PARAMETRIC EQUATIONS

 EXAMQUESTIONS

 EXAMQUESTIONS}

Created by T. Madas

Question 1 (**)
A curve is given parametrically by

$$
x=3+2 \cos \theta, \quad y=-3+2 \sin \theta, \quad 0 \leq \theta<2 \pi .
$$

Show clearly that

Question 2

A curve is defined by the following parametric equations

$$
x=4 a t^{2}, \quad y=a(2 t+1), \quad t \in \mathbb{R}
$$

where a is non zero constant.

Given that the curve passes through the point $A(4,0)$, find the value of a.

Question 3 (**)
A curve is defined by the parametric equations

$$
x=\frac{1}{2} a \cos \theta, \quad y=a \sin \theta, \quad 0 \leq \theta<2 \pi,
$$

where a is a positive constant.

Show clearly that

Question 4 (**)
A curve C is given by the parametric equations

$$
x=t+1, \quad y=t^{2}-1, \quad t \in \mathbb{R} .
$$

Determine the coordinates of the points of intersection between C and the straight line with equation

$$
x+y=6
$$

Created by T. Madas

Question 5 (**+)
A curve is given parametrically by the equations

$$
x=1-\cos 2 \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta<2 \pi .
$$

The point P lies on this curve, and the value of θ at P is $\frac{\pi}{6}$.
Show that an equation of the normal to the curve at P is given by

Question $6{ }^{(* *+)}$

A curve is defined by the parametric equations

$$
x=a \cos \theta, \quad y=a \sin ^{2} \theta, \quad 0 \leq \theta<2 \pi,
$$

where a is a positive constant.

Show that the equation of the tangent to the curve at the point where $\theta=\frac{\pi}{3}$ is

$$
4 x+4 y=5 a
$$

Created by T. Madas

Question 7 (**+)
A curve C is given by the parametric equations

$$
x=\frac{1-t^{2}}{1+t^{2}}, \quad y=\frac{2 t}{1+t^{2}}, \quad t \in \mathbb{R}
$$

Determine the coordinates of the points of intersection between C and the straight line with equation

Question 8

A curve C is given by the parametric equations

$$
x=2 t^{2}-1, \quad y=3(t+1), \quad t \in \mathbb{R} .
$$

Determine the coordinates of the points of intersection between C and the straight line with equation

Question $9 \quad\left({ }^{* *}+\right.$)
A curve is given parametrically by the equations

$$
x=\frac{2}{t}, \quad y=t^{2}-1, \quad t \in \mathbb{R}, \quad t \neq 0 .
$$

The point $P(4, y)$ lies on this curve.

Show that an equation of the tangent to the curve at P is given by

Question $10 \quad\left({ }^{* *}+\right.$)
A curve C is given parametrically by

$$
x=2 t+1, \quad y=\frac{3}{2 t}, \quad t \in \mathbb{R}, \quad t \neq 0
$$

a) Find a simplified expression for $\frac{d y}{d x}$ in terms of t.

The point P is the point where C crosses the y axis.
b) Determine the coordinates of P.
c) Find an equation of the tangent to C at P.

Question $11 \quad\left({ }^{* *}+\right.$)
A curve known as a cycloid is given by the parametric equations

$$
x=4 \theta-\cos \theta, \quad y=1+\sin \theta, \quad 0 \leq \theta \leq 2 \pi .
$$

a) Find an expression for $\frac{d y}{d x}$, in terms of θ.
b) Determine the exact coordinates of the stationary points of the curve.

$$
\frac{d y}{d x}=\frac{\cos \theta}{4+\sin \theta},(2 \pi, 2),(6 \pi, 0)
$$

Created by T. Madas

Question 12 (***)
A curve is given parametrically by

$$
x=4 t-1, \quad y=\frac{5}{2 t}+10, \quad t \in \mathbb{R}, t \neq 0 .
$$

The curve crosses the x axis at the point A.
a) Find the coordinates of A.
b) Show that an equation of the tangent to the curve at A is

$$
10 x+y+20=0 .
$$

c) Determine a Cartesian equation for the curve.

Question 13 (***)
A curve C is given parametrically by

$$
x=3 t-1, \quad y=\frac{1}{t}, \quad t \in \mathbb{R}, \quad t \neq 0
$$

Show that an equation of the normal to C at the point where C crosses the y axis is
\square

Created by T. Madas

Created by T. Madas

Question 14 (***)

A curve C is given by the parametric equations

$$
x=4 t^{2}, \quad y=8 t, \quad t \in \mathbb{R} .
$$

a) Find the gradient at the point on the curve where $t=-\frac{1}{2}$.
b) Determine a Cartesian equation for C, in the form $x=f(y)$.
c) Use the Cartesian form of C to find $\frac{d y}{d x}$ in terms of y, and use it to verify that the answer obtained in part (a) is correct.

Question 15 (***)
A curve C is given parametrically by the equations

$$
x=2 t^{2}+\frac{1}{t}, \quad y=2 t^{2}-\frac{1}{t}, \quad t \in \mathbb{R}, \quad t \neq 0
$$

a) Show that at the point on C where $t=\frac{1}{2}$, the gradient is -3 .
b) By considering $(x+y)$ and $(x-y)$, show that a Cartesian equation of C is
\square
, proof

Created by T. Madas

Question 16 (***)

The point $P\left(\frac{1}{3},-2\right)$ lies on the curve with parametric equations

$$
x=3 t^{2}, y=6 t, \quad t \in \mathbb{R} .
$$

The tangent and the normal to curve at P meet the x axis at the points T and N, respectively.

Created by T. Madas

Question 17 (***)
A curve C is given parametrically by the equations

$$
x=4 t+\frac{1}{t}, \quad y=\frac{3}{2 t}, \quad t \in \mathbb{R}, \quad t \neq 0
$$

The point $A(5,6)$ lies on C.

Show clearly that
a) $\ldots \frac{d y}{d x}=\frac{3}{2\left(1-4 t^{2}\right)}$.
b) \ldots the gradient at A is 2 .
c) \ldots a Cartesian equation of C is

$$
3 x y-2 y^{2}=18
$$

Created by T. Madas

Question 18 (***)

A curve C is given parametrically by the equations

$$
x=t^{2}-8 t+12, \quad y=t-4, \quad t \in \mathbb{R}
$$

a) Find the coordinates of the points where C crosses the coordinate axes.

The point $P(-3,1)$ lies on C.

b) Show that the equation of the normal to C at P is

$$
y+2 x+5=0 .
$$

c) Show that a Cartesian equation of C is

Created by T. Madas

Question 19 (***)

A curve C is given parametrically by the equations

$$
x=5-3 t, \quad y=2+\frac{1}{t}, \quad t \in \mathbb{R}, \quad t \neq 0 .
$$

The point $A(6,-1)$ lies on C.
a) Show that the equation of the tangent to C at A is given by

$$
y=3 x-19 .
$$

b) Show further that a Cartesian equation of C is

$$
(x-5)(y-2)+3=0 .
$$

proof

Created by T. Madas

Question 20 (***)

A curve C is defined by the parametric equations

$$
x=\cos 2 \theta, y=\sin \theta \cos \theta, \quad 0 \leq \theta<\pi .
$$

a) Show that a Cartesian equation for C is given by

$$
x^{2}+4 y^{2}=1 .
$$

b) Sketch the graph of C.

Question 21 (***)

A curve is defined by the parametric equations

$$
x=\sin \theta, y=\sin \left(\theta+\frac{\pi}{6}\right),-\frac{\pi}{2} \leq \theta<\frac{\pi}{2} .
$$

Show that a Cartesian equation of the curve is given by

$$
y=\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^{2}} .
$$

Created by T. Madas

Question 22 (***)
A curve is defined by the parametric equations

$$
x=\frac{t+3}{t+1}, \quad y=\frac{2}{t+2}, \quad t \in \mathbb{R}, t \neq-1, t \neq-2 .
$$

Show, with detailed workings, that ...
a) $\ldots \frac{d y}{d x}=\left(\frac{t+1}{t+2}\right)^{2}$.
b) ... a Cartesian equation for the curve is given by

$$
y=\frac{2(x-1)}{x+1} .
$$

Question 23 (***)
A curve is defined parametrically by the equations

$$
x=a \sec \theta, \quad y=b \tan \theta, \quad 0<\theta<\frac{\pi}{2}
$$

where a and b are positive constants.

Show that an equation of the tangent to the curve at the point where $\theta=\frac{\pi}{4}$ is

$$
y=\frac{b}{a} \sqrt{2} x-b
$$

Question 24 (***+)
A curve C is defined by the parametric equations

$$
x=\cos t, \quad y=\cos 2 t, 0 \leq t \leq \pi
$$

a) Find $\frac{d y}{d x}$ in its simplest form.
b) Find a Cartesian equation for C.
c) Sketch the graph of C.

The sketch must include

- the coordinates of the endpoints of the graph.
- the coordinates of any points where the graph meets the coordinates axes.

$$
\frac{d y}{d x}=4 \cos t, y=2 x^{2}-1,(-1,1)(1,1),(0,-1),\left(-\frac{\sqrt{2}}{2}, 0\right)\left(\frac{\sqrt{2}}{2}, 0\right)
$$

Question 25 (***+)
A curve C is given by the parametric equations

$$
x=\frac{3 t-2}{t-1}, \quad y=\frac{t^{2}-2 t+2}{t-1}, \quad t \in \mathbb{R}, \quad t \neq 1
$$

a) Show clearly that

$$
\frac{d y}{d x}=2 t-t^{2}
$$

The point $P\left(1,-\frac{5}{2}\right)$ lies on C.
b) Show that the equation of the tangent to C at the point P is

$$
3 x-4 y-13=0 \text {. }
$$

\square , proof

Question 26 (***+)
The curve C_{1} has Cartesian equation

$$
x^{2}+y^{2}=9 x-4
$$

The curve C_{2} has parametric equations

$$
x=t^{2}, \quad y=2 t, \quad t \in \mathbb{R} .
$$

Find the coordinates of the points of intersection of C_{1} and C_{2}.

$$
(4,4),(4,-4),(1,2),(1,-2)
$$

Created by T. Madas

Question 27 (***+)
A curve has parametric equations

$$
x=t^{2}, \quad y=\frac{6}{t}, \quad t \in \mathbb{R}, t \neq 0
$$

a) Determine a simplified expression for $\frac{d y}{d x}$, in terms of t.
b) Show that an equation of the tangent to the curve at the point $A(4,-3)$ is

$$
3 x-8 y-36=0 .
$$

c) Find the value of t at the point where the tangent to the curve at A meets the curve again.

Question 28 (***+)
A curve C is defined by the parametric equations

$$
x=\frac{t}{1+t^{2}}, \quad y=\frac{2 t^{2}}{1+t^{2}}, \quad t \in \mathbb{R}
$$

a) Find a simplified expression for $\frac{d y}{d x}$ in terms of t.

The straight line with equation $y=6 x-2$ intersects C at the points P and Q.
b) Find the coordinates of P and the coordinates of Q.

Created by T. Madas

Question 29 (***+)

A curve C is defined by the parametric equations

$$
x=\ln (1+t), \quad y=\ln (1-t), \quad t \in \mathbb{R}, \quad t_{1}<t<t_{2} .
$$

a) Find a Cartesian equation for C.
b) Determine, in terms of natural logarithms, the coordinates of the point on C where the gradient is -3 .

The value of t is restricted between t_{1} and t_{2}.
c) Given that the interval between t_{1} and t_{2} is as large as possible, determine the value of t_{1} and the value of t_{2}.

Created by T. Madas

Question 30 (***+)

A function relationship is given parametrically by the equations

$$
x=\cos 2 t, \quad y=2 \sin t, \quad 0 \leq t \leq \frac{\pi}{2}
$$

a) Find a Cartesian equation for these parametric equations, in the form $y=f(x)$.
b) State the domain and range of this function.

Created by T. Madas

Question 31 (***+)
A curve is given parametrically by the equations

$$
x=3 t-2 \sin t, \quad y=t^{2}+t \cos t, \quad 0 \leq t<2 \pi
$$

Show that an equation of the tangent at the point on the curve where $t=\frac{\pi}{2}$ is given by

$$
y=\frac{\pi}{6}(x+2)
$$

proof

Created by T. Madas

Question 32 (***+)
The point $P(-5,3)$ lies on the curve C with parametric equations

$$
x=\frac{a}{t}-1, \quad y=\frac{t+a}{t+1}, t \in \mathbb{R}, t \neq 0,-1
$$

where a is a non zero constant.

Show that a Cartesian equation of C is

$$
y=\frac{2 x+4}{x+3} .
$$

Created by T. Madas

Question 33 (***+)
The curve C has parametric equations

$$
x=\sin \theta, y=3-2 \cos 2 \theta, 0 \leq \theta \leq \frac{\pi}{2}
$$

a) Express $\frac{d y}{d x}$ in terms of θ.
b) Explain why...
no point on C has negative gradient.
\ldots the maximum gradient on C is 8 .
c) Show that C satisfies the Cartesian equation

$$
y=1+4 x^{2}
$$

d) Show by means of a single sketch how the graph of $y=1+4 x^{2}$ and the graph of C are related.

$$
\frac{d y}{d x}=\frac{4 \sin 2 \theta}{\cos \theta}=8 \sin \theta
$$

Question 34 (***+)
The curve C has parametric equations

$$
x=\cos \theta, y=\sin 2 \theta, \quad 0 \leq \theta<2 \pi
$$

The point P lies on C where $\theta=\frac{\pi}{6}$.
a) Find the gradient at P.
b) Hence show that the equation of the tangent at P is

$$
2 y+4 x=3 \sqrt{3}
$$

c) Show that a Cartesian equation of C is

$$
y^{2}=4 x^{2}\left(1-x^{2}\right) ?
$$

\square
\square

Question 35 (***+)
The point $P(a, \sqrt{2})$ lies on the curve C with parametric equations

$$
x=4 t^{2}, \quad y=2^{t}, t \in \mathbb{R}
$$

where a is a constant.
a) Determine the value of a.
b) Show that the gradient at P is $k \ln 2$, where k is a constant to be found.

Created by T. Madas

Question 36 (***+)

A curve C is defined parametrically by

$$
x=t+\ln t, \quad y=t-\ln t, \quad t>0 .
$$

a) Find the coordinates of the turning point of C
b) Show that a Cartesian equation for C is

Created by T. Madas

The point $P\left(\frac{2}{5},-\frac{2}{3}\right)$ lies on the curve C with parametric equations

$$
x=\frac{1}{t+a}, \quad y=\frac{1}{t-a}, \quad t \in \mathbb{R}, \quad t \neq \pm a
$$

where a is a non zero constant.

Show that the gradient at P is $\frac{25}{9}$.

Question 38 (***+)
Acurve C is given by the parametric equations

$$
x=7 \cos \theta-\cos 7 \theta, \quad y=7 \sin \theta-\sin 7 \theta, \quad 0 \leq \theta<2 \pi
$$

Show that the equation of the tangent to C at the point where $\theta=\frac{\pi}{6}$ is

$$
y+\sqrt{3} x=16
$$

Question 39 (***+)
A curve C is given parametrically by

$$
x=\frac{1}{t}, \quad y=t^{2}, \quad t \in \mathbb{R}, \quad t \neq 0
$$

The point P lies on C at the point where $t=1$.
a) Show that an equation of the tangent to C at P is

$$
y+2 x=3 .
$$

The tangent to C at P meets the curve again at the point Q.
b) Determine the coordinates of Q.

Created by T. Madas

Question $40 \quad(* * *+)$

The figure above shows the curve C with parametric equations

$$
x=t^{2}+4, \quad y=2 t+4, \quad t \in \mathbb{R}
$$

The curve crosses the x axis at the point R
a) Find the coordinates of R.

The point $P(5,6)$ lies on C. The straight line L is a normal to C at P.
b) Show that an equation of L is

$$
x+y=11
$$

The normal L meets C again, at the point Q.
c) Find the coordinates of Q.

Created by T. Madas

Question 41 (***+)
A curve is given parametrically by

$$
x=\cos t, \quad y=\cos 3 t \quad, \quad 0 \leq t<2 \pi
$$

a) By writing $\cos 3 t$ as $\cos (2 t+t)$, prove the trigonometric identity

$$
\cos 3 t \equiv 4 \cos ^{3} t-3 \cos t
$$

b) Hence state a Cartesian equation for the curve.

The figure below shows a sketch of the curve.

The points A and B are the endpoints of the graph and the points C and D are stationary points.
c) Determine the coordinates of A, B, C and D.

$$
y=4 x^{3}-3 x, A(-1,-1), B(1,1), C\left(-\frac{1}{2}, 1\right), C\left(\frac{1}{2},-1\right)
$$

Created by T. Madas

Created by T. Madas

Question 42 (***+)

The figure above shows part of the curve with parametric equations

$$
x=t^{2}-9, y=t(4-t)^{2}, t \in \mathbb{R} .
$$

The curve meets the x axis at the points P and Q, and the y axis at the points R and T. The point T is not shown in the figure.
a) Find the coordinates of the points P, Q, R and T.

The point S is a stationary point of the curve.
b) Show that the coordinates of S are $\left(-\frac{65}{9}, \frac{256}{27}\right)$.

Created by T. Madas

Question 43 (***+)
A parametric relationship is given by

$$
x=\sin \theta \cos \theta, y=4 \cos ^{2} \theta, \quad 0 \leq \theta<2 \pi
$$

Show that a Cartesian equation for this relationship is

Question 44 (***+)

A curve is given parametrically by the equations

$$
x=\frac{1}{t}, \quad y=t^{2}, t \neq 0 .
$$

The tangent to the curve at the point P meets the x axis at the point A and the y axis at the point B.

Show that for all possible coordinates of $P,|B P|=2|A P|$.

Question 45 (***+)
The curve C is given parametrically by the equations

$$
x=2 t^{2}-1, \quad y=3 t^{3}+4, \quad t \in \mathbb{R}
$$

a) Show that a Cartesian equation of C is

$$
8(y-4)^{2}=9(x+1)^{3}
$$

b) Find ...
i. \ldots an expression for $\frac{d y}{d x}$ in terms of t.
ii. ... the gradient at the point on C with coordinates $(1,1)$.
c) By differentiating the Cartesian equation of C implicitly, verify that the gradient at the point with coordinates $(1,1)$ is the same as that of part (b) (ii)

Question 46 (***+)
The curve C is given parametrically by the equations

$$
x=\cos t, y=2 \sin t, 0 \leq t<2 \pi
$$

a) Show that an equation of the normal to C at the general point $P(\cos t, 2 \sin t)$ can be written as

$$
\frac{2 y}{\sin t}-\frac{x}{\cos t}=3
$$

The normal to C at P meets the x axis at the point Q. The midpoint of $P Q$ is M.
b) Find the equation of the locus of M as t varies.

Question 47 (***+)
The curve C is given parametrically by the equations

$$
x=2 \mathrm{e}^{t}+1, \quad y=\mathrm{e}^{3 t}-6 \mathrm{e}^{t}+1, \quad t \in \mathbb{R} .
$$

Determine the coordinates of the point on C with $\frac{d y}{d x}=3$.

Created by T. Madas

Question 48 (***+)
A curve is defined by the following parametric equations

$$
x=4 a t^{2}, \quad y=a(2 t+1), \quad t \in \mathbb{R}
$$

where a is non zero constant.

Given that the curve passes through the point $A(4,8)$, find the possible values of a.
$\square, a=4 \cup a=16$

	$\underline{y=0}$ (tam)
$4=$ atal ${ }^{\text {a }}$	
	$4{ }^{4} \cdot(8-1)^{2}$
$\rightarrow 0 \times(\mathrm{a}$	
- $<$	

Created by T. Madas

Question 49 (***+)
A curve is defined by the parametric equations

$$
x=t^{2}+t, y=2 t-1, t \in \mathbb{R}
$$

a) Show that an equation of the tangent to the curve at the point P where $t=p$ can be written as

$$
y(2 p+1)=2 x+2 p^{2}-2 p-1
$$

The tangents to curve at the points $(2,1)$ and $(0,-3)$ meet at the point Q.
b) Find the coordinates of Q.

Created by T. Madas

Question 50 (****)

A curve C is given by the parametric equations

$$
x=\sec \theta, \quad y=\ln (1+\cos 2 \theta), \quad 0 \leq \theta<\frac{\pi}{2}
$$

a) Show clearly that

The straight line L is a tangent to C at the point where $\theta=\frac{\pi}{3}$.
b) Find an equation for L, giving the answer in the form $y+x=k$, where k is an exact constant to be found.
c) Show that a Cartesian equation of C is

$$
x^{2} \mathrm{e}^{y}=2 .
$$

Question 51 (****)
A curve C is given by the parametric equations

$$
x=\cos 2 \theta, \quad y=2 \sin ^{3} \theta, \quad 0 \leq \theta<2 \pi .
$$

a) Show clearly that

$$
\frac{d y}{d x}=-\frac{3}{2} \sin \theta
$$

b) Find an equation of the normal to C at the point where $\theta=\frac{\pi}{6}$.
c) Show that a Cartesian equation of C is

$$
2 y^{2}=(1-x)^{3}
$$

$$
16 x-12 y-5=0
$$

Question 52 (****)
A curve C is given by the parametric equations

$$
x=2 \cos \theta+\sin 2 \theta, \quad y=\cos \theta-2 \sin 2 \theta, \quad 0 \leq \theta<2 \pi
$$

The point P lies on C where $\theta=\frac{\pi}{4}$.
a) Show that the gradient at P is $\frac{1}{2}$.
b) Show that an equation of the normal to C at P is

$$
4 x+2 y=5 \sqrt{2}
$$

Created by T. Madas

Question 53 (****)
The curve C has parametric equations

$$
x=\sin 2 \theta, \quad y=2 \cos ^{2} \theta, \quad 0 \leq \theta<2 \pi .
$$

a) Show clearly that
b) Find an equation of the tangent to C, at the point where $\theta=\frac{\pi}{3}$.
c) Show that a Cartesian equation of C is

$$
x^{2}=y(2-y)
$$

$$
y=\sqrt{3} x-1
$$

Question 54 (****)
A curve C is given parametrically by

$$
x=\frac{1}{t}+\frac{1}{t^{2}}, \quad y=\frac{1}{t}-\frac{1}{t^{2}}, \quad t \in \mathbb{R}, \quad t \neq 0 .
$$

Show clearly that ...
a) $\ldots \frac{d y}{d x}=\frac{t-2}{t+2}$.
b)... an equation of the tangent to C at the point where $t=\frac{1}{2}$ is

$$
3 x+5 y=8
$$

c) \ldots a Cartesian equation of C is

$$
\frac{(x+y)^{2}}{x-y}=2
$$

You may find considering $(x+y)$ and $(x-y)$ useful in this part.

Question 55 (****)
A curve C is given parametrically by

$$
x=\tan \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta<2 \pi .
$$

a) Find the gradient at the point on C where $\theta=\frac{\pi}{6}$.
b) Show that

$$
\cos ^{2} \theta=\frac{1}{x^{2}+1}
$$

and find a similar expression for $\sin ^{2} \theta$.
c) Hence find a Cartesian equation of C in the form

$$
y=f(x)
$$

$$
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{6}}=\frac{3}{4}, \sin ^{2} \theta=\frac{x^{2}}{x^{2}+1}
$$

$$
y=\frac{2 x}{x^{2}+1}
$$

Created by T. Madas

Question 56 (****)

A curve C is given parametrically by the equations

$$
x=4 t^{2}+t, \quad y=\frac{1}{2} t^{2}+2 t^{3}, \quad t \in \mathbb{R}
$$

The point $A\left(\frac{1}{2},-\frac{1}{8}\right)$ lies on C.
a) Show that the gradient at A is $-\frac{1}{3}$.
b) By considering $\frac{y}{x}$, or otherwise, show that a Cartesian equation of C is

$$
x^{3}=16 y^{2}+2 x y .
$$

$$
x=2 t^{2}, \quad y=3^{t}, \quad t \in \mathbb{R}
$$

The tangent to C at P meets the y axis at the point Q.
Determine the exact y coordinate of Q.

Question 58 (****)
The curve C is given parametrically by

$$
x=1-3 t, \quad y=\frac{t+6}{t+2}, \quad t \in \mathbb{R} .
$$

a) Find a simplified expression for $\frac{d y}{d x}$, in terms of t.
b) Show that the straight line L with equation

$$
4 x-3 y=1
$$

is a tangent to C, and determine the coordinates of the point of tangency between L and C.

Question 59 (****)
Acurve C is defined by the parametric equations:

$$
x=\tan \theta, \quad y=\sin 2 \theta, \quad-\frac{\pi}{2} \leq \theta<\frac{\pi}{2}
$$

a) State the range of C.
b) Find an expression for $\frac{d y}{d x}$ in terms of θ.
c) Find an equation of the tangent to the curve where $\theta=\frac{\pi}{4}$.
d) Show, or verify, that a Cartesian equation for C is

$$
\begin{gathered}
y=\frac{2 x}{1+x^{2}},-1 \leq y \leq 1, \frac{d y}{d x}=-\frac{2 \cos 2 \theta}{\sec ^{2} \theta}, y=1 \\
\end{gathered}
$$

Question 60 (****)
A curve C is traced by the parametric equations

$$
x=t^{2}-t, y=\frac{a t}{1-t}, t \in \mathbb{R}, t \neq 1
$$

a) Find an expression for $\frac{d y}{d x}$ in terms of the parameter t and the constant a.
b) Show that an equation of the tangent to C at the point where $t=-1$ is

$$
12 y+a x+4 a=0
$$

This tangent meets the curve again at the point Q.
c) Determine the coordinates of Q in terms of a.

$$
\frac{d y}{d x}=\frac{a}{(2 t-1)(1-t)^{2}}, Q\left(12,-\frac{4}{3} a\right)
$$

Question 61 (****)
The curve C has parametric equations

$$
x=2 \tan \theta, \quad y=2 \cos ^{2} \theta, \quad 0 \leq \theta<\frac{\pi}{2}
$$

a) Show clearly that

$$
\frac{d y}{d x}=-2 \sin \theta \cos ^{3} \theta
$$

b) Find an equation of tangent to C, at the point where $\theta=\frac{\pi}{4}$.
c) Show that a Cartesian equation of C is

$$
y=\frac{8}{x^{2}+4},
$$

and state its domain.

$$
x+2 y=4, \quad x \geq 0
$$

Question 62 ($* * * *$)
The point $P(20,60)$ lies on a curve with parametric equations

$$
x=2 a t, y=8 a t-a t^{2}, t \in \mathbb{R}, t \geq 0,
$$

where a is a non zero constant.
a) Find the value of a.
b) Determine a Cartesian equation of the curve.

The above set of parametric equations represents the path of a golf ball, t seconds after it was struck from a fixed point on the ground, O.

The horizontal distance from O is x metres and the vertical distance above the ground level is y metres.

The ball hits the lowest point of a TV airship, which was recording the golf tournament from the air.
c) Assuming that the ground is level and horizontal, find the greatest possible height of the airship from the ground.

Question 63 (****)
A curve C is defined by the parametric equations

$$
x=2 t-1 \quad y=\frac{4}{t}, t \in \mathbb{R}, t \neq 0
$$

The curve C meets the y axis at the point A.
a) Determine the coordinates of A.
b) Show that an equation of the normal to C at A is given by

$$
8 y=x+64 .
$$

This normal meets C again at the point B.
c) Calculate the coordinates of B.
d) Find a Cartesian equation for C.

Question 64 (****)
A curve C is given parametrically by the equations

$$
x=6 \ln t-3 t^{2}, \quad y=2 t^{3}-36 t+6 \ln t, \quad t \in \mathbb{R}, \quad t>t_{0}
$$

a) State the smallest possible value that t_{0} can take.
b) Show that

$$
\frac{d y}{d x}=\frac{t^{3}-6 t+1}{1-t^{2}}
$$

c) Find the exact coordinates of the only point on C where the gradient is 1 .

Question 65 (****)
A curve C is defined by the parametric equations

$$
x=2 t+4, \quad y=t^{3}-4 t+1, \quad t \in \mathbb{R}
$$

a) Show that an equation of the tangent to the curve at $A(2,4)$ is

$$
2 y+x=10
$$

The tangent to C at A re-intersects C at the point B.
b) Determine the coordinates of B.

Question 66 (****)
A curve is given parametrically by the equations

$$
x=4-t^{2}, y=1-t, t \in \mathbb{R} .
$$

a) Show that an equation of the normal at a general point on the curve is

$$
y+2 t x=1+7 t-2 t^{3}
$$

The normal to curve at $P(3,0)$ meets the curve again at the point Q.
b) Find the coordinates of Q.

Question 67 (****)
A curve is given by the parametric equations

$$
x=\tan ^{2} t, \quad y=\sqrt{2} \sin t, \quad 0 \leq t<\frac{\pi}{2}
$$

a) Find an expression for $\frac{d y}{d x}$ in terms of t.
b) Show that an equation of the tangent to the curve at the point where $t=\frac{\pi}{6}$, is

$$
32 y=(9 x+10) \sqrt{2}
$$

c) Show that a Cartesian equation of the curve is

$$
y^{2}=\frac{2 x}{x+2}
$$

$$
\frac{d y}{d x}=\frac{\sqrt{2} \cos ^{3} t}{4 \tan t}
$$

Created by T. Madas

Question 68 (****)
A curve C is given parametrically by

$$
x=(t+2)^{2}, y=t^{3}+2, \quad t \in \mathbb{R} .
$$

The point $P(1,1)$ lies on C.
a) Show that the equation of the normal to C at P is

$$
3 y+2 x=5 \text {. }
$$

b) Show further that the normal to C at P does not meet C again.

Question 69 (****)
A curve C is given by the parametric equations

$$
x=t^{3}-9 t, \quad y=\frac{1}{2} t^{2}, \quad t \in \mathbb{R}
$$

The point $P(10,2)$ lies on C.
a) Show that the equation of the tangent to C at P is

$$
3 y+2 x=26
$$

The tangent to C at P crosses C again at the point Q.
b) Find as exact fractions the coordinates of Q.

Question 70 (****)
A curve C is given by the parametric equations

$$
x=2 t-\frac{1}{2 t}, y=2 t+\frac{1}{2 t}+2, \quad t \in \mathbb{R}, \quad t \neq 0
$$

a) Show that

$$
\frac{d y}{d x}=\frac{4 t^{2}-1}{4 t^{2}+1}
$$

b) Hence find the coordinates of the stationary points of the curve.
c) Show that a Cartesian equation of the curve is

Created by T. Madas

Question 71

$$
x^{2}+y^{2}-4 x-6 y=3 .
$$

Determine a set of parametric equations for this circle in the form

$$
x=a+p \cos \theta, \quad y=b+p \cos \theta, \quad 0 \leq \theta<2 \pi .
$$

Question 72 (****)
A curve C is given by the parametric equations

$$
x=3 \cos 2 \theta, \quad y=-2+4 \sin \theta, \quad 0 \leq \theta<2 \pi
$$

a) Show that a Cartesian equation of the curve is

$$
3 y^{2}+12 y+8 x=12
$$

The point P lies on C, where $\sin \theta=\frac{1}{3}$.
b) Show that an equation of the normal to C at P is

$$
y=x-3 .
$$

The normal to C at P meets C again at the point Q.
c) Find the coordinates of Q.
d) State the domain and range of C, and given further that C is not a closed curve describe the position of the point Q on the curve.

Question 73 (****)
A curve is given by the parametric equations

$$
x=\cos t, \quad y=\sin 2 t, \quad 0 \leq t<2 \pi
$$

a) Find a Cartesian equation of the curve, giving the answer in the form

$$
y^{2}=f(x)
$$

b) State the domain and range of the curve.
c) Find an expression for $\frac{d y}{d x}$ in terms of t.
d) Hence, find the coordinates of the 4 stationary points of the curve.

$$
\begin{array}{r}
y^{2}=4 x^{2}\left(1-x^{2}\right),-1 \leq x \leq 1,-1 \leq y \leq 1, \frac{d y}{d x}=-\frac{2 \cos 2 t}{\sin t}, \\
\left(\frac{\sqrt{2}}{2}, 1\right),\left(-\frac{\sqrt{2}}{2}, 1\right),\left(-\frac{\sqrt{2}}{2},-1\right),\left(\frac{\sqrt{2}}{2},-1\right)
\end{array}
$$

Created by T. Madas

Question 74 (****)

A curve C is defined by the parametric equations

$$
x=t^{3}-3, \quad y=t^{2}-4, \quad t \in \mathbb{R}
$$

The straight line L with equation $3 y-2 x+10=0$ intersects with C.

Show that L and C intersect at a single point on the x axis, stating its coordinates.

Question 75 (****)
A curve C is defined by the parametric equations

$$
x=8 \operatorname{cosec}^{3} \theta, \quad y=2 \cot \theta, \quad \frac{\pi}{6} \leq \theta \leq \frac{\pi}{2} .
$$

a) Find a Cartesian equation for C, in the form $y=f(x)$.
b) Determine the range of values of x and the range of values of y, which the graph of C can achieve.

Created by T. Madas

Question 76 (****)

A curve C is defined by the parametric equations

$$
x=t^{2}+1, y=2 t-3, t \in \mathbb{R}
$$

a) Show that the equation of the tangent to C, at the point where $t=T$, is given by

$$
T y-x=T^{2}-3 T-1 .
$$

b) Find the equations of the two tangents to C, passing through the point $(5,2)$

Created by T. Madas

Question 77 (****)
A curve C is defined by the parametric equations

$$
x=\ln t, y=6 t^{3}, t>0
$$

The point P lies on C, so that $\frac{d^{2} y}{d x^{2}}=2$ at P.

Determine the exact coordinates of P.

Created by T. Madas

Question 78 (****)

The figure above shows the curve C known as the "lemniscate of Bernoulli", defined by the parametric equations

$$
x=3 \sin \theta, y=2 \sin 2 \theta, 0 \leq \theta \leq 2 \pi .
$$

The curve is symmetrical in the x axis and in the y axis.
a) Show that a Cartesian equation of C is

$$
81 y^{2}=16 x^{2}\left(9-x^{2}\right) .
$$

In the figure above, the curve C is shown bounded by a rectangle whose sides are tangents to the curve parallel to the coordinate axes.

The shaded region represents the points within the rectangle but outside C.
b) Given that the area of one loop of C is 8 square units, find the area of the shaded region.

Created by T. Madas

Question 79 (****)

The figure above shows the curve C with parametric equations

$$
x=\cos \theta, y=\sin 2 \theta-\cos \theta, 0 \leq \theta<2 \pi .
$$

a) Find an equation of the tangent to C at the point where $\theta=\frac{\pi}{4}$.
b) Show that the tangent to C at the point where $\theta=\frac{5 \pi}{4}$ is the same line as the tangent to C at the point where $\theta=\frac{\pi}{4}$.
c) Show further that a Cartesian equation of the curve is

$$
4 x^{2}\left(1-x^{2}\right)=(x+y)^{2}
$$

Created by T. Madas

Question 80 (****)

The figure above shows the curve C with parametric equations

$$
x=2+2 \sin \theta, y=2 \cos \theta+\sin 2 \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} .
$$

The curve meets the x axis at the origin O and at the point P. The point Q is the stationary point of C.
a) Find an expression for $\frac{d y}{d x}$ in terms of θ.
b) Hence find the exact coordinates of Q.
c) Show that the Cartesian equation of C can be written as

$$
y^{2}=x^{3}-\frac{1}{4} x^{4}
$$

The finite region bounded by C and the x axis is rotated by 2π radians about the x axis to form a solid of revolution S.
d) Find the exact volume of S.

Created by T. Madas

Question 81 (****)

The figure above shows the curve with parametric equations

$$
x=\sin \left(t+\frac{\pi}{6}\right), y=1+\cos 2 t, 0 \leq t<2 \pi
$$

The curve meets the coordinate axes at the points A, B and R.
a) Find an expression for $\frac{d y}{d x}$ in terms of t.
b) Determine the coordinates of the points A, B and R.

At the points C and D the tangent to the curve is parallel to the x axis, and at the points P and Q the tangent to the curve is parallel to the y axis.
c) Find the coordinates of C and D.
d) State the x coordinates of P and Q.

Created by T. Madas

[continues from previous page]

The curve is reflected in the x axis to form the design of a window.

The resulting design fits snugly inside a rectangle.

The sides of this rectangle are tangents to the curve and its reflection, parallel to the coordinate axes. This is shown in the figure below.

It is given that the area on one of the four loops of the curve is $\frac{2}{3} \sqrt{3}$ square units.
e) Find the exact area of the region which lies within the rectangle but not inside the four loops of the design.

$$
\begin{array}{r}
\frac{d y}{d x}=-\frac{2 \sin 2 t}{\cos \left(t+\frac{\pi}{6}\right)} A\left(-\frac{\sqrt{3}}{2}, 0\right), B\left(\frac{\sqrt{3}}{2}, 0\right), R\left(1, \frac{3}{2}\right), C\left(-\frac{1}{2}, 2\right), D\left(\frac{1}{2}, 2\right), \\
x_{P}=-1, x_{Q}=1, \text { area }=8-\frac{8}{3} \sqrt{3}
\end{array}
$$

Created by T. Madas

Created by T. Madas

Question 82 (****)

The figure above shows the curve C with parametric equations

$$
x=t^{2}, y=\sin t, 0 \leq t \leq \pi .
$$

The curve crosses the x axis at the origin O and at the point A.
a) Find the coordinates of A.

The point P lies on C where $t=\frac{2 \pi}{3}$. The line T is a tangent to C at the point P.
b) Show that the equation of T can be written as

$$
24 \pi y+9 x=4 \pi(\pi+3 \sqrt{3})
$$

The point Q lies on the x axis, so that $P Q$ is parallel to the y axis. The point B is the point where T crosses the x axis.
c) Show that the area of the triangle $P B Q$ is π square units.

Created by T. Madas

Question 83 (****)

The figure above shows a curve C and a straight line L, meeting at the origin and at the point R. The points P and Q are such so the tangent to C at those points is horizontal and vertical, respectively.

The curve C has parametric equations

$$
x=2 \sqrt{2} \sin 2 t, \quad y=1-\cos 2 t, \quad 0 \leq t<\pi,
$$

and the straight line L has equation $y=x$.
a) Find the coordinates of P and Q.
b) Show that at $R, \tan t=2 \sqrt{2}$.
c) Hence determine the exact value of the gradient at R.
d) Show that a Cartesian equation for C is

$$
8 y^{2}-16 y+x^{2}=0 .
$$

Created by T. Madas

Question 84 (****)

A curve C is defined by the parametric equations

$$
x=\sin ^{2} \theta, y=\sin 2 \theta \quad 0 \leq \theta<\pi
$$

a) Show that

$$
\frac{d y}{d x}=2 \cot 2 \theta .
$$

The straight line with equation $y=2 x$ intersects C, at the origin and at the point P.
b) Find the coordinates of P, and show further that P is a stationary point of C.
c) Show further that a Cartesian equation of C is

Created by T. Madas

Question 85 (****)
The curve C is given parametrically by

$$
x=\cos t+\sin t-2, y=\sin 2 t, 0 \leq t<2 \pi .
$$

a) By using appropriate trigonometric identities, show that a Cartesian equation for C is given by

$$
y=x^{2}+4 x+3 .
$$

b) Sketch the part of C which corresponds to the above parametric equations. The sketch must include

- the coordinates of any points where C meets the coordinate axes.
- the exact coordinates of the endpoints of C.

Created by T. Madas

Question 86 (****)
A curve has parametric equations

$$
x=1-\cos \theta, \quad y=\sin \theta \sin 2 \theta \quad, \quad 0 \leq \theta \leq \pi
$$

Determine in exact form the coordinates of the stationary points of the curve.

Created by T. Madas

Question 87 (****)
A curve is given parametrically by the equations

$$
x=3 \cos t, \quad y=4 \sin t, \quad 0 \leq t \leq 2 \pi .
$$

a) Show that the equation of the tangent to the curve at the point where $t=\theta$ is

$$
3 y \sin \theta+4 x \cos \theta=12
$$

The tangent to the curve at the point where $t=\theta$ meets the y axis at the point $P(0,8)$ and the x axis at the point Q.
b) Find the exact area of the triangle $P O Q$, where O is the origin.

Created by T. Madas

Question 88 (****)

x

The figure above shows the curve C with parametric equations

$$
x=a \cos ^{3} \theta, y=b \sin \theta, \quad 0 \leq \theta<2 \pi
$$

where a and b are positive constants.

The point P lies on C, where $\theta=\frac{\pi}{6}$.
a) Show that an equation of the tangent to C at P is

$$
9 a y+4 b x \sqrt{3}=9 a b .
$$

The tangent to C at P crosses the coordinate axes at $(0,12)$ and $\left(\frac{3 \sqrt{3}}{4}, 0\right)$.
b) Find the value of a and the value of b.

Created by T. Madas

Created by T. Madas

Question 89 (****)

The figure above shows an ellipse with parametric equations

$$
x=2 \cos \theta \quad y=6 \sin \left(\theta+\frac{\pi}{3}\right), 0 \leq \theta<2 \pi
$$

The curve meets the coordinate axes at the points A, B, C and D.
a) Determine the coordinates of the points A, B, C and D.

The straight line L is the tangent to the ellipse at the point A.
b) Find an equation of L.
c) Show that a Cartesian equation of the ellipse is

$$
y^{2}+9 x^{2}=9+3 x y \sqrt{3}
$$

Created by T. Madas

Question 90 (****)
A curve C is given parametrically by the equations

$$
x=\sin ^{2} \theta, y=6 \sin \theta-\sin ^{3} \theta, \frac{\pi}{2}<\theta<\frac{\pi}{2}
$$

a) Find an expression for $\frac{d y}{d x}$, in terms of $\sin \theta$.
b) Hence show that C has no stationary points.
c) Determine the exact coordinates of the point on C, where the gradient is $8 \frac{1}{2}$.
d) Show that a Cartesian equation of C is

$$
y^{2}=x(x-6)^{2}
$$

$$
\frac{d y}{d x}=\frac{6-3 \sin ^{2} \theta}{2 \sin \theta}, P\left(\frac{1}{9}, \frac{53}{27}\right)
$$

Created by T. Madas

Question 91 (****)

The figure above shows a curve C with parametric equations

$$
x=\frac{t^{2}}{t-1}, y=\frac{t^{3}}{t-1}, t \in \mathbb{R}, t>1
$$

The points P and Q lie on C so that the tangents to the curve at those points are horizontal and vertical respectively.
a) Show that

$$
\frac{d y}{d x}=\frac{t(2 t-3)}{t-2}
$$

b) Find the coordinates of P and Q.
c) Show further that a Cartesian equation for C is

$$
y^{2}-y x^{2}+x^{3}=0
$$

Created by T. Madas

Question 92 (****)

The figure above shows the curve defined by the parametric equations

$$
x=4 \theta-\sin \theta, \quad y=2 \cos \theta, \text { for } 0 \leq \theta<2 \pi .
$$

The curve crosses the x axis at points A and B.
The point C is the minimum point on the curve and $C D$ is perpendicular to the x axis and a line of symmetry for the curve.
a) Find the exact coordinates of A, B and C.
b) Show that an equation of the tangent to the curve at the point A is given by

$$
x+2 y=2 \pi-1 .
$$

c) Show that the area of the region R bounded by the curve and the coordinate axes is given by

$$
\int_{0}^{\frac{\pi}{2}} 8 \cos \theta-2 \cos ^{2} \theta d \theta
$$

d) Find an exact value for this integral.

Created by T. Madas

Question 93 (****)

The curve C is given parametrically by the equations

$$
x=\cos ^{3} t, y=\sin ^{3} t, 0<t<\frac{\pi}{2}
$$

a) Show that an equation of the normal to C at the point where $t=\theta$ is

$$
x \cos \theta-y \sin \theta=\cos 2 \theta .
$$

The normal to C at the point where $t=\theta$ meets the coordinate axes at the points A and B.

Question 94 (****)
The curve C is given parametrically by the equations

$$
x=3 t, y=\frac{3}{t}, t \neq 0
$$

a) Show that an equation of the normal to C at the point with parameter t is

$$
y t+3 t^{4}=x t^{3}+3
$$

The point $A\left(12, \frac{3}{4}\right)$ lies on C. The normal at $A\left(12, \frac{3}{4}\right)$ meets the curve again at B.
b) Determine the coordinates of B.

Question 95 (****)
A curve is defined parametrically by the equations

$$
x=3 \cos 2 t, \quad y=6 \sin 2 t, \quad 0 \leq t<2 \pi .
$$

Express $\frac{d^{2} y}{d x^{2}}$ in terms of y.

Created by T. Madas

Question $96 \quad(* * * *+)$
The curve C is given by the parametric equations

$$
x=\frac{2}{t}, y=4 t, t>0
$$

The tangent to the C at the point P where $t=p$, meets the coordinate axes at the points A and B.

Show that the area of the triangle $O A B$, where O is the origin, is independent of p,

Created by T. Madas

Question 97 ($* * * *+$)
The curve C is given parametrically by the equations

$$
x=2 t+1, y=8 t^{3}+4 t^{2}, t \in \mathbb{R}
$$

a) Find the coordinates of the stationary points of C, and determine their nature.

It is further given that C has a single point of inflection at P.
b) Determine the coordinates of P.

Question 98 ($* * * *+$)
The curve C is given by the parametric equations

$$
x=3 a t, y=a t^{3}, t \in \mathbb{R}
$$

where a is a positive constant.
a) Show that an equation of the normal to C at the general point $\left(3 a t, a t^{3}\right)$ is

$$
y t^{2}+x=3 a t+a t^{5} .
$$

The normal to C at some point P, passes through the points with coordinates $(7,3)$ and $(-1,5)$.
b) Determine the coordinates of P.

Created by T. Madas

Question 99 ($* * * *+$)
The curve C is given parametrically by the equations

$$
x=t^{2}, y=1+\cos t, t \in \mathbb{R} .
$$

Show that the value of t at any points of inflection of C is a solution of the equation

$$
t=\tan t
$$

Created by T. Madas

Question 100 (****+)
A curve has parametric equations

$$
x=\frac{3}{t^{2}}, \quad y=5 t^{2}, t>0
$$

If the tangent to the curve at the point P passes through the point with coordinates $\left(\frac{9}{2}, \frac{5}{2}\right)$, determine the possible coordinates of P.

Created by T. Madas

Question 101
A curve is given parametrically by the equations

$$
x=3 \sin 2 \theta, \quad y=4 \cos 2 \theta, \quad 0 \leq \theta \leq 2 \pi
$$

The point P lies on the curve so that

Show that an equation of the tangent at P is

$$
32 x-7 y=100
$$

Created by T. Madas

Question 102 (****+)

$$
y=a^{x}, a>0, x \in \mathbb{R}
$$

a) Show clearly that

A curve C is given by the parametric equations

$$
x=2^{2-t}, \quad y=8^{t}+1, \quad t \in \mathbb{R} .
$$

b) Show that for points on C,

$$
\frac{d y}{d x}=-3 \times 4^{2 t-1}
$$

c) Find in simplified form a Cartesian equation for C.

Question 103 (****+)
A curve C is given parametrically by

$$
x=\frac{4 \cos t}{1+4 \sin ^{2} t}, \quad y=\frac{4 \sin 2 t}{1+4 \sin ^{2} t}, \quad t \in \mathbb{R} .
$$

Show that ...
a) \ldots an equation of the tangent at the point where $t=\frac{\pi}{4}$ is

$$
7 y-4 \sqrt{2} x=4
$$

b) ... a Cartesian equation of C is

$$
\left(x^{2}+y^{2}\right)^{2}=4\left(4 x^{2}-y^{2}\right)
$$

Question 104 (****+)
A curve is defined by the parametric equations

$$
x=2 \cos t, y=4 \sin t, 0 \leq t \leq \frac{\pi}{2}
$$

a) Show that an equation of the tangent to the curve at the point P where $t=\theta$ can be written as

$$
y \sin \theta+2 x \cos \theta=4
$$

The tangent to curve at P meets the coordinate axes at the points A and B.
The triangle $O A B$, where O is the origin, has the least possible area.
b) Find the coordinates of P.
\square $P(\sqrt{2}, 2 \sqrt{2})$

Created by T. Madas

Question 105 (****+)
A curve C is given parametrically by the equations

$$
x=t^{2}-1, \quad y=t^{3}-t, \quad t \in \mathbb{R}
$$

Find a Cartesian equation C, in the form $y^{2}=f(x)$.

Question 106 (****+)
A curve is given parametrically by the equations

$$
x=2 t, y=t^{2}, t \in \mathbb{R}
$$

The normal to the curve at the point P meets the x axis at the point A and the y axis at the point B.

Given that $|O B|=3|O A|$, where O is the origin, determine the coordinates of P.

Created by T. Madas

Created by T. Madas

Question 107 (****+)
A curve is given parametrically by the equations

$$
x=\frac{2 t}{1+t^{2}}, y=\frac{1-t^{2}}{1+t^{2}}, t \in \mathbb{R}
$$

The point $P\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ lies on this curve.

Show that an equation of the tangent at the point P is given by

$$
x+y=\sqrt{2}
$$

Created by T. Madas

A curve is given parametrically by the equations

$$
x=4 \sin \theta, y=\cos 2 \theta, 0 \leq \theta<\pi
$$

The tangent to the curve at the point P meets the x axis at the point $(3,0)$.

Determine the possible coordinates of P.

Created by T. Madas

Question 109 (****+)
A curve is defined by the parametric equations

$$
x=\cos \theta, \quad y=\sin \theta-\tan \theta, \quad 0 \leq \theta<2 \pi .
$$

Show that a Cartesian equation of the curve is given by

Created by T. Madas

Question 110 (****+)
A parametric relationship is given by

$$
x=\sin 2 \theta, \quad y=\cot \theta, \quad 0<\theta<\pi
$$

Show that a Cartesian equation for this relationship is

$$
y(2-x y)=x
$$

\square

Created by T. Madas

Created by T. Madas

Question 111 (****+)
A curve has parametric equations

$$
x=3-t, y=t^{2}-1, t \in \mathbb{R} .
$$

a) Find, in terms of t, the gradient of the normal at any point on the curve.

The distinct points P and Q lie on the curve where $t=p$ and $t=q$, respectively.
b) Show that the gradient of the straight line segment $P Q$ is $-(p+q)$.

The straight line segment $P Q$ is a normal to the curve at P.
c) Show further that

The point $A(2,0)$ lies on the curve.

The normal to the curve at A meets the curve again at B. The normal to the curve at B meets the curve again at C.
d) Find the exact coordinates of C.

Question 112 (****+)
The curve with equation $x y=3$ is traced by the following parametric equations

$$
x=\frac{4 t p}{t+p}, y=\frac{4}{t+p}, \quad t, p \in \mathbb{R}, t \neq p
$$

where t and p are parameters.

Find the relationship between t and p, giving the answer in the form $p=f(t)$.

Question 113 (****+)
A parametric relationship is given by

$$
x=\sin ^{2} \theta, \quad y=\tan 2 \theta, 0 \leq \theta<\frac{\pi}{4}
$$

Show that a Cartesian equation for this relationship is

Question 114 (****+)
A curve C is given by the parametric equations

$$
x=2 \cos 2 t, \quad y=5 \sin t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} .
$$

The point $P\left(1, \frac{5}{2}\right)$ lies on C.
a) Find the value of the gradient at P, and hence, show that an equation of the normal to C at P is

$$
8 x-10 y+17=0
$$

The normal at P meets C again at the point Q.
b) Show that the y coordinate of Q is $-\frac{165}{16}$.
\square $\left.\frac{d y}{d x}\right|_{P}=-\frac{5}{4}$

Question 115 ($* * * *+$)
A curve C is defined by the parametric equations

$$
x=t^{3}+2, y=t^{2}+3, t \in \mathbb{R}
$$

Show clearly that

$$
\frac{d^{2} y}{d x^{2}}=f(y)
$$

where f must by explicitly stated.

, proof

Created by T. Madas

Question 116 (****+)
A curve C is defined parametrically by the equations

$$
x=t^{3}, y=t^{2}, t \in \mathbb{R} .
$$

The tangent to C at point P passes through the point with coordinates $(-10,7)$.

Find the possible coordinates of P

Question 117 (****)
A curve C is defined by the parametric equations

$$
x=\cos \theta+(\theta+\varphi) \sin \theta, y=\sin \theta-(\theta+\varphi) \cos \theta
$$

where φ is a constant and θ is a parameter, such that

$$
0<\theta<\frac{\pi}{2}, \quad 0<\varphi<\frac{\pi}{2} \text { and } \theta+\varphi \neq 0 .
$$

Show that the equation of a normal to C at the point with parameter θ is given by

Created by T. Madas

Question 118 (****+)
A curve C is defined parametrically by the equations

$$
x=t^{4}, \quad y=2 t^{2}-8 t+9, t \in \mathbb{R}
$$

Find the value of $\frac{d^{2} y}{d x^{2}}$ at the stationary point of C.

Created by T. Madas

Question 119 (****+)

The curve C is given parametrically by

$$
x=\frac{1}{2}\left(1+t^{2}\right), \quad y=t^{3}, \quad t \in \mathbb{R}
$$

a) Show that an equation of the tangent to the curve at the point P where $t=p$ is

$$
2 y+3 p+p^{3}=6 p x
$$

b) Show further that the straight line with equation

$$
y=9 x-18
$$

is a tangent to C and determine the coordinates of the point of tangency,

Created by T. Madas

Question 120 (****+)
A curve C is given by the parametric equations

$$
x=\cos t, \quad y=\cos 2 t, \quad-\pi \leq t \leq \pi
$$

The point P lies on C, where $t=\frac{\pi}{3}$.
a) Show that an equation of the normal to C at P is

$$
2 x+4 y+1=0 .
$$

The normal at P meets C again at the point Q.

The figure above shows a curve known as a Cardioid. The curve crosses the y axis at the point A and the point B is the highest point of the curve.

The parametric equations of this Cardioid are

$$
x=4 \cos \theta+2 \cos 2 \theta, \quad y=4 \sin \theta+2 \sin 2 \theta, \quad 0 \leq \theta<2 \pi
$$

a) Find a simplified expression for $\frac{d y}{d x}$, in terms of θ.
b) Hence show that the coordinates of B are $(1,3 \sqrt{3})$.
[continued from overleaf]

The distance of a point $P(x, y)$ from the origin is $\sqrt{x^{2}+y^{2}}$.
d) Show that for points that lie on this cardioid

$$
x^{2}+y^{2}=20+16 \cos \theta
$$

and use this result to find the shortest and longest distance of any point on the cardioid from the origin.

$$
\frac{d y}{d x}=-\frac{\cos \theta+\cos 2 \theta}{\sin \theta+\sin 2 \theta}, \cos \theta=\frac{-1+\sqrt{3}}{2},\left.\quad O P\right|_{\min }=2,\left.\quad O P\right|_{\max }=6
$$

Created by T. Madas

Question 122 (****+)

The figure above shows the curve C given parametrically by the equations

$$
x=\cos t+2 \sin t, \quad y=\sin 2 t, \quad 0 \leq t<2 \pi .
$$

a) Find the coordinates of the points where C crosses the x axis.

There are two points on C where the tangent to C is parallel to the y axis.
b) Determine the exact coordinates of these two points.
c) Show that a Cartesian equation of C is

$$
9\left(1-y^{2}\right)=\left(5+4 y-2 x^{2}\right)^{2}
$$

$$
(-2,0),(-1,0),(1,0),(2,0),\left(-\sqrt{5}, \frac{4}{5}\right),\left(\sqrt{5}, \frac{4}{5}\right)
$$

Created by T. Madas

Question 123 (****+)
A curve given parametrically by the equations

$$
x=1-\cos 2 t, \quad y=\sin 2 t, \quad 0 \leq t<2 \pi
$$

Find the turning points of the curve and use $\frac{d^{2} y}{d x^{2}}$ to determine their nature.

$$
\max (1,1), \min (1,-1)
$$

Question 124 (****+)
For the curve given parametrically by

$$
x=\frac{t}{1-t}, \quad y=\frac{t^{2}}{1-t}, \quad t \in \mathbb{R}, t \neq 1
$$

find the coordinates of the turning points and determine their nature.

Created by T. Madas

Created by T. Madas

Question 125 (****+)
0

$$
x=\frac{5}{3}
$$

The figure above shows part of the curve C with parametric equations

$$
x=t+\frac{1}{4 t}, \quad y=t-\frac{1}{4 t}, \quad t>0
$$

The curve crosses the x axis at P.
a) Determine the coordinates of P.
b) Show that the gradient at any point on C is given by

$$
\frac{d y}{d x}=\frac{4 t^{2}+1}{4 t^{2}-1} .
$$

c) By considering $x+y$ and $x-y$, or otherwise, find a Cartesian equation for C
[continued from overleaf]

The finite region R bounded by C, the line $x=\frac{5}{3}$ and the x axis is shown shaded in the figure.
d) Show that the area of R is given by

$$
\int_{\frac{1}{2}}^{\frac{3}{2}}\left(t-\frac{1}{4 t}\right)\left(1-\frac{1}{4 t^{2}}\right) d t
$$

e) Hence calculate an exact value for the area of R.

Created by T. Madas

Question 126 (****+)

The figure above shows part of the curve C with parametric equations

$$
x=2 t+\frac{1}{t}, \quad y=2 t-\frac{1}{t}, \quad t>0
$$

The curve crosses the x axis at the point P and the L is a normal to C at the point Q, where $t=2$.
a) Determine the exact coordinates of P.
b) Show that the gradient at any point on C is given by

$$
\frac{d y}{d x}=\frac{2 t^{2}+1}{2 t^{2}-1}
$$

[continued from overleaf]

The normal L crosses the x axis at R. The region bounded by C, by L and the x axis, shown shaded in the figure, has area A.
c) Find the coordinates of R.
d) Calculate an exact value for A.

$$
P(2 \sqrt{2}, 0), R(9,0), \quad A=\frac{63}{4}-6 \ln 2
$$

Created by T. Madas

Question 127 (****+)

The figure above shows a symmetrical design for a suspension bridge arch $A B C D$.

The curve $O B C R$ is a cycloid with parametric equations

$$
x=6(2 t-\sin 2 t), \quad y=6(1-\cos 2 t), \quad 0 \leq t \leq \pi
$$

a) Show clearly that

b) Find the in exact form the length of $O R$.
c) Determine the maximum height of the arch.

Created by T. Madas

[continued from overleaf]

The arch design consists of the curved part $B C$ and the straight lines $A B$ and $C D$.

The straight lines $A B$ and $C D$ are tangents to the cycloid at the points B and C.

The angle $B A O$ is $\frac{\pi}{6}$.
d) Find the value of t at B, by considering the gradient at that point.
e) Find, in exact form, the length of the straight line $A D$.

Question 128
A curve is given parametrically by the equations

$$
x=2 \theta+\sin 2 \theta, y=\cos 2 \theta, 0 \leq \theta<\pi .
$$

Show that ...
a) $\ldots \frac{d y}{d x}=-\tan \theta$.
b) \ldots the value of $\frac{d^{2} y}{d x^{2}}$ evaluated at the point where $\theta=\frac{\pi}{6}$ is $-\frac{4}{9}$.

Created by T. Madas

Question 129 (*****)

The figure above shows the curve C with parametric equations

$$
x=t^{2}, y=2 t, t \in \mathbb{R}, t \geq 0
$$

The point P lies on C, where $t=p$. The point R lies on the x axis so that $P R$ is parallel to the y axis. The tangent to C at the point P meets the x axis at the point Q, so that the angle $\measuredangle P Q R=\theta$.
a) Find the coordinates of Q in terms of p.
b) By considering the triangle $P Q R$, show $\tan \theta=\frac{1}{p}$.

The point S has coordinates $(1,0)$ and $\measuredangle P S R=\varphi$.
c) Find an expression for $\tan \varphi$ in terms of p and hence show that $\varphi=2 \theta$.
d) Deduce that $|S P|=|S Q|$.

\square
$\tan \varphi=\frac{2 p}{p^{2}-1}$
[solution overleaf]

Created by T. Madas

Created by T. Madas

Question 130 (****+)
A curve C is given by the parametric equations

$$
x=\tan \theta-\sec \theta, \quad y=\cot \theta-\operatorname{cosec} \theta, \quad 0<\theta<\frac{\pi}{2} .
$$

Show clearly that
a) \ldots a Cartesian equation of C is

$$
\left(x^{2}-1\right)\left(y^{2}-1\right)=4 x y
$$

b) $\cdots \frac{d y}{d x}=\frac{1-y^{2}}{2 x}$.

Created by T. Madas

Question 131 (****+)
The point $P\left(\frac{1}{2}, \frac{1}{2}\right)$ lies on the curve given parametrically as

$$
x=\cos 2 t, \quad y=4 \sin ^{3} t, \quad 0 \leq t<2 \pi .
$$

The tangent to the curve at P meets the curve again at the point Q.

Determine the exact coordinates of Q.

Created by T. Madas

Question 132 (****+)
The point P lies on the curve given parametrically as

$$
x=t^{2}, \quad y=t^{2}-t, \quad t \in \mathbb{R}
$$

The tangent to the curve at P passes through the point with coordinates $\left(4, \frac{3}{2}\right)$.

Determine the possible coordinates of P.

Question 133 (****+)
A curve C is given parametrically by

$$
x=a+\tan t, \quad y=b+\cot ^{2} t, \quad 0<t<\frac{\pi}{2}
$$

where a and b are non zero constants.
a) Show that
i. $\ldots \frac{d y}{d x}=-2 \cot ^{3} t$.
ii. ... a Cartesian equation of C is

$$
(y-b)(x-a)^{2}=1
$$

b) Given that C meets the straight line with equation $y=6 x+2$ at the points where $y=2$ and $y=5$, show further that a is a solution of the equation

$$
(a-1)\left(12 a^{3}+3 a-1\right)=0
$$

c) Hence, state a possible value for a and a possible value for b.
\square $, a=-1, b=1$

Created by T. Madas

Question 134 (*****)
A curve C is given parametrically by the equations

$$
x=2+2 \sin \theta, \quad y=2 \cos \theta+\sin 2 \theta, \quad 0 \leq \theta<2 \pi .
$$

a) By considering a simplified expression for $\frac{y}{x}$, show that a Cartesian equation of C is given by

$$
y^{2}=x^{3}-\frac{1}{4} x^{4}
$$

b) Given that C meets the straight line with equation $y=x$ at the origin and at the point P, determine the coordinates of P.
c) Use differentiation to show that the straight line with equation $y=x$ is in fact a tangent to C at the point P.

Created by T. Madas

Question 135 (*****)
A parametric relationship is given by

$$
x=\operatorname{cosec} \theta-\sin \theta, \quad y=\sec \theta-\cos \theta, \quad 0<\theta<\frac{\pi}{2} .
$$

Show that a Cartesian equation for this relationship is

Question 136 (*****)
The curve C has parametric equations

$$
x=4 \cos t-3 \sin t+1, y=3 \cos t+4 \sin t-1,0 \leq t<2 \pi
$$

Find a Cartesian equation of the curve.

Question 137 (*****)
A curve C is given parametrically by

$$
x=t^{2}-p^{2}, \quad y=2 t p
$$

where t and p are real parameters.

The parameters t and p are related by the equation

$$
p^{2}=2 t^{2}-1
$$

Show that a Cartesian equation for C is

Question 138
The curve C has parametric equations

$$
x=t^{2}+2 t, \quad y=2 t^{2}+t, \quad t \in \mathbb{R}
$$

Show that a Cartesian equation of the curve is given by

$$
4 x^{2}+y^{2}-4 x y+3 x-6 y=0
$$

\square , proof

Created by T. Madas

Question 139 (*****)
A curve C is given parametrically by the equations

$$
x=\frac{4-t^{2}}{4+t^{2}}, \quad y=\frac{4 t}{4+t^{2}}, \quad t \in \mathbb{R}
$$

By using the substitution $t=\tan \frac{\theta}{2}$, or otherwise, show that the Cartesian equation of C represents a circle.

Question 140 (*****)

A curve is defined by the parametric equations

$$
x=\sin ^{2} t, \quad y=\sin t \cos t+\cos t, \quad 0 \leq t<2 \pi .
$$

Show that the Cartesian equation of the curve is

$$
\left(x^{2}+y^{2}-1\right)^{2}=4 x(1-x)^{2}
$$

Created by T. Madas

Question 141 (*****)

The figure above shows the curve C with parametric equations

$$
x=4 \cos \theta, \quad y=3 \sin \theta, \quad 0 \leq \theta<2 \pi .
$$

The point P lies on C where $\theta=\alpha$, where $0<\alpha<\frac{\pi}{2}$.

The line T is a tangent to C at P.

The tangent T meets the coordinate axes at the points A and B.
The area of the triangle $O A B$, where O is the origin, is less than 24 square units.
Find the range of the possible values of α.

$\frac{\pi}{12} \leq \alpha \leq \frac{5 \pi}{12}$

Created by T. Madas

Question 142 (*****)
A cycloid is given by the parametric equations

$$
x=\theta-\sin \theta, \quad y=1-\cos \theta, \quad 0<\theta<\pi .
$$

The gradient at the point P on this cycloid is $\frac{1}{2}$.

Show that at the point $P, \tan \theta=-\frac{4}{3}$.

Created by T. Madas

Question 143 (*****)
A straight line with negative gradient passes though the point with coordinates $(2,4)$. The point M the midpoint of the two intercepts of this line with the coordinate axes.

Sketch a detailed graph of the locus of M.

Created by T. Madas

Question 144 (*****)
The curve has parametric equations

$$
x=\frac{t^{2}+5}{t^{2}+1}, \quad y=\frac{4 t}{t^{2}+1}, t \in \mathbb{R}
$$

Show, by eliminating the parameter t, that the curve is a circle, stating the coordinates of its centre, and the size of its radius.

Question 145 (*****)
The curve C has parametric equations

$$
x=\frac{3 t-1}{t^{2}-1}, \quad y=\frac{t}{t^{2}-1}, \quad t \in \mathbb{R}
$$

Show by eliminating the parameter t, that a Cartesian equation of C is

$$
(x-2 y)(x-4 y)=x-3 y
$$

\square , proof
\square

- Duiding the two gquatians side by side $\frac{x}{y}=\frac{\frac{3 t-1}{t^{2}-1}}{\frac{t}{t^{2}-1}}=\frac{3 t-1}{t}=3-\frac{1}{t}$ (9) IfARPANE FOR t $\frac{x}{y}=3-\frac{1}{t} \Rightarrow \frac{1}{t}=3-\frac{x}{y}$ $\quad \frac{t}{t}=\frac{3 y-x}{y}$
$\Rightarrow t=\frac{y}{3 y-x}$
 $\Rightarrow y=\frac{t}{t^{2}-1}$ $\Rightarrow y\left(t^{2}-1\right)=t$ $\Rightarrow y\left[\frac{y^{2}}{(3 y-x)^{2}}-1\right]=\frac{y}{3 y-x}$ $\Rightarrow \frac{y^{2}}{(3 y-x)^{2}}-1=\frac{1}{3 y-x}$ $\Rightarrow y^{2}-(3 y-x)^{2}=3 y-x$ $\Rightarrow[y-(3 y-x)][y+[3 y-x)=3 y-x$ $\Rightarrow(x-3 y)(4 y-x)=3 y-x$
$\Rightarrow(x-3 y)(x-4 y)=x-3 y$

Question 146 (*****)
A curve is given parametrically by the equations

$$
x=\sin t, y=\cos ^{3} t, 0 \leq t<2 \pi
$$

a) Find a simplified expression for $\frac{d y}{d x}$, in terms of t.
b) Show that
i. $\ldots \frac{d^{2} y}{d x^{2}}=-6 \cos t+3 \sec t$.
ii. $\quad . \frac{d^{3} y}{d x^{3}}=3 \tan t\left(2+\sec ^{2} t\right)$.
c) Show further that the value of $\frac{d^{3} y}{d x^{3}}$ at the points where $\frac{d^{2} y}{d x^{2}}=0$ is ± 12.

$$
\frac{d y}{d x}=-\frac{3}{2} \sin 2 t
$$

A curve is given by the parametric equations

$$
x=\sin \theta, \quad y=\theta \cos \theta, \quad-\pi<\theta<\pi .
$$

The tangents to the curve, at the points where $\theta=-\frac{\pi}{4}$ and $\theta=\frac{\pi}{4}$, are parallel to one another, at a distance d apart.

Show that

$$
d=\sqrt{\frac{8 \pi^{2}-32 \pi+32}{\pi^{2}-8 \pi+32}}
$$

Created by T. Madas

Question 148 (*****)
A curve is given parametrically by

$$
x=\ln (\sec t+\tan t), \quad y=2 \sec t, \quad t \in \mathbb{R}, \quad t \neq \frac{(2 n-1) \pi}{2}
$$

Find a Cartesian equation for the curve in the form $y=f(x)$.

Question 149 (*****)
A curve is given parametrically by

$$
x=t^{2}+t+3, \quad y=2 t^{2}-3 t+1, \quad t \in \mathbb{R}
$$

Find a Cartesian equation for the curve in the form $f(x, y)=0$.
\square $4 x^{2}+y^{2}-4 x y+5 y-35 x+75=0$

$\rightarrow t+\frac{1}{2}= \pm \frac{\sqrt{4 x-11}}{2}$
$\Rightarrow t=\frac{-1 \pm \sqrt{4 x-11}}{2}$

- mániplatte bepore substituma ino the y equation $2 t=-1 \pm \sqrt{4 x-11} \quad \& \quad 4 t^{2}=1 \pm 2 \sqrt{4 x-11}+4 x-11$ $4 t^{2}=4 x-10 \pm 2 \sqrt{4 x-11}$
- substitute lino the y fquation Aftre pousuna it $\Rightarrow 2 y=4 t^{2}-3(2 t)+2$ $\Rightarrow 2 y=[4 x-10 \pm 3 \sqrt{4 x-11}]-3[-1 \pm \sqrt{4 x-11}]+2$ $\Rightarrow 2 y=4 x-10 \pm 2 \sqrt{4 x-11}+3 \pm 3 \sqrt{4 x-11}+2$ $\Rightarrow 2 y=4 x-5 \pm 5 \sqrt{4 x-14}$
\qquad $\rightarrow(2 y-4 x+5)^{2}=25(4 x-11)$ $\Rightarrow 4 y^{2}+16 x^{2}+25-16 x y-46 x+20 y=100 x-275$ $\Rightarrow 4 y^{2}+16 x^{2}-16 x y-140 x+20 y+300=0$ $\Rightarrow y^{2}+4 x^{2}-4 x y-35 x+5 y+75=0$

Created by T. Madas

Question 150
Eliminate θ from the following pair of equations.

Write the answer in the form

$$
\tan \theta+\cot \theta=x^{3}
$$

$$
\sec \theta-\cos \theta=y^{3}
$$

$$
f(x, y)=1
$$

Created by T. Madas

The figure above shows a set of coordinate axes superimposed with a cotton reel.

Cotton thread is being unwound from around the circumference of the fixed circular reel of radius a and centre at O.

The free end of the cotton thread is marked as the point $B(x, y)$ which was originally at $P(a, 0)$.

The unwound part of the cotton thread $A B$ is kept straight and θ is the angle $O A$ subtends at the positive x axis, as shown in the figure above.

Find the parametric equations that satisfy the locus of $B(x, y)$, as the cotton thread is unwound in the fashion described.
\square $, x=a(\cos \theta+\theta \sin \theta), \quad y=a(\sin \theta-\theta \cos \theta)$

Created by T. Madas

Created by T. Madas

Question 152 (*****)

The figure above shows a rigid rod $A B$ of length 4 units which can slide through a hinge located at the point $M(1,0)$. The hinge allows the rod to turn in any direction in the $x-y$ plane. The end of the rod marked as A can slide on the y axis so that $|O A| \leq 4$. Let θ be the angle of inclination of the rod to the positive x axis.
a) Show that as A slides on the on the y axis, the locus of B satisfies the parametric equations

$$
x=4 \cos \theta, \quad y=4 \sin \theta-\tan \theta, \quad-\theta_{0} \leq \theta \leq \theta_{0},
$$

stating the exact value of θ_{0}.
b) Show further that a Cartesian equation of this locus is given by

Created by T. Madas

Question 153 (*****)
The curve C has parametric equations

$$
x=\frac{(u+v)^{2}}{u^{2}+v^{2}}, \quad y=\frac{u^{2}-v^{2}}{u^{2}+v^{2}},
$$

where u and v are real parameters with $u^{2}+v^{2} \neq 0$.

By considering the tangent half angle trigonometric identities, or otherwise, show that C is a circle, stating the coordinates of its centre and the size of its radius.

Created by T. Madas

The figure above shows a set of coordinate axes superimposed with a circular cotton reel of radius a and centre at $C(0, a)$.

A piece of cotton thread, of length πa, is fixed at one end at O and is being unwound from around the circumference of the fixed circular reel. The free end of the cotton thread is marked as the point $B(x, y)$ which was originally at $A(0,2 a)$.

The unwound part of the cotton thread $B D$ is kept straight and θ is the angle $O C D$ as shown in the figure above.

Find the parametric equations that satisfy the locus of $B(x, y)$, as the cotton thread is unwound in the fashion described, for which $x>0, y>0$.

$$
x=a[\sin \theta+(\pi-\theta) \cos \theta], \quad y=a[1-\cos \theta+(\pi-\theta) \sin \theta]
$$

Created by T. Madas

Question 155 (*****)

The straight line L has equation

$$
\frac{x}{p}+\frac{y}{q}=1,
$$

where p and q are non zero parameters, constrained by the equation

$$
\frac{1}{p^{2}}+\frac{1}{q^{2}}=\frac{1}{2}
$$

The point P is the foot of the perpendicular from the origin O to L.

Show that for all values of p and q, P lies on a circle C, stating its radius.

Created by T. Madas

Question 156 (*****)
A family of straight lines passes through the point with coordinates $(4,2)$

The variable point M denotes the midpoint of the x and y intercepts of this family of straight lines.

Sketch a detailed graph of the curve that M traces, for this family of straight lines.

Created by T. Madas

Created by T. Madas

Question 157 (*****)
The point P lies on the curve given parametrically as

$$
x=t^{2}, \quad y=t^{2}-t, \quad t \in \mathbb{R}
$$

The tangent to the curve at P meets the y axis at the point A and the straight line with equation $y=x$ at the point B.
P is moving along the curve so that its x coordinate is increasing at the constant rate of 15 units of distance per unit time.

Determine the rate at which the area of the triangle $O A B$ is increasing at the instant when the coordinates of P are $(36,30)$.

Created by T. Madas

Created by T. Madas

Question 158 (*****)
A curve has Cartesian equation

$$
y=\frac{1}{2} x^{2}, \quad x \in \mathbb{R}
$$

The points P and Q both lie on the curve so that $P O Q$ is a right angle, where O is the origin.

The point M represents the midpoint of $P Q$.

Show that as the position of P varies along the curve, M traces the curve with equation

Created by T. Madas

Question 159 (*****)
A curve is given parametrically by the equations

$$
x=2 t^{2}-3 t+1, x=t^{2}+t+1, t \in \mathbb{R}
$$

The tangents to the curve, at two distinct points P and Q, intersect each other at the point with coordinates $(2,9)$.
a) Determine the coordinates of P and Q.
b) Show that the Cartesian equation of the curve is

$$
25(y-1)=(2 y-x-1)(2 y-x+4) .
$$

You may not use a verification method in this part.

Created by T. Madas

Question 160 (*****)

The points P and Q are two distinct points which lie on the curve with equation

$$
y=\frac{1}{x}, x \in \mathbb{R}, x \neq 0
$$

P and Q are free to move on the curve so that the straight line segment $P Q$ is a normal to the curve at P.

The tangents to the curve at P and Q meet at the point R.

Show that R is moving on the curve with Cartesian equation

$$
\left(y^{2}-x^{2}\right)^{2}+4 x y=0
$$

Created by T. Madas

Question 161 (*****)
A curve is given parametrically by

$$
x=\frac{1}{3} t^{2}, \quad y=\frac{2}{3} t, \quad t \in \mathbb{R} .
$$

The normal to the curve at the point P meets the curve again at the point Q.

Show that the minimum value of $|P Q|$ is $\sqrt{12}$.

Created by T. Madas

Created by T. Madas

Question 162 (*****)
The function f maps points from a Cartesian $x-y$ plane onto the same Cartesian $x-y$ plane by

$$
f:(x, y) \mapsto\left(\frac{1-x^{2}-y^{2}}{x^{2}+(1-y)^{2}}, \frac{-2 x}{x^{2}+(1-y)^{2}}\right), \quad x \in \mathbb{R}, \quad y \in \mathbb{R}, \quad(x, y) \neq(0,1) .
$$

The set of points, S, which lie on the x axis are mapped by f onto a new set of points S^{\prime}, which in turn are mapped by f onto a new set of points $S^{\prime \prime}$.

Use algebra to determine the equation of $S^{\prime \prime}$.

