DISCRETE RANDOM

VARIABLES

Created by T. Madas

Question 1 (**)
The probability distribution of a discrete random variable X is given by

x	0	1	2	3	4
$\mathrm{P}(X=x)$	$\frac{3}{8}$	$\frac{1}{3}$	$\frac{1}{4}$	a	$\frac{1}{24}$

where a is a positive constant.
a) Explain why $a=0$.
b) Find the value of $\mathrm{E}(X)$.
c) Calculate $\operatorname{Var}(X)$.
0. $\square, \sum \mathrm{P}(X=x)=1, \mathrm{E}(X)=1, \operatorname{Var}(X)=1$

2

Created by T. Madas

Question 2 (**)
The probability distribution of a discrete random variable X is given by

x	0	1	2	3
$\mathrm{P}(X=x)$	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{3}$

Find, showing full workings where appropriate, the value of
a) $\mathrm{P}(1<X \leq 3)$.
b) $\mathrm{F}(1.8)$.
c) $\mathrm{E}(X)$.
d) $\operatorname{Var}(X)$.
e) $\mathrm{E}(2 X-3)$.
f) $\operatorname{Var}(2 X-3)$.
\square $P(1<X \leq 3)=\frac{2}{3}, \quad \mathrm{~F}(1.8)=\frac{1}{3}, \quad \mathrm{E}(X)=\frac{23}{12}, \quad \operatorname{Var}(X)=\frac{131}{144} \approx 0.910$,

$$
\mathrm{E}(2 X-3)=\frac{5}{6}, \operatorname{Var}(2 X-3)=\frac{131}{36} \approx 3.639
$$

$$
\text { e) } \begin{aligned}
E(2 x-3) & =2 E(x)-3 \\
& =2 \times \frac{23}{12}-3 \\
& =\frac{23}{6}-3 \\
& =\frac{5}{6} \simeq 0.8333 \ldots
\end{aligned}
$$

$$
\text { f) } \begin{aligned}
\operatorname{Var}(2 x-3) & =2^{2} \operatorname{Var}(x) \\
& =4 \operatorname{Var}(x) \\
& =4 \times \frac{131}{144} \\
& =\frac{131}{36} \simeq 3.639 \ldots
\end{aligned}
$$

d)

Created by T. Madas

Question 3 (**)
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{lc}
k x^{2} & x=3,4,5 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the value of the constant k.
b) Find the value of ...
i. $\ldots \mathrm{E}(X)$.
ii. $\ldots \operatorname{Var}(X)$.
c) Determine ...
i. $\quad . . \mathrm{E}(5 X-4)$.
ii. ... $\operatorname{Var}(5 x-4)$.
\square $, k=\frac{1}{50}, \mathrm{E}(X)=4.32, \operatorname{Var}(X)=0.5776, \mathrm{E}(5 X-4)=17.6$,
$\operatorname{Var}(5 X-4)=14.44$

Created by T. Madas

Question $4 \quad(* *)$

The discrete random variable X has mean 7 and variance 11 .

Question 5 (**)
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cc}
k(2-x)^{2} & x=-2,-1,0,1,2 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the value of the constant k.
b) Find the value of ...
i. $\quad \ldots \mathrm{E}(X)$.
ii. $\ldots \mathrm{E}\left(X^{2}\right)$.
c) Determine ...
i. ... $\mathrm{E}(1-15 x)$.
ii. ... $\operatorname{Var}(1-15 X)$.

Question 6 (**)
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cl}
k x(5-x) & x=1,2,3,4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the value of the constant k.
b) State the value of $\mathrm{E}(X)$.
c) Calculate $\operatorname{Var}(X)$.
d) Determine the value of $\mathrm{E}(4 X-5)$.
a) Werte The dstracotion in "Thast" Foem

b)

$\operatorname{Var}(x)=E\left(x^{2}\right)-(E(x))^{2}$
$=7.3-(2.5)^{2}$
$=1.05$

Created by T. Madas

Question 7 (***)
The probability distribution of a discrete random variable X is given by

x	0	1	2	3
$\mathrm{P}(X=x)$	0.5	0.35	a	b

where a and b are positive constants.
a) Given that $\mathrm{E}(X)=0.67$, find the value of a and the value of b.
b) Determine the variance of X.
c) Calculate $\operatorname{Var}(5+10 X)$.
\square $, a=0.13, b=0.02, \operatorname{Var}(X)=0.6011, \operatorname{Var}(5+10 X)=60.11$

Created by T. Madas

Created by T. Madas

Question 8 (***)
The probability distribution of a discrete random variable X is given by

x	1	3	5	7	9
$\mathrm{P}(X=x)$	0.2	a	0.2	b	0.15

where a and b are positive constants.
a) Given that $\mathrm{E}(X)=4.5$, find the value of a and the value of b.
b) Determine $\mathrm{E}(29-6 X)$.

Created by T. Madas

Question 9 (***)
Two fair spinners, both numbered with $0,1,2$ and 3 , are spun together and the product of their scores is recorded.

The discrete random variable X represents the product of the scores of these spinners and its probability distribution is summarized in the table below

x	0	1	2	3	4	6	9
$\mathrm{P}(X=x)$	$7 / 16$	$1 / 16$	a	b	c	$2 / 16$	$1 / 16$

a) Find the value of a, b and c.
b) Determine $\mathrm{E}(X)$.
c) Find the value of $\operatorname{Var}(X)$.
d) Calculate $\mathrm{E}(4 X-1)$.
e) Calculate $\operatorname{Var}(4 X-1)$.
\square,
$a=\frac{1}{8}, \quad b=\frac{1}{8}, \quad c=\frac{1}{16}$, \square $\operatorname{Var}(X)=\frac{115}{16}, \mathrm{E}(4 X-1)=8$, $\operatorname{Var}(4 X-1)=115$

Created by T. Madas

Question 10 (***)
The probability distribution of a discrete random variable X is summarised in the table below.

x	1	2	3	4	5
$\mathrm{P}(X=x)$	0.2	0.1	0.2	0.25	0.25

a) Find the value of.. .
i. $\ldots \mathrm{E}(X)$.
ii. $\ldots \mathrm{E}\left(X^{2}\right)$.
iii. ... $\operatorname{Var}(X)$.
b) Calculate ...
i. $\quad \ldots \mathrm{E}(3-X)$.
ii. ... $\operatorname{Var}(3-X)$
c) Determine the value of

$$
\mathrm{P}[4 X-3 \geq 2(X+1)]
$$

\square , $\mathrm{E}(X)=3.25$, $\mathrm{E}\left(X^{2}\right)=12.65, \operatorname{Var}(X)=2.0875, \mathrm{E}(3-X)=-0.25$,

$$
\operatorname{Var}(3-X)=2.0875, \mathrm{P}[4 X-3 \geq 2(X+1)]=0.7
$$

Created by T. Madas

Question 11 (***)
The cumulative distribution $\mathrm{F}(x)$, of a discrete random variable X is given by

x	1	2	3	4	5	6	7	8
$\mathrm{~F}(x)$	0.25	0.40	0.55	0.65	0.75	0.85	0.95	1

a) Find the value ...
i. $\ldots \mathrm{E}(X)$.
ii. ... $\operatorname{Var}(X)$.

The discrete random variable Y is defined as $Y=5 X-3$.
b) Determine the mean and variance of Y.
, $\mathrm{E}(X)=3.6, \operatorname{Var}(X)=5.04, \mathrm{E}(Y)=15, \operatorname{Var}(Y)=126$

Question 12 (***)
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cc}
\frac{1}{12} & x=1,2,3, \ldots, 12 \\
0 & \text { otherwise }
\end{array}\right.
$$

Determine $\mathrm{P}(X+2<3 X-4 \leq 2 X+7)$.

Question 13 (***+)
A sixth form class consists of 6 boys and 4 girls.
Three students are selected at random from this class and the variable X represents the number of girls selected.

Show that the probability distribution of X is given by

x	0	1	2	3
$\mathrm{P}(X=x)$	$\frac{5}{30}$	$\frac{15}{30}$	$\frac{9}{30}$	$\frac{1}{30}$

Created by T. Madas

Question $14 \quad(* * *+)$
The cumulative distribution of a discrete random variable X is given by

x	1	2	4	5
$\mathrm{~F}(x)$	$\frac{3}{20}$	$\frac{2 k+3}{20}$	$\frac{k+5}{10}$	$\frac{k+2}{4}$

where k is a positive constant.
a) Show clearly that $k=2$.
b) Find the value of ...
i. $\mathrm{E}(X)$.
ii. ... $\mathrm{E}\left(X^{2}\right)$.
c) Calculate $\operatorname{Var}(20 X-2)$.
$\square, \mathrm{E}(X)=3.45, \mathrm{E}\left(X^{2}\right)=14.05, \operatorname{Var}(20 X-2)=859$

II) $E\left(x^{2}\right)=\sum x^{2} P(\bar{x}=x)$
$E\left(x^{2}\right)=\left(1^{2} \times \frac{3}{20}\right)+\left(2^{2} \times \frac{1}{5}\right)+\left(4^{2} \times \frac{7}{20}\right)+\left(5^{2} \times \frac{3}{10}\right)$
$=\frac{3}{25}+\frac{4}{5}+\frac{28}{5}+\frac{15}{2}$
$=14.05$
c) find the varance firit
$\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}$
$\operatorname{Var}(x)=14.05-3.45^{2}$
$\operatorname{Var}(x)=2.1475$
Hewce usina $\operatorname{Var}(a x+b)=a^{2} \operatorname{Var}(x)$

$$
\operatorname{Var}(20 x-2)=20^{2} \operatorname{Var}(x)
$$

$$
\begin{aligned}
& =400 \times 2.1475 \\
& =8.59
\end{aligned}
$$

$$
=859
$$

Created by T. Madas

Question 15 (***+)
A biased six sided die has the following probability distribution

x	1	2	3	4	5	6
$\mathrm{P}(X=x)$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{2}$

where the random variable X represents the number shown on its uppermost face when it comes to rest after it is rolled.

The die is rolled twice and the two independent observations of X, X_{1} and X_{2}, produce the score Y defined as

$$
Y=\left\{\begin{array}{ccc}
6 & \text { if } & X_{1}=6 \\
X_{1}+X_{2} & \text { if } & X_{1} \neq 6
\end{array}\right.
$$

a) Find the value of $\mathrm{P}(Y=6)$.
b) Find the value of $\mathrm{P}(Y<7 \mid Y>4)$.
\square , $\mathrm{P}(Y=6)=0.55, \quad \mathrm{P}(Y<7 \mid Y>4)=\frac{59}{94}$

Created by T. Madas

Question $16 \quad(* * *+)$
The probability distribution of a discrete random variable X is given by

x	0	1	2	3	4	5	6
$\mathrm{P}(X=x)$	0.05	0.1	0.15	0.2	0.25	0.2	0.05

a) Find the value of $\mathrm{E}(X)$.
b) Calculate $\operatorname{Var}(X)$.
c) Determine $\mathrm{P}(\mu-\sigma \leq X \leq \mu+\sigma)$.
d) Find the value of $\mathrm{E}\left(4 X^{2}-3.2\right)$.
\square , $\mathrm{E}(X)=3.3, \operatorname{Var}(X)=2.41, \mathrm{P}(\mu-\sigma \leq X \leq \mu+\sigma)=0.6$,

$$
\begin{aligned}
& =P(X=2,3,4) \\
& =P(x=2)+P(x=3)+P(x=4) \\
& =0.15+0.2+0.25 \\
& =0.6 \\
& \frac{E(a X+b) \equiv a E(x)+b}{E\left(a X^{2}+b\right) \equiv a E\left(x^{2}\right)+b} \\
& E\left(4 x^{2}-3.2\right) \equiv 4 E\left(x^{2}\right)-32 \\
& E\left(4 x^{2}-3.2\right)=4 \times 13.3-3.2 \\
& E\left(4 x^{2}-3.2\right)=50
\end{aligned}
$$

d)

Question 17 (***+)
A box contains three blue discs and two red discs.

Three discs are selected at random from the box without replacement.
The variable X represents the number of blue discs selected.
a) Show that the probability distribution of X is given by

x	1	2	3
$\mathrm{P}(X=x)$	$\frac{3}{10}$	$\frac{6}{10}$	$\frac{1}{10}$

b) Determine $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
\square , $\mathrm{E}(X)=\frac{9}{5}=1.8, \operatorname{Var}(X)=\frac{9}{25}=0.36$

Question 18 (***+)
A sixth form class consists of 6 boys and 4 girls.
Three students are selected at random from this class and the variable X represents the number of girls selected.
a) Show that the probability distribution of X is given by

x	0	1	2	3
$\mathrm{P}(X=x)$	$\frac{5}{30}$	$\frac{15}{30}$	$\frac{9}{30}$	$\frac{1}{30}$

b) Determine $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.
$\square, \mathrm{E}(X)=\frac{6}{5}=1.2, \operatorname{Var}(X)=\frac{14}{25}=0.56$

Created by T. Madas

Question 19 (***+)
The probability distribution of the discrete random variable X is given by

x	2	3	4
$\mathrm{P}(X=x)$	$0.4-a$	$2 a$	$0.6-a$

where a is a constant.
a) State the range of the possible values of a.

Two independent observations of X, denoted by X_{1} and X_{2}, are considered.
b) Determine, in terms of a, a simplified expression for $\mathrm{P}\left(X_{1}+X_{2}=6\right)$.

Created by T. Madas

Question 20 (***+)
Two standard fair cubical dice, numbered 1 to 6 are such rolled and the random variable X represents the sum of the scores of the two dice.

Determine the value of $\operatorname{Var}(X)$.

Created by T. Madas

Question 21 (***+)

The discrete random variable X has the following probability distribution

x	0	2	3
$\mathrm{P}(X=x)$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{6}$

a) Determine $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

A game in a fun fair consists of throwing 5 darts on a small target.

If a dart lands on the central portion of the target the dart scores 3 points.

If a dart lands on the outer portion of the target the dart scores 2 points, otherwise the dart scores no points.

To win a prize, 10 or more points must be scored with 5 darts.

Paul has scored 6 points with his first 3 darts.

The likelihood of Paul scoring 0,2 or 3 points is given by the probability distribution of part (a).
b) Find the probability that Paul will win a prize after he throws his last 2 darts.

Question 22 (***+)
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cl}
k(4-x) & x=0,1,2,3 \\
\frac{1}{2} & x=4 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show that $k=\frac{1}{20}$.

Two independent observations of X are made, denoted by X_{1} and X_{2}.
b) Find the probability distribution of Y, where $Y=X_{1}+X_{2}$.
c) Calculate $P(1.5 \leq Y \leq 4.5)$.

Created by T. Madas

Question 23 (***+)
The probability distribution of a discrete random variable X is given by

x	1	2	3	4
$\mathrm{P}(X=x)$	a	b	b	c

where a, b and c are constants.

The cumulative distribution function of X is given by

x	1	2	3	4
$F(x)$	$\frac{1}{6}$	d	$\frac{2}{3}$	e

where d and e are constants.
a) Determine the value of each of the constants a, b, c, d and e.

The discrete random variable Y is defined as $Y=10-3 X$.
b) Find the value of $P(Y>X)$.
\square $,(a, b, c, d, e)=\left(\frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{5}{12}, 1\right), P(Y>X)=\frac{5}{12}$ -
\square 2 T/ -2

b) MANPPVATE THE WSOUNINY As Kowows $P(y>x)=P(10-3 x>x)$ $=P(-4 X>-10)$ $=P(x<2.5)$
$=P(x=1.2)$ $=a+b$

Question $24 \quad\left({ }^{* * *}+\right.$)
The discrete random variable X has the following probability distribution

Three independent observations of X are made, denoted by X_{1}, X_{2} and X_{3}. Calculate $P\left(X_{1}+X_{2}+X_{3} \geq 4\right)$.

Created by T. Madas

Question 25 (****)
The discrete random variable X has the following probability distribution

x	0	1	3
$\mathrm{P}(X=x)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$

Two independent observations of X are made, denoted by X_{1} and X_{2}.
a) Find the probability distribution of $X_{1}+X_{2}$.
b) Calculate $P\left(X_{1}>X_{2}\right)$.
\square
$\mathrm{P}\left(X_{1}+X_{2}=r\right)=\left\{\begin{array}{lc}\frac{1}{36} & r=0 \\ \frac{1}{9} & r=1,2 \\ \frac{1}{4} & r=6 \\ \frac{1}{3} & r=4 \\ 0 & \text { otherwise }\end{array}\right.$,

$$
P\left(X_{1}>X_{2}\right)=\frac{11}{36}
$$

Created by T. Madas

Question 26 (****)

The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cc}
k(2-x) & x=0,1,2 \\
\frac{1}{4} & x=3 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Show that $k=\frac{1}{4}$.
b) Find the value of $\mathrm{E}(X)$ and $\mathrm{E}\left(X^{2}\right)$.
c) Determine $\operatorname{Var}(3-X)$.

Two independent observations of X are made, denoted by X_{1} and X_{2}.
d) Find the probability distribution of Y, where $Y=X_{1}+X_{2}$.
e) Calculate $P(1.5 \leq Y \leq 3.5)$

Created by T. Madas

Question 27 (****)
The probability distribution of a discrete random variable X is given by

x	1	2	3
$\mathrm{P}(X=x)$	$0.3-k$	$2 k$	$0.7-k$

a) Find the range of possible values of the constant k.
b) Determine $\mathrm{E}(X)$.
c) Given that $\operatorname{Var}(X)=0.72$, find the value of k.
X_{1} and X_{2} are two independent observations of X.
d) Find $P\left(X_{1}=X_{2}\right)$.
\square $, 0 \leq k \leq 0.3, \mathrm{E}(X)=2.4, k=0.06,0.4816$

$$
\text { d) } \begin{aligned}
P\left(x_{1}=x_{2}\right) & =P(1,1)+P(2,2)+P(3,3) \\
& =(0.3-0.06)^{2}+(2 \times 0.06)^{2}+(0.7-0.06)^{2} \\
& =0.24^{2}+0.12^{2}+0.64^{2} \\
& =0.0576+0.0144+0.4016 \\
& =0.4816
\end{aligned}
$$

Created by T. Madas

Question 28 (****)
The probability distribution of the discrete random variable X is given by

x	2	3	4
$\mathrm{P}(X=x)$	$0.4-a$	$2 a$	$0.6-a$

where a is a constant.
a) State the range of the possible values of a.
b) Show that $\mathrm{E}(X)$ is independent of a.
c) Given that $\operatorname{Var}(X)=0.56$ show that $a=0.2$.

Two independent observations of X, denoted by X_{1} and X_{2} are considered.
d) Calculate $P\left(X_{1}+X_{2}=6\right)$.
, $0 \leq a \leq 0.4, P\left(X_{1}+X_{2}=6\right)=0.32$

Created by T. Madas

Question 29 (****)

A biased spinner can show whole numbers from 1 to 8 .

The probability of showing an 8 is 0.05 and the probability of showing a 7 is 0.11 .

The probabilities of showing any of the other six whole numbers are all equal to one another.

Players in a gambling parlour pay $£ 5$ for a single spin.

A score of 8 wins the player $£ 50$, a score of 7 wins the player $£ 20$, otherwise the player wins no money.

In a typical day, a gambling addict has 150 spins on this spinner.

Find the expected loss of the gambling addict in a typical day.

Created by T. Madas

Question 30 (****)

The discrete random variable X has the following probability distribution

x	0	1	3
$\mathrm{P}(X=x)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$

a) Determine $\mathrm{E}(X)$ and $\operatorname{Var}(X)$.

Two independent observations of X are made, denoted by X_{1} and X_{2}.
b) Find the probability distribution of $X_{1}+X_{2}$.
c) Calculate $P\left(X_{1}>X_{2}\right)$.

Created by T. Madas

Question 31 (****)
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{lc}
\frac{1}{20} x & x=1,2,3,4,5 \\
\frac{1}{4} & x=6 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Find $\mathrm{P}(X>4)$.
b) Calculate $\mathrm{E}\left(\frac{1}{X}\right)$.
c) Show that $\operatorname{Var}\left(\frac{1}{X}\right)=\frac{173}{4800}$.

The discrete random variable Y is defined as $Y=\frac{X+3}{X}$.
d) Determine the value of $\mathrm{E}(Y)$ and the value of $\operatorname{Var}(Y)$.
$\square, \mathrm{P}(X>4)=0.5, \mathrm{E}\left(\frac{1}{X}\right)=\frac{7}{24}, \mathrm{E}(Y)=\frac{15}{8}, \operatorname{Var}(Y)=\frac{519}{1600}$

$$
\operatorname{Var}\left(\frac{1}{x}\right)=\frac{1}{26}+\frac{1}{50}+\frac{1}{68}+\frac{1}{16}+\frac{1}{100}+\frac{1}{144}-\frac{49}{576}
$$

$$
\operatorname{Var}\left(\frac{1}{x}\right)=\frac{173}{4800}
$$

d)
$\frac{y-\frac{x+3}{x}-1+\frac{3}{x}}{x}$

- $E(Y)=E\left(1+\frac{3}{x}\right)=E\left[2 \times \frac{1}{x}+1\right]$
$=3 E\left(\frac{1}{x}\right)+1=3 \times \frac{7}{24}+1$
$=\frac{15}{8}$
- $\operatorname{Var}(Y)=\operatorname{Var}\left(1+\frac{3}{x}\right)=\operatorname{Var}\left[3 \times \frac{1}{x}+1\right]$
$=3^{2} \operatorname{Var}\left(\frac{1}{x}\right)=9 \times \frac{173}{4800}$
$=\frac{519}{1600}$

Question 32 (****)
A sixth form class consists of 3 boys and 7 girls.

Three students are selected at random from this class and the variable X represents the number of boys selected.

Show clearly that $\mathrm{E}(X)=0.9$.

Question 33 (****)
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cc}
\frac{1}{10} & x=1,2,3, \ldots, 10 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Find the value of $\mathrm{E}\left(X^{2}\right)$.
b) Determine $\mathrm{P}(X+2<3 X-4<X+7)$.

It is further given that

$$
\mathrm{E}(k X+5)=6.1
$$

where k is a constant.
c) Find the value of $\operatorname{Var}(k X+5)$

$$
\mathrm{E}\left(X^{2}\right)=38.5, \quad \mathrm{P}(X+2<3 X-4<X+7)=\frac{1}{5}, \quad \operatorname{Var}(k X+5)=0.33
$$

$P(x=x)=\frac{1}{10} \quad x=12,3, \ldots, 10$
a) $\begin{aligned} \text { USING } \operatorname{Var}(x) & =E\left(x^{2}\right)-[E(x)]^{2} \\ \Rightarrow \frac{n^{2}-1}{12} & =E\left(x^{2}\right)-\left(\frac{n+1}{2}\right)^{2}\end{aligned}$
$\Rightarrow \frac{99}{12}=E\left(x^{2}\right)-\left(\frac{1}{2}\right)^{2}$
$\Rightarrow 8.25=E\left(x^{2}\right)-30.25$
$\Rightarrow E\left(x^{2}\right)=38.5$
b) SIMPLIFYING THE PROPABLuTy Expression
$P[x+2<3 x-4<x+7)$
$=P[2<2 x-4<7]$
$=P[6<2 x<11]$
$=P\left[3<x<\frac{11}{2}\right]$
$=P[X=4,5]$
$=\frac{1}{10}+\frac{1}{10}$
$=\frac{1}{5} /$
c) Fiprty we NefO THE EXfectilon a varinnce
$E(X)=\frac{n+1}{2}=\frac{10+1}{2}=\frac{5.5}{2} \operatorname{Var}(x)=\frac{n^{2}-1}{12}=\frac{10^{2}-1}{12}=\frac{33}{4}$

Created by T. Madas

Question $34 \quad(* * * *+)$
The probability distribution of a discrete random variable X is given by

x	1	2	3	4	5
$\mathrm{P}(X=x)$	k	0.1	0.2	0.3	$0.4-k$

where k is a positive constant.
a) Determine the range of values of $\mathrm{E}(X)$.
b) Given that $\operatorname{Var}(X)=1.36$, find the value of k.

Created by T. Madas

Question 35 (****+)

Luke has 6 chocolates of which 2 have a hazelnut at their centre.

Luke eats his chocolates one after the other.

The random variable X represents the number of chocolates Luke eats, up and including the first chocolate with a hazelnut at its centre.

Show, with detailed workings, that $\operatorname{Var}(X)=\frac{14}{9}$.

Created by T. Madas

Question 36 (****+)

The probability of a biased coin landing on "tails" is 0.3 .

An experiment consists of tossing the coin until "tails" is shown for the first time, up to a maximum of 4 tosses.

If "tails" is shown before the $4^{\text {th }}$ toss the experiment stops.

If after the $4{ }^{\text {th }}$ toss no "tails" has been obtained, then no more tosses are made.

- The discrete random variable X is defined as the number of tosses in this experiment.
- The discrete random variable Y is defined as the number of "tails" in this experiment.

Determine the probability distribution of $X+Y$.

Question 37 (****+)
A box contains three blue discs and two red discs.

An experiment is conducted where three discs are selected at random from the box without replacement.

The variable X represents the number of blue dises selected.
a) Show that the probability distribution of X is given by

x	1	2	3
$\mathrm{P}(X=x)$	$\frac{3}{10}$	$\frac{6}{10}$	$\frac{1}{10}$

Four independent observations of X are recorded, labelled as X_{1}, X_{2}, X_{3} and X_{4}.
b) Determine $\mathrm{P}\left(X_{1}+X_{2}+X_{3}+X_{4} \geq 10\right)$ and $\operatorname{Var}(X)$.
\square , $\mathrm{P}\left(X_{1}+X_{2}+X_{3}+X_{4} \geq 10\right)=0.0253$

Created by T. Madas

Question 38 (*****)
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cc}
\frac{1}{7} & x=1,2,3, \ldots 7 \\
0 & \text { otherwise }
\end{array}\right.
$$

The probability distribution of another discrete random variable Y is given by

$$
\mathrm{P}(Y=y)= \begin{cases}\frac{1}{y} & x=2,3,6 \\ 0 & \text { otherwise }\end{cases}
$$

Two observations of X are made, denoted by X_{1} and X_{2}, and one observation of Y, denoted by Y_{1} are considered.

Assuming these three observations are independent, calculate $P\left(X_{1}+X_{2} \geq 9+Y_{1}\right)$.

Created by T. Madas

Question 39 (*****)
A biased six sided die has the following probability distribution

x	1	2	3	4	5	6
$\mathrm{P}(X=x)$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{2}$

where the random variable X represents the number shown on its uppermost face when it comes to rest after it is rolled.

The die is rolled twice and the two independent observations of X, X_{1} and X_{2}, produce the score Y defined as

$$
Y=\left\{\begin{array}{cc}
6 & \text { if } \\
X_{1}=6 \\
X_{1}+X_{2} & \text { if }
\end{array} X_{1} \neq 6\right.
$$

a) Find the value of $\mathrm{P}(Y=6)$.
b) Determine the probability distribution of Y and hence calculate the $\mathrm{E}(Y)$.
c) Find the value of $\mathrm{P}(Y<7 \mid Y>4)$.

$$
\text {], } \mathrm{P}(Y=6)=0.55, \mathrm{E}(Y)=6.75, \mathrm{P}(Y<7 \mid Y>4)=\frac{59}{94}
$$

Created by T. Madas

Question 40 ($* * * * * *)$
The probability distribution of a discrete random variable X is given by

$$
\mathrm{P}(X=x)=\left\{\begin{array}{cc}
k & x=1 \\
\frac{1}{2} \mathrm{P}(X=x-1) & x=2,3,4 \\
0 & \text { otherwise }
\end{array}\right.
$$

where k is a positive constant.

Three independent observations of X are made, denoted by X_{1}, X_{2} and X_{3}, and the variable Y is defined as $Y=X_{1}+X_{2}+X_{3}$.

If Y is an even number, determine the probability that Y is greater than 9.

Created by T. Madas

Question 41 (*****)
The probability distribution of a discrete random variable X is given by

$$
\begin{aligned}
& \mathrm{P}(X=r+1)=\left\{\begin{array}{cc}
\frac{2}{3} \mathrm{P}(X=r) & r=1,2,3,4,5, \ldots \\
0 & \text { otherwise }
\end{array}\right. \\
& \mathrm{P}(2 \leq X \leq 4) .
\end{aligned}
$$

Determine $\mathrm{P}(2 \leq X \leq 4)$.

