P(X = x) = \begin{cases} kx^2 & x = 3, 4, 5\\ 0 & \text{otherwise} \end{cases}$

- a) Determine the value of the constant k.
- **b**) Find the value of ...
 - i. ... E(X).
 - **ii.** ... Var(X).
- c) Determine ...

R,

I.C.B.

- **i.** ... E(5X-4).
- ii. ... Var(5X-4).

K

 $k = \frac{1}{50}$, E(X) = 4.32, Var(X) = 0.5776, E(5X - 4) = 17.6

a WRITE THE FORMULA P(X=2) 9k 9K+16K+25K = Sok K = 1 $b(\tau) = \sum x P(x=x)$ $\Rightarrow \overline{E(x)} = (3 \times \eta_{k}) + (4 \times l(k) + (5 \times 25k))$ $\Rightarrow \overline{E(x)} = 2\pi k + 6lk + l25k$ $\Rightarrow \overline{E(x)} = 2\pi k k$ $\Rightarrow \overline{E(x)} = 4 \cdot 32$ $E(X^2) = \sum x^2 P(X=x)$ $E(x^2) = (3^2 \times 9k) + (4^2 \times 16k) + (5^2 \times 24k)$ $\rightarrow E(x^2) = 8|k + 2sk + 62sk$ $= E(x^2) = 962k$ $E(x^2) = 19.24$

 $\frac{Var(x) = E(x^2) - [E(x)]^2}{Var(x) = (4.24 - 4.32^2)^2}$ $\Rightarrow Var(x) = (4.24 - 4.32^2)^2$ $\Rightarrow Var(x) = 0.5776$ C) II E(5x - 4) = SE(x) - 4 = Sx + 432 - 4 = 17.6II $Var(5x - 4) = S^2 Var(x)$ $= 25 \times 0.5776$ = 14.44

Var(5X-4) = 14.44

C.B.

COM

E C

1+

(**) Question 4

20

The discrete random variable X has mean 7 and variance 11.

a) Calculate $E(X^2)$.

b) Given that Y = 2X - 4, determine the mean and variance of Y

Question 5 (**)

The probability distribution of a discrete random variable X is given by

 $P(X = x) = \begin{cases} k(2-x)^2 & x = -2, -1, 0, 1, 2\\ 0 & \text{otherwise} \end{cases}$

- a) Determine the value of the constant k.
- **b**) Find the value of ...
 - **i.** ... E(X).
 - **ii.** ... $E(X^2)$.
- c) Determine ...

KR,

I.C.P.

i. ...
$$E(1-15X)$$
.

ii. ... Var(1-15X).

л).	, Y	12.	11/2
X^2).	12	· · · · · · · · · · · · · · · · · · ·	
	Sp.	The second	1
-15X).	1212	d	5
r(1-15X).	-15		·ca
Co		m	Un.
$k = \frac{1}{30}$	$\overline{\mathbf{b}}$, $\mathbf{E}(X) = -\frac{4}{3}$, $\mathbf{E}(X)$	$X^2 = \frac{37}{15}, E(1-15)$	X)=21,
		Var(1-15)	() = 155
r r			2

a) WRITE THE FORMULA INTO A THBLE FORM	
$\frac{\alpha}{P(X=2)}$ $\begin{pmatrix} -2 & -1 & 0 & 1 \\ -2 & -1 & 0 & 1 \\ \hline 16k & 9k & 4k & k & 0 \\ \hline \end{pmatrix}$	
16k + 9k + 1k + 1k = 1 36k = 1	L
	K
1) $E(x) = \sum_{x} \mathbb{P}(x = x)$	
$E(X) = (-2 \times 16k) + (-1 \times 9k) + (0 \times 4k) + (1 \times k)$ E(X) = -32k - 9k + k	
E(X) = -40k $E(X) = -\frac{4}{5}$	
$II) E(\chi^2) = \sum x^2 f(\chi = \chi)$	
$U(X^{4}) = (-U \times 16k + (-1) \times 9k + 0 \times 4k + 1 \times k$ $E(X^{2}) \approx 64k + 9k + k$	

37 ~ 2.4666

$\frac{2}{2} = \frac{2}{2} = \frac{2}{2}$	
NEED THE MEMONICE OF X FIRET	
$Var(x) = E(X^2) - (E(x))^2$	
$Var(X) = \frac{37}{15} - (-\frac{4}{3})^2$	
$Var(\hat{\chi}) = \frac{37}{15} - \frac{16}{9}$	
$Var(x) = \frac{31}{45}$	
HANCE WE ONN NOW TRANSPORM	
Var(1-12X) = Var(-12X+1)	
$=$ $(-15)^{2}$ Var (\times)	
= 225 × 31. 45	
221 =	

TRANSPORMATION GRUATION

6

Question 6 (**)

The probability distribution of a discrete random variable X is given by

 $P(X = x) = \begin{cases} kx(5-x) & x = 1, 2, 3, 4\\ 0 & \text{otherwise} \end{cases}$

- a) Determine the value of the constant k.
- **b**) State the value of E(X).
- c) Calculate Var(X).
- **d**) Determine the value of E(4X-5).

2

Question 7 (***)

The probability distribution of a discrete random variable X is given by

	x	0	1	2	3
2	$\mathbf{P}(X=x)$	0.5	0.35		b

where a and b are positive constants.

a) Given that E(X) = 0.67, find the value of a and the value of b.

- **b**) Determine the variance of X.
- c) Calculate Var(5+10X).

a = 0.13, b = 0.02, Var(X) = 0.6011, Var(5+10X) = 60.11

$$\begin{split} & (\xi_{1},\xi_{2}) = \sum_{i} \frac{1}{2} \int_{0}^{1} \frac{$$

2

- $\int_{Var}^{\infty} \frac{Var(x) = U(x^{2}) (E(x))^{2}}{Var(x) = 0.67^{2}}$ Var(x) = 0.601
- $\frac{Var(aX+b) = a^{2}Var(X)}{Var(S+10X) = 10^{2}Var(X)}$ $\frac{Var(S+10X) = 10^{2}Var(X)}{Var(X+10X) = 100 \times 0.6011}$ $\frac{Var(X+10X) = 60.11}{Var(X+10X) = 60.11}$

Question 8 (***)

The probability distribution of a discrete random variable X is given by

x	1	3	5	7	9
P(X=x)	0.2	а	0.2	b	0.15
- 1 A		1.0			N. 15

where a and b are positive constants.

a) Given that E(X) = 4.5, find the value of a and the value of b.

b) Determine E(29-6X).

a = 0.3, b = 0.15, E(29 - 6X) =

(a) 2 1 3 5 7 (A)(xa) 0.2 a oz b	9
• 0.2+a+02+b+0.15=1 [a+b=0.45] [a=0.45-b]	$\begin{array}{l} 2 \cdot b = (X) = 4, \\ (X) = 4$
(2) E(29-6X) = E(-6X+29) = -6E(X) +29 =	4D=06 D=015 \$ q=0.3 -6x4-5+29 = 2

Question 9 (***)

Two fair spinners, both numbered with 0, 1, 2 and 3, are spun together and the **product** of their scores is recorded.

The discrete random variable X represents the product of the scores of these spinners and its probability distribution is summarized in the table below

A.	-	- " / s	<u> </u>		$\sim n$				
5.0	x	0	1	2	3	4	6	9	
5/3	P(X=x)	7/16	1/16	а	b	С	2/16	1/16	

- **a**) Find the value of a, b and c.
- **b**) Determine E(X).
- c) Find the value of Var(X).
- d) Calculate E(4X-1).
- e) Calculate Var(4X-1).

 $\Box, a = \frac{1}{8}, b = \frac{1}{8}, c = \frac{1}{16}, E(X) = \frac{9}{4}, Var(X) = \frac{115}{16}, E(4X-1) = 8$ Var(4X-1) = 115

	L
a) a o i z 3 4 6 9	
$\widehat{Y}(X=x) = \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$	
"a5 un 4" T 2−1; ‡x≵ = k 2−2; ‡x‡	
d≥#+#≈ & 1~5: \$×\$ = ₽	
i a= ↓ b= ↓ c= ↓	
b) $E(x) = \sum_{x} f(x=x)$	
$= \left(\frac{1}{2} \times \frac{1}{2} \right) + \left(\frac{1}{2} \times \frac{1}{2} \right) + \cdots + \left(\frac{1}{2} \times \frac{1}{2} \right)$	ł
= 花+套+套+奁+奁+色 30 9 9 9 9 9	
$= \frac{1}{16} = \frac{1}{4} = \frac{1}{12}$	
c) $E(X^2) = \sum \alpha^2 P(X=x)$	
$= \left(O^{k} x \frac{7}{16} \right) + \left(I^{2} x \frac{1}{16} \right) + \cdots + \left(q^{2} x \frac{1}{16} \right)$	
$= \frac{1}{16} + \frac{9}{16} + \frac{19}{16} + \frac{16}{16} + \frac{72}{16} + \frac{91}{16}$	
$= \frac{19(1-2)}{16} = \frac{41}{4}$	
$\therefore \text{ Ver}(x) = E(x^2) - (E(x))^2$	
$= \frac{49}{4} - \left(\frac{9}{4}\right)^2$	
2 21 2	

Question 10 (***)

The probability distribution of a discrete random variable X is summarised in the table below.

					<u> </u>	
x	1	2	3	4 🔨	5	
$\mathbf{P}(X=x)$	0.2	0.1	0.2	0.25	0.25)

a) Find the value of ...

i. ... E(X).

ii. ... $E(X^2)$. **iii.** ... Var(X).

b) Calculate ...

i. ...
$$E(3-X)$$

- **ii.** ... Var(3-X)
- c) Determine the value of

$$\mathbf{P}\left[4X - 3 \ge 2(X+1)\right]$$

 $E(X) = 3.25, E(X^{2}) = 12.65, Var(X) = 2.0875, E(3-X) = -0.25$ $Var(3-X) = 2.0875, P[4X-3 \ge 2(X+1)] = 0.7$

11

Question 11 (***)

The cumulative distribution F(x), of a discrete random variable X is given by

1								18 C
x	1	2	3	4	5	6	7	8
F(x)	0.25	0.40	0.55	0.65	0.75	0.85	0.95	1
			1		1			

a) Find the value

- i. ... E(X).
- **ii.** ... Var(X).

The discrete random variable Y is defined as Y = 5X - 3.

b) Determine the mean and variance of Y.

[E(X) = 3.6], Var(X) = 5.04], E(Y) = 15, Var(Y) = 126

a)	2	1 1	2	3	4	5	6	7	8
	FW	25-0	040	22.0	0.65	0.75	0-85	29.0	1
9((x=x)	0-25	ભાડ	0.12	0.10	040	0.10	0-tD	0.05
T)	EØ)=]	Σα	PG	(=x)				
		= (x0-2	s)+((2×0-	15) +	(3×0	· + (21	+(8×0.02)
		= 0	25 4 0	+ 2.0	· 24·0	+o∙q	£0+£	+ 0.6 +	0.7 +0.4
		= 3	2.6	_	-				
#)	E(x	²) =	Ź=	2 PG	(=x)				
		=(i	L× 0-2	s)+(2301	s) + (32×0	+ (21	(20.0 x ² 8)4
		= 0	25 4	06 +	1-35	+1.6	+ 2.5	+ 3.6 -	+ 4.9 +3.2
		= 18	3						
	Vari	(x) =	Ð	(X²).	-(EC	xi)2			
		2	16	3-3	.6 ²				
		=	18	- 1	2.96				
		-	S	.04					
				1	-				
6).	E (Y)	= E(5X-3	5) =	S E	(x) -	3 =	S× 3	6-3 = IS
	Varcy)= \	aris	x-3)	= 5	x Vior	-(x) =	25x	5.04 = 126

Question 12 (***)

0

Smaths,

I.G.B.

I.C.p

ma

COM

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} \frac{1}{12} & x = 1, 2, 3, ..., 12\\ 0 & \text{otherwise} \end{cases}$$

Determine $P(X+2 < 3X-4 \le 2X+7)$.

2017

 $P(X+2 < 3X-4 \le 2X+7) =$

1:0.

1+

21/2.Sm

aths com

Created by T. Madas

11.20/3SM21

0

Question 13 (***+)

A sixth form class consists of 6 boys and 4 girls.

Three students are selected at random from this class and the variable X represents the number of girls selected.

Show that the probability distribution of X is given by

Question 14 (***+)

The cumulative distribution of a discrete random variable X is given by

x 1 2 4 5						-
	J	5	4	2	1	x
F(x) $\frac{3}{20}$ $\frac{2k+3}{20}$ $\frac{k+5}{10}$ $\frac{k+2}{4}$		$\frac{k+2}{4}$	$\frac{k+5}{10}$	$\frac{2k+3}{20}$	$\frac{3}{20}$	F(x)

where k is a positive constant.

a) Show clearly that k = 2.

b) Find the value of ...

i. ... E(X).

ii. ... $E(X^2)$.

c) Calculate Var(20X-2).

P.C.P.

TABLE (IN THEMS OF & , OR WITH NUMBERED)

 $\frac{2k+3}{20} - \frac{3}{26} = \frac{7}{26} - \frac{3}{20} = \frac{4}{20} = \frac{1}{5}$

 $\mathbb{E}(\lambda) = \left(I \times \frac{3}{20}\right) + \left(2 \times \frac{1}{5}\right) + \left(\frac{4}{20} \times \frac{7}{20}\right) + \left(5 \times \frac{3}{10}\right)$

• $\frac{|k+5|}{10} - \frac{2k+3}{26} = \frac{7}{10} - \frac{7}{20} = \frac{7}{20}$

 $\frac{k+2}{4} - \frac{k+5}{10} = 1 - \frac{2}{10} = \frac{3}{10}$

 $\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$

 $Var(\hat{x}) = 14.05 - 3.45^{2}$

 $Var(20X-2) = 20^2 Var(x)$

 $Var(a\chi + b) = a^2 Var(\chi)$

= 400 x 2.1475

829

Var(x) = 2.1475

HANCE USING

Created by T. Madas

FILL IN THE ABO

 $E(x) = \sum x P(X=x)$

 $E(x) = \frac{3}{5} + \frac{x}{5} + \frac{7}{2} + \frac{x}{5}$

I)

Question 15 (***+)

A biased six sided die has the following probability distribution

		<u> </u>			
x	1	2	3	4	5 6
$\mathbf{P}(X=x)$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$ $\frac{1}{2}$

where the random variable X represents the number shown on its uppermost face when it comes to rest after it is rolled.

The die is rolled twice and the two independent observations of X, X_1 and X_2 , produce the score Y defined as

 $Y = \begin{cases} 6 & \text{if } X_1 = 6\\ X_1 + X_2 & \text{if } X_1 \neq 6 \end{cases}$

, P(Y=6) = 0.55

a) Find the value of P(Y = 6).

b) Find the value of P(Y < 7|Y > 4).

(a) <u>IDEENS AT THE THAN</u> $P(y = c) = V_{C}^{y} + V_{1}^{y} C_{1}^{y} + V_{2}^{y} + V_{2}^{y} + V_{2}^{y} + V_{2}^{y} + V_{3}^{y}$ $P(y = c) = V_{C}^{y} + V_{1}^{y} C_{1}^{y} + V_{3}^{y} + V_{3}^{y} + V_{3}^{y} + V_{3}^{y}$ $= \frac{1}{2} + \frac{1}{22}$ $= \frac{1}{2} + \frac{1}{2$

 $P(Y < 7 | Y > 4) = \frac{59}{94}$

(***+) **Question 16**

The probability distribution of a discrete random variable X is given by

x	0	1	2	3	4	5	6
$\mathbf{P}(X=x)$	0.05	0.1	0.15	0.2	0.25	0.2	0.05

01

- **a**) Find the value of E(X).
- **b**) Calculate Var(X).
- c) Determine $P(\mu \sigma \le X \le \mu + \sigma)$.
- d) Find the value of $E(4X^2 3.2)$.

 $E(4X^2-3.2)=50$

 $(28.4 > \times > 27.1) \ = \ (-\sigma - 4 > \times > \times > 27.1) \ = \ (-\sigma - 4) \ = \ (-\sigma - 4) \ (-\sigma -$

Ъ.

Question 17 (***+)

A box contains three blue discs and two red discs.

Three discs are selected at random from the box without replacement.

The variable X represents the number of blue discs selected.

a) Show that the probability distribution of X is given by

		The second secon	
x	1	2	3
$\mathbf{P}(X=x)$	$\frac{3}{10}$	$\frac{6}{10}$	$\frac{1}{10}$
	and the second sec		the second s

 $E(X) = \frac{9}{5}$

=1.8

b) Determine E(X) and Var(X).

 $Var(X) = \frac{9}{25} = 0.36$

21/2.57

è.

12

Question 18 (***+)

A sixth form class consists of 6 boys and 4 girls.

Three students are selected at random from this class and the variable X represents the number of girls selected.

a) Show that the probability distribution of X is given by

711				
x	0	1	2	3
$\mathbf{P}(X=x)$	$\frac{5}{30}$	$\frac{15}{30}$	$\frac{9}{30}$	$\frac{1}{30}$

b) Determine E(X) and $Var(\overline{X})$.

Question 19 (***+)

The probability distribution of the discrete random variable X is given by

X	2	3	4
$\mathbf{P}(X=x)$	0.4 - a	2 <i>a</i>	0.6 - a

where a is a constant.

a) State the range of the possible values of a.

Two independent observations of X, denoted by X_1 and X_2 , are considered.

b) Determine, in terms of *a*, a simplified expression for $P(X_1 + X_2 = 6)$.

 $, \ 0 \le a \le 0.4], \ P(X_1 + X_2 = 6) = 6a^2 - 2a + 0.48$

22

. F.G.B.

4.	0.4 -	1 ≥0 X≤04	26	>0	0.	6 —a ≥: a ≤ 0 %	2	
	:.	0	< a s	0.4	_			
couta	N6 41	L THE	0UT COM	HS FOI	2 ×.+	- X2 = 6		
<u>coueα</u> 2,4	N6 41 ⇒ (l TH€ 0-4-a)(1	0/7604 2-6-a)	169 2H = 0	2 X ₁ + ·24 - a -	$X_2 = 6$	>	

1+

Question 20 (***+)

P.C.P.

Two standard fair cubical dice, numbered 1 to 6 are such rolled and the random variable X represents the sum of the scores of the two dice.

Determine the value of Var(X).

Ĉ.

ng

Question 21 (***+)

The discrete random variable X has the following probability distribution

x	0	2	3
$\mathbf{P}(X=x)$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$
		2	

a) Determine E(X) and Var(X).

A game in a fun fair consists of throwing 5 darts on a small target.

If a dart lands on the central portion of the target the dart scores 3 points.

If a dart lands on the outer portion of the target the dart scores 2 points, otherwise the dart scores no points.

To win a prize, 10 or more points must be scored with 5 darts.

Paul has scored 6 points with his first 3 darts.

The likelihood of Paul scoring 0, 2 or 3 points is given by the probability distribution of part (a).

b) Find the probability that Paul will win a prize after he throws his last 2 darts.

],
$$E(X) = \frac{7}{6}$$
, $Var(X) = \frac{53}{36}$, $\frac{1}{4}$

Question 22 (***+)

The probability distribution of a discrete random variable X is given by

 $P(X = x) = \begin{cases} k(4-x) & x = 0, 1, 2, 3\\ \frac{1}{2} & x = 4\\ 0 & \text{otherwise} \end{cases}$

a) Show that $k = \frac{1}{20}$

Two independent observations of X are made, denoted by X_1 and X_2 .

- **b**) Find the probability distribution of *Y*, where $Y = X_1 + X_2$.
- c) Calculate $P(1.5 \le Y \le 4.5)$.

			- '0					100	<i>.</i>
y	0	1	2	3	94	5	6	7	- 8
, P(Y=y)	$\frac{16}{400}$	$\frac{24}{400}$	$\frac{25}{400}$	$\frac{20}{400}$	$\frac{90}{400}$	$\frac{64}{400}$	$\frac{41}{400}$	$\frac{20}{400}$	$\frac{100}{400}$
1	9	>				<i>P</i> (1.	$5 \leq Y$	≤ 4.5)	$=\frac{27}{80}$
Ch.	-	6		. I	4) PRODUCE	t they of proba	esimiles		

	0	L.		2		\$	4		
H(X=x)	4Ł	Зk		2k	ĸ		Ŧ		
42+34	+21 +1	k + Į :	=1						
		lok =	20	//					
		F =	20 /	/AS	819018	ю			
N A NUX A N	W TH	Bu							
9	0	1	2	3	4	s	6	7	8
Ne=V)4	400	24	25. 4m	20	90. 405	40	<u>91.</u> 4.00	20	100
	1	Ŷ	4	4	۴	9	4	4	1
	90	91	20	3,0	40	4,1	3,3 412	3,4 43	44
			92	2,1	1,0	213 312	34		/
					-1-				//
	54.5	;) =	PC	21	< Y :	≤4)			
(¹ 4 ≤ 7			P	CY=	213,1	+)			
(ŀ1 ≤ ×									
(¹ 4 ≤ 7		=	2	4+	e +	90			

11+

Question 23 (***+)

The probability distribution of a discrete random variable X is given by

	x	1	2	3	4
ļ	$\mathbf{P}(X=x)$	а	b	b	с
			× ×		

where a, b and c are constants.

The cumulative distribution function of X is given by

		- ×.	and and		1910
2	x	1	2	3	4
ę	F(x)	$\frac{1}{6}$	d	$\frac{2}{3}$	е
	State of the second			The second second	

where d and e are constants.

a) Determine the value of each of the constants a, b, c, d and e.

The discrete random variable Y is defined as Y = 10 - 3X.

b) Find the value of P(Y > X).

 $P(Y > X) = \frac{5}{12}$ $\frac{1}{6}$ (a,b,c,d,e) =4

Question 24 (***+)

The discrete random variable X has the following probability distribution

A		- K		- K. I	
.1.	x	0	1	3	1
* G.	$\mathbf{P}(X=x)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$	S.
~0			5		

Three independent observations of X are made, denoted by X_1 , X_2 and X_3 .

Calculate $P(X_1 + X_2 + X_3 \ge 4)$.

I.C.P.

 $P(X_1 + X_2 + X_3 \ge 4) = \frac{5}{8}$

F.G.B.

2

Question 25 (****)

The discrete random variable X has the following probability distribution

x	0	1	3
$\mathbf{P}(X=x)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$
-	-	2	

Two independent observations of X are made, denoted by X_1 and X_2 .

a) Find the probability distribution of $X_1 + X_2$.

b) Calculate $P(X_1 > X_2)$.

		and the second second	100	
x)	ORGANISE BUTCOMES			
	90 01 03 11 13 10 30 31	313		
	t + + + + +	$\frac{1}{2}$ × $\frac{1}{2}$		
	Let $Y = X_1 + X_2$			
	4 0 1 2 M(1-1) 50 \$ \$	3 4	4	
Ь)	ORGHNIZE "NEW" OUTCOMES WITH X1>	×2	//	
	1,0 3,0 2,1 1 4 1			
	$\begin{pmatrix} 1\\ \frac{1}{3} \times \frac{1}{6} \end{pmatrix} + \begin{pmatrix} 1\\ \frac{1}{2} \times \frac{1}{6} \end{pmatrix} + \begin{pmatrix} 1\\ \frac{1}{2} \times \frac{1}{3} \end{pmatrix} = 1$	$\frac{1}{8} + \frac{1}{12} + \frac{1}{6} =$	± 36	
			//	

Question 26 (****)

The probability distribution of a discrete random variable X is given by

÷.

$$P(X = x) = \begin{cases} k(2-x) & x = 0, 1, 2\\ \frac{1}{4} & x = 3\\ 0 & \text{otherwise} \end{cases}$$

- **a**) Show that $k = \frac{1}{4}$.
- **b**) Find the value of E(X) and $E(X^2)$.
- c) Determine Var(3-X).

Two independent observations of X are made, denoted by X_1 and X_2 .

- **d**) Find the probability distribution of *Y*, where $Y = X_1 + X_2$.
- e) Calculate $P(1.5 \le Y \le 3.5)$.

-

$$\Box, \underline{E(X)=1}, \underline{E(X^{2})=2.5}, \underline{Var(3-X)=1.5}, P(Y=y) = \begin{cases} \frac{1}{16} & y=2,6\\ \frac{1}{8} & y=4\\ \frac{1}{4} & y=0,1, \end{cases}$$

0

 $P(1.5 \le Y \le 3.5) = \frac{5}{16}$

 $\frac{1}{2} \times \frac{1}{2} \begin{pmatrix} \frac{1}{2} \times \frac{1}{4} \end{pmatrix} \begin{pmatrix} \frac{1}{4} \times \frac{1}{4} \end{pmatrix}$

1-1 3-0 3-1

P(X=2) ±

P(1.5 <Y <3

otherwise

$$\begin{array}{c} \mathbf{q} & \underbrace{\text{GradeAttive A Trails for Pleaduitties}}_{\frac{|\mathbf{x}||_{\mathbf{x}} = 0}{2k} \cdot \frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2}(\frac{1}{2} \cdot \frac{1}{2})} \\ & \frac{|\mathbf{x}||_{\mathbf{x}} = \frac{1}{2k} \cdot \frac{1}{k} - \frac{1}{2k} \\ & \frac{1}{2k} + \frac{1}{k} = 1 \\ & \frac{1}{2k} + \frac{1}{k} = 1 \\ & \frac{1}{k} + \frac{1}{k} \\ & \frac{1}{k} + \frac{1}{k} \\ & \frac{1}{k} - \frac{1}{k} \\ & = \frac{1}{k} \\ & = \frac{1}{k} - \frac{1}{k} \\ & = \frac{1}{k}$$

Question 27 (****)

The probability distribution of a discrete random variable X is given by

			is given	by C	3
x	1	2		3	Y
$\mathbf{P}(X=x)$	0.3 - k	2 <i>k</i>		0.7 - k	
		r r.			

- **a**) Find the range of possible values of the constant k.
- **b**) Determine E(X).
- c) Given that Var(X) = 0.72, find the value of k.

 X_1 and X_2 are two independent observations of X

d) Find $P(X_1 = X_2)$.

d) $P(X_1 = X_2) = P(1, 1) + P(2, 2) + P(3, 3)$ P(X=2) 0.3-1 $= (0.3 - 0.06)^2 + (2x0.06)^2 + (0.7 - 0.06)^2$ $= 0.24^2 + 0.12^2 + 0.64^2$ k > -0.7 K K 03 (K 5 0.7) 576 + 0-0144 + 0-4096 :. 05 6503 $\sum x P(X=x)$ F(x) E(X) = lx(0.3-k) + 2x2k + 3x(0.7-k)→ E(X) = 0.3 - K + 4K + 2.1 - 3K E(x) = 2.4START WITH $E(\chi^2) = \sum \chi^2 P(\chi_{=\chi})$ $$\begin{split} & E(\bar{X}^2) = \ 1^2 \kappa \left(0.3 - k \right) + \ 2^2 \kappa \ 2k + \ 3^2 \kappa \left(0.7 - k \right) \\ & E(\bar{X}^2) = \ 0.3 - k + \ 8k + \ 9 \kappa \left(0.7 - k \right) \end{split}$$ E(x2) = 0.3-2+02+63-9K $E(\chi^2) = -2k + 6.6$

, $0 \le k \le 0.3$, E(X) = 2.4, k = 0.06, 0.4816

Question 28 (****)

The probability distribution of the discrete random variable X is given by

x	2	3	4
$\mathbf{P}(X=x)$	0.4 - a	2a	0.6 - a
			1.000 million (1.000

where a is a constant.

- a) State the range of the possible values of a.
- **b**) Show that E(X) is independent of *a*.
 - c) Given that Var(X) = 0.56 show that a = 0.2.

Two independent observations of X, denoted by X_1 and X_2 are considered.

d) Calculate $P(X_1 + X_2 = 6)$.

 $0 \le a \le 0.4, P(X_1 + X_2 = 6) = 0.32$

Question 29 (****)

A biased spinner can show whole numbers from 1 to 8.

The probability of showing an 8 is 0.05 and the probability of showing a 7 is 0.11.

The probabilities of showing any of the other six whole numbers are all equal to one another.

Players in a gambling parlour pay £5 for a single spin.

A score of 8 wins the player $\pounds 50$, a score of 7 wins the player $\pounds 20$, otherwise the player wins no money.

In a typical day, a gambling addict has 150 spins on this spinner.

Find the expected loss of the gambling addict in a typical day.

x.	12	3 4	26	7	8	v
P(X=x)	0.14 0.14	0.14 0.14	0.14 0.14	0.11	20.0	
TRANSPOR	RAN THE ME	SOUT THELF	INES MO	NVEY	~	س
Ŋ	0	20	50			
P(Y=y)	0.84	0.[[0.05	-		
E(Y) =	(0x0.84)	+ (20 x0-11)+ (so	к 0.0Z)		
=	0 + 2.2	. 4 2.5				
2	4.7					
и турса	t winning	REFURN I	s ま4.7	D 96e	SPIN	
i. A cos	s of \$	5.00 - ŧ	4.70 =	0.30		

£45

Question 30 (****)

The discrete random variable X has the following probability distribution

x	0	1	3	Þ	
P(X=x)	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$		

a) Determine E(X) and Var(X).

Two independent observations of X are made, denoted by X_1 and X_2 .

- **b**) Find the probability distribution of $X_1 + X_2$.
- c) Calculate $P(X_1 > X_2)$.

$$P(X_1 > X_2) = \frac{11}{36}$$

a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\frac{E(\chi) = \sum x P(\chi = \chi)}{(\sigma_x \frac{1}{6}) + (\chi \frac{1}{5}) + (3\chi \frac{1}{5})}$
	$\frac{f(\chi^2) = \sum a^2 P(\chi = \alpha)}{= (o^2 x \frac{1}{b}) + (1^2 x \frac{1}{5}) + (3^2 x \frac{1}{2})}$
	= 0 + ± + ± - 29
	$\frac{1}{6}$
	$= \frac{2q}{\xi} - \left(\frac{11}{\xi}\right)^2$
	$=\frac{24}{6}-\frac{121}{36}$
	= 3

DEFROMINE ALL THE ODTODILLS FOR XI + X2
0+0=0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{P(Y=y)}{15} \frac{1}{55} \frac{1}{5} \frac{1}{5} \frac{1}{5}$ c) <u>WING</u> THE OUTCOME GOOM PART (b) 1,0 : $\frac{1}{15}$ 3,0 : $\frac{1}{15}$ 3,1 : $\frac{1}{15}$
3,1: +]

Question 31 (****)

The probability distribution of a discrete random variable X is given by

 $P(X = x) = \begin{cases} \frac{1}{20}x & x = 1, 2, 3, 4, 5\\ \frac{1}{4} & x = 6\\ 0 & \text{otherwise} \end{cases}$

a) Find P(X > 4).

b) Calculate $E\left(\frac{1}{X}\right)$

c) Show that $\operatorname{Var}\left(\frac{1}{X}\right) = \frac{173}{4800}$.

The discrete random variable Y is defined as $Y = \frac{A}{2}$

d) Determine the value of E(Y) and the value of Var(Y).

P(X > 4) = 0.5, $E(\frac{1}{X}) = \frac{7}{24}$, $E(Y) = \frac{15}{8}$, $Var(Y) = \frac{519}{1600}$

Question 32 (****)

Ĉ.Ŗ

A sixth form class consists of 3 boys and 7 girls.

Three students are selected at random from this class and the variable X represents the number of boys selected.

Show clearly that E(X) = 0.9.

proof

100

```
Question 33 (****)
```

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} \frac{1}{10} & x = 1, 2, 3, ..., 10\\ 0 & \text{otherwise} \end{cases}$$

- **a**) Find the value of $E(X^2)$.
- **b**) Determine P(X+2 < 3X-4 < X+7).

It is further given that

$$\mathrm{E}(kX+5) = 6.1$$

where k is a constant.

c) Find the value of Var(kX+5)

 $E(X^2) = 38.5, P(X+2<3X-4<X+7) = \frac{1}{5}, Var(kX+5) = 0.33$

	$\mathbb{P}(X = \alpha) = \frac{1}{10}$ $\alpha = 1, 2, 3, \dots, 10$		⇒ £(k×+5)=61
a)	$\frac{\text{USING} \text{Var}(\hat{x}) = \text{E}(x^{3}) - \left[\text{E}(x)\right]^{2}}{\Rightarrow \frac{ x^{2}_{-1} }{12} = \text{E}(x^{3}) - \left(\frac{ x_{+1} }{2}\right)^{2}}$		$\Rightarrow k + (x) + z = c \cdot 1$ $\Rightarrow (k + x) + z = c \cdot 1$ $\Rightarrow 2z k = -1$ $\Rightarrow k + \frac{1}{2}$
	$\implies \underbrace{6}_{12} = E(X^4) - \underbrace{38.5}_{2}$ $\implies \underbrace{6}_{12} = E(X^4) - \underbrace{30.25}_{2}$	į	$\implies \text{Var}(kX+5) = k^2 \text{Var}(kX+5) = \left(\frac{1}{5}\right)^2 \times \frac{3}{2}$
6)	SIMPLIFYING THE PERMANIZY EXPRESSION P (X+2<3X-4 < X+7) = P (2<2X-4 < 7]	1	$= \frac{0.33}{1.5\times\frac{34}{2}}$
	$= P [c < 2x < u]$ $= P [3 < x < \frac{u}{2}]$ $= P [x = u_1 s]$ $= \frac{1}{2} + \frac{1}{2}$		
þ	$\frac{1}{\frac{1}{3}}$		
	$E(X) = \frac{ k+1 }{2} = \frac{ 0+1 }{2} = \frac{5 \cdot 5}{2} = \frac{8}{2} Vaf(X) = \frac{ X^{k-1} }{12} = \frac{ D^{k-1} }{12} = \frac{33}{4}$		

Question 34 (****+)

The probability distribution of a discrete random variable X is given by

x 1	2 3	4	5
$P(X=x) \qquad k$	0.1 0.2	0.3	0.4 - k

where k is a positive constant.

a) Determine the range of values of E(X).

b) Given that Var(X) = 1.36, find the value of k.

Question 35 (****+)

Luke has 6 chocolates of which 2 have a hazelnut at their centre.

Luke eats his chocolates one after the other.

The random variable X represents the number of chocolates Luke eats, up and including the first chocolate with a hazelnut at its centre.

Show, with detailed workings, that $\operatorname{Var}(X) = \frac{14}{9}$

proof

Mana.

Question 36 (****+)

The probability of a biased coin landing on "tails" is 0.3.

An experiment consists of tossing the coin until "*tails*" is shown for the first time, up to a maximum of 4 tosses.

If "*tails*" is shown before the 4th toss the experiment stops.

If after the 4th toss no "*tails*" has been obtained, then no more tosses are made.

- The discrete random variable X is defined as the number of tosses in this experiment.
- The discrete random variable Y is defined as the number of "*tails*" in this experiment.

Determine the probability distribution of X + Y

	x+y	2	3	4	5
,	probability	0.3	0.21	0.3871	0.1029

	ORIHUNING O	DIUCA	HA THUD	PECBAB	iunts.		
т	0.3	a	0-3000				
HT	0.7×0.3	c	0.2100				
тин	07×0-3	=	0-1470				
4нңт	07 ⁴ ×0-3	72	0.1029				
####	0.7*	2	0-2401				
1							
iaw torun 1et Draw	NC THE REPOR	end	DISTRIBUTI	τη (κ	INGA TH	AT THE	- สหวัง
iaw forun 1et Driphui 2+5	NO THE REPORT	end.	DYTEIDOTA 3	za _l μα	5	AT TH	- KINJI

Question 37 (****+)

A box contains three blue discs and two red discs.

An experiment is conducted where three discs are selected at random from the box **without** replacement.

The variable X represents the number of blue discs selected.

a) Show that the probability distribution of X is given by

x	1	2	3
P(X=x)	$\frac{3}{10}$	$\frac{6}{10}$	$\frac{1}{10}$
	1 1 1 1		100 A 100 A

Four independent observations of X are recorded, labelled as X_1 , X_2 , X_3 and X_4 .

b) Determine $P(X_1 + X_2 + X_3 + X_4 \ge 10)$ and Var(X).

a) some	T (0174 -A TBHE	DIARRAM OR SHIT KIND OF SHETTL
	X= NO OF BU	WE DADIF 22aC 34
P(x	(=1) = P(Red -	$2 \operatorname{rd} - \operatorname{blu} = 2 \times \left(\frac{2}{5} \times \frac{1}{4} \times \frac{2}{5} \right) = 2 \operatorname{VAW} \mathcal{E} \times \left(\operatorname{Jub} - \operatorname{blu} \right)$
Ф(х:	=2) = P(Red-	$B_{0x}-B_{0x}$ > 3 ways = $\left(\frac{2}{5}x\frac{3}{4}x\frac{2}{5}\right)x3 = \frac{5}{10}$
₽(x:	=3) = P(blur-	$blu-blue) \times (her = \frac{3}{4} \times \frac{3}{4} \times \frac{1}{4} = \cdots = \frac{1}{10}$
b) <u>oec</u>	SANTANO LOSICON	uts
3	j3j3j3 ⇒	☆×☆×☆×☆ = 0.0001
3 3 3	$\begin{vmatrix} 3 & 3 & 2 \\ 3 & 2 & 3 \\ 3 & 2 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3$	$\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{5}{10} \times \frac{5}{10} \times \frac{5}{10} \times \frac{1}{10} \text{ why} = 0.002 \pm 10000$
6) - (c) - (322 3232 2332 2332 2332 2332	$\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times C \operatorname{MMI} = 0.4216$
8 10 10	$\left\{ \begin{array}{c} 33 \\ 13 \\ 13 \\ 133 \\$	$\frac{1}{10} \times \frac{1}{10} \times \frac{10}{10} \times \frac{10}{2} \times 4$ WAY = 0.0012
		TODING GIVES 0.0253

 $P(X_1 + X_2 + X_3 + X_4 \ge 10) = 0.0253$

Question 38 (*****)

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} \frac{1}{7} & x = 1, 2, 3, ..., 7\\ 0 & \text{otherwise} \end{cases}$$

The probability distribution of another discrete random variable Y is given by

$$\mathbf{P}(Y=y) = \begin{cases} \frac{1}{y} & x = 2, 3, 6\\ 0 & \text{otherwise} \end{cases}$$

Two observations of X are made, denoted by X_1 and X_2 , and one observation of Y, denoted by Y_1 are considered.

Assuming these three observations are independent, calculate $P(X_1 + X_2 \ge 9 + Y_1)$.

Question 39 (*****)

A biased six sided die has the following probability distribution

		<u> </u>			1	<u> </u>
	x	1	2	3	4	5 6
]	P(X=x)	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$ $\frac{1}{2}$

where the random variable X represents the number shown on its uppermost face when it comes to rest after it is rolled.

The die is rolled twice and the two independent observations of X, X_1 and X_2 , produce the score Y defined as

$$Y = \begin{cases} 6 & \text{if } X_1 = 6\\ X_1 + X_2 & \text{if } X_1 \neq 6 \end{cases}$$

a) Find the value of P(Y=6).

b) Determine the probability distribution of Y and hence calculate the E(Y).

c) Find the value of P(Y < 7|Y > 4).


```
Question 40 (*****)
```

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} k & x = 1\\ \frac{1}{2}P(X = x - 1) & x = 2, 3, 4\\ 0 & \text{otherwise} \end{cases}$$

where k is a positive constant.

Three independent observations of X are made, denoted by X_1 , X_2 and X_3 , and the variable Y is defined as $Y = X_1 + X_2 + X_3$.

If Y is an even number, determine the probability that Y is greater than 9.

 $\frac{1}{65}$ OR Y > 10 ROW $P(x=3) = \frac{2}{15}, P(x=4) = \frac{1}{15}$ odd [eve EEE: 3×3×5 = 27 4+1 12+2-15+2-15 3-2-1-2-2 + : P(Y 15 EVIN) = 13

(****) Question 41

The probability distribution of a discrete random variable X is given by

20250

$$P(X = r+1) = \begin{cases} \frac{2}{3}P(X = r) & r = 1, 2, 3, 4, 5, .\\ 0 & \text{otherwise} \end{cases}$$

Determine $P(2 \le X \le 4)$.

202SIN2THS.COM

alasmaths.com

Smaths.com

I.V.G.B

Madasmaths.com

I.V.C.B. Madasn

1.4.

nadasman

Created by T. Madas

COM

I.V.C.J

madasmaths.com