DISCRETE RANDOM VARIABLES
Question 1 (**)
The probability distribution of a discrete random variable \(X \) is given by:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X = x))</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{4})</td>
<td>(a)</td>
<td>(\frac{1}{24})</td>
</tr>
</tbody>
</table>

where \(a \) is a positive constant.

a) Explain why \(a = 0 \).

b) Find the value of \(E(X) \).

c) Calculate \(\text{Var}(X) \).

\(\sum P(X = x) = 1 \), \(E(X) = 1 \), \(\text{Var}(X) = 1 \)
Question 2 (***)

The probability distribution of a discrete random variable X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>$\frac{1}{12}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>

Find, showing full workings where appropriate, the value of

a) $P(1 < X \leq 3)$.

b) $F(1.8)$.

c) $E(X)$.

d) $\text{Var}(X)$.

e) $E(2X - 3)$.

f) $\text{Var}(2X - 3)$.

$\frac{2}{3}$, $F(1.8) = \frac{1}{3}$, $E(X) = \frac{23}{12}$, $\text{Var}(X) = \frac{131}{144} \approx 0.910$, $E(2X - 3) = \frac{5}{6}$, $\text{Var}(2X - 3) = \frac{131}{36} \approx 3.639$
Question 3 (**)

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} \frac{kx^2}{3}, & x = 3, 4, 5 \\ 0, & \text{otherwise} \end{cases}$$

a) Determine the value of the constant k.

b) Find the value of ...

i. ... $E(X)$.

ii. ... $\text{Var}(X)$.

c) Determine ...

i. ... $E(5X - 4)$.

ii. ... $\text{Var}(5X - 4)$.

$\boxed{k = \frac{1}{50}, \quad E(X) = 4.32, \quad \text{Var}(X) = 0.5776, \quad E(5X - 4) = 17.6, \quad \text{Var}(5X - 4) = 14.44}$
Question 4 (**)

The discrete random variable X has mean 7 and variance 11.

a) Calculate $E(X^2)$.

b) Given that $Y = 2X - 4$, determine the mean and variance of Y.

\[E(X^2) = 60, \quad E(Y) = 10, \quad \text{Var}(Y) = 44 \]
Question 5 (**)

The probability distribution of a discrete random variable \(X \) is given by

\[
P(X = x) = \begin{cases} k(2-x)^2 & \text{if } x = -2, -1, 0, 1, 2 \\ 0 & \text{otherwise} \end{cases}
\]

a) Determine the value of the constant \(k \).

b) Find the value of …

 i. \(E(X) \).

 ii. \(E(X^2) \).

b) Determine …

 i. \(E(1-15X) \).

 ii. \(\text{Var}(1-15X) \).

\[
\begin{align*}
\text{FS1-P} & = 30, \\
k & = \frac{1}{30}, \\
E(X) & = \frac{-4}{3}, \\
E(X^2) & = \frac{37}{15}, \\
E(1-15X) & = 21. \\
\text{Var}(1-15X) & = 155
\end{align*}
\]
Question 6 (**)
The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} kx(5-x) & x = 1, 2, 3, 4 \\ 0 & \text{otherwise} \end{cases}$$

a) Determine the value of the constant k.
b) State the value of $E(X)$.
c) Calculate $\text{Var}(X)$.
d) Determine the value of $E(4X - 5)$.

$$k = \frac{1}{20}, \quad E(X) = 2.5, \quad \text{Var}(X) = 1.05, \quad E(4X - 5) = 5$$
Question 7 (***)

The probability distribution of a discrete random variable \(X \) is given by

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X = x))</td>
<td>0.5</td>
<td>0.35</td>
<td>(a)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

where \(a \) and \(b \) are positive constants.

a) Given that \(E(X) = 0.67 \), find the value of \(a \) and the value of \(b \).

b) Determine the variance of \(X \).

c) Calculate \(\text{Var}(5+10X) \).

\[a = 0.13, \quad b = 0.02 \quad \text{Var}(X) = 0.6011, \quad \text{Var}(5+10X) = 60.11 \]
Question 8 (***)

The probability distribution of a discrete random variable X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>0.2</td>
<td>a</td>
<td>0.2</td>
<td>b</td>
<td>0.15</td>
</tr>
</tbody>
</table>

where a and b are positive constants.

a) Given that $E(X) = 4.5$, find the value of a and the value of b.

b) Determine $E(29 - 6X)$.

$$a = 0.3, \quad b = 0.15, \quad E(29 - 6X) = 2$$
Question 9 (***)

Two fair spinners, both numbered with 0, 1, 2 and 3, are spun together and the product of their scores is recorded.

The discrete random variable X represents the product of the scores of these spinners and its probability distribution is summarized in the table below:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
</tr>
</tbody>
</table>

a) Find the value of a, b and c.

b) Determine $E(X)$.

c) Find the value of $\text{Var}(X)$.

d) Calculate $E(4X - 1)$.

e) Calculate $\text{Var}(4X - 1)$.

\[
a = \frac{1}{8}, \quad b = \frac{1}{8}, \quad c = \frac{1}{16}, \quad E(X) = \frac{9}{4}, \quad \text{Var}(X) = \frac{115}{16}, \quad E(4X - 1) = 8, \quad \text{Var}(4X - 1) = 115
\]
Question 10 (***)

The probability distribution of a discrete random variable X is summarised in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

a) Find the value of ...
 i. ... $E(X)$.
 ii. ... $E(X^2)$.
 iii. ... $\text{Var}(X)$.

b) Calculate ...
 i. ... $E(3 - X)$.
 ii. ... $\text{Var}(3 - X)$

c) Determine the value of

$$P[4X - 3 \geq 2(X + 1)].$$

$$E(X) = 3.25, \quad E(X^2) = 12.65, \quad \text{Var}(X) = 2.0875, \quad E(3 - X) = -0.25, \quad \text{Var}(3 - X) = 2.0875, \quad P[4X - 3 \geq 2(X + 1)] = 0.7$$
Question 11 (***)

The cumulative distribution \(F(x) \), of a discrete random variable \(X \) is given by

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(x))</td>
<td>0.25</td>
<td>0.40</td>
<td>0.55</td>
<td>0.65</td>
<td>0.75</td>
<td>0.85</td>
<td>0.95</td>
<td>1</td>
</tr>
</tbody>
</table>

a) Find the value …

i. … \(E(X) \).

ii. … \(\text{Var}(X) \).

The discrete random variable \(Y \) is defined as \(Y = 5X - 3 \).

b) Determine the mean and variance of \(Y \).

\(E(Y) = 15 \), \(\text{Var}(Y) = 126 \)
Question (***)

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} \frac{1}{12} & x = 1, 2, 3, \ldots, 12 \\ 0 & \text{otherwise} \end{cases}$$

Determine $P(2 < X < 3X - 4 \leq 2X + 7)$.

\[
P(X + 2 < 3X - 4 \leq 2X + 7) = \frac{4}{3}
\]
Question (***+)

A sixth form class consists of 6 boys and 4 girls.

Three students are selected at random from this class and the variable X represents the number of girls selected.

Show that the probability distribution of X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P($X = x$)</td>
<td>$\frac{5}{30}$</td>
<td>$\frac{15}{30}$</td>
<td>$\frac{9}{30}$</td>
<td>$\frac{1}{30}$</td>
</tr>
</tbody>
</table>
Question 12 (***)

The cumulative distribution of a discrete random variable X is given by

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{2k+3}{20} & 1 \leq x < 2 \\ \frac{k+5}{10} & 4 \leq x < 5 \\ \frac{k+2}{4} & x \geq 5 \\ \end{cases}$$

where k is a positive constant.

a) Show clearly that $2k = 2$.

b) Find the value of ...

i. $\ldots E(X)$.

ii. $\ldots E(X^2)$.

c) Calculate $\text{Var}(20X - 2)$.

$$E(X) = 3.45, \quad E(X^2) = 14.05, \quad \text{Var}(20X - 2) = 859$$
Question 13 (*+)**

The probability distribution of a discrete random variable X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>0.05</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.25</td>
<td>0.2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

(a) Find the value of $E(X)$.

(b) Calculate $\text{Var}(X)$.

(c) Determine $P(\mu - \sigma \leq X \leq \mu + \sigma)$.

(d) Find the value of $E\left(4X^2 - 3.2\right)$.

\[E(X) = 3.3, \quad \text{Var}(X) = 2.41, \quad P(\mu - \sigma \leq X \leq \mu + \sigma) = 0.6, \quad E\left(4X^2 - 3.2\right) = 50 \]
Question 14 (***)

A box contains three blue discs and two red discs.

Three discs are selected at random from the box without replacement.

The variable X represents the number of blue discs selected.

a) Show that the probability distribution of X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>$P(X = x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{3}{10}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{6}{10}$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{10}$</td>
</tr>
</tbody>
</table>

b) Determine $E(X)$ and $\text{Var}(X)$.

$E(X) = \frac{9}{5} = 1.8$, $\text{Var}(X) = \frac{9}{25} = 0.36$
Question 15 (***)

A sixth form class consists of 6 boys and 4 girls.

Three students are selected at random from this class and the variable X represents the number of girls selected.

a) Show that the probability distribution of X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>$\frac{5}{30}$</td>
<td>$\frac{15}{30}$</td>
<td>$\frac{9}{30}$</td>
<td>$\frac{1}{30}$</td>
</tr>
</tbody>
</table>

b) Determine $E(X)$ and $\text{Var}(X)$.

\[
E(X) = \frac{6}{\cancel{30}} \cdot \frac{\cancel{30}}{\cancel{30}} = 1.2, \quad \text{Var}(X) = \frac{14}{25} = 0.56
\]
Question (***+)

The probability distribution of the discrete random variable \(X \) is given by

<table>
<thead>
<tr>
<th>(x)</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X = x))</td>
<td>0.4 (-a)</td>
<td>2(a)</td>
<td>0.6 (-a)</td>
</tr>
</tbody>
</table>

where \(a \) is a constant.

a) State the range of the possible values of \(a \).

Two independent observations of \(X \), denoted by \(X_1 \) and \(X_2 \) are considered.

a) Determine, in terms of \(a \), a simplified expression for \(P(X_1 + X_2 = 6) \).

\[
P(X_1 + X_2 = 6) = 6a^2 - 2a + 0.48
\]
Question 16 (***)

Two standard fair cubical dice, numbered 1 to 6 are such rolled and the random variable X represents the sum of the scores of the two dice.

Determine the value of $\text{Var}(X)$.

\[\text{Var}(X) = \frac{35}{6} \]
Question 17 (***)

The discrete random variable X has the following probability distribution

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{6}$</td>
</tr>
</tbody>
</table>

a) Determine $E(X)$ and $\text{Var}(X)$.

A game in a fun fair consists of throwing 5 darts on a small target.

If a dart lands on the central portion of the target the dart scores 3 points.

If a dart lands on the outer portion of the target the dart scores 2 points, otherwise the dart scores no points.

To win a prize, 10 or more points must be scored with 5 darts.

Paul has scored 6 points with his first 3 darts.

The likelihood of Paul scoring 0, 2 or 3 points is given by the probability distribution of part (a).

b) Find the probability that Paul will win a prize after he throws his last 2 darts.
Question 18 (***)

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases}
 k(2-x) & x = 0, 1, 2 \\
 \frac{1}{4} & x = 3 \\
 0 & \text{otherwise}
\end{cases}$$

a) Show that $k = \frac{1}{4}$.

b) Find the value of $E(X)$ and $E(X^2)$.

c) Determine $\text{Var}(3 - X)$.

Two independent observations of X are made, denoted by X_1 and X_2.

d) Find the probability distribution of Y, where $Y = X_1 + X_2$.

e) Calculate $P(1.5 \leq Y \leq 3.5)$.
Question 19 (***)

The discrete random variable \(X \) has the following probability distribution:

\[
\begin{array}{c|c|c|c}
 x & 0 & 1 & 3 \\
 P(X = x) & \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\
\end{array}
\]

a) Determine \(E(X) \) and \(\text{Var}(X) \).

Two independent observations of \(X \) are made, denoted by \(X_1 \) and \(X_2 \).

b) Find the probability distribution of \(X_1 + X_2 \).

c) Calculate \(P(X_1 > X_2) \).

\[
P(X_1 + X_2 = r) = \begin{cases}
\frac{1}{36} & r = 0 \\
\frac{1}{9} & r = 1, 2 \\
\frac{1}{4} & r = 3 \\
\frac{1}{3} & r = 4 \\
0 & \text{otherwise}
\end{cases}
\]

\[
P(X_1 > X_2) = \frac{11}{36}
\]
The probability distribution of a discrete random variable X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>$0.3 - k$</td>
<td>$2k$</td>
<td>$0.7 - k$</td>
</tr>
</tbody>
</table>

a) Find the range of possible values of the constant k.

b) Determine $E(X)$.

c) Given that $\text{Var}(X) = 0.72$, find the value of k.

X_1 and X_2 are two independent observations of X.

d) Find $P(X_1 = X_2)$.
Question 21 (****)

The probability distribution of the discrete random variable X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>$0.4 - a$</td>
<td>$2a$</td>
<td>$0.6 - a$</td>
</tr>
</tbody>
</table>

where a is a constant.

b) State the range of the possible values of a.

c) Show that $E(X)$ is independent of a.

d) Given that $\text{Var}(X) = 0.56$ show that $a = 0.2$.

Two independent observations of X, denoted by X_1 and X_2 are considered.

e) Calculate $P(X_1 + X_2 = 6)$.

\[0 \leq a \leq 0.4, \quad P(X_1 + X_2 = 6) = 0.32 \]
Question 22 (****)

A biased spinner can show whole numbers from 1 to 8.

The probability of showing an 8 is 0.05 and the probability of showing a 7 is 0.11.

The probabilities of showing any of the other six whole numbers are all equal to one another.

Players in a gambling parlour pay £5 for a single spin.

A score of 8 wins the player £50, a score of 7 wins the player £20, otherwise the player wins no money.

In a typical day, a gambling addict has 150 spins on this spinner.

Find the expected loss of the gambling addict in a typical day.

\[
\text{Expected loss} = (150 \times £0) - (150 \times £5) + (150 \times £20) - (150 \times £50) = £45
\]
Question 23 \((****)\)

The probability distribution of a discrete random variable \(X\) is given by

\[
P(X = x) = \begin{cases}
\frac{1}{20} & x = 1, 2, 3, 4, 5 \\
\frac{1}{4} & x = 6 \\
0 & \text{otherwise}
\end{cases}
\]

a) Find \(P(X > 4)\).

b) Calculate \(E\left(\frac{1}{X}\right)\).

c) Show that \(\text{Var}\left(\frac{1}{X}\right) = \frac{173}{4800}\).

The discrete random variable \(Y\) is defined as \(Y = \frac{X + 3}{X}\).

d) Determine the value of \(E(Y)\) and the value of \(\text{Var}(Y)\).

\[
\begin{align*}
P(X > 4) &= 0.5, \\
E\left(\frac{1}{X}\right) &= \frac{7}{24}, \\
E(Y) &= \frac{15}{8}, \\
\text{Var}(Y) &= \frac{519}{1600}
\end{align*}
\]
Question 24 (***)

A sixth form class consists of 3 boys and 7 girls.

Three students are selected at random from this class and the variable \(X \) represents the number of boys selected.

Show clearly that \(E(X) = 0.9 \).
Question 25 (****)

The probability distribution of a discrete random variable X is given by

\[P(X = x) = \begin{cases}
\frac{1}{10} & x = 1, 2, 3, \ldots, 10 \\
0 & \text{otherwise}
\end{cases} \]

(a) Find the value of $E(X^2)$.

(b) Determine $P(X + 2 < 3X - 4 < X + 7)$.

It is further given that $E(kX + 5) = 6.1$, where k is a constant.

c) Find the value of $\text{Var}(kX + 5)$

$$E(X^2) = 38.5, \quad P(X + 2 < 3X - 4 < X + 7) = \frac{1}{5}, \quad \text{Var}(kX + 5) = 0.33$$
The probability distribution of a discrete random variable X is given by

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x)$</td>
<td>k</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>$0.4 - k$</td>
</tr>
</tbody>
</table>

where k is a positive constant.

d) Determine the range of values of $E(X)$.

e) Given that $\text{Var}(X) = 1.36$, find the value of k.

\[
2.4 \leq E(X) \leq 4, \quad k = 0.05
\]
Question 27 (***)

Luke has 6 chocolates of which 2 have a hazelnut at their centre.

Luke eats his chocolates one after the other.

The random variable X represents the number of chocolates Luke eats, up and including the first chocolate with a hazelnut at its centre.

Show, with detailed workings, that $\text{Var}(X) = \frac{14}{9}$
Question 28 (*****)

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases} \frac{1}{7} & x = 1, 2, 3, \ldots, 7 \\ 0 & \text{otherwise} \end{cases}$$

The probability distribution of another discrete random variable Y is given by

$$P(Y = y) = \begin{cases} \frac{1}{3} & x = 2, 3, 6 \\ 0 & \text{otherwise} \end{cases}$$

Two observations of X are made, denoted by X_1 and X_2, and one observation of Y, denoted by Y_1 are considered.

Assuming these three observations are independent, calculate $P(X_1 + X_2 \geq 9 + Y_1)$.

$$P(X_1 + X_2 \geq 9 + Y_1) = \frac{1}{7}$$
Question 29 \((****) \)

A biased six sided die has the following probability distribution

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X = x))</td>
<td>(\frac{1}{10})</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>

where the random variable \(X \) represents the number shown on its uppermost face when it comes to rest after it is rolled.

The die is rolled twice and the two independent observations of \(X \), \(X_1 \) and \(X_2 \), produce the score \(Y \) defined as

\[
Y = \begin{cases}
6 & \text{if } X_1 = 6 \\
X_1 + X_2 & \text{if } X_1 \neq 6
\end{cases}
\]

a) Find the value of \(P(Y = 6) \).

b) Determine the probability distribution of \(Y \) and hence calculate the \(E(Y) \).

c) Find the value of \(P(Y < 7 | Y > 4) \).

\[P(Y = 6) = 0.55 \quad E(Y) = 6.75 \quad P(Y < 7 | Y > 4) = \frac{59}{94} \]
Question 30 (*****)

The probability distribution of a discrete random variable X is given by

$$P(X = x) = \begin{cases}
 k & x = 1 \\
 \frac{1}{2} P(X = x-1) & x = 2, 3, 4 \\
 0 & \text{otherwise}
\end{cases}$$

where k is a positive constant.

Three independent observations of X are made, denoted by X_1, X_2 and X_3, and the variable Y is defined as $Y = X_1 + X_2 + X_3$.

If Y is an even number, determine the probability that Y is greater than 9.

Answer: $\frac{1}{65}$
Question 31 (*****)

The probability distribution of a discrete random variable X is given by

$$P(X = r + 1) = \begin{cases} \frac{2}{3}P(X = r) & r = 1, 2, 3, 4, 5, \ldots \\ 0 & \text{otherwise} \end{cases}$$

Determine $P(2 \leq X \leq 4)$.

\[P(2 \leq X \leq 4) = \frac{38}{31} \]