Created by T. Madas

Created by T. Madas

Question 1 (**)
When $f(x)$ is divided by $\left(x^{2}+1\right)$ the quotient is $(3 x-1)$ and the remainder is $(2 x-1)$.

Determine an expression for $f(x)$.

$$
f(x)=3 x^{3}-x^{2}+5 x-2
$$

Question 2 (***)
Find the three solutions of the cubic equation

$$
2 x^{3}-x^{2}=7 x-6
$$

$$
x=-2,1, \frac{3}{2}
$$

\square
\square

Question 3 (***)
Find the quotient of the division of

$$
2 x^{6}-3 x^{5}-2 x^{4}+2 x^{2}-88 x+168 \quad \text { by } \quad x^{2}-4 x+4
$$

$$
2 x^{4}+5 x^{3}+10 x^{2}+20 x+42
$$

Question 4 (***)

$$
\frac{x^{4}+1}{x^{2}+1} \equiv A x^{2}+B+\frac{C}{x^{2}+1}
$$

Find the value of each of the constants A, B and C.

Question 5 (***+)
A quintic polynomial is defined, in terms of the constants a and b, by

$$
f(x)=x^{5}+a x^{4}+b x^{3}-x^{2}+4 x-3 .
$$

When $f(x)$ is divided by $(x-2)$ the remainder is -7 .

When $f(x)$ is divided by $(x+1)$ the remainder is -16 .
a) Determine in any order the value of a and the value of b.
b) Find the remainder when $f(x)$ is divided by $(x-2)(x+1)$.

Created by T. Madas

Question 6 (***+)
A polynomial $p(x)$ is defined, in terms of a constant a, by

$$
p(x)=x^{4}+2 x^{3}+9 x+a .
$$

When $p(x)$ is divided by $x^{2}-x+2$ the quotient is $x^{2}+b x+1$ and the remainder is $c x+5$, where b and c are constants.

Find the value of a, b and c.

Question 7 (***+)

$$
x^{3}+\left(2-\frac{1}{5} k\right) x^{2}+(2 k+1) x+20=0 .
$$

a) Determine the value of the real constant k, if the above equation is to have $x=1$ as one of its roots.
b) Solve the equation for the value of k, found in part (a).

$$
k=10, x=-5,4,1
$$

Question 5 (***+)
The following information is given for a polynomial $f(x)$.

- When $f(x)$ is divided by $(x-2)$ the remainder is 5 .
- When $f(x)$ is divided by $(x+2)$ the remainder is -11 .
- When $f(x)$ is divided by $(x+2)(x-2)$ the remainder is $a x+b$, and the quotient is $g(x)$, where a and b are constants.
a) Determine the value of a and the value of b.

It is further given that

$$
f(x)=3 x^{4}+p x+q
$$

where p and q are constants.
b) Find a simplified expression for $g(x)$.
$\square, a=-4, b=3, g(x)=3\left(x^{2}+4\right)$

Hasce we thoce
$f(x)=(x-2)(x+2) g(x)+a x+b$
$3 x^{4}+p x+q \equiv\left(x^{2}-4\right) g(x)+b x-3$
$3 x^{4}+4 x-51 \equiv\left(x^{2}-4\right) g(x)+4 x-3$
$3 x^{4}-48=\left(x^{2}-4\right) g(x)$
$3\left(x^{4}-16\right) \equiv\left(x^{2}-4\right) g(x)$
$3\left(x^{2}-4\right)\left(x^{2}+4\right) \equiv\left(x^{2}-4\right) g(x)$
By conparison $\left.g(x)=3 x^{2}+4\right)$
HHE brout GeN Asso be Dont Jut te Grod by wna musion:

Created by T. Madas

Created by T. Madas

Question 9 (****)

$$
f(x)=x^{3}+(a+2) x^{2}-2 x+b
$$

where a and b are non zero constants.

It is given that $(x-2)$ and $(x+a)$ are factors of $f(x), a>0$.
a) By forming two equations show that $a=3$ and find the value of b.
b) Solve the equation $f(x)=0$.

$$
b=-24, x=-4,-3,2
$$

\square

Question 10 (****)
When the polynomial $f(x)$ is divided by $(x-2)$ the remainder is 7 .

When $f(x)$ is divided by $(x-3)^{2}$ the remainder is $(4 x+17)$.

Find the remainder when $f(x)$ is divided by $(x-2)(x-3)$.

Question 11 (****)
A polynomial $p(x)$ is given by

$$
p(x)=4 x^{3}-2 x^{2}+x+5 .
$$

a) Find the remainder and the quotient when $p(x)$ is divided by $x^{2}+2 x-5$.

A different polynomial $q(x)$ is defined as

$$
q(x)=4 x^{3}-2 x^{2}+a x+b
$$

b) Find the value of each of the constants a and b so that when $q(x)$ is divided by $x^{2}+2 x-5$ there is no remainder.

$$
R=41 x-45, Q=4 x-10, \quad a=-40, b=50
$$

$$
5
$$

\square
 $\left.\left.\begin{array}{l}q(0)=b=-5 c \\ q(1)=4-2+a+b=-2(4+c) \\ q(2)=32-8+2 a+b=3(8+c)\end{array}\right\} \Rightarrow \begin{array}{l}b=-5 c \\ 2+a+b=-8-2 c \\ 24+2 a+b=24+3 c\end{array}\right\} \Rightarrow \begin{aligned} & \text { sus (1) } \\ & \text { int } \\ & \text { (2) })(3)\end{aligned}$ $\left.\left.\left.\begin{array}{r}2+a-5 c=-8-2 c \\ 24+2 a-5 c=24+3 c\end{array}\right\} \Rightarrow \begin{array}{c}a-3 c=-10 \\ 24-8 c=0\end{array}\right\} \Rightarrow \begin{array}{l}a-3 c=-10 \\ a-4 c=0\end{array}\right\} \Rightarrow$ $\therefore \quad \begin{aligned} & \quad \text { SNBTEAC } \\ & c=-10\end{aligned}$

Created by T. Madas

Question 12 (****+)

$$
f(x) \equiv x^{4}-9 x^{3}+30 x^{2}-44 x
$$

The polynomial $f(x)$ satisfies the relationship

$$
f(x) \equiv(x-3)(x-A)^{3}+B,
$$

where A and B are constants.
a) Find the value of A and the value of B.

The polynomial $f(x)$ also satisfies the relationship

$$
f(x) \equiv(x+3)^{2} g(x)+P x+Q, \text { where } P \text { and } Q \text { are constants. }
$$

b) Find the value of each of the constants P and Q.
$A=2, B=-24, P=-575, Q=-999$

Created by T. Madas

Question 13 (****+)

$$
f(x) \equiv 9 x^{4}+24 x^{3}-32 x-16
$$

The polynomial $f(x)$ has linear factors

$$
(x+2) \text { and }(3 x+2)
$$

a) Show that the roots of the equation $f(x)=0$ are

$$
\alpha, 3 \alpha, \beta \text { and }-\beta
$$

where α and β must be stated in exact form if appropriate.
b) Hence determine a cubic equation with integer coefficients with roots
$-2 \alpha, \beta-3 \alpha$ and $-\beta-3 a$.

$$
\alpha=-\frac{2}{3}, \beta=-\frac{2}{3} \sqrt{3}, 9 x^{3}-48 x^{2}+72 x-32=0
$$

\square

Question 14 (****+)
A polynomial $f(x)$ is defined by

$$
f(x) \equiv 2 x^{6}+a x^{5}+b x^{4}+2 x^{2}
$$

where a and b are constants.

When $f(x)$ is divided by $(x-2)(2 x+1)$ the remainder is $(3 x+2)$.
a) Determine the value of a and the value of b.

When $f(x)$ is divided by $(x-2)^{2}$ the quotient is $h(x)$ and the remainder is $(A x+B)$, where A and B are constants..
b) Find ...
i. ... the value of A and the value of B.
ii. $\quad \ldots$ an expression for $h(x)$.
$a=-3, \quad b=-2, \quad A=88, \quad B=-168, h(x)=2 x^{4}+5 x^{3}+10 x^{2}+20 x+42$

Question 15 (******)
A polynomial in x satisfies the relationship

$$
f(x)=\left(x^{2}-4\right) g(x)+A x+B
$$

where A and B are constants.
a) Find the value of A and the value of B, given that $f(2)=5$ and $f(-2)=-7$.

It is now given that the polynomial in x also satisfies the relationship

$$
f(x)=(x-2)^{2} h(x)+C x+D
$$

b) Find the value of each of the constants C and D, given that $f^{\prime}(2)=31$.
c) Given further that $g(x)=3 x+1$, find $h(x)$.
$A=3, B=-1, C=31, D=-57, h(x)=3 x+13$

Question 16 (*****)
A polynomial in x is given by
$f(x)=x^{8}+k x^{5}-27 x^{2}-13$, where k is a constant.

The polynomial also satisfies the relationship

$$
f(x)=(x-1)^{2} g(x)+A x+B \text {, }
$$

where A and B are constants.

Find the value of A and the value of B, given that $f(2)=7$

Created by T. Madas

Question 17 (*****)

$$
f(x) \equiv A x^{5}+B x^{4}+8 x^{2}
$$

where A and B are non zero constants.

The polynomial $f(x)$ satisfies the relationship

$$
f(x) \equiv(2 x-1)(x-2) g(x)+169 x-82 .
$$

a) Find the value of A and the value of B.
b) Determine the polynomial $g(x)$.

The polynomial $f(x)$ also satisfies the relationship

$$
f(x) \equiv(x+2)^{2} h(x)+P x+Q
$$

where P and Q are constants.
c) Find the value of each of the constants P and Q.
\square ,$A=4$, \square
\square $P=96, Q=192$ $g(x) \equiv 2 x^{3}+8 x^{2}+18 x+41$

a) Af The Two expetslan of $f(a)$ tis DNTict L, wo max TEY DIffinint strisible Vhaws of x To Euminatt. $\begin{aligned} & f(x) \equiv A x^{x}+B x^{4}+8 x^{2} \equiv(2 x-1)(x-2) g(x)+169 x-82 \\ & f(2) \equiv 32 A+16 B+32=0+336-82 \\ & f(t) \equiv \frac{1}{32} A+\frac{1}{16} B+2=0+\frac{169}{2}-82 \end{aligned}$ TiDM THf GPuatlons \& Sowt $\begin{aligned} & \left.\begin{array}{l} 32 A+16 B=224 \\ \frac{1}{32} A+\frac{1}{6} B=\frac{1}{2} \end{array}\right\} \Rightarrow \begin{array}{l} 2 A+B=14 \\ A+2 B=16 \end{array} \\ & B=14-2 A \\ & \Rightarrow A+2(14-2)=16 \\ & \Rightarrow A+2 B-4 A=16 \\ & \Rightarrow B=3 A \\ & \Rightarrow A=4 \end{aligned}$ b) TINGG THE ANBwnes Grat finer (a) $\begin{aligned} & \rightarrow 4 x^{5}+6 x^{4}+8 x^{2}=(2 x-1)(x-2) g(x)+169 x-82 \\ & \Rightarrow 4 x^{5}+6 x^{4}+8 x^{2}-169 x+82 \equiv(2 x-1)(x-2) g(x) \\ & \Rightarrow 4 x^{3}+6 x^{4}+8 x^{2}-14 x+82 \equiv\left(2 x^{2}-5 x+2\right) g(x) \end{aligned}$

$$
\begin{aligned}
& \text { By Lona Divisior } \\
& 2 a^{2}-5 a+2
\end{aligned}
$$

$\therefore a(x)-a x^{3} \cdot 6 a^{2} \cdot 18 x+111$
c) Procteo it polows
$\left(\begin{array}{l}f(x)=\left(1 x^{3}+G x^{4} 1 B x^{2}=(x+2)^{2} h(x)+P x+q\right. \\ f^{\prime}(x) \equiv 20 x^{4}+2 x^{3}+16 x=2(x+2) h(x)+(x+2)^{2} h^{\prime}(x)+P\end{array}\right.$

$$
\left(\begin{array}{l}
f(-2)=-128+96+32=0-2 p+Q \\
f^{\prime}(-2)=320-192-32=p
\end{array}\right.
$$

$\therefore P=q$
q) $\begin{gathered}Q-2 P=0 \\ Q=2 P\end{gathered}$

Created by T. Madas

Question 18 (*****)

$$
a x^{3}+a x^{2}+a x+b=0
$$

where a and b are non zero real constants.

Given that $x=b$ is a root of the above cubic equation, determine the range of possible values of a.

Created by T. Madas

Question 19 (*****)

$$
f(x) \equiv x^{5}+3 x^{4}-40 x^{3}-47 x^{2}
$$

The polynomial $f(x)$ satisfies the relationship

$$
f(x) \equiv(x-2)(x+A)(x+B)\left(x^{2}+3 x-1\right)-249 x+70
$$

where A and B are integer constants.
a) Find the value of A and the value of B.

The polynomial $f(x)$ also satisfies the relationship

$$
f(x) \equiv(x-2)^{2} h(x)+P x+Q
$$

where P and Q are constants.
b) Find the value of each of the constants P and Q.

$$
S, A=7, B=-5, P=-492, Q=556
$$

Question 20 (*****)

$$
f(x, y) \equiv 4 x^{4}-4 x^{3} y-7 x^{2} y^{2}+4 x y^{3}+3 y^{4} .
$$

Express $f(x, y)$ as a product of 4 linear factors.
$\square, f(x, y) \equiv(x+y)(x-y)(2 x+y)(2 x-3 y)$

tesat the polinomal as a pomnomifl in a, wheret y is A constara, tind look gr factors $f(y, y)=4 y^{4}-4 y^{4}-7 y^{4}+4 y^{4}+3 y^{4}=0$ $\therefore x=y$ produces zono $(2-y)$ is a factore $\begin{aligned} &\left.f(-y, y)=4(-)^{4}-4(-4)^{3} y-7(-y)\right)^{2} y^{2}+4(-y) y^{3}+3 y^{4} \\ & f(-y, y)=4 y^{4}+4 y^{4}-7 y^{4}-4 y^{4}+3 y^{4}=0 \\ & \therefore x=-y \text { pravulet zesis } \\ &(x+y) \text { is } \rightarrow \text { factor } \end{aligned}$ Wt Desuce That $(x+y)(x-y)=x^{2}-y^{2} \text { is A fftcor of } f(x, y)$ By inseetion (ce cona duision) $\begin{aligned} & 4 x^{4}-4 x^{2} y-7 x^{2} y^{2}+4 x y^{3}+3 y^{4} \equiv \\ & \equiv\left(x^{2}-y^{2}\right)\left(4 x^{2}+A x y-3 y^{2}\right) \\ & \equiv 4 x^{4}+A x y-3 x^{2} y^{2} \\ & \equiv-4 x^{2} y^{2}-A x y^{3}+3 y^{2} \\ & \therefore 4=-2 x^{2} y^{2}-A x y^{2}+3 y^{2} \\ & \therefore=-4 \end{aligned}$	

quadrátic factor
$f(x, y)=(x+y)(x-y)\left(4 x^{2}-4 x y-3 y^{2}\right)$
$f(x, y)=(x+y)(x-y)(2 x-3 y)(2 x+y)$
\sum quancratil formicat in a for
$\left.\begin{array}{l}4 x^{2}-4 x y-3 y^{2}=0 \\ 4 x^{2}-4 y x-3 y^{2}=0\end{array}\right\}$
$x=\frac{-(-4 y) \pm \sqrt{(-4 y)^{2}-4 \times 4 \times\left(-3 y^{2}\right)^{2}}}{2 \times 4}$
$x=\frac{4 y \pm \sqrt{64 y^{2}}}{B}$
$x=\frac{4 y \pm 8 y}{8}$

Question 21 ($* * * * *$)
Solve the cubic equation

$$
4 x^{3}-4(1+\sqrt{3}) x^{2}+(9+4 \sqrt{3}) x-9=0, x \in \mathbb{R} .
$$

\square
, , $x=1$
$4 x^{3}-4(1+\sqrt{3}) x^{2}+(9+4 \sqrt{3}) x-9=0$

- hiestop look for lwatar ratonnt factores by insiffection, tryina
$\pm 1, \pm 3, \pm 9$ To stret wint.
$\therefore(x-1) 15+$ atetor
a By long dingion
$x-1 \begin{array}{r}\frac{4 x^{2}-4 \sqrt{3} x+9}{4 x^{3}+(-4-4 \sqrt{3}) x^{2}+(9+4 \sqrt{3}) x-9} \\ \frac{-4 x^{3}+(4) x^{2}}{-4 \sqrt{3} x^{2}+(9+4 \sqrt{3}) x-9} \\ \frac{4 \sqrt{3} x^{2}+(-4 \sqrt{3}) x}{9 x}-9 \\ -9 x+9\end{array}$
e Now
$(x-1)\left(4 x^{2}-4 \sqrt{3} x+9\right)=0$
$b^{4}-4 a c=(-4 \sqrt{3})^{2}-4 \times 4 \times 9=48-144<0$

Question 22 (*****)

$$
f(x) \equiv x^{4}-16 x^{3}+68 x^{2}-32 x+3, \quad x \in \mathbb{R}
$$

Factorize $f(x)$ into a product of 4 linear factors.

Question 23 (*****)

$$
f(a, b, c) \equiv a^{4}(b-c)+b^{4}(c-a)+c^{4}(a-b) .
$$

Factorize $f(a, b, c)$ into a product of 3 linear factors and 1 quadratic factor.

Question 24 (*****)
A quartic curve C has the following equation.

$$
y=x(x-4)(x+2)(x-6), \quad x \in \mathbb{R} .
$$

By considering suitable transformations, show that C is even about the straight line with equation $x=2$.

Question 25 (*****)
A cubic curve with equation

$$
y=x^{3}-3 x^{2}-9 x+3, \quad x \in \mathbb{R},
$$

is odd about some point P.

Find the coordinates of P and use transformation arguments to justify the assertion that the curve is odd about P.

Question 26 (*****)

The figure above shows the curve C with equation

$$
y=x^{3}-x^{4}
$$

The straight line L is a tangent to the C, at two distinct points.

Determine an equation of L.

Question 27 (*****)
Solve the cubic equation

$$
16 x^{3}-48 x^{2}+60 x-31=0, x \in \mathbb{R}
$$

You may assume that this cubic equation only has one real root.
\square $x=1+2^{-\frac{2}{3}}-2^{-\frac{4}{3}}$

- Sobsntut BACK IND HIE CBSIC
$\Rightarrow 16(y+1)^{2}-48(y+1)^{2}+60(y+1)-31=0$
$\Rightarrow 16\left(y^{2}+3 y^{2}+3 y+1\right)-48\left(y^{2}+2 y+1\right)+60(y+1)-31=0$
$\Rightarrow 16 y^{3}+48 y^{2}+48 y+16$
$\Rightarrow \frac{60 y+60-31=0}{16 y^{3}+12 y-3=0}$
$\Rightarrow 16 y^{3}+12 y=3$
WE Now use the idwanty of simhist is the coefficinit of
y is posituat
$\sinh 3 t=3 \sinh t+4 \sin h^{3} t$ $\Rightarrow 4 y^{3}+3 y=3 / 4$ $\Rightarrow 4 \sinh ^{3} t+3 \sinh t=\frac{3}{7}$
$\left\{y=\sinh ^{2}\right\}$ $\rightarrow \quad \sinh 3 t=\frac{3}{4}$ $\Rightarrow 3 t=\operatorname{arsshh} \frac{3}{4}$

$$
\rightarrow t=\frac{1}{3} \ln \left[\frac{3}{4}+\sqrt{\frac{9}{16}+1}\right]
$$

$$
\begin{aligned}
& \text { - START By WUTTNG THA CUBLC iN REJUCSE GRM } \\
& 16 x^{3}-48 x^{2}+60 x-31=0 \\
& x^{3}-3 a^{2}+\frac{15}{4} x-\frac{31}{16}=0 \\
& \text { LET } x=y-\frac{a}{3}=y-\frac{-3}{3} \Rightarrow x=y+1
\end{aligned}
$$

Question 28 (*****)
Solve the cubic equation

$$
16 x^{3}+96 x^{2}+180 x+99=0, x \in \mathbb{R}
$$

You may assume that this cubic equation only has one real root.
\square $x=-2+2^{-\frac{2}{3}}-2^{-\frac{4}{3}}$
4

2
\square

$\Rightarrow 3 t= \pm \operatorname{arccash}\left(\frac{5}{4}\right)= \pm \ln \left[\frac{3}{4}+\sqrt{\frac{35}{16} 1}\right]$
$\Rightarrow 3 t= \pm \ln (5+\sqrt{9})= \pm \ln \left(\frac{5}{4}+\frac{5}{2}\right)= \pm h$
$\Rightarrow t= \pm \frac{1}{3} \ln 2$

- Fintuy we thut A phat soletion
$\rightarrow x=y-2$
$\Rightarrow x=\cosh t-2$
$\Rightarrow x=\cosh \left[\pm \frac{1}{3} \ln 2\right]-2$
$\Rightarrow x=\cosh \left(\frac{1}{3} n 2\right)-2$
$\Rightarrow x=\cosh \left(\ln 2^{\frac{1}{3}}\right)-2$
$\Rightarrow x=\frac{1}{2}\left[e^{\ln 2^{\frac{1}{3}}}+e^{-\ln 2^{\frac{1}{3}}}\right]-2$
$\Rightarrow x=2^{-1}\left[2^{\frac{1}{3}}+2^{-\frac{1}{3}}\right]-2$
$\Rightarrow x=2^{-\frac{2}{3}}+2^{-\frac{4}{3}}-2$

Created by T. Madas

Question 29
(*****)
Solve the cubic equation

$$
x^{3}-9 x^{2}+3 x-3=0, x \in \mathbb{R}
$$

You may assume that this cubic equation only has one real root.
\square $x=3+2^{\frac{5}{3}}+2^{\frac{4}{3}}$

> - Sthet by weitina the wric in reayaid forem $x^{3}-9 x^{2}+3 x-3=0$
> LET $x=y-\frac{a}{3}=y-\frac{-a}{3} \Rightarrow x=y+3$
> - Substitute ino the abic
> $\begin{aligned} & \Rightarrow(y+3)^{3}-9(y+3)^{2}+3(y+3)-3=0 \\ & \Rightarrow y^{3}+9 y^{2}+27 y+27-9\left(y^{2}+6 y+9\right)+3 y+9-3=0\end{aligned}$
> $\Rightarrow\left[\begin{array}{r}y^{3}+9 y^{2}+2 c y+27 \\ 74 y^{2}-54 y-81 \\ 3 y+6\end{array}\right]=0$
> $\Rightarrow y^{3}-24 y-48=0$
> $\Rightarrow y^{3}-24 y=48$
$\begin{gathered}\cosh 3 t \equiv 4 \cosh ^{3} t-3 \cosh t\end{gathered}$

- LET $y=\lambda \cosh t, \lambda \neq 0$
$\binom{\lambda^{3} \cosh ^{3} t-24 \lambda \cosh t=48}{4 \cosh ^{3} t-3 \cosh t=\cosh 3 t}$
$\frac{\lambda^{3}}{4}=\frac{-2 t \lambda}{-3}=\frac{48}{\cos 3 t}$
- Frou the "fies two" co ositing $\frac{x^{2}}{4}=8$
$\Rightarrow \lambda= \pm \sqrt{32}= \pm 4 \sqrt{2}$
(1) Thos we yow that
$\Rightarrow \frac{48}{\cos 3 t}=8 \lambda= \pm 32 \sqrt{2}$
$\Rightarrow \cosh 3 t= \pm \frac{48}{32 \sqrt{2}}= \pm \frac{3}{2 \sqrt{2}}= \pm \frac{3 \sqrt{2}}{4}$
$\Rightarrow \quad 3 t= \pm \operatorname{arccosh}\left(\pm \frac{3}{4} \sqrt{2}\right)$
$\Rightarrow \quad 3 t= \pm \arccos \left(\frac{3}{4} \sqrt{2}\right)$
$\Longrightarrow \quad t= \pm \frac{1}{3} \ln \left[\frac{3}{4} \sqrt{2}+\sqrt{\frac{9}{8}-1}\right]$
$\Rightarrow \quad t= \pm \frac{1}{3} \ln \left[\frac{3}{4} \sqrt{2}+\sqrt{\frac{1}{2}}\right]$
$\Rightarrow \quad t= \pm \frac{1}{3} \ln \left[\frac{3}{4} \sqrt{2}+\sqrt{\frac{2}{16}}\right]$
$\Longrightarrow \quad t= \pm \frac{1}{3} \ln \left[\frac{3}{4} \sqrt{2}+\frac{1}{4} \sqrt{2}\right]$
$\Rightarrow \quad t= \pm \frac{1}{3} \ln \sqrt{2}$
- Finaluy wt innt
$x=3+y=3+\lambda \cosh t=3+4 \sqrt{2} \cosh \left[1+\frac{1}{3} \ln \sqrt{2}\right]$
$x=3+4 \sqrt{2} \cosh \left(\frac{1}{3} \ln \sqrt{2}\right)=3+4 \sqrt{2} \times \frac{1}{2}\left[e^{\frac{1}{3} \ln 2}+e^{-\frac{1}{3} \ln \sqrt{2}}\right]$
$x=3+2 \sqrt{2} \times\left[2^{\frac{1}{6}}+2^{-\frac{1}{6}}\right]=3+2^{\frac{3}{2}}\left[2^{\frac{1}{6}}+2^{-\frac{1}{6}}\right]$
$x=3+2^{\frac{5}{3}}+2^{\frac{4}{3}}$

