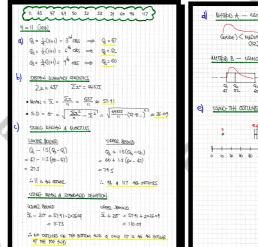
DATA ANALYS. A

DISCRETE ATA

Question 1

The following set of data is given


11, 45, 47, 49, 50, 52, 53, 59, 60, 94, 117.

For this set of data, ...

- **a**) ... determine the value of the median and the quartiles.
- **b**) ... calculate the mean and the standard deviation.
- c) ... determine with justification whether there are any outliers.
- **d**) ... state with justification if there is any type of skew.
- e) ... draw a suitably labelled box plot.

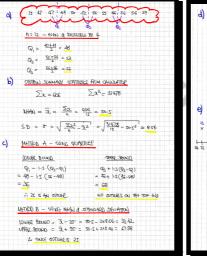
 $Q_1 = 47$, $Q_2 = 52$, $Q_3 = 60$, $\overline{x} = 57.91$, $\sigma \approx 26.09$,

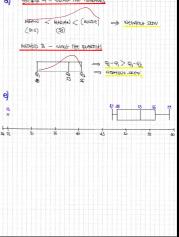
(11, 94) and 117 are outliers depending on method, positive skew

							_						
레	-	ll ett	r Qa	4 -	- 12	in)6	- 10	HRAG	23				
		G,	900	><		IAN) 2)	<	MH (57-	W 91)		⇒	765	MUE SUGEN
	Na	enişa) B		neu	10- G	RUNG	шuy					
		94		y yo	_	2.		1 1	⇒ 0	-	- P) ATUS		3-92 N
e)	103						8.7%	NP	UIA	, M	HDI (An	रे व	QUARTLE
4						47 2							17
		×				+ +	1				ł		X
	+	1	20	30	40	4 90	1 60	70	+ 80	40	100	1ko	120

11+

Question 2


The following set of data is given


25, 47, 47, 49, 50, 52, 54, 55, 56, 56, 56, 59.

For this set of data, ...

- a) ... determine the value of the median and the quartiles.
- **b)** ... calculate the mean and the standard deviation.
- c) ... determine with justification whether there are any outliers.
- **d**) ... state with justification if there is any type of skew.
- e) ... draw a suitably labelled box plot.
 - $Q_1 = 48$, $Q_2 = 53$, $Q_3 = 56$, $\overline{x} = 50.5$, $\sigma \approx 8.54$, 25 is an outlier

negative skew

Question 3

The following set of data is given

78, 79, 79, 79, 80, 82, 82, 85, 86, 88, 89, 92, 97.

For this set of data, ...

- a) ... determine the value of the median and the quartiles.
- **b)** ... calculate the mean and the standard deviation.
- c) ... determine with justification whether there are any outliers.
- d) ... state with justification if there is any type of skew.
- e) ... draw a suitably labelled box plot.

 $Q_1 = 79$, $Q_2 = 82$, $Q_3 = 89$, $\overline{x} = 84.31$, $\sigma \approx 5.635$,

no outliers or 97 is an outlier dependencing on method, positive skew

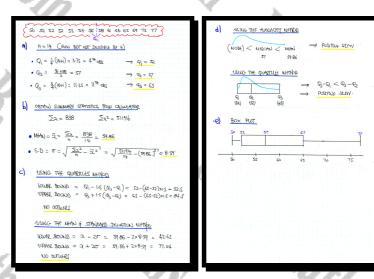
78, 74, 74, 79, 80, 82, 82, 85, 86, 88 89, 92, 97 AT ZUNCE 2x2+ 92814 $\bar{a} = \frac{S_{2}}{n} = \frac{1096}{13} \approx \frac{84.31}{13}$ • $S_{-} = \delta^{-} = \sqrt{\frac{S_{+} \chi^{2}}{N} - \chi^{2}} = \sqrt{\frac{42814}{13} - (843...)^{2}} = \frac{5.635}{5.635}$ METTION A - NAING QUARTILES 40 = (47-14) 2-1-17 - (10-0) 2-1-19 = another 400 101 = (M-M)21 + 18 = (10-69)21 + 10 = aua 23990 ATAC ATT AN 204UTED ON LIETADD B - USING WHAN & STANDARD JOURATION lowel 3m2ND 二 元 - 25 二 日4-31 - 2×5455 二 73.04 UANGL 8m2ND = 元 + 25 二 日4-31 + 2×5.635 二 95.58 IN TOTURE RAING THIS METHON

USING THE WARTLES METHOD $q < q_1 - q_2$ (97 is the OSTICE (17 IS NOT AN OUTLE

Mana

Question 4

I.C.B.


The following set of data is given

50, 52, 52, 52, 53, 54, 56, 58, 61, 64, 65, 69, 75, 77.

For this set of data, ...

- a) ... determine the value of the median and the quartiles.
- **b)** ... calculate the mean and the standard deviation.
- c) ... determine with justification whether there are any outliers.
- d) ... state with justification if there is any type of skew.
- e) ... draw a suitably labelled box plot.

 $[], Q_1 = 52], Q_2 = 57], Q_3 = 65], \overline{x} = 59.86], \sigma \approx 8.59], \text{ no outliers},$ positive skew

nanasm

i G.B.

Mada

Question 5

The following set of data is given

7, 8, 10, 12, 16, 19, 19, 20, 23, 24, 30.

For this set of data, ...

- **a**) ... determine the value of the median and the quartiles.
- **b**) ... calculate the mean and the standard deviation.
- c) ... determine with justification whether there are any outliers.
- d) ... state with justification if there is any type of skew.

 $Q_1 = 10$, $Q_2 = 19$, $Q_3 = 23$, $\overline{x} \approx 17.09$, $\sigma \approx 6.92$, no outliers

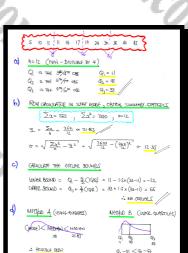
negative skew

1+

121	<u> </u>
7,8,0,12,16,19,20,23,24,30	વા
a n=11 (ODD NOWBER, NH RULE APPLICE)	
$Q_1 = \frac{1}{2} Q_1 = 3^{ab} Q_2 = 0$	
$(\mathfrak{d}_{2} = \downarrow^{(1)}(\mathfrak{l}) = 6^{\mathfrak{m}} \mathfrak{a}_{2} \implies \mathfrak{q}_{2} = \mathfrak{l}_{2}$ $\mathfrak{g}_{3} = \frac{3}{4}(\mathfrak{l},\mathfrak{l}) = 9^{\mathfrak{m}} \mathfrak{a}_{2} \implies \mathfrak{q}_{3} = \mathfrak{g}_{3}$	1
b) CONTRACT AND A CATANTA	
$\sum_{n=1}^{\infty} 1000 \sum_{n=1}^{\infty} 1000$	
• $W_{\text{MW}} = \frac{\sum_{n}}{n} \approx \frac{188}{11} \approx \frac{17.09}{11}$	
• S.D = $O^{-} = \sqrt{\frac{\Sigma_{2}^{2}}{n} - \tilde{\Sigma}^{2}} = \sqrt{\frac{3N_{0}}{n} - (7.02)^{2}} \approx 6.12$	ja l
c) reine the donation well by	
$\begin{split} & \log \left(\frac{1}{2} \log \left(\frac{1}{2}$	
240700 001	
CERTIMN MOTTALING CLARATER & MAYIN THE FORIES	
$1000(2, Brown) = \overline{\lambda} - 20^{-} = 17.09 - 2x6.92 = 3.25$ $1709(2, Brown) = 52 + 20^{-} = 17.09 + 2x6.92 - 30.93$	
NO OUTLINES	

USING THE AVERAGES METHO MATCH < MODIFIC < NODE ((7.0) ((4) =	NEGATIVE SEAW
	$p_i > q_s - q_s$ we serve

Question 6


The following set of data is given

5, 10, 11, 11, 14, 17, 19, 24, 30, 36, 40, 45.

For this set of data, ...

- **a**) ... determine the value of the median and the quartiles.
- **b**) ... calculate the mean and the standard deviation.
- c) ... determine with justification whether there are any outliers.
- d) ... state with justification if there is any type of skew.

$[], [Q_1=11], [Q_2=18], [Q_3=33], [\overline{x} \approx 21.83], [\sigma \approx 12.55], [no outliers],$

positive skew

mana.

Question 7

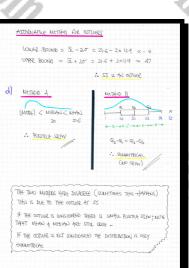
The following set of data shows the number of posts made, in a given day, in a social media site by a group of individuals.

1, 12, 13, 14, 16, 17, 20, 21, 23, 24, 26, 39, 55.

For this set of data, ...

a) ... determine the value of the median and the quartiles.

b) ... calculate the mean and the standard deviation.


c) ... determine with justification whether there are any outliers.

d) ... state with justification if there is any type of skew.

 $[(Q_1, Q_2, Q_3) = (14, 20, 26) \text{ or } (Q_1, Q_2, Q_3) = (13.5, 20, 25)], \quad \overline{x} \approx 21.6],$ $[\sigma \approx 12.9], \quad 55 \text{ is an outlier}, \quad \text{no skew or positive skew depending on the method}$

MADIAN & QUARTILES CONTIN DOLE -APPLIES $\begin{array}{l} Q_1 = \frac{1}{4} \left(13 \tau 1 \right) = 3 \cdot 5 \quad 1. \in 3^{(6)} 4^{10} \text{ or } 4^{10} \\ Q_2 = \frac{1}{2} \left(13 \tau 1 \right) = 7^{10} \quad \text{osc} \end{array}$ Q3 = ≩(13+1) = 10-5, 15 10[™]/11[™] <u>@</u> 11[™] obs $P_{1} = 13.5$, $Q_{2} = 20$, $Q_{3} = 25$ Q1=4, Q=20, Q=24 6) USING COLLUCATOR IN STAT WODE WE OBTITUD $\sum_{n=281} \sum_{x=8223}$ • 2 = 52 = 281 ~ 21.6 • $\sigma = \sqrt{\frac{\Sigma_{32}^2}{n} - \overline{\chi}^2} = \sqrt{\frac{8213}{15} - \left(\frac{281}{15}\right)^2} \approx 12.9$ C) USING THE MOST COMMON CRITERION • LOWER BOOKD = $Q_1 - \frac{3}{2}(1QR) = 14 - \frac{3}{2}(26-14) = -4$ · UNIFL BOOND = 93 + 3-(92) = 26+3-(26-14) = 44

* 55 IS A ORILLER

Question 8

The following set of data is given

21, 50, 51, 53, 54, 57, 58, 60, 62, 63, 64, 68, 82, 97.

For this set of data, ...

- a) ... determine the value of the median and the quartiles.
- **b)** ... calculate the mean and the standard deviation.
- c) ... determine with justification whether there are any outliers.
- **d**) ... state with justification if there is any type of skew.
 - $Q_1 = 53$, $Q_2 = 59$, $Q_3 = 64$, $\overline{x} = 60$, $\sigma \approx 16.36$, 21 and 97 are outliers,

positive/negative skew

= (62-54) ×2

TWF Skhu

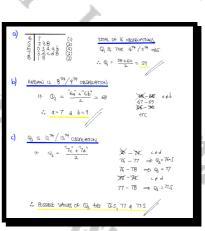
2

ha

Question 9

The % marks, rounded to the nearest integer, of a recent Mathematics test taken by 16 students, were summarised in an ordered stem and leaf diagram.

a) Determine the lower quartile of the data.


b) Given the median is 68 and $a \neq b$, find the value of a and the value of b.

 $Q_1 = 59$

a = 7, b = 9

It is further given that $c \neq d$.

c) Find the possible values of the upper quartile.

76.5, 77, 77.5

Question 10

The concentration of lactic acid, in appropriate units, after a period of intense exercise was measured in the blood of 12 marathon runners.

	1			1					F 6.			100
Athlete	А	В	С	D	Е	F	G	H	I	J	Κ	L
Lactic Acid Concentration	180	172	110	175	256	140	241	450	205	375	402	195
									The sector of			

a) Determine the value of the median and the quartiles.

b) Find the mean and the standard deviation of the data.

The skewness of data can be determined by the formula

$\frac{3(\text{mean} - \text{median})}{\text{standard deviation}}$

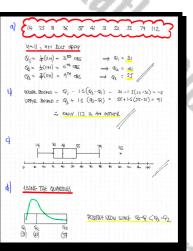
c) Evaluate this expression for this data and hence state its skew.

d) Draw a suitably labelled box plot for this data. You may assume that there are no outliers in this data.

> $\overline{x} = 241.75$, $\sigma \approx 104.64$, $Q_1 = 173.5$, $Q_2 = 200$, $Q_3 = 315.5$, 1.20 positive skew

∑22= 832705 $\frac{5x}{12} = \frac{2901}{12} = 241.75$

Question 11

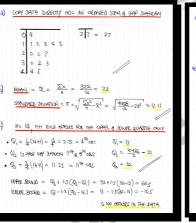

The number of phone text messages send by 11 different students is given below.

14, 25, 31, 36, 37, 41, 51, 52, 55, 79, 112.

- a) Find the lower quartile, the median and the upper quartile of the data.
- **b**) Show clearly that there is only one outlier in the data.
- c) Draw a suitably labelled box plot for this data, clearly indicating any outliers.

d) Determine with justification the skewness of the data.

 $Q_1 = 3$, $Q_2 = 41$, $Q_3 = 55$, 112 is the only outlier, positive skew


Question 12

The number of bottles of red wine sold by a local supermarket over a two week period is shown below.

22, 14, 11, 33, 32, 45, 4, 12, 13, 20, 27, 44, 30, 15.

- a) Display the above data in an ordered stem and leaf diagram.
- **b**) Calculate the mean and the standard deviation of the data.
- c) Find the median and the quartiles of the data and use them to determine if there are any outliers.
- d) Draw a suitably labelled box plot for this data.
- e) Determine with justification the skewness of the data.

 $\overline{x} = 23$, $\sigma = 12.11$, $Q_1 = 13$, $Q_2 = 21$, $Q_3 = 33$, no outliers, positive skew

Question 13

A company decides to give their 23 employees a skills test in order to decide if any of these employees need to be retrained.

The maximum possible score in this test is 50 and the results are summarised in an ordered stem and leaf diagram.

 $\overline{0} | 5 \\
1 | 9,9 \\
2 | 1,6,8 \\
3 | 3,4,5,7 \\
4 | 2,3,4,4,8,9,9 \\
5 | 0,0,0,0,0,0 \\
 where \overline{2} | 9 = 29.$

- a) Find the median score of the test.
- **b**) Determine the interquartile range of the scores.

The company decides to retrain any employee whose score is less than the **lower** quartile minus the interquartile range.

- c) Show clearly that only one employee will undergo retraining.
- **d**) Draw a suitably labelled box plot for this data, clearly indicating any outliers, as found in part (c).
- e) Determine with justification the skewness of the scores.

 $Q_2 = 43$, IQR = 22, 05 is the only outlier, negative skew

۹)	booking at the sithin a least Diarcom
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6)	FIND THE QUARTLES
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	\mathcal{E}_{\bullet} (QR = $\Phi_{J} - \Phi_{I} = 50 - 28 = 22$
c)	10000 BOOND = Q - 1912 = 28-22 = 6
	Only one surroyte with a store of s
4)	
)	$\begin{array}{c} \text{LOOULUGAT THE BOX PLOT}\\ \hline Q_{2}-Q_{2}$

Question 14

The ages of the residents of Arnold Street are denoted by x the ages of the residents of Benedict Street are denoted by y.

These are summarized in the following back to back stem and leaf diagram.

where $\overline{2}|_{3}|_{9} = 32$ in Arnold Street and 39 in Benedict Street.

a) Find separately for the residents of Arnold Street and Benedict Street, .

i. ... the mode.

ii. ... the lower quartile, the median and the upper quartile.

iii. ... the mean and the standard deviation.

You may assume $\sum x = 866$, $\sum x^2 = 31514$, $\sum y = 1516$, $\sum y^2 = 86880$.

[continues overleaf]

[continued from overleaf]

F.C.B.

A coefficient of skewness is defined as

mean – mode standard deviation

b) Evaluate this coefficient for the ages in each street.

c) Compare the distribution of the ages between the two streets.

North Ac		
mode = 40		mode = 54
$Q_1 = 29$	2	$Q_1 = 42.5$
$Q_2 = 34$	4	$Q_2 = 54$
$Q_3 = 40$,	$Q_3 = 64$
$\overline{x} \approx 32.07$		$\overline{y} \approx 54.14$
$\sigma_x \approx 11.77$		$\sigma_y \approx 13.09$
skew ≈ –0.67		skew ≈ 0.01
		•

0

Y.C.R.

×	ARNOVO ST	BANHDICT ST	ų
1. 4. 3. 5. 7. 9 17	5 (2 5 5 3 3 9 8 6 5 5 4 3 2 2 2 1 6 4 1 0 0 0 0 9 8 6 4 1 0 0 0 0 9 5	2 5 6 7 8 6 1 2 2 3 4 8 6 1 2 2 3 4 8 6 1 2 2 3 4 8 7 2 6 9	(i) $\begin{cases} 13 = 136 = 362 \\ (3) \\ (6) \\ (9) \\ (7) \\ (3) \\ (3) \end{cases}$
a)	MODE = 40		28 HEDICT STREET
	$\begin{split} & Q_1 = \frac{1}{2}(27H) = 7^{TH}OBS \\ & \underline{Q_1} = \frac{1}{2}(27H) = 10^{TH}OBS \\ & Q_2 = \frac{1}{2}(27H) = 10^{TH}OBS \\ & \underline{Q_2} = 34 \end{split}$	Q ₁ = Q2 =	- 7 ⁷⁴ /6 ⁷⁴ 083 - 4225 - 14 ⁷⁴ /15 ⁷⁴ 085 - 54
2	$\begin{split} & Q_3 = \frac{3}{4} (7741) = 21^{47} \text{ or } \\ & Q_3 = 40 \\ & \overline{\Sigma} = -\frac{5}{37} = \frac{966}{37} = \frac{32 \cdot 07}{7} \\ & \overline{\zeta} = \sqrt{\frac{53^2}{9} - \overline{\Omega}^2} = \frac{10 \cdot 07}{7} \end{split}$	Q = J= Z	$\frac{21^{37}/22^{10}}{24} = \frac{24^{37}}{22} = \frac{24^{37}}{24} = \frac{24^{37}}{24} = \frac{11}{24}$

- For Benefict streff = $\frac{54\cdot14-54}{13\cdot09} = 0.01$
- · MEDIAN & WAN IS AFRICAL IN BEENEDRET STREET, INDICATING

1+

- OLDER THERE WING THEE BUEFTUT STEET ASES ARE SUGHTLY MORE WALKED, AR
- INDICATED BY THE STANDARD DEVIATION
- JAMA NA TOROGO STREET IS USERMOUPLY SCANED AS INDIATED BY SART (b), WITHLE DATA NO BANEAUT STREET IS PARTIONLY SYMMETEURIC (SUBAT DOSTIVE SLEW) AS INDIATED BY (b).

Ĉ.ŀ.

02

Question 15

The mean and standard deviation of 20 observations $x_1, x_2, x_3, ..., x_{20}$ are

$$\bar{x} = 18.5$$
 and $\sigma_x = 6.5$.

The mean and standard deviation of 12 observations $y_1, y_2, y_3, ..., y_{12}$ are

 $\overline{y} = 25$ and $\sigma_y = 7.5$.

Determine the mean and the standard deviation of all 32 observations.

mean ≈ 20.94 , standard deviation ≈ 7.58

V	Z
PLOCEED AS ROWOWS	
● â= 18·S	● y= 25
$\frac{\sum x}{n} = 18.5$	$\frac{\sum y}{n} = 25$
$\frac{2x}{20} = 18.5$	$\frac{\sum_{y}}{ 2_{x} } = 25$
∑a = 370	Σy = 300
€_2 = 6-S	• 0j = 7.5
$\sqrt{\frac{\sum_{n}^{2}}{n} - \overline{\alpha}^{2}} = 6.5$	$\sqrt{\frac{\leq q^2}{\eta} - \overline{q}^2} = 7.5$
$\sqrt{\frac{\sum_{x}^{2}}{2o}} - 18.5^{2} = 6.5$	$\sqrt{\frac{\Sigma u^2}{12}} - 25^2 = 7.5$
$\frac{5x^2}{20} - 342.25 = 42.25$	$\frac{2m^2}{12} - 625 = 56.25$
$\frac{\sum_{n}^{2}}{2n} = -384\sqrt{2}$	$\frac{\sum_{ij}^{2}}{12} = 681.27$
$\sum x^2 = 7690$	≥g² = 8125
COMBINING THE DATA INTO 32	OBSERVATIONS
• $M(\eta_{N}) = \frac{\sum_{x, y} \sum_{y \in V} \frac{1}{20} + 12}{20 + 12} = \frac{370 + 1}{3}$	
• $\sigma_{(32 \text{ ens})}^{-} = \sqrt{\frac{2\chi_{1}^{2} \chi_{0}^{2}}{32}} - (20.94)$	$\left[\right]^{2} = \sqrt{\frac{7630+8675}{32} - (2034)^{2}}$
= 7.57643445 ~	92.5
	-

è

6

Question 16

The mean and standard deviation of the test marks of 40 pupils in a Mathematics class are 65 and 18, respectively.

The mean and standard deviation of the test marks of the 24 boys of the class are 72 and 20, respectively.

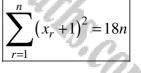
Find the mean and standard deviation of the test marks of the 16 girls of the class.

 $\begin{array}{c} \hline \text{(DOEN)}(z, AT THY: INFORMATION) COUCH FROM THY: CURLY: CARSS$ $<math display="block">\begin{array}{c} \overline{a} = c.5 & \sigma = 10 \\ \hline S_{4} = c.5 & \sqrt{\frac{5}{2}N^{2}} = \frac{2}{3} = 0 \\ \hline S_{4} = 2.5 & \sqrt{\frac{5}{2}N^{2}} = \frac{2}{3} = 0 \\ \hline S_{4} = 2.5 & \sqrt{\frac{5}{2}N^{2}} = -\frac{10}{3} \\ \hline S_{4} = 2.5 & \sqrt{\frac{5}{2}N^{2}} = -\frac{10}{3} \\ \hline S_{4} = 7.2 & \sqrt{\frac{5}{2}N^{2}} = -\frac{10}{3} \\ \hline S_{4} = 7.2 & \sqrt{\frac{5}{2}N^{2}} = -\frac{10}{3} \\ \hline S_{4} = 7.2 & \sqrt{\frac{5}{2}N^{2}} = -\frac{10}{3} \\ \hline S_{4} = 7.2 & \sqrt{\frac{5}{2}N^{2}} = -\frac{10}{3} \\ \hline S_{4} = -7.2 & \sqrt{\frac{5}{2}N^{2}} = -7.2 \\ \hline S_{4} = -7.2 & \sqrt{$

mean = 54.5, standard deviation ≈ 5.12

Question 17

F.G.B.


I.C.B.

It is given that for a sample of data $x_1, x_2, x_3, x_4, x_5, \dots x_n$ the mean \overline{x} and standard deviation σ are

 $\sum (x_r+1)^2.$

Determine, in terms of n, the value of

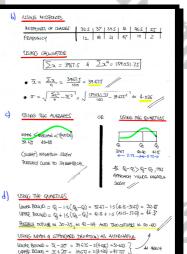
2

it= in ∑	$\mathfrak{A}_{+} = 2$ $\delta^{-} = \sqrt{\frac{1}{H} \sum_{(k_{1})}^{k_{1}} (\mathfrak{A}_{+})^{2}} + \frac{1}{H^{2}} (\sum_{(k_{1})}^{k_{2}} \mathfrak{A}_{+})^{2}} = 3$
Placero -4s fo	ucius a Dependo subscepts jurrescepts in siong
• th Za = 2	• $\sqrt{\frac{1}{n}\Sigma x^2 - \frac{1}{n^2}(\Sigma x)^2} = 3$
$\sum x = 2r$	$\frac{1}{4}\Sigma t^2 = \frac{1}{4L}(\Sigma t)^2 = 9$
	$\frac{1}{n} \sum t^2 - \left(\frac{\sum x}{n}\right)^2 = 9$
	$\frac{1}{n} \sum_{i=1}^{n} - \overline{a}^{2} = 9$
	$\frac{1}{4}\Sigma a^{2} - a^{2} = q$
	$\frac{1}{h}\Sigma x^2 = 13$
	∑a² = 13n
vife we now th	NE.
$\sum_{r=1}^{n} (\alpha_r + 1)^2 =$	$\sum_{n=1}^{\infty} (\alpha_n^2 + 2\alpha_n + 1)$
-	$\sum_{r=1}^{n} (a_r^2) + \sum_{r=1}^{n} (2x_r) + \sum_{r=1}^{n} (1)$
	$\sum_{i=1}^{n} Q(i) + 2\sum_{i=1}^{n} \alpha_i + \sum_{i=1}^{n} 1$
	13n + 2×2n + n
	(Bn

i C.B.

CONTINUE DATA BUILDER DATA BUIL CLASTICATING COM LANGER THREE HEREITSCOM LANGER THREE COM LANGER THREE HEREITSCOM LANGER

Question 1


The distances achieved by a group of javelin throwers, rounded to the nearest metre, is summarized in the table below.

Distance (nearest metre)	Frequency
30 – 35	12
36 - 38	18
39 - 40	21
41	37
42 - 49	10
50 - 60	2
The second se	

- a) Estimate by linear interpolation, the value of the median and the quartiles.
- **b**) Estimate the mean and the standard deviation of these data.
- c) Determine with justification the skewness of the data.
- d) Investigate the possibility of any outliers

 $Q_1 \approx 37.67$, $Q_2 \approx 40.40$, $Q_3 \approx 41.15$, $\overline{x} = 39.675$, $\sigma \approx 4.026$ negative skew

85 + 20 × 2 Q3 ~ 40.5 + 2 × 1 ~ 41.15

KR

Question 2

The number of hours worked in a given week by a group of 64 individuals is summarized in the table below.

у
1
/
Y

- a) Estimate, by linear interpolation, the value of the median.
- **b**) Estimate the mean and the standard deviation of these data.
- c) Establish, with justification, the skewness of the data.
- **d**) Determine the possibility whether the data contain any outliers.

 $Q_2 \approx 24.4$, $\overline{x} \approx 23.88$, $\sigma \approx 9.54$, negative skew

- $\frac{1}{255} = \frac{1}{255}$ $Q_3 \approx 20.5 + \frac{11}{14} \times 5 \approx \frac{24.4}{254}$ $\frac{(5506 4.578057cal. Crowlards)}{Z_{2.6} = 15285}$ $\frac{1}{252} = \frac{1}{2231.75} = \frac{1}{16} + \frac{64}{16}$
- MITHIN < MTFDIAN < (MODE) = MTEATURE SCU
- $\begin{array}{l} (250.5 & 1.440.4 \pm 2.570\text{-10.140}, 1.27, 1.470, 0.5, 4.6 + 0.4450.26 \\ (*80.748)^2, 23.9 23.41.54 \pm 3.480, (*0.50.864, 670, 0.41, 1.41$

Question 3

The weights of a random sample of a variety of apples, in grams, is summarised in the table below.

Weight (grams)	Frequency
$120 \le w < 140$	6
$140 \le w < 150$	16
$150 \le w < 160$	30
$160 \le w < 170$	36
$170 \le w < 180$	30
$180 \le w < 200$	0
$200 \le w < 220$	1

a) Estimate the mean and the standard deviation of these weights.

b) Estimate the median and the quartiles of these weights.

 $\overline{x} \approx 161$, $\sigma \approx 13$, $Q_1 \approx 152.6 - 152.7$, $Q_2 \approx 162.1 - 162.2$, $Q_3 \approx 170.4 - 170.7$

۵)	WEREHT (REALLS) MIDPOINTIS FREEDUDJOY	$Q_1 = \frac{1}{4}(119+1) = 30^{14} \circ 280$, with ut us in
	200 - 4 ∨ - 2 < 400 - 300 - 56 - 56 - 56 - 56 - 56 - 56 - 56 -	20
	(Ini) I ou oc set set set and a multiple	$\hat{\varphi}_{1} \simeq 120 + \frac{9}{30} \times 10 \simeq \frac{152.7}{7}$
	$\boxed{\sum_{x = 1} 1 _{SO}} \text{if } \sum_{x' = 3 _{SO} _{SO}}$ $\bullet \text{ With } u = \widehat{u} = \frac{\sum_{x}}{n} = \frac{ 1 _{SO}}{115} = 160 \cdot 124 \dots \approx 161$	$\mathcal{R} = \frac{4}{3} (119+1) = (10^{10} \text{ m} \text{ cm}_{2}) \text{ m} $
	• 119 • $S_{n}D = \sigma = \sqrt{\frac{S_{n}^{2}}{\eta} - \overline{x}^{2}} = \sqrt{\frac{3.101500}{110} - (\frac{1}{10}0.014)} \approx 12.8485}$	
ь)	torfluct 119 is a chefe number, we only use the not but for the quivernes, as it produces more numbers	$Q_3 \simeq 10 + \frac{2}{35} \times 10^{\circ} \simeq 170.7$
	• Q ₂ = ±(19(+1)) < 60 ²⁴ 085, with 41 U+2 N 160≤ W < 170 36	
	$Q_2 \approx 160 + \frac{\theta}{36} \times 10 \approx \frac{162.2}{26}$	

061 > W \$ 021

1705 w < 180

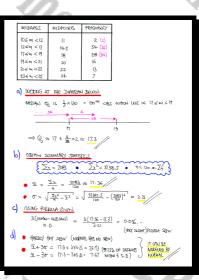
Question 4

The mileages of 120 journeys covered by a minicab driver over a monthly period are summarized in the table below.

Mileages	Frequency
$10 \le m < 12$	2
$12 \leq m < 17$	54
$17 \le m < 19$	28
$19 \leq m < 21$	16
$21 \leq m < 23$	13
$23 \leq m < 25$	7

a) Estimate by linear interpolation, the value of the median.

b) Estimate the mean and the standard deviation of these data.


A skewness coefficient can be determined by

 $\frac{3(\text{mean} - \text{median})}{\text{standard deviation}}.$

c) Evaluate this coefficient for this data and hence state its skew.

d) Determine whether the data could be modelled by a Normal distribution.

 $[], [Q_2 \approx 17.3], [\overline{x} \approx 17.36], [\sigma \approx 3.21], slight positive skew/no skew]$

1.1.

Question 5

The daily commuting distances of 125 individuals, rounded to the nearest mile, is summarised in the table below.

10 IL	
Distance (nearest mile)	Frequency
0 – 9	12
10-19	22
20 - 29	48
30 - 39	26
40 - 49	8
50 - 59	5
60 - 69	3
70 – 79	1

- a) Estimate the mean and the standard deviation of these commuting distances.
- b) Use linear interpolation to estimate the value of the median.
- c) Determine with justification the skewness of the data.
- **d**) Explain which out of the mean and standard deviation or the median and the interquartile range are more appropriate measures to summarize this data.
 - , $\overline{x} \approx 26.74$, $\sigma \approx 13.85$, $Q_2 = 25.3 25.5$, positive skew, median & IQR

	DUSTIFICE (WARE MILE)	M IDPOINT	FREEDOW
	0 - 9	4.5	12 (9)
	10 - 19	14.5	22 (34)
	20 - 29	24.5	48 (82)
	30 - 39	34:5	26 (108)
	40 - 41	4.5	8 (16)
1	P2 - 02	54-5	5 (21)
	60 - 69	64 S	3 (124)
	70 - 79	74.5	(25)
	$\overline{a} = \frac{\Sigma f_x}{\Sigma f} =$		x [*] ≈113351·25 •Σf = 125
	$\vec{a} = \frac{\Sigma f_{\vec{x}}}{\Sigma f} =$	<u>33425</u> = 26	
6	$\vec{a} = \frac{\sum f_x}{\sum f} = \sigma = \sqrt{\frac{\sum f_x^2}{\sum f}}$	$\frac{3342 \le}{12.5} = 26$	
6	$\vec{a} = \frac{\sum f_x}{\sum f} = \sigma = \sqrt{\frac{\sum f_x^2}{\sum f}}$	$\frac{33425}{125} = 26$ $\frac{3}{125} = 1$ $\frac{3}{125} = 1$ $\frac{3}{125} = 1$ $\frac{3}{125} = 1$	$\int \frac{115561.25}{12x} - 26.74^{11} \simeq 13.85$
6	$\hat{a} = \frac{\sum f_x}{\sum f} = \sigma = \sqrt{\frac{\sum f_{x^2}}{\sum f}}$ $\sigma = \sqrt{\frac{\sum f_{x^2}}{\sum f}}$ BI UNAR INDREDUTT	$\frac{33425}{125} = 26$ $\frac{3}{125} = 1$ $\frac{3}{125} = 1$ $\frac{3}{125} = 1$ $\frac{3}{125} = 1$	$\int \frac{115561.25}{12x} - 26.74^{11} \simeq 13.85$
6	$\hat{a} = \frac{\sum f_x}{\sum f} = \sigma = \sqrt{\frac{\sum f_{x^2}}{\sum f}}$ $\sigma = \sqrt{\frac{\sum f_{x^2}}{\sum f}}$ BI UNAR INDREDUTT	$\frac{33425}{128} = 26$ $\frac{33425}{128} = 26$ $\frac{33425}{128} = \sqrt{2}$ $\frac{128}{128} = \sqrt{2}$	$\int \frac{115561.25}{12x} - 26.74^{11} \simeq 13.85$
6	$\vec{\lambda} = \frac{\sum f_x}{\sum f} = \sigma = \sqrt{\frac{\sum f_x^2}{\sum f}}$ $\sigma = \sqrt{\frac{\sum f_x^2}{\sum f}}$ $\sigma = \sqrt{\frac{\sum f_x^2}{\sum f}}$	$\frac{33425}{128} = 26$ $\frac{33425}{128} = 26$ $\frac{33425}{128} = 1$ $\frac{33425}{128} = 1$	$\frac{1}{24} \frac{1}{124} = \frac{1}{24} \frac{1}{124} \frac{1}{124} = \frac{1}{24} \frac{1}{124} \frac{1}{124} = \frac{1}{24} \frac{1}{124} \frac{1}{124} \frac{1}{124} = \frac{1}{24} \frac{1}{124} $

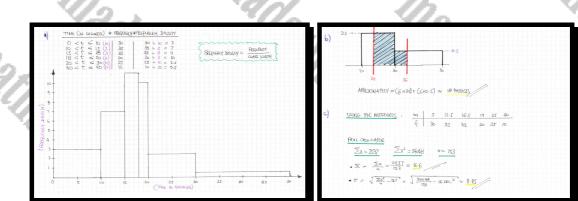
15000 THE ANOLOGY (NODE) < 445047 < MMAN 25.44 20.74
POSITIUE SKOW
WE THIND TO USE MITAIN & STAHDARD DULATION, IF THERE ARE NO EXTENDE UAWES & NEEDIDIUS SLIVY, OFFINEWSEE WE THIND TO USE MEDIAN A IPPR
Here we have little sterr, as hironal in numerous losse to the metal soft there are extreme unues at the "top $4\!-\!0^{\prime\prime}$

MEDIAN & 1972 - ARE -PREFERRAGI

The composition of the second CLASINGUIS COM LANCER INCOM LANCER INCOM LANCER INCOM LANCER INCOM LANCER

Question 1

A group of patients with a certain respiratory condition were asked to hold their breath for as long as they could.

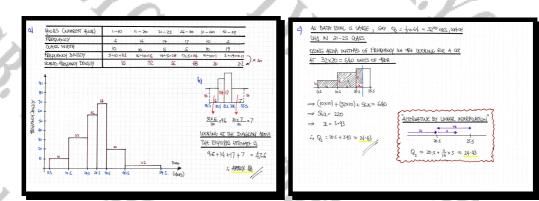

The results are summarized in the table below.

ι.		
	Time <i>t</i> (in seconds)	Frequency
	$0 < t \le 10$	30
1	$10 < t \le 15$	35
	$15 < t \le 18$	33
	$18 < t \le 20$	20
	$20 < t \le 30$	25
	$30 < t \le 50$	10

- a) Draw an accurate histogram to represent this data.
- **b**) Use the histogram to estimate the number of patients that managed to hold their breath between 24 and 36 seconds.

 ≈ 18 , $\overline{x} \approx 16.6$, $\sigma \approx 8.85$

c) Calculate estimates for the mean and standard deviation of this data.


Question 2

The number of hours worked in a given week by a group of 64 freelance electricians is summarized in the table below.

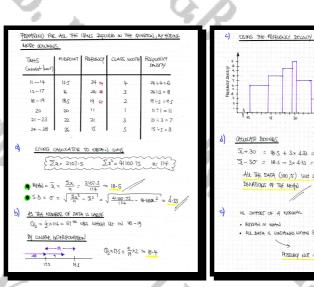
Hours (nearest hour)	Frequency
1 – 10	5
11 – 20	16
21 – 25	14
26 - 30	17
31 - 40	10
41 – 59	2

- a) Draw an accurate histogram to represent this data.
- **b**) Use the histogram to estimate the number of freelance electricians that worked between 15 and 37 hours during that week.
- c) Estimate the median of the data.

≈ 48 $Q_2 \approx 24.4$

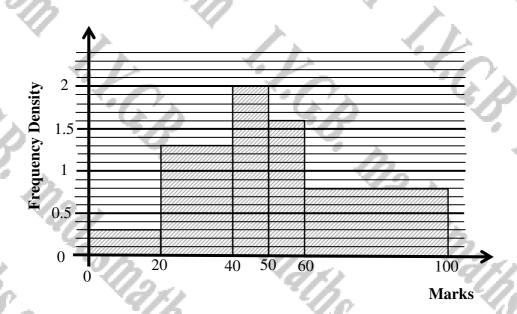
Question 3

The times taken to complete a 3 mile run, in minutes, by the members of a jogging club are summarized in the table below.


Times (nearest hour)	Frequency
11 – 14	24
15 – 17	24
18 – 19	19
20	11 .
21 – 23	21
24 - 28	15
The second se	

- a) Estimate the mean and standard deviation of this data.
- **b**) Estimate, by linear interpolation, the median of this data.
- c) Draw an accurate histogram to represent this data.
- d) Find the proportion of data which lies within 3 standard deviations of the mean.
- e) Discuss briefly whether this data could be modelled by a Normal distribution.

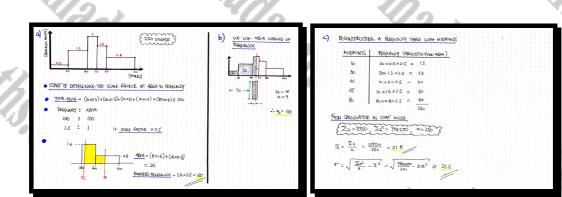
 $\overline{x} \approx 18.5$, $\sigma \approx 4.33$, $Q_2 \approx 18.4$, 100%

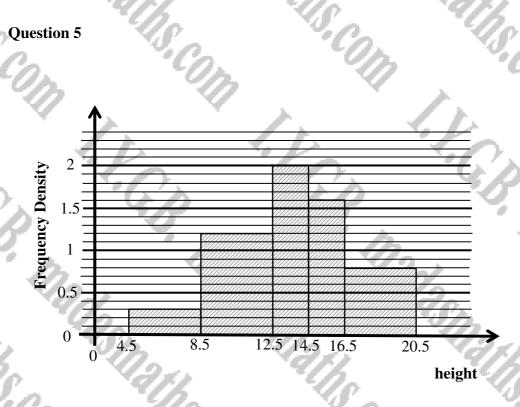

31.49

2.2

Question 4

The histogram below shows the distribution of the marks of 250 students.




- a) Estimate how many students scored between 52 and 74 marks.
- **b**) Use the histogram estimate the median.
- c) Calculate estimates for the mean and standard deviation of the marks of these students.

 $\overline{60}$, $\overline{49}$, $\overline{x} \approx 51.8$, $\sigma \approx 22.22$

1+

Mana

The histogram above shows the distribution of the heights, to the nearest cm, of some plants in a garden centre. It is further given that there were 18 plants with a height between 5 cm and 8 cm, rounded to the nearest cm.

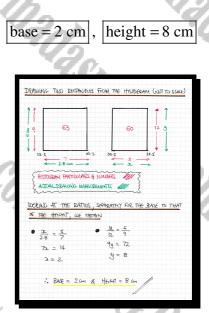
- a) Use the histogram to estimate the median.
- **b**) Estimate, by calculation, the mean and the standard deviation of the heights of these plants.

			-
"HEIGHT BETWEE	WSCH AND 8	cm" ⇒	45 5 h < 85
AREA OF 4	× 0.3 CO22CS	RI ZAMOA	PUNITS
AREA : PC	ANTS		
1.2 :	18		
1:0	2		
CTHIS IS NEEDED	ROL THE MEN	N & STAN	LARD DIVIATION)
· · · · · ·			
2 FIND THE HADIA	N, WITHOUT IN	volume fe	Equiports.
2+	2 1.8		(TOTAL ARAA
	3.2		5 0.3×4= 12 5
- 1-2 48	P 8 3	2 0.8	2×4=46 2×2=4
45 83	12 2 4	20.5	- (1.6×2=32.
43 02			{ 0.8×4 = 3.2 16.4
frate alera is 8	-2		hunt
2			00
2 22	i. Q. = 12.	1.1 + 2	2=2.2
1	Q = 13		{ 2=1.1 }
2341	42 - 0	~	min
1	//	/	
6 RECONSTRUCT THE "THE	UE OF DATA"		
PLANT HEIDHT (NHAREST CA		ARA	FREQUENCY (4844×15)
5 - 8	6:5	1.2	18
9 - 12	10.5	4-8	72
13 - 14	13-5	4	60
15 - VG	152	3.2	48
17 - 20	18-5	<u>პ</u> -2_	48
			246

 $\underbrace{\begin{array}{c} (00Th, h, h)S_{1} & \text{ty} \in 0004, \text{fry} \\ \hline Z_{1}(x = 33)S_{2} \\ \hline Z_{2}(x = 33)S_{3} \\ \bullet \overline{Z} = \frac{S_{1}E_{1}}{S_{2}E_{1}} = \frac{334S_{2}}{13.48} \\ \bullet SD_{2} & \sigma = \sqrt{\frac{Z_{2}E_{2}}{Z_{1}E_{1}} - \Sigma} = \sqrt{\frac{MB_{1}S_{2}}{24} - (14E_{1})^{2}} = 1.4S_{2} \\ \hline \end{array}}$

 $\sigma \approx 3.45$

median ≈ 13.6 , $\overline{x} \approx 13.48$

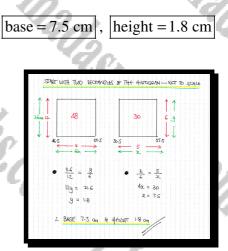

Question 6

In a histogram the weights of baby hamsters, correct to the nearest gram, are plotted on the x axis.

In this histogram the class 24-30 has a frequency of 63 and is represented by a rectangle of base 2.8 cm and height 6 cm.

In the same histogram the class 31-35 has a frequency of 60.

Determine the measurements, in cm, of the rectangle that represents the class 31-35.

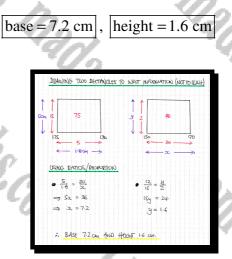

Question 7

In a histogram the commuting times of a group of individuals, correct to the nearest minute, are plotted on the x axis.

In this histogram the class 47-50 has a frequency of 48 and is represented by a rectangle of base 6 cm and height 3.6 cm.

In the same histogram the class 51-55 has a frequency of 30.

Determine the measurements, in cm, of the rectangle that represents the class 51-55.


Question 8

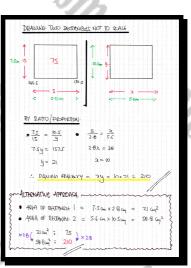
In a histogram the weights of apples, W grams, are plotted on the x axis.

In this histogram the class $125 \le W < 130$ has a frequency of 75 and is represented by a rectangle of base 1.8 cm and height 12 cm.

In the same histogram the class $150 \le W < 170$ has a frequency of 40.

Find the measurements, in cm, of the rectangle that represents the class $150 \le W < 170$.

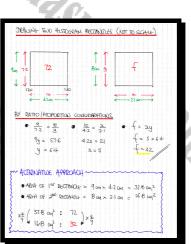
Question 9


In a histogram the weights of peaches, correct to the nearest gram, are plotted on the x axis.

In this histogram the class 146-150 has a frequency of 75 and is represented by a rectangle of base 2.8 cm and height 7.5 cm.

In the same histogram a different class is represented by a rectangle of base 5.6 cm and height 10.5 cm.

Determine the frequency of this class.


Question 10

In a histogram the heights, h cm, of primary school pupils are plotted on the x axis.

In this histogram the class $120 \le h < 130$ has a frequency of 72 and is represented by a rectangle of base 4.2 cm and height 9 cm.

In the same histogram a different class is represented by a rectangle of base 2.1 cm and height 8 cm.

Determine the frequency of this class.

f = 32

The DATA DATA CODINS COURSE CONTRACTOR INCOMENTS CONTRACTOR

Question 1

The monthly mileages of a sales rep are summarised in the table below.

Mileages (m)	Frequency
$3250 \le m < 3300$	19
$3300 \le m < 3350$	- 45
$3350 \le m < 3400$	16
$3400 \le m < 3450$	5
$3450 \le m < 3500$	2

ø

By using the coding

where x represents the midpoint of each class, estimate the mean and the standard deviation of this data.

-3325 50

 $\overline{x} \approx 3332$, $\sigma \approx 45.2$

MILEAGES	MUDPONTS (2)	y= x-3325	Reepublica(f)
3250 < M < 3300	3275	- L	19
3300 ≤ M < 3350	3325	0	4S
3350 <i>G</i> W < 3400	3375	1	16
3400 <i>≤</i> w < 3450	3425	2	2
345o≤ m < 3500	3475	3	2
·il= ≥fy		~	
•]= <u>2fu</u>	= <u>13</u> ~ 0.14	4 4	
· ·			
· Oy = J Star	- <u>ÿ</u> ² = √	$\frac{13}{87} = \left(\frac{13}{87}\right)^2 \approx$	090374
NOODING BACK IN	τa		
· = ūx50 :	+ 3325 ≈ 33	32	
0			

Question 2

The masses of 68 cows, in kg, are summarised in the table below.

Mass (m)	Frequency
$600 < m \leq 625$	11
$625 < m \leq 650$	14
$650 < m \le 675$	28
$675 < m \le 700^{\circ}$	7
$700 < m \leq 725$	5
$725 < m \leq 750$	2
$750 < m \le 775$	1

a) By using the coding

$$y = \frac{x - 662.5}{25}$$
,

where x represents the midpoint of each class, estimate the mean and standard deviation of this data.

b) Estimate, by the method of linear interpolation, the median mass of these cows.

 $\overline{x} \approx 659.19$, $\sigma \approx 32.91$, $Q_2 = 658.0$

637:5 662:5 Z-fg=-9 Z fg=119 $\overline{y} = \frac{\Sigma + y}{\Sigma f} = \frac{-q}{68}$ $\sigma_{3} = \sqrt{\frac{2\xi_{4}}{2\xi_{4}} - \sigma_{2}^{2}} = \sqrt{\frac{109}{68} - (-\frac{9}{66})^{2}} \approx 1.36238...$ $\bar{a} = (\bar{g} \times 2s) + 662.5 \simeq 659.2$ (J2 = 1.36228 ... × 25 ≈ 32.9 1. Q2 = 650 + 9/20 × 25 × 658.0

Question 3

The diameters of fine sand particles, in mm, are summarised in the table below.

Diameters (d)	Frequency
$0.02 < d \le 0.04$	25
$0.04 < d \le 0.06$	- 76
$0.06 < d \le 0.08$	111
$0.08 < d \le 0.10$	255
$0.10 < d \le 0.12$	33

a) By using the coding

$$y = 50(x - 0.09)$$

where x represents the midpoint of each class, estimate the mean and the standard deviation of this data.

b) Estimate, by linear interpolation, the median diameter of these sand particles.

c) Describe, with justification, the skewness of the data.

DIAMETERS (um)	AIDPOINTS (32)	y= so(2-009)	FREEDUNCY (4)	
0.02 < d < 0.04	0.03	-3	25 (25)	
0.04 < d < 0.06		-2.	76 (joi)	
0.06 < d < 0.08		-1	111 (212)	
0.08 < d ≤ 0.10 0.10 < d < 0.12	0-09 0-09	0	255 (467) 33 (500)	
AWUCATT- SUMMARY S				•
∑fy =-305			500	
AWUXATE THE MAD &		JIATOOD IN 19		
$\overline{g} = \frac{\Sigma fg}{\Sigma f} = \frac{1}{2}$				
$\sigma_{ii} = \sqrt{\frac{2\xi y^2}{2}} - i$	$\lambda^2 = \sqrt{\frac{673}{500}}$	- (-0.61)2 ~ 0.9	86863719/	

			255			
	20	38	► .			
		0-08	0	to		
	⇒ Q2	= 0.08 +	38 255 × 0.02	≈_0·083	0//	
)	USING THE	E AVERADES	_			
	MHAN <	MFAIMN <	(MODE)	- Pa	entwe skaw	/
	0-0778	0.0830			/	1
					"	

 $\overline{x} \approx 0.0778$, $\sigma \approx 0.0197$, $Q_2 = 0.08298$

Question 4

F.C.B.

The masses, x kg, of 40 students were measured and the results were summarized using the notation below.

$$\sum_{n=1}^{40} (x_n - 50) = 140 \quad \text{and} \quad \sum_{n=1}^{40} (x_n - 50)^2 = 4490.$$

Calculate the mean and standard deviation of the masses of these 40 students.

 $\overline{x} = 53.5$, $\sigma = 10$ LOOKING AT THE LODED SOMMARY STATISTICS 20 2 (24- 50)2 = 4490 $\sum_{k=1}^{40} (3k - 50) = 140$ q = 2-50 Zy2= 4490 Zy = 140 DE NI MOTTATION IN 9 $\vec{Q} = \frac{5y}{n} = \frac{140}{40} = 3.5$ $S_{4} = \sqrt{\frac{\Sigma_{4}^{2}}{n} - \tilde{y}^{2}} = \sqrt{\frac{4499}{40} - 35^{2}} = 10$ (WOODE BACK INTO SC $\overline{a} = \overline{g} + so$ $\delta_{\chi} = \delta_{g}$ $\delta_{\chi} = 10$ α = 3·5 + 50 Z = 53.5 2505 NOTTAINS (LIPACILATE) NOT GET AFFECTIO BY ADDITION SUBTRACTION)

i C.B.

6

Question 5

I.C.B.

The test marks, x, of 20 students were coded and their results were summarized as

$$\sum(x-10) = 220$$
 and $\sum(x-10)^2 = 2720$

a) Use a detailed method to show that

 $\sum x^2 = 9120.$

b) Calculate the mean and standard deviation of the test marks of these students.

 $\sum_{n=1}^{\infty} (a_{n}-b)^{2} = 2720$ (a,-10) = 220 $\sum_{r=1}^{20} (\alpha_{r} - 10)^{2} = \sum_{r=1}^{20} [\alpha_{r}^{2} - 20\alpha_{r} + 100]$ $2720 = \sum_{r=1}^{20} \alpha_r^2 - 20 \sum_{r=1}^{20} \alpha_r + 100 \sum_{r=1}^{20} 1$ $2720 = \sum_{n=1}^{20} x_n^2 - 20 \sum_{n=1}^{20} x_n + 100 \times 20$ BY INSPECTION = 20 + 20x10 = 420 OR BY USING. A DOTAILE ULTED $\sum_{n=10}^{10} (x_{n-10}) = 220$ $-10\sum_{i=1}^{10}1 = 220$ $10 \times 20 = 220$ $2720 = \sum_{i=1}^{\infty} x_i^2 - 20x 425 + 2000$ $\frac{20}{2}$ = 9120

b) $\vec{x} = \frac{5\pi}{n} = \frac{420}{20} = \frac{21}{21}$ $\sigma = \int \frac{\Sigma x^2}{h}$ $-3l^2 = \sqrt{\frac{9120}{20}-2l^2}$ = 15 DED VALUES Zg. y= 2 -10 so 220 & Zy2= 270 $\bar{y} = \frac{\sum y}{y} = \frac{220}{20} = 11$ $\sigma_{q} = \sqrt{\frac{\Sigma q^{2}}{n} - \bar{y}^{2}} = \sqrt{\frac{2720}{20} - H^{2}} = \sqrt{c}$ UNCODING $\overline{x} = \overline{y} + 10 = 21$ $\sigma_{\chi} = \sigma_{y} = \sqrt{15}$ (UNAFFECTED BY SUBTRACTION)

i.C.p.

1+

 $\overline{x} = 21$, $\sigma = \sqrt{15} \approx 3.87$

Question 6

R

F.C.B.

The following information about 5 observations of x is shown below.

$$\sum_{i=1}^{5} \left(\frac{x_i - 255}{2} \right) = 50 \quad \text{and} \quad \sum_{i=1}^{5} \left(\frac{x_i - 255}{2} \right)^2 = 1650.$$

Nasm

Calculate the mean and standard deviation of x.

$\begin{split} &\sum_{i=1}^{2} \left(\frac{2i-232}{2}\right) = 50, \sum_{i=1}^{2} \left(\frac{2i-232}{2}\right)^{2} = 1650, \\ &\text{Leff} \frac{d_{i}}{2} = \frac{-2i-235}{2} \\ \hline & \underline{\zeta}, \underline{d} = 50, \overline{\zeta}, \underline{d}_{i}^{2} = 1650, \\ & \underline{\zeta}, \underline{d} = 50, \overline{\zeta}, \underline{d}_{i}^{2} = 1650, \\ & \underline{\zeta}, \underline{d} = 50, \overline{\zeta}, \underline{d}_{i}^{2} = 1650, \\ & \underline{\zeta}, \underline{d} = 50, \overline{\zeta}, \underline{d}_{i}^{2} = 160, \\ & \underline{\zeta}, \underline{d} = \frac{50}{9} = -10, \\ & \underline{\zeta}, \underline$	LOOKING-	AT THE JUNMAR	Y STATISTICS	
$\sum g = s_0 \qquad \qquad$	2	$\left(\frac{3}{3}\right) = 20$	$\sum_{i=1}^{j=1} \left(\frac{5}{3^{j}-571} \right)_{j}$	= 1650
How the contract as contract, a showing the structure of the contract of the second structure of the	Ĩ			
$\begin{split} &\widetilde{U} = \frac{\widetilde{U}}{\eta} = \frac{2\varepsilon}{\varepsilon} = \frac{1}{0} = \frac{1}{\varepsilon} = \frac{1}{0} = $	2.	9 = So	Zy= 1650	h=5
$\sigma_{g} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}} = \sqrt{\frac{2a^{2}}{m}}$ $\sigma_{g} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}} = \sqrt{\frac{2a^{2}}{m}}$ $\sigma_{g} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}} = \sqrt{\frac{2a^{2}}{m}}$ $\sigma_{g} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}}$ $\sigma_{g} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}} = \sqrt{\frac{2a^{2}}{m} - \sigma_{g}^{2}}$	AWXATA	THE MHAN & STI	HUDARD DEVIRTION	e ai c
where the matrix g states g where g where g where g and g	~			
• 51 = ÿ×2 + 255 • 52 = 55 × 2		$\sqrt{\frac{Zq^2}{h} - \overline{y}^2}$ =	$= \sqrt{\frac{1620}{102} - 10^{2}}$	= \sqrt{230}
	03 =			840° H0 0
$\overline{3_{1}} = 10x2 + 255$ $\overline{0_{2}} = 2\sqrt{230}$	Ĩ	te MMN g shaw at	GOTTAIN DEVICE DEVICE	STUL (NKO J
	INCODE TI			

2

 $\sigma = 2\sqrt{230} \approx 30.3$

 $\overline{x} = 275$

200

F.C.P.

19