BINOMI DISTRIBUTION CONTRIBUTION CONTRIBUTIO

?

Question 1

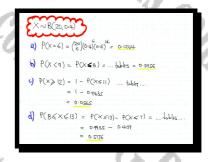
F.G.B.

i C.p.

The random variable X has binomial distribution B(20,0.4).

Determine each of the following.

- a) P(X=6).
- **b**) P(X < 9).
- c) $P(X \ge 12)$.
- $\mathbf{d}) \quad \mathbf{P}\big(8 \le X \le 13\big).$


0.1244, 0.5956, 0.0565, 0.5776

F.G.B.

2

2012.SM

madasn,

F.G.B.

Y.G.B.

Question 2

The random variable X has binomial distribution B(15,0.35).

Determine each of the following.

- $\mathbf{P}(X=8).$ a)
- P(X < 7). b)
- $\mathbf{P}(X>9).$ c)

N.C.B. Madasn

COM

. F.G.B.

20

d) P(5 < X < 10).

0.0710, 0.7548, 0.0124, 0.4233

I.C.B.

COM

Inadasn

3

1+

anasm.

Ę	<
۹)	$P(X = B) = {\binom{15}{8}} (0.35)^8 (0.35)^7 = 0.0710$
6)	P(×<7) = P(×≤6) = tables = 0.7548
4	P(X > q) = P(X > 10) = 1 - P(X < q) tably = 1 - 09876 = 0.0124
d)	$P(S < \times < 10) = P(S \leq \times \leq 9) = P(X \leq 9) - P(X = \dots \leq h_{h})$ $= 0.1676 - 0.5643$ $= 0.14232$

adasmaths.com

2017

Created by T. Madas

madasmarias,

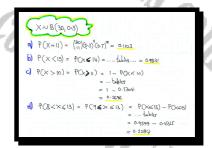
I.G.p.

Question 3

The random variable X has binomial distribution B(30,0.3).

Determine each of the following.

- P(X=11).a)
- $\mathbf{P}(X < 15).$ b)
- P(X > 10). c)


0

 $\mathbf{d}) \quad \mathbf{P} \big(8 < X \le 13 \big).$

2017

. F.G.B.

K.C.B. Madasm 0.1103, 0.9831, 0.2696, 0.5284

adasmaths.com

2017

The Com

í.

è

202.Sm

Created by T. Madas

madasma,

I.F.G.B.

Question 4

The random variable X has binomial distribution B(40,0.2).

2012

Determine each of the following.

- $\mathbf{P}(X=5)\,.$ a)
- $\mathbf{P}(X < 13).$ b)
- $\mathbf{P}(X > 10).$ c)

K.C.B. Madasm

COM

I.C.B.

20

 $\mathbf{P}(8 < X < 14).$ **d**)

, 0.9568 , 0.1608 , 0.3875 0.0854

The Com

6

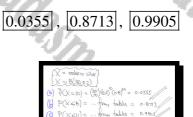
212.sm

5		
18	×~ B(\$\$,02]	
Co.	$+e_{8000} = \frac{25}{2} (30) \binom{2}{2} (50) \binom{2}{2} = (2 \times 2) f$	
. 00	b) $P(x < 13) = POx \le 12) = \dots + tablet \dots = 0.9568$	1
1. 4	$d P(x > o) = P(x \ge i) = i - P(x \le o)$	
6 L	= 1 - 08342 = 0.1669	
S.D.	d) P(8< X<14) ≈ P(9≤ X≤13) - P(X≤13) - P(X=13) - P(X=13)
	= 03875	
	11. 310	
	40 0	
		1
12	5 5 A 3	6
		N
$\gamma_{-} = \gamma_{-}$	2. Yan	
2	Oh Co	
~//>	·	
10-	dre On	
1220	"(h. 1)2.	
- C.A.	<u> </u>	
	10 CM	η.
000		er
· (D)	~/h ~	

adasmaths.com

I.V.C.B. Mada

01


Created by T. Madas

Question 5

The probability of a customer ordering the colour of a particular model of new car in silver is 0.2.

Find the probability that in next 30 random orders there will be ..

- a) ... exactly 10 orders in silver.
- **b**) ... at most 8 orders in silver.
- c) ... no more than 11 orders in silver.

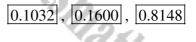
Question 6

The probability of Mathew being late to school is 0.15.

Find the probability that in next 25 mornings he will arrive late to school ...

- **a**) ... on exactly 6 occasions.
- **b**) ... on less than 6 occasions.
- c) ... at least twice.

0.0920, 0.8385, 0.9069


Question 7

A certain brand of sweets are sold in bags of 15.

The typical proportion of orange sweets in these bags is 1 in 5.

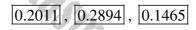
Find the probability that in a random bag of these sweets there will be ...

- a) ... exactly 5 orange sweets.
- **b**) ... more than 4 but at most 7 orange sweets.
- c) ... at least 2 but no more than 6 orange sweets.

 $\begin{array}{l} (x) = 80 \text{ ok} \text{ mage surf.} \\ (x) = 80 \text{ ok} \text{ mage surf.} \\ (x) = 80 \text{ ok} \text{ mage surf.} \\ (y) = 80 \text{ ok} \text{ ok$

è

nadasm.

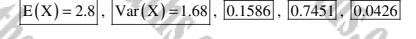

nadası,

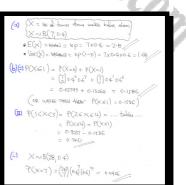
Question 8

Chris sells a charity magazine to raise money for the homeless, by approaching people coming out of a train station. The probability that he will have a successful sale is 0.09.

Determine the probability that if Chris approaches 40 people at random, he will sell the magazine to ...

- a) ... exactly 4 people.
- **b**) ... at most 2 people.
- c) ... more than 5 people.




EX= plople that bought may around 5	
(X~B(40,009)	
(a) $\mathbb{P}(X=4) = \begin{pmatrix} 4_0 \\ 4 \end{pmatrix} (6 \cdot 0)^4 (0 \cdot 4)^{36} = 0.2011$	
$\begin{array}{l} (\mathbf{j}) = \left(\mathbf{z} \\ \mathbf{z}$	$(e_0)^{(e_0)^{2}}$
= 0.02300 + 0.0200 + 0.12	45 =0.2894
(c) $P(X \ge S) = P(X \ge G) = I - P(X \ge S) = I - P(X \ge G)$	5,1,2,3,4,5)
P(X=3) = 0.2138, & P(X=0,1,2 or	4)= 0·2854
P(x=x) = 0.1432	0.2011
0.3630 0.8535 <	0.4805
1 P(X) 5)= 1 - 0.801 = 0.1465	

Question 9

The probability that Anna wakes up before her alarm rings is 0.4.

- a) Find the mean and variance of the number of times that Anna wakes up before her alarm rings, in the next 7 mornings.
- **b**) Determine the probability that in the next 7 mornings, Anna will wake up before her alarm rings ...
 - i. ... at most once.
 - ii. ... in more than 1 but less than 5 mornings.
- c) Calculate the probability that in the next 4 <u>weeks</u> Anna will wake up before her alarm rings on exactly 7 mornings.

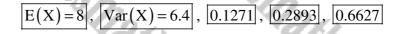
Question 10

The probability that Phil will walk to work is 0.1.

The last 20 days that Phil went to work are examined.

- a) Determine the mean and variance of the number of days that Phil walked to work in the last 20 working days.
- **b**) Find the probability that in the last 20 working days Phil walked to work ...
 - i. ... on exactly 2 days.
 - ii. ... on at most 3 days.
 - iii. ... on more than 2 days.

E(X) = 2

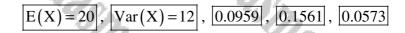


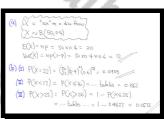
Var(X) = 1.8, 0.2852, 0.8670, 0.3231

Question 11

The probability of a random customer ordering a vegetarian meal in the Ampala restaurant is 0.2.

- a) Find the mean and variance of the vegetarian meals in a total of 40 orders.
- **b**) Determine the probability that in 50 orders there will be ...
 - i. ... exactly 11 vegetarian orders.
 - **ii.** ... more than 11 vegetarian orders.
 - **iii.** ... at least 6 but no more than 11 vegetarian orders.





Question 12

F.C.B.

- The probability of a biased dice landing on 6 is 0.4.
 - a) Find the mean and variance of the number of "sixes" in 50 throws.
 - **b**) Determine the probability that in 50 throws there will be ...
 - i. ... exactly 22 "sixes".
 - ii. ... less than 17 "sixes".
 - iii. ... more than 25 sixes.

i.C.B.

1720251

°n

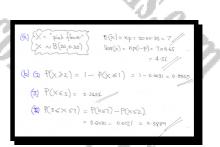

Question 13

The probability of a letter posted first class, out of a certain company, is 0.35.

- a) Find the mean and variance of the number of letters posted first class in a batch of 14 letters.
- **b**) Find the probability that in a batch of 14 letters there will be ...
 - i. ... exactly 5 first class letters.
 - ii. ... at least 6 first class letters.

iii. ... more than 3 but no more than 9, first class letters.

E(X) = 4.9	,	Var(X) = 3.185	,	0.2178	,	0.3595	 ,	0.7735
		The second se					FB	


Question 14

The probability of a carnation producing a pink flower is 0.35.

- a) Find the mean and variance of the number of pink flowers produced in 20 carnation blooms.
- **b**) Find the probability that in 20 carnations that are about to produce flowers, we will obtain ...
 - i. ... at least 2 pink flowers.
 - **ii.** ... no more than 5 pink flowers.

E(X) = 7

iii. ... between 3 and 7 pink flowers, inclusive on both ends.

Var(X) = 4.55, 0.9969, 0.2454, 0.5889

Question 15

A box contains 50 coloured drawing. The proportion of red drawing pins in these boxes is 3 out of 20.

- a) Find the mean and variance of the number of red drawing pins in these boxes.
- **b**) Find the probability that in a box of 50 drawing pins there will be ...
 - i. ... exactly 7 red drawing pins.
 - **ii.** ... more than 10 red drawing pins.
 - iii. ... no more than 8 red drawing pins.
 - iv. ... between 6 and 12, not inclusive, red drawing pins.

E(X) = 7.5, Var(X) = 6.375, 0.1575, 0.1199, 0.6681, 0.5759

$ \begin{array}{l} \textbf{(b)} & \textbf{(1)} & P(x=7) = \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{1} \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{1} \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{$
(11) f(x > 10) = f(x > 11) = (- f(x < 10))
$(\mathbf{x}) \mathcal{P}(\mathcal{E} < \times < 12) = \mathcal{P}(\mathcal{T} \leq \times \leq 11)$
$= \mathbb{P}(X \leq 11) - \mathbb{P}(X \leq 6)$
- 0.9872 - 0.36 B
= 6212.0 =

è

Question 16

The probability that Mr Smith will have coffee with his breakfast is 0.35.

- a) Find the mean and variance of the number of mornings that Mr Smith has coffee with his breakfast, in the next 25 mornings.
- **b**) Find the probability that in the next 25 mornings, Mr Smith will have coffee ...
 - i. ... on exactly 8 mornings.
 - ii. ... on at least 8 mornings.

iii. ... on more than 8 but at most 14 mornings.

E(X) = 8.75, Var(X) = 5.69, 0.1607, 0.6939, 0.5239

Question 17

The probability that Elaine will watch the evening news is 0.25.

- a) Find the mean and variance of the evenings that Elaine will watch the news in the 30 days of April.
- **b**) Find the probability that in the month of April, Elaine will watch the evening news ...
 - i. ... exactly 9 times.
 - **ii.** ... either 7 or 10 times.
 - iii. ... between 8 and 14 times, inclusive.
 - iv. ... for more than half the evenings of the month.

E(X) = 7.5, Var(X) = 5.625, 0.1298, 0.2571, 0.4830, 0.0008

a)	X = dray in them, with teening news watched	
	× ~ B (30,0.25)	
	$E(x) = np = 30 \times 0.25 = 7.5$ $Var(x) = np(J-p) = 7.5 \times 0.75 = 5.625$	
b)(t)	$P(x=q) = {\binom{3}{2}} (0.75)^{21} = 0.1298$	
(4)	$P(x=7,10) = {\binom{30}{2}} (0.75)^{23} + {\binom{30}{2}} (0.75)^{40} = 6.16624 + 0.01087 = 0.2571$	
(L)	$P(8 \le x \le 14) = P(x \le 14) - P(x \le 8) = P(x \le 14) - P(x \le 7)$	
	= 0.9973 - 0.5143 = 0.4830	
	$P(X > 15) = P(X > 16) = 1 - P(X \le 15) = 1 - 0.9992$	
	= 0.0008	

THE COMPANY OF CASE OF COMPANY OF CASE MASIRALISCOM LANCER MARINESSMANNESSON LANCER MARINESSON LANCER MARINESSMANNESSON LANCER MARINESSMANNESS AMANNESSMANN AMANNESSKANTESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNESSKANNE

Question 1 (**+)

During the winter months, in a certain village in Scotland, the probability of a day having severe fog is 0.06.

a) Find the probability that in a given week there will be ...

i. ... no day with severe fog.

ii. ... three or more days with severe fog.

It is known that on a given week there were three or more days with severe fog.

b) Determine the probability that there were exactly three days with severe fog in that week.

	1.4 Million 1.4 Mi
$\begin{array}{c} \text{A} \\ \hline \\ \text{A} \\ \hline \\ \text{A} \\ \text$]
$\mathbf{T} = \mathbf{T} = (0, 0, 0, 0) = (0, 0, 0) = 0 \cdot 0$	485
$\mathbf{I} = \begin{pmatrix} P(X \ge 3) \\ P(X \ge 3) \\ P(X \ge 3) \\ P(X \le 2) \\ $	LATOL
b) (100 YOUNGRACH PRABATION (100)) $f(x = 3) = \left(\frac{3}{3}\right)^{4} (200)^{3} (200)^{4}$	0.00590246213
$\frac{4910958 \cdot 30}{30000} = (\xi \leqslant x \mid \xi = \chi) q$	- ∽ <u>0.1376</u>

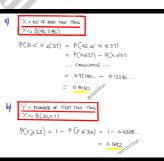
0.6485, 0.0063, 0.9378

Question 2 (**+)

Ama is a supermarket cashier. The probability that Ama will have to rescan a shopping item because the barcode reader failed to "read" it, is 0.15.

A shopping item whose bar code is read on the first attempt is called a "first time item".

Ama scans 40 shopping items.


a) Determine the probability that Ama will have more than 31 but at most 37 "first time items".

Bama is a less experienced supermarket cashier. The probability that Bama will scan a shopping item on her first attempt is 0.7.

Bama scans 50 shopping items.

b) Determine the probability that Bama will have at least 35 "first time items".

, 0.8160, 0.5692

Question 3 (***)

The random variable X has binomial distribution B(13,0.16).

a) Determine P(X < 2).

Two independent observations of X are made.

b) Find the probability that exactly one of these observations is equal to 2.

FIRSTLY WE NEED P(X=2)

 $\begin{array}{l} P(X=2) = \begin{pmatrix} g \\ 0 \end{pmatrix} (0 \times i)^2 (0 \times 1)^{1/2} = 0 \ 21336 \dots \\ \\ \frac{4 t \times c \times c}{2} \times P(X+2) \\ P(X+2) \times P(X+2) \\ P(X+2) \times P(X+2) \\ \end{pmatrix} = \begin{pmatrix} 0 \times 1 \times 2 \times 1 \\ 0 \times 1 \times 2 \times 1 \\ 0 \times 1 \times 2 \times 1 \\ 0 \times 1 \\ 0 \times 1 \times 1 \\ 0 \times$

0.3604, 0.4146

1+

21/2.51

na

Question 4 (***)

The discrete random variable X has the distribution B(15, p).

a) Given that p = 0.3, determine ...

i. ... P(X < 6).

ii. ... P(X > 10).

b) Given instead that P(X = 0) = 0.04, determine the value of p, correct to three decimal places.

c) Given instead that Var(X) = 3.15, determine the two possible values of p.

D	$\frac{1}{1} + \frac{1}{2} = 0.3 \times \sim B(t_1, 0.3)$
	I) P(X<6) = P(X≤5) = CALMATOR = 0.7216
	$\mathbb{I} \left(\mathbb{I} \times > 0 \right) = \mathbb{P} \left(\mathbb{I} \ge 1 \right) = 1 - \mathbb{P} \left(\mathbb{I} \le 0 \right) = \dots \operatorname{Gaussian}_{Autod} \dots$
	= 1 - 0.9993 = 0.0007
4	NOW WE HAVE X~ B(15, p) & P(X=0)=0.04
	$\Rightarrow P(x=o) = o \cdot o 4$
	$\implies \begin{pmatrix} 0 \\ 12 \end{pmatrix} = \begin{pmatrix}$
	+0.0 = 2 (q-1)
	- l- p = Koof
	⇒ I - P = 0.80687
	⇒ Þ = 0.1931
c)	FINATULY WE HADE X~B(U,P) & Var(x)=5.15
	→ Var(X) = Np (I-p)
	⇒ 3.12 = 15 p(- p)
	\implies 3.15 = 15p - 15p ²
	$\implies (2p^2 - 12p + 3i) = 0$
	$\Rightarrow p^2 - p + 0.21 = 0$
	$ \rightarrow (p - o_3)(p - o_7) = o $ $ \therefore p = \langle \frac{o_3}{o_7} \rangle $
	<u> </u>

], 0.7216, 0.0007, $p \approx 0.193$, p = 0.3 or 0.7

Question 5 (***)

The discrete random variable X has binomial distribution B(n, p).

Given that the mean and the standard deviation of X are both 0.95, determine the value of n.

$\underline{\times \sim \mathfrak{P}(\mu_{1}p)}$	
=(x) av • 28.0 = cm μ= (x)3 •	s.D)= 0.952
NP = 0.95 NP (1-1	2p.0 = (4
\searrow	
22P.0 = (4-1) × 2P.0	2
1-p = 0.95	
b = 0.02	
28.0 = 91 \$	
h= 19	

, n = 19

Question 6 (***+)

The random variable X has the binomial distribution B(n, 0.3).

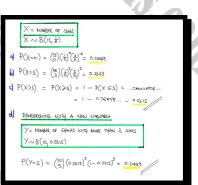
The mean of X is three time as large as the standard deviation of X.

Determine the value of n.

$X \sim B(n_{103})$

STANDARD DEVIATION) = $\sqrt{NP(1-P)}$ STANDARD DEVIATION = $\sqrt{N\times0.3\times0^{-7}}$ STANDARD DEVIATION = $\sqrt{0.21N}$

, n = 21


- \Rightarrow MHAN = 3 × (STALLE
- $\implies 0.3h = 3 \times \sqrt{0.2h} \\ \implies 0.09h^2 = 9(0.2h)$
- \implies $h^2 = 2l_H$ \implies h = 2l $(h \neq 0)$

Question 7 (***+)

A game is played by rolling simultaneously 15 standard fair six sided dice.

Find the probability that in a single roll of the 15 dice ...

- a) ... no six will be obtained.
- **b**) ... exactly three dice will show a six.
- c) ... more than three dice will show a six.
- A game is won if more than three dice show a six.
 - d) If ten games are played determine the probability of winning exactly 5 games.

0.0649, 0.2363, 0.2315, 0.045

Question 8 (***+)

Two fair six sided dice are rolled and the event "the dice show the same number" is considered a favourable event.

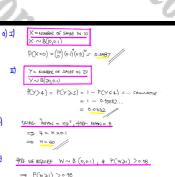
The two dice are rolled together 4 times in a row and the random variable X represents the number of times the dice showed the same number.

Determine the probability distribution of X.

 $P(X=0) = \frac{625}{1296}, P(X=1) = \frac{500}{1296}, P(X=2) = \frac{150}{1296}, P(X=3) = \frac{20}{1296}, P(X=4) = \frac{1}{1296}$

Question 9 (***+)

The probability of a telesales representative making a sale on a customer call is 0.1.


a) Find the probability that a telesales representative achieves ...

i. ... no sales in 10 calls.

ii. ... more than 4 sales in 20 calls.

Representatives are required to achieve a mean of at least 4 sales each day.

- **b**) Find the least number of calls a representative should make each day, in order to achieve this requirement.
- c) Calculate the least number of calls that a representative needs to make in a day for the probability of at least 1 sale, to exceed 0.98.

[0.3487], [0.0432], [n = 40], [n = 38]

⇒ F(W≥1) >0.10 ⇒ 1 - P(W=0) >0.1

- > P(W=0) < 0.0
- $\Rightarrow \binom{n}{2} \binom{$
- ⇒ log(o.q") < log(o.o2) *
- ⇒ n lag (0.9) < log(0-⇒ n > log (0.02) []
- $\Rightarrow h > \frac{1}{109} \frac{(0.02)}{(0.0)} \left[\frac{1}{109} \frac{(0.0)}{(0.0)} \right]$ $\Rightarrow h > 37.12... \qquad \therefore \underline{n} = 36$

Question 10 (***+)

A geologist is looking for fossils in rocks. In a certain area it has been established over a long period of time that 10% of the rocks contain fossils. The geologist selects twenty rocks from this area.

a) State 2 conditions that must be apply in order for a binomial model to be valid.

Find the probability that in the geologist's sample there will be ...


- **b**) ... one rock containing fossils.
- c) ... at least one rock containing fossils.

The geologist selects a new sample of n rocks.

He wants to have at least a 95% chance that his new sample will contain fossils.

d) Determine the smallest value of *n*.

(1.1.2), state as appropriate , 0.2702, 0.8784, n = 29

- ⇒ -P(W=0)≥-0.05 ⇒ P(W=0)≤ 0.05
- $\implies {\binom{h}{D}}{\binom{0\cdot1}{\left(0\cdot1\right)}}^{0}_{\binom{0\cdot4}{1}} \leqslant \circ$
- BY TELAL & ("PRODUCIAL OI
- $\implies \log(0.4^n) \le \log(0.05)$ $\implies \log(0.4) \le \log(0.05)$
- ··g(0*7) → h ≥ 28.433...

Question 11 (***+)

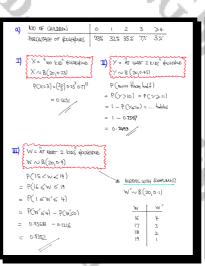
The table below summarizes census information about the number of children in the households of an English town.

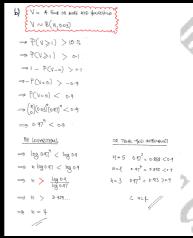
Number of children	0	1	2 4	3	4 or more
Percentage of households	23	32	35	7	3

A random sample of 20 households is selected from this town.

a) Determine the probability that the sample will contain ...

i. ... 3 households with no children.


ii. ... more than half the households, with at least 2 children.


iii. ... more than 15 but at most 19 households, with at most 2 children.

A new random sample of n households is selected from this town.

The probability that this new sample contains a household with 4 or more children is more than 10%.

b) Determine the smallest value of *n*.

0.1631, 0.2493, 0.8352, n = 4

Question 12 (***+)

The records in a doctor's surgery show that 20% of the patients that make an appointment fail to turn up.

During a given weekday there are 20 appointments to see the doctor and the doctor has enough time to see all 20 patients.

- a) Find the probability that all the patients will turn up.
- **b**) Find the probability that more than three patients **will not** turn up.

In order to improve efficiency in the surgery, the doctor decides to make more than 20 appointments although he still has enough time to see only 20 patients.

One day the doctor has booked 21 appointments.

c) Find the probability he will be able to see all the patients that will turn up.

Another day the doctor has booked 25 appointments.

d) Find the probability that the doctor will not be able to see one of the patients that will turn up.

		Ja		62
а) Ь)	$\begin{array}{l} X = n_{0} \circ (\frac{2}{4}p_{0} + h_{0} + h_$			
د)	ξε μαι με από το στο το τη το πρηταχ τήνη τουν πο ^α <u>X</u> ~ (21,0.2) P(AT (ματ τους στος ιστο πουγορ) = P(X>1) = 1 - P(X=0) = 1 - P(X=0) = 1 - 0.007223 = 0.007223		4	••••67
	The matrix AS $\frac{Y = 100 \text{ eV}}{Y \sim 80 \text{ eV}}$ AND UTWARE THEOR OF $\frac{Y \sim 100 \text{ eV}}{Y \sim 8 (21, 0.00)}$ $P(Y \sim 30) \simeq \dots$ calleder (4.16) = 0.9700	ł		

0.0115, 0.5886, 0.9908, 0.1867

Question 13 (***+)

Jane and Amber are telesales operatives for a company.

The probability of Jane making a sale on a customer call is 0.1.

- a) Showing a clear method, find the probability that Jane achieves .
 - i. ... no sales in 10 calls.
 - **ii.** ... more than 4 sales in 20 calls.

The probability of Amber making a sale on a customer call is 0.15.

- **b**) If Jane and Amber make 20 calls each, determine the probability that they will make
 - **i.** ... 2 sales each.
 - **ii.** ... a total of 4 sales between them.
- c) Calculate the least number of calls that Amber needs to make for the probability of at least 1 sale, to exceed 0.99.

R	- Sel.	$\gamma_{1} = 62$
$ \begin{array}{l} \textbf{a} \\ \textbf{b} \\ \textbf{c} \\ \textbf$	$\mathbf{II} \times \sim \&(20, 0-1)$ = $1 - 0.450$ = $1 - 0.450$ = 0.0422 .	$(20, \eta) \stackrel{2}{=} \sqrt{2} \qquad (2)$ $\Re^{\alpha} < \langle (q \times \gamma)^{\beta} \in \mathbb{N}$ $\Re^{\alpha} < \langle (q \times \gamma)^{2} - 1 \in \mathbb{N}$ $1 > 0 < \langle (q \times \gamma)^{2} - q \in \mathbb{N}$ $1 > 0 < \langle (q \times \gamma)^{2} \in \mathbb{N}$ $1 > 0 < \langle (q \times \gamma)^{2} \in \mathbb{N}$
b) $\underline{\forall} = \mathbf{u}_0$ of SALS (AMAR) $(210,00) = \mathbf{v}_1 = \mathbf{v}_2$ $(210,00) = (200) \mathbf{v}_1 = \mathbf{v}_2$ $\mathbf{v}_1 = \mathbf{v}_2 = \mathbf{v}_1 = \mathbf{v}_2$ $\mathbf{v}_2 = \mathbf{v}_1 = \mathbf{v}_2$ $\mathbf{v}_2 = \mathbf{v}_2 = \mathbf{v}_2$	$\begin{array}{l} & \times_{\sim} \ \ \mathcal{B} \left(z_{3, (\circ)} \right) \\ & \mathcal{P} (\chi_{2, 2})_{c} \left(\frac{2 \pi}{3} \left \psi_{1} \right ^{2} (o \cdot \eta)^{\mathcal{B}} \right. \\ & = \ \ 0 \cdot 2 \cdot 4 \cdot 2 \cdot 1 \\ \end{array}$	$\begin{array}{rcl} & & & & & \\ & & & & \\ \hline & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\$
(1) (1) (1) (1) (1) (1) (1) (1)	$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$	$ = h > \frac{\log[col]}{\log(col - text is when w)} $

0.3487, 0.0432, 0.0654, 0.1826, n = 29

Question 14 (****)

General purpose hooks are sold in boxes of 50.

The probability that a hook will be defective is 0.05.

10 boxes of hooks are examined.

Determine, to 2 significant figures, the probability that half of these boxes will contain more than 5 defective hooks each.

, 0.0000)1
90.	
$\frac{X = 100 \text{ of Difference -thocks in 4 80x}}{X \sim \Omega(so_1 o \cdot os)}$	
P(X>5)=P(X>6)= 1-P(X≤5)=1-0.9622	
= 0.037776	
Y = 4 BOX WITH WOLF THAN 5 DAFEBRUL HOOKS	
Y~ B(10,0.03772)	

 $P(\gamma = 5) = {\binom{10}{5}} (0.037776)^{5} (0.96222)^{5} =$

Question 13 (****)

a) State four conditions for making a binomial distribution an appropriate model for statistical work.

Roy and Ned are door to door salesmen.

The probability of Roy making a sale on a house visit is 0.05.

- b) Showing a clear method, find the probability that Roy achieves
 - i. ... no sales in 15 visits.
 - **ii.** ... more than 3 sales in 20 visits.
- c) Calculate the least number of visits that Roy needs to make for the probability of at least 1 sale, to exceed 0.99.

The probability of Ned making a sale on a house visit is 0.15.

- **d**) If Roy and Ned make 20 house visits **each**, determine the probability that they will make ...
 - **i.** ... 2 sales each.
 - **ii.** ... a total of 5 sales between them.

Ned makes 240 house visits in a given week.

e) Use a Normal approximation, to find the probability that Ned achieves more than 30 sales in these 240 visits.

[0.4633], [0.0159], [n = 90], [0.0433], [0.167], [0.8399]

a Th	12.	S.	
 Physo TEALS The OPENALG OPENALG OPENALG<!--</th--><th> (a) OCCANTRACT AND AND AND AND AND AND AND AND AND AND</th><th>(2) $\frac{f_{0}(4,4,4')}{7} + \frac{1}{2} \frac{f_{0}(2,4,0')}{7} = 36$ $\frac{1}{7} \sim E(2,20_{1},0,12)$ $1,44_{0}(3) = 764_{0}(2,0') = 36_{0}$ $-10,40_{1}(2,0') = 30_{1}$</th>	 (a) OCCANTRACT AND AND AND AND AND AND AND AND AND AND	(2) $\frac{f_{0}(4,4,4')}{7} + \frac{1}{2} \frac{f_{0}(2,4,0')}{7} = 36$ $\frac{1}{7} \sim E(2,20_{1},0,12)$ $1,44_{0}(3) = 764_{0}(2,0') = 36_{0}$ $-10,40_{1}(2,0') = 30_{1}$	
$\begin{array}{c c} (c) & (c)$	$ \begin{array}{c} \textbf{X} & \forall \{x = 0\} & \in \left\{ \begin{matrix} 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\frac{W \cup N(w_1, w_0)}{P(y > w)} = \frac{P(y > w)}{P(y > w)}$	
$ \begin{array}{c} \Rightarrow & f(\times \gg)) > a \cdot y \\ \Rightarrow & -f(\times \otimes) > a \cdot y \\ \Rightarrow & -f(\times \otimes) > a \cdot y \\ \Rightarrow & -f(\times \otimes) > a \cdot a \\ \hline \\ \Rightarrow & -f(\times \otimes) > a \cdot a \\ \hline \\ \Rightarrow & (f_0) [(x_0)(\phi_0) < a \cdot a) \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ \hline \\ \Rightarrow & (g_0) [(x_0)(\phi_0) < a \cdot a) \\ \hline \\ $	$\begin{array}{l} & 866(\alpha-1)^{10} R^{10} $	> \$(-0418) > \$(-0418)	
$ \begin{array}{cccc} & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a an	
й <mark>н = %</mark>	Alteria o often ta tribut attrit of 0.161		

Question 15 (****)

In a certain village market, eggs are sold in boxes of 12.

The probability that a box will contain double yolked eggs is 0.15.

Determine the probability that...

- a) ... an egg picked at random from a box will be double yolked.
- **b**) ... in 20 boxes at least 13 boxes but less than 19 boxes will <u>not</u> contain double yolked eggs.

	, 0.0135, 0.8185
٩)	X = Nouldre of Double Youtho 6665 X ~1B(B, P)
1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6)	$\frac{\gamma}{\gamma} = NUMECR of some million local value for the solution of the solut$
	$P(B \leq Y < 19) = P(B \leq Y < 18)$ $= P(Y \leq 18) - P(Y \leq 12)$ $= 0.005 q_2$ $\simeq 0.005 q_2$

14

ð

Question 16 (****)

Daniel takes part in a quiz where he has to answer 12 Geography questions.

The probability that Daniel answer any one of these questions correctly is assumed to be constant at 0.8. Daniel wins £100 for each correct answer but loses £50 for an incorrect answer.

Let X denote the number of questions Daniel answers correctly.

Let W denote total amount that Daniel wins at the end of the quiz.

- **a**) Find the mean and variance of X.
- **b**) Determine, indicating your reasoning, the most likely value of X.
- c) Calculate the mean and variance of W

[E(X) = 9.6], [Var(X) = 1.92], [10], [E(W) = 840], [Var(W) = 43200]

-	
	X = NUMBER OF GIVENOVENO CAREFERY $X \sim \mathcal{B}(D_{1},0.6)$
م)	$E(X) = np = 12 \times 0.69 = 9.6$ $Var(X) = np(1-p) = 9.6 \times 0.2 = 1.92$
L)	MIND THE EXPECTION VALUE OF 26
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
c)	Suppose Danim answers × creeker
	$ \begin{aligned} &\mathcal{W} = & \chi \star (\infty + (12 - \chi) (-s)) \\ &\mathcal{W} = & 100 \chi - & 600 + 50 \chi \\ &\mathcal{W} = & 150 \chi - 600 \end{aligned} $
	Now we those
	E(W) = E(150X - 600) = 150 E(X) - 600 = 150 × 9.6 - 600 = 840
	$Var(w) = Var(150 \times -600) = 150^{2} Var(X)$ = 22500 × 1.92 = 43200

Question 17 (****)

The random variable X has the distribution B(20,0.8).

a) Find P(X > 14).

The random variable Y has the distribution B(4,0.4).

b) Find P(Y=3).

Three independent observations Y_1 , Y_1 and Y_1 are recorded.

c) Determine $P(Y_1 + Y_3 + Y_3 = 10)$.

and the second second			and the second se	
3	,	0.8042,	0.1536,	0.00249
<i></i>	-			F.A.

a	X~B(2010.8)				
	$P(X > 14) = P(X \ge 15) = 1 - P(X \le 14)$ = 1 - 0.19579 = 0.8042				
ų	$\frac{Y \sim \mathbb{R}(\mathcal{L}_1 \circ \mathbf{q})}{\mathbb{P}(Y=3)^{-1} \begin{pmatrix} \frac{4}{3} \end{pmatrix} \circ \mathbf{q}^3 \circ \mathbf{e}^5 = \underbrace{\circ \cdot \mathbf{l} \leq 2\mathbf{e}}_{\mathbf{q}}$				
-)	USTING OUTWHS				
	• 3,3,4 (3 waxs) 4,4,2 (3 waxs)				
	$P(Y=2) = {\binom{b}{2}} \circ F^2 \circ 6^2 = 0.3456$ $P(Y=3) = 0.1526 (Parr b)$				

$$\begin{split} P(Y=3) &= & 0 \cdot i_{336} \quad (\exists M r \ b) \\ P(Y=4) &= & (\overset{*}{*}) \circ 4^{+} \circ 6^{+} = & 0 \cdot o_{236} \\ P(Y_{1}+Y_{2}+Y_{1}=i_{0}) &= & P(3_{13}A_{1}) + P(4_{13}A_{1}) + P(4_{13}A_$$

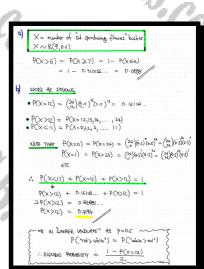
 $+i(4_{1},2_{1},4_{1}) + i(2,i_{1},4_{1})$ $= 0.155\sqrt{2} \cdot 0.0254 \times 3$ + $0.025\sqrt{2},33,3354 \times 3$

è

= 0-09249

Question 18 (****)

Of a particular variety of rose bush, half produce red flowers and the rest produce white flowers.


A selection of 9 rose bushes of this variety, are bought.

a) Find probability that more than 6 of these bushes will produce red flowers.

Another selection of 24 rose bushes of this variety are bought.

b) Determine the probability that more bushes will produce red flowers than white flowers.

You may not use cumulative probabilities or distributional approximations in this part.

0.0898 , 0.4194

Question 19 (****)

The discrete random variables X and Y are independent from one another and are defined as

 $X \sim B(16, 0.25)$ and $Y \sim Po(2)$.

- **a**) Find the value of Var(XY).
- **b**) Determine P(XY = 3)

	<u> </u>
a) wolk as follows	
• X~ B(16,025)	• Y~ fo(2)
 E(x) = hp = Kx0x=4 Val(X) = hp(1-p) = 4x0.75 	 €G1=2. Var(Q)=2.
NOW WE HAVE	
• $E(\chi^2) = Var(\chi) + (E(\chi))$ • $E(\chi^2) = 3 + b^2 = 19$	$\begin{bmatrix} 2 \\ \bullet \in CY^2 \end{pmatrix} = \sqrt{\operatorname{kar}(Y)} + \begin{bmatrix} E (Y_1)^2 \\ \bullet E (Y^2) \end{bmatrix} = \begin{bmatrix} 2 + 2^2 \\ \bullet \end{bmatrix} \in C$
F(XY)= F(X)F(Y)= F(XY2)= F(X242)= F	4×2 = B (x) E(x)= 19×6 = 114
Finally we that	
⇒Var(X7)= E((X7)=) ⇒Var(X7)= 114-82 ⇒Var(X7)= 50	
	$\begin{array}{l} P(j \in \underline{J}) + & \overline{P}(j \in \underline{Z}) \overline{P}(j \in \underline{J}) \\ (p_1 T^{(j)}) \times & \underbrace{\overline{C}^{(j)} Z^{(j)}}_{\underline{Z},\underline{J}} + & \underbrace{\binom{N}{2}}_{\underline{Z}} \underbrace{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{J}}_{\underline{J}} + \underbrace{\binom{N}{2}}_{\underline{Z}} \underbrace{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{J}}_{\underline{J}} \\ (p_1 T^{(j)}) \times & \underbrace{\overline{C}^{(j)} Z^{(j)}}_{\underline{Z},\underline{J}} + & \underbrace{\frac{N}{2}}_{\underline{Z}} \underbrace{\mathbb{O}}_{\underline{Z}} (p_1 T^{(j)}) \\ (p_1 T^{(j)}) \times & \underbrace{\mathbb{O}}_{\underline{Z}} \underbrace{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \\ (p_1 T^{(j)}) \times & \underbrace{\mathbb{O}}_{\underline{Z}} \underbrace{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \\ (p_1 T^{(j)}) \times & \underbrace{\mathbb{O}}_{\underline{Z}} \underbrace{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} \\ (p_1 T^{(j)}) \times & \underbrace{\mathbb{O}}_{\underline{Z}} \underbrace{\mathbb{O}}_{\underline{Z}} \widehat{\mathbb{O}}_{\underline{Z}} $
	a + 0.0562659
= 0.0659	

Var(XY) = 50, $P(XY = 3) \approx 0.0659$

(****) Question 20

The discrete random variables X and Y are independent from one another and are defined as

> and $Y \sim B(6, 0.4)$. $X \sim B(4, 0.5)$

- **a**) Find the value of Var(XY).
- **b**) Determine P(XY = 0)

· · · ·	50		
0)	· >	· 1	2
∇ , $Var(XY)$)=12.96, P($XY = 0) = \frac{332}{3125} = 0.10624$	
193		TOD_	
a) $(X \wedge B(4_{10}S))$ $(Y \wedge B)$	6,04	P(X = 0) = P(X = 0) P(Y = 0) + P(X = 0) P(Y = 0) + P(X = 0) P(Y = 0) $= P(X = 0) [1 - P(Y = 0)] + P(Y = 0) [1 - P(X = 0)] + P(X = 0) P(Y = 0)$	
START BY COMPUTING EXPRESSIONS FOR ECX2) ę E(Y ²)	(AULATE P(X=0) & PG(=0) FRET	
	NP = 6×04 = 2.4 =np(1-p)= 2.1×0.6= 1.44	$\frac{1}{\partial J} = 4^{2} \cdot 0^{-2} \cdot (\frac{1}{\partial J}) = (\partial X)^{2}$	
USING Var(T) = E(T ²) - (E(T)) ² With FAC	H GARRESON)	$f(\lambda = 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \theta \theta_0 \theta \theta_0 \theta \theta_0 = \frac{154}{8422}$	
$E(X^2) = Var(X) + (E(X))^2$ $E(Y^2) =$ $E(X^2) = 1 + 2^2$ $E(Y^2) =$ $E(X^2) = 5$ $E(Y^2)^2$	1.44 + 2.42	$\frac{1}{1425} \frac{1}{42} \frac{1}{16} \left(-\frac{223}{1627} \right) + \frac{1}{128} \frac{1}{1625} \left(1 - \frac{1}{16} \right) + \frac{1}{16} \times \frac{1}{1625} $ $= \frac{1}{16427} + \frac{3}{16677} + \frac{729}{700000} + \frac{729}{700000}$	3
THUALLY THE UNLIANCE OF XY OW BE FOUND		$= \frac{32}{325} = 0.10(24)$	
$E(XY) = E(X)E(Y) = 2 \times 24 = 48$ $E(X^2Y^2) = E(X^2)E(Y^2) = 5 \times 7.2 = 36$		= 0.10624 HUTGENTRY: APPENDI P(XY=0) = P(X=0) + P(Y=0) - P(X=0.0) - 0)	
: Var(XY) = E((XY)2) - [E(XY)]2		$L(X\lambda = 0) = L(X=0) + L(\lambda=0) - L(X=0)L(X=0)$ $= L(X=0) + L(X=0) - L(X=0)L(X=0)$	
$Var(XY) = E(X^2Y^2) - [E(XY)]^2$		$\frac{1}{12}\sum_{i=1}^{2}\sum_{j=1}^{2}\sum_{i=1}^{j}\sum_{j=1}^{2}\sum_{i=1}^{2}\sum_{j=1}^{2}\sum_{j=1}^{2}\sum_{j=1}^{2}\sum_{i=1}^{2}\sum_{j=1}^{2}\sum$	
$Var(xy) = 36 - 4.8^{2}$ $Var(xy) = 12.46$		$= \frac{332}{312.5}$ $= \frac{0.10621}{100000000000000000000000000000000000$	
		AN REQUE	

5

1+

Created by T. Madas

Question 21 (****)

It has been established over a long period of time that in a particular variety of rose bushes, 0.2 produce pink flowers.

A selection of 10 rose bushes of this variety, are bought.

- a) Find probability that more than 4 of these bushes will produce red flowers.
- **b**) Calculate the least number of rose bushes that need to be bought so that the probability of producing at least 1 plant with pink flowers exceeds 0.975.

Another selection of 125 rose bushes of this variety are bought.

c) Use a Normal distribution approximation to determine the probability that the number of bushes which will produce pink flowers will be more than 21 but no more than 30.

Finally a selection of 25 rose bushes of the same variety are considered. When these rose bushes flowered they produced 10 plants with pink flowers.

d) Stating your hypotheses clearly, test at the 1% level of significance, whether this constitutes evidence that this variety of rose bushes have a higher probability than 0.2 in producing pink flowers.

[0.3704], [n=17], [0.673], not significant 1.73% > 1%

X~B(290-2) P(x≥s)-P(X≥1) > 0.925 259·0 < (0 - ×)9 (0=×)9 > 250 > log (0.025) (1) (non (non) log(0.8) < log(0.025 <NB(185,02 = 25 × 0-8 = 2 P(2) < x < 301 $P(22 \leq X \leq 20)$ 7(21.5 < Y < 30.5) P(Y<30.5) - P(Y<21.5) = PCX<30.5) - [] - PCX>215] (Y<305) + P(Y>215)-

 $= \int \left(S \leq \frac{N_{20}}{3^{6} - 2}\right) + b\left(S \geq \frac{N_{20}}{5^{7} - 72}\right) - 1$ = = = (1.23) + (-0.78) -1 = 0.8907 + 0.7823 - 1 0.673 SETTING 4/17074(565 FOR X~B(25102) H1: 2002 AF IP THE PROPORTION OF TIME FLOWERING BUBHER IN STING AT 1 % SURVIFICANTE ON THE BASIC X= 10 P(X>10) = 1-P(x=1) = 1 - 0 9907 = 0.0173 = 1.73% > 1%

Нее и и линнал бланса ат их таат таа реопектой и Сидате таан 0.2 - Излатскот блодие то колат-А

Question 22 (****)

In this question you may **only** use the binomial table in the following page if you require **cumulative** probabilities.

Elastic cat collars are available in boxes of 50 collars and in two different varieties, standard and fluorescent. The proportions of different colours of these cat collars in the two varieties are shown in the tables below.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N		- 7 <i>I</i> 7
Standard Colour	Red	Blue	White	Black
Proportion	0.175	0.4	0.325	0.1
		-		

Fluorescent Colour	Yellow	Pink	Green	Orange
Proportion	0.18	0.4	0.15	0.27

A box of 50 standard colour cat collars is selected at random.

- a) Determine the probability that this box will contain ...
 - i. ... exactly 6 red cat collars.
 - ii. ... at least 15 but less than 25 blue cat collars.

Next, another box of 50 standard colour cat collars and a box of 50 fluorescent colour cat collars are selected at random.

b) Determine the probability that in these 100 cat collars there will be ...

i. ... no black collars

ii. ... fewer than 20 blue or black cat collars **and** more than 30 yellow or orange cat collars.

Finally, another box of 50 fluorescent colour cat collars are selected at random.

c) Determine the probability that in these cat collars there will be at least 25 but less than 33 cat collars, that are **not pink**.

, 0.0962, 0.8482, 0.0052, 0.0012, 0.7058

[solutions overleaf]

às Illains.Co

Madasma

F.G.D.

1.1.6

madasman

aths Com

GB-Madasm

201

12	142	0.		Ţ,	ろ			Y	þ	<u>ь</u>		20
Sp.		Dar.	C	reat	ed by	7 T. I	Mada	as	TU,	0)	
	0	- as					C	2.				>
-0	Co. =						-0				~	Co.
	200	$\begin{array}{c c} p = & 0.05\\ \hline n = 50, x = 0 & 0.0769 \end{array}$	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0
2			0.1117		0.0013	$0.0000 \\ 0.0001$		$0.0000 \\ 0.0000$	$0.0000 \\ 0.0000$		0.0000 0.0000	× .
				0.0460 0.1121	0.0057 0.0185		$0.0000 \\ 0.0002$	$0.0000 \\ 0.0000$	$0.0000 \\ 0.0000$	$0.0000 \\ 0.0000$	0.0000 0.0000	
11		5 0.9622 6 0.9882		0.2194	0.0480 0.1034		0.0007		0.0000	0.0000	0.0000	h
	2	7 0.9968		0.5188	0.1904 0.3073	0.0453	0.0073	0.0008	0.0001	0.0000	0.0000	
- 6	A 1		0.9755	0.7911		0.1637	0.0402	0.0067	0.0008	0.0001	0.0000	h
	0	11 1.0000	0.9968	0.9372	0.7107	0.3816	0.1390	0.0342	0.0057		0.0000 0.0000	100
2.2	· h	12 1.0000 13 1.0000	0.9997		0.8139 0.8894					0.0018 0.0045	0.0002 0.0005	19
05		14 1.0000 15 1.0000		0.9947 0.9981			0.4468 0.5692				0.0013 0.0033	- M
20	14	16 1.0000 17 1.0000	1.0000 1.0000	0.9993 0.9998	0.9856	0.9017		0.3889	0.1561	0.0427		
100			1.0000 1.0000	0.9999	0.9975 0.9991	0.9713	0.8594	0.6216	0.3356	0.1273	0.0325	
91	2	20 1.0000	1.0000	1.0000	0.9997	0.9937	0.9522	0.8139	0.5610		0.1013	¢
	10	21 1.0000 22 1.0000	1.0000 1.0000		1.0000	0.9990		0.9290	0.7660	0.5019	0.2399	0
	"Co	23 1.0000 24 1.0000	1.0000 1.0000	$1.0000 \\ 1.0000$	$1.0000 \\ 1.0000$		0.9944 0.9976					Co.
ξ.	-01	25 1.0000 26 1.0000	1.0000 1.0000	1.0000 1.0000		1.0000 1.0000	0.9991 0.9997		0.9427 0.9686	0.8034 0.8721		
2		27 1.0000 28 1.0000	1.0000 1.0000	1.0000	1.0000	1.0000	0.9999	0.9981	0.9840	0.9220	0.7601	
		29 1.0000 30 1.0000	1.0000 1.0000		1.0000 1.0000	1.0000		0.9997	0.9966			
		31 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9995	0.9947	0.9675	
	-	32 1.0000 33 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999		0.9923	2
10	\mathcal{O}_{λ}	34 1.0000 35 1.0000								0.9997 0.9999		N
,	SP I	36 1.0000 37 1.0000								1.0000		5
5		38 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	· >>
21	0.		Y	(\mathcal{P})	2		-		2			
42		a(t) = 0.0000000000000000000000000000000000	Z			0 57	= NUMBRE OF N	KON-PINE COUR	<u>a</u> 3		· .	19
100		$P(X=C) = {x_0 \choose c} {0.175}$	3 (³⁴ = <u>0.0342</u> /	\$		ET.	~B(50,0.6) P(25≤T<	38) = P(25	J ≤ T ≤ 32.)			
	212	I) $Y = NUMBER of BUG CAT Y \sim B(: SO_1 O.4)$	counted			26	NODEL -45	CAN	का अस्त मान गत	914L		
	6	P(15< > <25) = P(153 = 0.902	≤y≤24) = R 2-00540= E		ή)		st = NUMBER OF \$~B(so(0.4)		3		20	1
	VS.	b) I) IRBELENDET FOR THIS PAPER	000	m	of BACK COURS }			5 26 27 28 5 24 23 22	29 30 3 21 20 14	1.32. 18	1	12
2	Co.	LWN B(SO, D. Q)	m)	P EW~B(sqo	m	\Rightarrow	P (25 5 T < 3)		'≈ ≤ 25) 25) - PÇ\$≤1	r)	1	40
2	- D	P(w=sv) - (8)(r1)(0 = <u>0.0052</u>		P(iv=o) = (0=) = 000	×2_			= 0.9427 - = 0.7058			- -	20
0	- V	I) E U= WILLER OF BUCK OF BAR	ستا لر	NUMBER OF YELOW O	unus							-0
Y X		P(U<20) = P(U≤19) = 0-1013	PG	(>30)= PCV≥ = 1- PC								1

			-
2o. 19	a) I) { X = VULBER of BB (ULAR) X ~ B(so, 0.175)		
	$b(\times - c) = \begin{pmatrix} e \\ 20 \end{pmatrix} (e \cdot 152)_{e} (e \cdot 622)_{bb} = 0$	0902-/-	P
1211	I) $Y = NOMEFL of BOUE ON COUNCIL Y \sim B(S_0, p_4)P(S \leq y < \infty) = P(S \leq y < 24)= 0.402 - 0.05$		IEMOT S=
	b) I) IRBELLIANT FOR THIS RAPET THE SO		
"COn	$\begin{array}{c} (W_{2} = NUMBER of NEP BLACE COLORW \sim B(S_{0}, 0.9)P(W_{2} = 0) - (50)(0.1)(0.1)^{0}$	$\left. \begin{array}{c} \left. \end{array}\right) \right\rangle & \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right) \right\rangle \\ \left. \begin{array}{c} \left. \end{array}\right) \right\rangle & \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right) \right\rangle \\ \left. \begin{array}{c} \left. \end{array}\right) \right\rangle & \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right) \right\rangle \\ \left. \begin{array}{c} \left. \end{array}\right) \right\rangle & \left. \begin{array}{c} \left. \begin{array}{c} \left. \end{array}\right) \right\rangle \\ \left. \end{array}\right) \right\rangle \\ \left. \begin{array}{c} \left. \end{array}\right) \\ \left. \begin{array}{c} \left. \end{array}\right) \left\langle \left. \begin{array}{c} \left. \end{array}\right) \right\rangle & \left. \\ \left. \end{array}\right) \left\langle \left. \right\rangle \right\rangle \\ \left. \end{array}\right\rangle \\ \left. \begin{array}{c} \left. \end{array}\right) \left\langle \left. \begin{array}{c} \left. \end{array}\right) \left\langle \left. \right\rangle \right\rangle \\ \left. \end{array}\right\rangle \\ \left. \left. \right\rangle \\ \left. \end{array}\right) \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \left\langle \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \right\rangle \right\rangle \\ \left. \left. \left. \right\rangle \right\rangle \right\rangle \\ \left. \left. \left. \right\rangle \right\rangle \\ \left. \left. \left. \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \\ \left. \left. \left. \left. \right\rangle $	9 (
, '0	= 0.0052 I) () = NULBER OF BUX OF BLAC (0040) U.~ B(SQ0-3)	= 00052 {V=NNBR OF Yelew of complet county} V-NB(501045)	
1.1	P(U<20) = P(U≤10) ≈ 0.1013 ∴ BRUTON POREABULM = 0.1013 × 0	$P(y \ge a_0) = P(y \ge a_1)$ = 1- $P(y \le a_2)$ = 1- $P(y \le a_2)$ = 1- o_1be_4 = 0-0116	
Gp			4
. 1	a .	nan	
1		Created by	7 T. M
(2 ₀ .	20	1	2
	- Yoh		V.

T = NUMBER OF NON-PINK COULARS	
T~B(soloe)	
$P(25 \le T < 38) = P(25 \le T \le 32)$	
CANNOT WE THE TABLE	
26MOTEL-AS	
S= WUNBER OF PINK COLLARS S~ B(so, n.4)	
T: 25 26 27 28 29 30 31 32 5: 25 24 23 22 21 20 19 18	
S : 25 24 23 22 21 20 M 18 $\Rightarrow P(25 \le 7 \le 33) = P(18 \le 5 \le 23)$ $= P(5 \le 25) - P(5 \le 7)$	
= 0.1427 - 0.2369 = 0.7058	

Question 23 (****)

A discrete random variable X has distribution

$X \sim \mathbf{B}\left(6, \frac{1}{3}\right).$

a) Find P(X = 2).

Two independent observations of X, denoted by X_1 and X_2 are considered.

b) Determine the probability that the sum of these two observations will be less than 2.

<u>80</u> 243

≈ 0.3292

Eight independent observations of X are selected at random.

c) Determine the probability that half of these observations will be a 2.

$\times \sim B(c$	<u>7)</u>			
P(X=2) =	$\overline{\mathcal{E}}(\overline{f})_{r}(\overline{f})_{r}$	$=\frac{243}{80}$	0-3292	/
	$P(X_1 + X_2 < 2$			
P(X=0) × P(X=0) × P(X=1) ×	P(X=0) = [(\$) P(X=1) P(X=0)]= [[\$)(P(X=0)]	(3)(3) ² (3)(3) ² [(≈ 0.007707 j)(£)'(£) ⁵]× ≈ 0	2 WAXI 046244
or Reporte	s FROBLARIUMY IS	0.007707+	D-0462.44 ≃	0+20-0
Y= ₩ 0 Y~B(8	BOMWAITION) OF 2 BO 243)	Reon X		
	$-\begin{pmatrix} 8\\4 \end{pmatrix} \begin{pmatrix} \frac{80}{243} \end{pmatrix}^4 \begin{pmatrix} \frac{16}{243} \end{pmatrix}$	$\left(\frac{1}{3}\right) \simeq 0.16$	23	

≈ 0.0540, ≈ 0.1665

Question 24 (****+) A discrete random variable X has distribution

 $X \sim \mathrm{B}\left(8, \frac{1}{4}\right).$

Two independent observations of X, denoted by X_1 and X_2 are considered.

a) Determine $P(X_1 + X_2 \le 3)$.

Ten independent observations of X are selected at random.

b) Determine the probability that half of these observations will be a 2.

RV18(1)8 (0)(100)	5
$(0,3)$ $(3,0) = (3)(4)^{2}(4)^{2} \times (3)(4)^{2}(4)^{2}$ $(3,0) = (3)(4)^{2}(4)^{2} \times (3)(4)^{2}(4)^{2}$	× 2 WAYS = 0.044575
(1) = (1,2) = (1)(1)(1) = (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(P x 2 weys = 0 0623628
$(1,1)$ = $(9)(4)^{1}(4)^{7} \times (9)(4)^{1}(4)$	
$(o_1) = (e_1)(a_1)(a_2) = (o_1)(a_2)(a_1)(a_2) = (o_1)(a_2)(a_1)(a_2)(a_2)(a_2)(a_2)(a_2)(a_2)(a_2)(a_2$	€x 2 WAYL = 0.053453
(o ^l o) = (g)(村() × (g)(村()	e 0.010022
Y'TS AN OBSERVATION OF Z ROM 10 GOES"	
1~B(10, 0.3146)	
	$\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2} = \frac{1}{2}\left(\frac{1}{2}\right)^{2} \approx 0.31142$
$b(A = \hat{z}) = {\binom{2}{n}} (0.3146)^2 (1 - 0.3146)^2$	
= 0.1143	

≈ 0.405 , ≈ 0.1143

E.B.

1+

Question 25 (****+)

A multiple choice test consists of 25 questions, each question having 4 responses. Each correct answer gains 3 marks but each incorrect answer loses 1 mark.

Suppose a certain candidate chooses to answer all 25 questions at random, and let X be the number of correct answers that this candidate achieves.

- a) State the distribution of X, defining all relevant parameters.
- Let M be the number of marks that this candidate achieves.
 - **b**) Show clearly that the number of marks that this candidate is expected to achieve is zero.
 - c) Determine the variance of his marks.

In order to pass in this test at least 27 marks are required.

d) Find the probability that this candidate will pass the test, briefly commenting on his approach to this test.

(a) $X = A$ consider answer given at numbers ζ	So Var(M) = 16×75
$X \sim B(25, \frac{1}{4})$	Var(M) = 75
(b) $M = \times \times 3 - (25 - \times) \times 1$	
M = 3X - 2S + X	(d) P(M≥27)
M = 4x - 25	$= P(4x - 2s \ge 27)$
5	= P(4x≥52)
$E(M) = E(4X - 2S) \qquad \leq \qquad $	$= P(\times \geq 13)$
E(M) = 4E(X) - 25 5	$= 1 - P(\times \leq 12)$
BUT E(x)=np=25x4===	= looking at tables
.=(.)	= 1 - 0.9996
$E(M) = 4 \times \frac{25}{4} - 25 = 0$	= 0.0004
(c) $Var(M) = Var(4X-zs)$ = $16Var(x)$	NOT 4 GOOD APPLAAL AS THE CHANCE OF PASSING- IS PRACTICALLY ZENO
$BO[V_{0,C}(X) = hP(I-P) = \frac{25}{4} \times \frac{3}{4} = \frac{25}{16}$	4 440

Var(M) = 75, |0.0004|

Question 26 (****+)

During hot days, an ice cream van sells a large number of ice cream cones containing either 1, 2 or 3 scoops of ice cream.

The respective probabilities of a customer buying a 1, 2 or 3 scoop ice cream cone are $\frac{1}{6}$, $\frac{1}{2}$ or $\frac{1}{3}$.

A random sample of n customers is examined, each customer having bought an ice cream cone from this van. The probability that more than n scoops of ice cream are ordered by these n customers is greater than 0.9999.

Determine the smallest possible value of n.

n,	xe	60	15	FUELS
	-			

 $\begin{array}{c} \Rightarrow \widehat{\gamma}\left((\operatorname{del} T_{P}) + \operatorname{form}^{-1}\right) \\ \Rightarrow \widehat{\gamma}\left((\operatorname{del} T_{P}) + \operatorname{scores}^{-1}\right) \\ & \widehat{\gamma}\left((\operatorname{del} T_{P}) + \operatorname{scores}^{-1}\right) \\ & \widehat{\gamma}\left((\operatorname{del} T_{P}) + \operatorname{scores}^{-1}\right) \\ \Rightarrow \widehat{\gamma}\left((\operatorname{del} T$

Question 27 (****+)

The probability that a student answers correctly the first question, of a multiple choice exam, is 0.2.

A random sample of 30 students which sat this exam is considered.

a) Determine the probability that more than 5 but at most 10 students answered the first question correctly.

Students earn 5 marks for answering the first question correctly but loose 2 marks for answering incorrectly.

b) Find the probability that the total number of marks scored by all 30 students, in answering the first question, is more than 17.

$X \sim B(3)$	e e studius what anware correctly the first question (0,02)
) P(5<×	<10) = P(6<×<10)
	$= P(x \le b) - P(x \le b)$
	= 0.97438 0.42751 = 0.5469
	= 0.3469
Τ = τυτ	AL MARKS OF THE 30 STUDIESTS YOU THE FIRST QUESTION
T = X:	(5 - (30-X)×2
T = X: T = 5×	<5 - (30-X)×2
T = X:	<5 - (30-X)×2
Τ = Χ; Τ = 5× Τ = 7ξ	<5 - (30-X)×2
T = X; T = 5× T = 7x	$5 - (8_0 - x) \times 2$ + 2x - 60 -60 7) = P(7x-60> 17)
Τ = Χ; Τ = 5× Τ = 7ξ	$5 = (8_0 - x) \times 2$ + $2x = 40$ - 60 7) = P(7x - $60 > 17)$ = P(7x - 577)
T = X; T = 5× T = 7x	$\begin{array}{l} 5 - (80 - x) \times 2 \\ + 2x - c0 \\ - 60 \\ 7) &= P((7x - 60 > 17) \\ = P((7x - 50 > 17) \\ = P((7x > 17) \\ = P((x > 11) \end{array}$
T = X; T = 5× T = 7x	$\begin{array}{l} 5 - (3_0 - \chi) \times 2 \\ + 2\chi - c_0 \\ - 60 \\ 7 \\ - P(7\chi - c_0 > 1/) \\ - P(7\chi - c_0 > 1/) \\ - P(7\chi - \gamma_1) \\ - P(\chi > 1/) \\ = P(\chi > 1/) \\ = P(\chi > 1/) \\ + P(\chi > 1/) \\ \end{array}$
Τ = Χ; Τ = 5× Τ = 7ξ	$(5 - (30 - x)) \times 2$ + $(2x - 40)$ - 60 7) = P($(7x - 60 > 12)$ = P($(7x - 577)$ = P($(x - 577)$ = P($(x - 577)$ = P($(x - 577)$ = P($(x - 577)$
T = X; T = 5× T = 7x	$\begin{array}{l} 5 - (3_0 - \chi) \times 2 \\ + 2\chi - c_0 \\ - 60 \\ 7 \\ - P(7\chi - c_0 > 1/) \\ - P(7\chi - c_0 > 1/) \\ - P(7\chi - \gamma_1) \\ - P(\chi > 1/) \\ = P(\chi > 1/) \\ = P(\chi > 1/) \\ + P(\chi > 1/) \\ \end{array}$

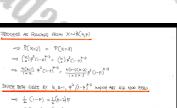
0.5469

, 0.0095

Question 28 (*****)

F.G.B.

I.C.B.


It is given that the discrete random variable X satisfies

 $X \sim B(n, p)$.

Given further that P(X = 2) = P(X = 3), show that

 $\mathrm{E}(X) = 3 - p \, .$

È.G.B.

= E(x) = MAAN = 3-9

manasn

200

As Exputero

20

i.C.B.

hs.com

proof

1.4

nadasm.

madası,