uas marns.com

Smaths.com PARAMETRIC TOUATIONS ASINALIS COM INC. Examplestions is com i tr

T.Y.C.B. Madasmanne I.Y.C.B. Manage XA. Inadasmans.com INADASMANS.COM INADASM

Question 1 (**)

A curve is given parametrically by

 $x=3+2\cos\theta, \quad y=-3+2\sin\theta, \quad 0 \le \theta < 2\pi$.

Show clearly that

 $\frac{dy}{dx} = \frac{3-x}{3+y}.$

		W.
Question	2	(**

A curve is defined by the following parametric equations

 $x = 4at^2$, y = a(2t+1), $t \in \mathbb{R}$,

where a is non zero constant.

Given that the curve passes through the point A(4,0), find the value of a.

proof

 $\frac{2-3}{-3-4} = \frac{2-3}{-(3+4)}$

- (3-2) - (3+4)

$ \begin{array}{c} \overbrace{ \begin{array}{c} 1 = \Delta a^{\frac{1}{2}} \\ y = a(2t+i) \end{array} } \end{array} \end{array} \Rightarrow$	dati=u a(2t4)=0 }⇒	atz 1 t=-1	(a\$0)
a	$\left(-\frac{1}{2}\right)^{2} = 1$		
	$\frac{1}{4}a = 1$		
	a=4		
	/		

Question 3 (**)

A curve is defined by the parametric equations

 $x = \frac{1}{2}a\cos\theta$, $y = a\sin\theta$, $0 \le \theta < 2\pi$,

where a is a positive constant.

Show clearly that

 $\frac{dy}{dx} = -\frac{4x}{y}$

122	
$\begin{array}{l} \frac{\partial \omega g}{\partial x} &= \frac{\partial \partial v}{\partial x} = \frac{\partial v}{\partial x} $	Now (call = 2) Shilt by 9 9 0 majured

Question 4 (**)

A curve C is given by the parametric equations

 $x = t + 1, y = t^2 - 1, t \in \mathbb{R}.$

Determine the coordinates of the points of intersection between C and the straight line with equation

Question 5 (**+)

A curve is given parametrically by the equations

 $x=1-\cos 2\theta$, $y=\sin 2\theta$, $0 \le \theta < 2\pi$.

The point *P* lies on this curve, and the value of θ at *P* is $\frac{\pi}{6}$.

Show that an equation of the normal to the curve at P is given by

 $y + \sqrt{3}x = \sqrt{3}.$

proof	

$\mathcal{L} = 1 - \cos 2\theta$ $\mathcal{G} = 5m/2\theta$ $\frac{du}{d\theta} = 2\cos 2\theta$
$\frac{d_{y}}{dx} = \frac{d_{y}}{dy} \frac{d_{y}}{d\theta} = \frac{z_{zzz}}{z_{zwr2\theta}} = \frac{z_{zz}}{z_{wr2\theta}} = \frac{d_{y}}{z_{wr2\theta}} = \frac{d_{y}}{z_{wr2\theta}} = \frac{d_{y}}{z_{wr2\theta}} = \frac{d_{y}}{z_{wr2\theta}}$
生 = 変加-11×1 等=4 Million 愛 = 変加2 = E
• 100 $\mu_{c} = -\frac{1}{36} = -\sqrt{3}$ $g = -\frac{1}{32} = -\sqrt{3}$ $g = -\frac{1}{32} = -\sqrt{3}$ $g = -\frac{1}{32} = -\sqrt{3}$ $g = -\frac{1}{32} = -\sqrt{3}$ $g = -\frac{1}{32}$ $g = -\frac{1}{32}$ $g = -\sqrt{3}$ $g = -\frac{1}{32}$ $g = -\sqrt{3}$ $g = -\sqrt{3}$

Question 6 (**+)

A curve is defined by the parametric equations

 $x = a\cos\theta, \quad y = a\sin^2\theta, \quad 0 \le \theta < 2\pi$

where a is a positive constant.

Show that the equation of the tangent to the curve at the point where $\theta = \frac{\pi}{3}$ is

4x + 4y = 5a

proof

6

$\frac{dy}{dx} = \frac{dy}{dx/d\theta} = \frac{2a \operatorname{set} \theta \operatorname{cs} \theta}{-a \operatorname{set} \theta} = -2 \operatorname{cs} \theta \left\{ \begin{array}{c} y = \operatorname{set} \theta \operatorname{cs} \theta \right\}^{2} \\ \frac{dy}{dx} = 2 \operatorname{set} \theta \operatorname{cs} \theta \right\}^{2} \\ \frac{dy}{dx} = 2 \operatorname{set} \theta \operatorname{cs} \theta \operatorname{set} \theta s$
$ \begin{array}{c} \frac{du}{dt} = 2(t_{0}t_{1})^{k}\cos\theta \\ \frac{du}{dt} = 2(t_{0}t_{1})^{k}\cos\theta $
· hither B= = = 2-2605 = = = = = = = = = = = = = = = = = = =
$4 \ln(E - \frac{\alpha}{2}) - \frac{3}{4} \alpha = -1 \left(2 - \frac{1}{2}\alpha\right) .$
$\Rightarrow \underbrace{y - \frac{3}{4}a}_{\Rightarrow y + 2} = \underbrace{-2 + \frac{1}{2}a}_{\Rightarrow y}$ $\Rightarrow \underbrace{y + 2}_{\Rightarrow 4} = \underbrace{5a}_{\Rightarrow 4}$ $\Rightarrow \underbrace{4a + 4y}_{\Rightarrow 5} = \underbrace{5a}_{\Rightarrow 5}$
AD CAMOUCAU

Question 7 (**+)

A curve C is given by the parametric equations

$$x = \frac{1 - t^2}{1 + t^2}, y = \frac{2t}{1 + t^2}, t \in \mathbb{R}$$

Determine the coordinates of the points of intersection between C and the straight line with equation

3y = 4x.

$[-\frac{3}{5}, -\frac{4}{5}] \& \left(\frac{3}{5}, \frac{4}{5}\right)$	$\left(\frac{1}{5}\right)$
$\begin{cases} 2 = \frac{1-t^2}{1+t^2} y = \frac{2t}{1+t^2} d y_y = 4x \end{cases}$	
$ \implies 3 \left(\frac{2t}{1+t^2} \right) = 4 \left(\frac{1-t^2}{1+t^2} \right)^{2} t \in < \frac{-2}{2} $	
$ \begin{array}{c c} \Rightarrow & (t_{\pm} 4 - 4t^2 \\ \Rightarrow & 4t^2 + (t - 4 = 0 \\ \Rightarrow & x^2 + 3t - 2 = 0 \end{array} \end{array} \left(\begin{array}{c} a_{\pm} < \frac{3}{3} \\ y_{\pm} < \frac{4}{3} \\ y_{\pm} < \frac{4}{3} \\ y_{\pm} < \frac{4}{3} \end{array} \right) $	
\rightarrow $(2t+1)(t+2)$ $\left(\begin{array}{c} \frac{1}{5} \left(\frac{1}{5}\right) \\ \frac{1}{5} \left(\frac{1}{5}\right) \end{array}\right)$	

Question 8 (**+)

A curve C is given by the parametric equations

 $x = 2t^2 - 1$, y = 3(t+1), $t \in \mathbb{R}$.

Determine the coordinates of the points of intersection between C and the straight line with equation

$$3x - 4y = 3.$$

], (17,12) & (1,0)

(x = 24 ² -1) y = 3(64) 32-4y = 3	$\begin{split} & \text{Simple functionally} \\ & \Rightarrow & \text{Simple functionally} \\ & \Rightarrow & \text{Simple functionally} \\ & \Rightarrow & Simple functional fu$

Question 9 (**+)

A. K. G.B. Mariana Mariana

I.F.G.B

A curve is given parametrically by the equations

rically by the equations $x = \frac{2}{t}, \quad y = t^2 - 1, \quad t \in \mathbb{R}, \ t \neq 0.$

The point P(4, y) lies on this curve.

I.C.B.

I.V.C.S.

6

Madasn

naqa

The Com

Show that an equation of the	tangent to the curve at <i>P</i> is a	viven by	2
	x+8y+2=0.		1an
na i	20.	905	-435
- Q20.	asm.	S'Do	proof
a Dar	All.	(dy) dy	$=\frac{xt}{-xt^{2}} > -t^{2}$
Co. So		$ \begin{array}{c} & & \\ & & $	*t=1
	Con Co	0	3 +200
1.1	×	Ir.	
$\sim -C$	· · F	1.1	×. · · · ·
D 20	6,0		9
" In-	Mari V.	<i>b</i> .	no.
1905 -	1280	4201	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
y asin	1211	asm.	-07
ls it	i as		12
COm Vo	·Co. · · ·	n i	Sec
		× .	-07
	64	- · P	n i J
$\mathcal{C}_{\mathcal{A}} = \mathcal{C}_{\mathcal{A}}$	0 · · C	, ''Q	P
	10. 30		" JA
na.	Created by T. Madas	12.	120
-00	Created by 1. Madas		- d

Question 10 (**+)

A curve C is given parametrically by

the trically by $x = 2t+1, y = \frac{3}{2t}, t \in \mathbb{R}, t \neq 0.$ The of t.

dy

a) Find a simplified expression for $\frac{dy}{dx}$ in terms of *t*.

The point P is the point where C crosses the y axis.

b) Determine the coordinates of P.

Y.C.B.

I.G.B.

I.C.B.

c) Find an equation of the tangent to C at P.

A
(a) $\frac{2z}{2t} = \frac{2z+1}{2t}$ $\int \frac{dy}{dx} = \frac{dy}{dy}\frac{dt}{dt} = \frac{-\frac{2}{3}t^{-2}}{2} = -\frac{3}{4} + \frac{1}{t^{1}} = -\frac{3}{4t^{2}}$
(b) when $\alpha = 0 \Rightarrow 0 \Rightarrow 2t+1$ there $y = \frac{3}{2(\frac{1}{2})} \approx \frac{3}{-1} = -3$ $t \approx -\frac{1}{2}$ s: $(o_{(-3)})$
(c) $\frac{dq}{d\lambda}\Big _{(0,\beta)} = \frac{dy}{d\alpha}\Big _{\frac{1}{2},-\frac{1}{2}} = -\frac{3}{4(\frac{1}{2})^2} = -3$
these excition of the theorem through (01-3) m=-3
$\begin{array}{c} g - y_{a} = \frac{y_{a}}{2} \left(2a - \lambda_{a} \right) \\ g - 3a - 3 \left(\lambda - a \right) \\ g = -3a - 3 \end{array}$

I.C.B.

20

 $P(0,-3), \quad y = -3x - 3$

COM

madasm,

I.C.B.

Z

6

Question 11 (**+)

>

A curve known as a cycloid is given by the parametric equations

 $x = 4\theta - \cos \theta$, $y = 1 + \sin \theta$, $0 \le \theta \le 2\pi$.

COM

3

3

6

en.

- **a**) Find an expression for $\frac{dy}{dx}$, in terms of θ .
- **b**) Determine the exact coordinates of the stationary points of the curve.

Question 12 (***)

I.G.B.

ŀ.C.B.

A curve is given parametrically by

rically by $x = 4t - 1, \quad y = \frac{5}{2t} + 10, \quad t \in \mathbb{R}, \quad t \neq 0.$

The curve crosses the x axis at the point A.

a) Find the coordinates of *A*.

b) Show that an equation of the tangent to the curve at *A* is

10x + y + 20 = 0.

c) Determine a Cartesian equation for the curve.

	the second se
(-2,0), $(x+1)(y)$	$-10 = 10$ or $y = \frac{10(x+2)}{x+1}$
-0	b V
	$ \begin{array}{c} ($
1.1.	
· G)	$y = 0 = -10 (2 \cdot 2)$ y = -10 - 20 y + 10 - 20 y + 10 - 20
0	$\begin{array}{c} (\underline{x}+\cdot-\underline{x}-\underline{r}) \\ \hline \underline{y}-\overline{y}=\underline{y}\\ \hline \underline{y}-\overline{y}=\underline{y}\\ \hline \underline{y}-\overline{y}=\underline{y}\\ \hline \underline{y}-\overline{y}=\underline{y}\\ \hline \underline{y}=\underline{y}\\ \hline \underline{y}=\underline{y}\\ \hline \underline{y}=\underline{y}\\ \hline \underline{x}+\underline{y}\\ \hline \underline{y}=\underline{y}\\ \underline{x}+\underline{y}\\ \hline \underline{y}=\underline{y}\\ \underline{y}$
12	$\begin{array}{c} y = \frac{10 \log(2\pi)}{2\pi/1} \\ y = \frac{\log(2\pi/2)}{2\pi/1} \\ z_{\pm}(1 - z_{\pm}) \end{array}$
1	~U_2

200

COM

he,

I.C.B.

Madasm.

.C.P.

I.V.C.S

6

(***) Question 13

A curve C is given parametrically by

nadasma,

A. K. G.B. Mariana Mariana

 $x = 3t - 1, y = \frac{1}{t}, t \in \mathbb{R}, t \neq 0.$

Show that an equation of the normal to C at the point where C crosses the y axis is

 $y = \frac{1}{3}x + 3.$

proof

·C.A

2

6

madasn

Maga

The Com

ATTIS COM INCOM INCOM INCOM INCOM

nadasmaths.com

(***) Question 14

Ka

P.C.P.

A curve C is given by the parametric equations

 $x = 4t^2, \quad y = 8t, \quad t \in \mathbb{R}.$

a) Find the gradient at the point on the curve where $t = -\frac{1}{2}$.

b) Determine a Cartesian equation for C, in the form x = f(y).

c) Use the Cartesian form of C to find $\frac{dy}{dx}$ in terms of y, and use it to verify that the answer obtained in part (a) is correct.

 $\frac{dy}{dx}\Big|_{t=}$

=-2, x	$=\frac{1}{16}y^2, \frac{dy}{dx} = \frac{8}{y}$
2.	· CO.
	$=\frac{1}{2} \therefore \frac{d_{2}}{dx}\Big _{\frac{1}{2}x=\frac{1}{2}} = -2$
$t = \frac{y}{8}$	$\begin{array}{c} \mathcal{Q} = \frac{1}{2} \frac{1}{12} \frac{1}{12} \\ \mathcal{Q} = \frac{1}{2} \frac{1}{12} \frac{1}{12} \\ \mathcal{Q} = \frac{1}{2} \frac{1}{2} \frac{1}{12} $
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{split} \omega_{\text{pure}} & \leftarrow -\frac{L}{2}, \qquad & \underbrace{\partial_{2} = \emptyset(-\frac{L}{2}) = -iL}_{\substack{\beta = -iL}} & = -\underbrace{\partial_{\beta}}_{\substack{\beta = -iL}}$

P.C.P.

C.B.

RA

6

(***) Question 15

I.C.B.

>

A curve C is given parametrically by the equations

 $x = 2t^2 + \frac{1}{t}, \quad y = 2t^2 - \frac{1}{t}, \quad t \in \mathbb{R}, \ t \neq 0.$

- a) Show that at the point on *C* where $t = \frac{1}{2}$, the gradient is -3.
- **b**) By considering (x+y) and (x-y), show that a Cartesian equation of C is
 - $(x+y)(x-y)^2 = 16.$

d'asm.	TO AND	, proof	9
	Com Statis	(a) $a = 3t^{2} + \frac{1}{2} = 2t^{2} + t^{-1}$ $\frac{1}{2t} = \frac{1}{2t} = 4t - t^{-2}$ $g = 2t^{2} - \frac{1}{2t} = 2t^{2} - t^{-1}$ $\frac{1}{2t} = \frac{1}{2t} = 4t - t^{-2}$ $\frac{dy}{dy} = \frac{dy}{dy} = \frac{dt + t^{-2}}{dy} = \frac{dt + t^{-2}}{dt} = \frac{dt^{2} + 1}{dt^{2} - 1}$ $\frac{dy}{dx} = \frac{dt}{dy} = \frac{dt}{dt} + \frac{t^{-2}}{t^{-2}} = \frac{dt + t^{-2}}{dt^{-2} - t^{-2}} = \frac{dt^{-2}}{dt^{-1} - t^{-2}}$ $\frac{dy}{dx} = \frac{dt}{dt} = \frac{dt}{dt} + \frac{t^{-2}}{t^{-2}} = \frac{dt}{dt}$,
3 C.	· · · · · · · · · · · · · · · · · · ·	·Gp	
		nadasma.	25/
			>
Gp G	B. 10	 . т.	
12023m	Created by T. Madas	Viadaso a	

hs.com

6

I.Y.G.B.

Question 16 (***)

1.0.

The point $P(\frac{1}{3}, -2)$ lies on the curve with parametric equations

 $x = 3t^2$, y = 6t, $t \in \mathbb{R}$.

The tangent and the normal to curve at P meet the x axis at the points T and N, respectively.

F.G.B.

200

Ĉ.Ŗ.

1

Determine the area of the triangle PTN.

com

 $\frac{20}{3}$

(***) Question 17

A curve C is given parametrically by the equations

etrically by the equations $x = 4t + \frac{1}{t}, y = \frac{3}{2t}, t \in \mathbb{R}, t \neq 0.$

The point A(5,6) lies on C.

Show clearly that ...

>

I.F.G.B.

COM

I.C.P.

a) ... $\frac{dy}{dx} = \frac{3}{2(1-4t^2)}$.

b) ... the gradient at A is 2.

c) ... a Cartesian equation of C is

I.G.B.

I.C.

 $3xy - 2y^2 = 18.$

proof

hs.com

I.C.B

6

Inadasma,

a=4t+€ Y= 3 e==	$= \frac{4t+t^{-1}}{3t} \left\{ \begin{array}{c} \frac{dy}{dt} = 4-t^{-2} \\ \frac{dy}{dt} = -\frac{3}{2}t^{-2} \end{array} \right\} \xrightarrow{dy}{dt} = \frac{dy}{dt} \frac{dy}{dt} = \frac{-\frac{3}{2}t^{-2}}{4-t^{-2}}$
<u>ः वेष</u> =	$\frac{-\frac{3}{2t^{A}}}{4 + \frac{1}{t^{A}}} = \max_{y \neq t^{A}} \operatorname{Terl}_{y = t^{A}} = \max_{y \neq t^{A}} \frac{-\frac{3}{2t}}{4t^{2} - 1} = \max_{y \neq t^{A}} \frac{-\frac{3}{2t^{A}}}{8t^{2}} = \max_{y \neq t^{A}} \frac{-\frac{3}{2t^{A}}}{8t^{2}}$
. 2	-3 2(1+-1) = 2(1-4+1) / AS 2(441240
A(5,6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4= <u>3</u> 2= 4++	$\int \Rightarrow \boxed{2t = \frac{3}{5}} = 2t = \frac{3}{2y} = \boxed{t = \frac{3}{2y}} = \boxed{t = \frac{2y}{3}} = \boxed{4t = \frac{6}{3}}$
	$\begin{array}{c} -4 \cos \alpha = \frac{6}{5} + \frac{3}{26} \\ -3g = 6 \\ -3g = $
	$\int_{a}^{a} \frac{du}{dt} =$ $A(z_{t}e)$ $u = \frac{3}{2t}$

I.C.p

nadasma

- **Question 18** (***)
- A curve *C* is given parametrically by the equations

 $x = t^2 - 8t + 12$, y = t - 4, $t \in \mathbb{R}$.

y + 2x + 5 = 0

 $y^2 = x + 4.$

a) Find the coordinates of the points where C crosses the coordinate axes.

The point P(-3,1) lies on C.

Ka

b) Show that the equation of the normal to C at P is

c) Show that a Cartesian equation of C is

F.G.B.

6

(-4,0), (0,-2), (0,2)

ns.com

Question 19 (***)

K.C.

A curve C is given parametrically by the equations

x = 5 - 3t, $y = 2 + \frac{1}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

The point A(6,-1) lies on C.

a) Show that the equation of the tangent to C at A is given by

y = 3x - 19.

b) Show further that a Cartesian equation of C is

(x-5)(y-2)+3=0.

(a) $\mathcal{X}_{z} = 5 - 3t$ $g = 2 + \frac{1}{2} = 2 + t^{-1}$ $g = \frac{1}{2} + \frac{1}{2} = 2 + t^{-1}$	{ ()	Sout Critic Goations if the theory Substitute ison the othic of the UP of
CR - 3/4t -3 -3+2	Σ	3t= 5-22 2-5=-3t
•47 +(61-1) 2=6	3	$\begin{array}{c} 3t=5-x \\ \frac{1}{2}=9-z \end{array} \xrightarrow{p} \begin{array}{c} x-z=-st \\ y-z=\frac{1}{2} \end{array}$
$ \begin{array}{c} 3t = -1 \\ t = -\frac{1}{3} \\ \hline \\ t = -\frac{1}{3} \\ t = -\frac{1}{3} \\ \hline \\$		$(x-s)(y-2) = -3\xi(\frac{1}{2})$ (x-s)(y-2) = -3 (x-s)(y-2) + 3 = 0
 y +1 = 3(x-6) y +1 = 3x - 18 y = 3x - 19 x equilibrium 		

2017

proof

C.B.

113.8M

6

Question 20 (***)

A curve C is defined by the parametric equations

 $x = \cos 2\theta$, $y = \sin \theta \cos \theta$, $0 \le \theta < \pi$.

a) Show that a Cartesian equation for C is given by

 $x^2 + 4y^2 = 1.$

b) Sketch the graph of C.

	438m	proof
(ه)	$y = sm \theta color$. $2y = 2sm \theta us \theta$ 3^2	$3 + 5N^{2} 20 = 1$ + $(2g)^{2} = 1$ + $4y^{2} = 1$
(৮)	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$	//

24

COM

24

2

6

Question 21 (***)

A curve is defined by the parametric equations

 $x = \sin \theta$, $y = \sin \left(\theta + \frac{\pi}{6} \right)$, $-\frac{\pi}{2} \le \theta < \frac{\pi}{2}$.

Show that a Cartesian equation of the curve is given by

$$y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{1 - x^2}$$

TORNA	
y = Sm(0+F) = Sm0 coaF +	-coso small = Million + 2 coso
$\Theta_{M2} = x uou$ $\Theta_{M2}^{*} = {}^{2} c \iff$ $\Theta_{2a}^{2} - 1 = {}^{2} c \iff$	
⇒ co20 = 1-x ²	301 - 2 < 0 < 12 5 4
\rightarrow (o($\theta = \pm \sqrt{1-x^2}$	τ τ ₁ τ ₁ + = θ ₂₀
	HWGE y= 13 + 1/ 1-22 #
	REQUIRED

proof

2017

nadasm

, proof

i.C.B.

1.

Question 22 (***)

A curve is defined by the parametric equations

$$x = \frac{t+3}{t+1}, \quad y = \frac{2}{t+2}, \quad t \in \mathbb{R}, \ t \neq -1, \ t \neq -2.$$

workings, that ...

 $\frac{2(x-1)}{x+1}$

Show, with detailed workings, that ...

a) ... $\frac{dy}{dx} = \left(\frac{t+1}{t+2}\right)^2$.

I.V.C.P.

ic.p.

b) ... a Cartesian equation for the curve is given by

2	<u>n</u>		<u>n</u> .
۵)	DIFFERENTIATE GARY OF THE	E PAMETORC EQUIATIONS W.R.T L	$\Rightarrow x \in \frac{2+y}{2-y}$
	• $2 = \frac{t+3}{t+1}$	• $y = \frac{2}{t+2}$	→ 22-xy = 2+y
,	$\Rightarrow \frac{dx}{dt} = \frac{(t+1)\times 1 - (t+3)\times 1}{(t+1)^2}$	$\Rightarrow y = 2(t+2)^{-1}$	⇒ 2x-2 = 2y +y
	$\Rightarrow \frac{dx}{dt} = \frac{tH - t - 3}{(tH)^2}$	$\Rightarrow \frac{dy}{dt} = -2(t+2)^{-2}$	= 2(2-1) = g(XH)
	$\Rightarrow dt = (t+1)^2$ $\Rightarrow dt = (t+1)^2$	$\frac{dy}{dt} = -\frac{2}{(t+t)^2}$	$\Rightarrow g = \frac{2(x-1)}{x+1} $ As 24
	COLLENNING TO du	r	
	$\frac{dy}{dx} = \frac{dy}{dx} \frac{dx}{dt} = \frac{-\frac{2}{(\frac{1}{(\frac{1}{)}})}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$= \frac{-\frac{2(t+1)^2}{2(t+2)^2}}{\frac{t+2}{2(t+2)^2}} = \frac{\left(\frac{t+1}{t+2}\right)^2}{\frac{t}{t+2}}$	
5)	Process 48 Rowows	1º etote-	
	• a= t+3	• $y = \frac{2}{t_{42}}$	
-	⇒ 2 = ((+2)+1 ((+2)-1	y = 12	
		-g= t+2}	
	⇒2= <u>3+1</u> 3-1	uuuuu	
-	7 2 = 39+ 19		
	9		

(***) Question 23

>

I.V.G.B.

A curve is defined parametrically by the equations

etrically by $x = a \sec \theta$, $y = b \tan \theta$, $0 < \theta < \frac{\pi}{2}$,

 $y = \frac{b}{a}\sqrt{2}x - b.$

I.G.B.

where a and b are positive constants.

Show that an equation of the tangent to the curve at the point where $\theta = \frac{\pi}{4}$ is

2017

I.G.B.

12.51

2017

I.F.G.p

12.SM

?*∩*Ŋ

he,

I.F.G.B.

COM

maq₂

proof

ths.com

. K.G.B.

Z

6

12.51

(***+) **Question 24**

A curve C is defined by the parametric equations

 $y = \cos 2t$, $0 \le t \le \pi$. $x = \cos t$,

2017

i.C.B.

I.C.B.

6

- **a**) Find $\frac{dy}{dx}$ in its simplest form.
- **b**) Find a Cartesian equation for C.
- c) Sketch the graph of C.

Y.C.

i.C.B.

- The sketch must include
- the coordinates of the endpoints of the graph.
- Madasn. the coordinates of any points where the graph meets the coordinates axes.

Question 25 (***+)

A curve C is given by the parametric equations

$$x = \frac{3t-2}{t-1}, \quad y = \frac{t^2 - 2t + 2}{t-1}, \quad t \in \mathbb{R}, \quad t \neq 1$$

a) Show clearly that

$$\frac{dy}{dx} = 2t - t^2.$$

The point $P(1, -\frac{5}{2})$ lies on C.

>

K.G.

ic.p.

b) Show that the equation of the tangent to C at the point P is

$$3x - 4y - 13 = 0$$
.

a)	OPBER OT INDUDUAL DIFFERSIONS BY CROTTANT RULE	
	$a_{c} = \frac{3t-2}{t-1}$ $y_{c} = \frac{t^{2}-2t-2}{t-1}$	
	$\frac{da}{dt} = \frac{(t_{-1})_{k,k} - (3t_{-k})_{k,k}}{(t_{-1})_{k}} \qquad \qquad \frac{da}{dt} = \frac{(t_{-1})(2t_{-k}) - (t_{-k})_{k,k}}{(t_{-1})_{k}}$	
	$\frac{d\lambda}{dt} = \frac{3t - 3 - 3t + 2}{(t - 1)^2} \qquad \qquad \frac{dy}{dt} = \frac{2t^2 - 4t + 2 - t^2 + 2t - 2}{(t - 1)^2}$	
	$\frac{dx}{dt} = -\frac{1}{(t-1)^2} \qquad \qquad \frac{du}{dt^2} = \frac{t^2 t}{(t-1)^2}$	
	$\frac{N\omega\omega}{\partial L} = \frac{dy dt}{dy' dt} = \frac{\frac{1+2t}{(t+1)^{L}}}{-\frac{1}{(t+1)^{L}}} = -(t^{2} 2t) = \frac{2t-t^{2}}{t}$	11hO
Ь)	$\frac{1}{1-\frac{3k-2}{k-1}}$	
	$\begin{array}{c} t = 1 \\ t = 2t \\ t = \frac{1}{2} \end{array}$	
	$\frac{du}{dy}\Big _{t=\frac{1}{2}} z(\underline{t}) - \left(\underline{t}\right)^{2} = 1 - \frac{1}{4} = \frac{1}{4}$	
	Finally that fourtion of the therefore the theorem (1, - f)	
	$y - y_{0} = m(\chi - x_{0})$	
	$\frac{1}{2} + \frac{5}{2} = \frac{3}{4}(2-1)$ 4q + 10 = 3(2-1)	
	4y + 10 = 3(2 - 1) 4y + 10 = 3x - 3	
	32-44-13=0 15 EEPINERO	

ŀ.G.B.

Madasm,

proof

R.J.

6

Question 26 (***+)

>

I.V.G.B.

D

i C.B.

The curve C_1 has Cartesian equation

 $x^2 + y^2 = 9x - 4$

The curve C_2 has parametric equations

 $x = t^2$, y = 2t, $t \in \mathbb{R}$.

I.G.B.

2017

Find the coordinates of the points of intersection of C_1 and C_2 .

?077

I.G.B.

I.C.B.

2017

24

6

21/201

$\left\{ \begin{array}{c} a_{1}^{*}+a_{2}^{*}=q_{\lambda}-q_{\lambda}^{*}\\ a_{2}a_{1}+a_{2}^{*}\\ y=2t \end{array} \right\}$	Sacard Shuttinghouter $(+1)^{4} + (2t)^{5} = 4t^{2} + 4t^{4} + 4$
*	$t = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -4 \\ -4 \end{pmatrix}$
	(1_12) (1_1-2) (4_14) (4_7+)

I.C.B.

Question 27 (***+)

.K.C.

A curve has parametric equations

 $x = t^2$, $y = \frac{6}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

a) Determine a simplified expression for $\frac{dy}{dx}$, in terms of t.

b) Show that an equation of the tangent to the curve at the point A(4,-3) is

3x - 8y - 36 = 0

c) Find the value of t at the point where the tangent to the curve at A meets the curve again.

 $\frac{dy}{dx} = -\frac{3}{t^3}, \quad t = 4$

F.G.B.

6

COM

·G.A

Question 28 (***+)

2

KG

A curve C is defined by the parametric equations

$$x = \frac{t}{1+t^2}, \quad y = \frac{2t^2}{1+t^2}, \quad t \in \mathbb{R}$$

a) Find a simplified expression for $\frac{dy}{dx}$ in terms of *t*.

The straight line with equation y = 6x - 2 intersects C at the points P and Q.

b) Find the coordinates of P and the coordinates of Q.

: (±1) 4

F.C.B.

6

 $P\left(\frac{1}{2},1\right), Q\left(\frac{2}{5},\frac{2}{5}\right)$

 $\frac{dy}{dx} = \frac{4t}{1-t^2}$

Question 29 (***+)

A curve C is defined by the parametric equations

$$x = \ln(1+t), \quad y = \ln(1-t), \quad t \in \mathbb{R}, \quad t_1 < t < t_2$$

- **a**) Find a Cartesian equation for C.
- b) Determine, in terms of natural logarithms, the coordinates of the point on C where the gradient is -3.

The value of t is restricted between t_1 and t_2 .

c) Given that the interval between t_1 and t_2 is as large as possible, determine the value of t_1 and the value of t_2 .

 $e^{x} + e^{y} = 2$, $\left(\ln \frac{3}{2}, \ln \frac{1}{2} \right)$, -1 < t < 1

(e)	$\begin{array}{l} \alpha_{2} \ln(1+t) \Rightarrow e^{i t} = 1 + t \\ y_{2} \ln(1+t) \Rightarrow e^{i t} = 1 - t \\ \end{array} \right\} \text{ and equations} e^{i t} + e^{i t} = 2 \end{array}$
6	$ \frac{dy}{dt} = \frac{1}{1+t} \\ \frac{dy}{dt} = \frac{1}{1-t} \left[\sqrt{\frac{1}{2} - \frac{1}{t-t}} \right] \rightarrow \frac{dy}{dt} \rightarrow \frac{dy}{dt}, \frac{dy}{dt} = \frac{1}{\frac{1}{t-t}} = \frac{t}{t-t} \\ \frac{dy}{t-t} = \frac{1}{t-t} $
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
)	· letso => t>-1 1-t>o => t>t it t<1 -1 <t 1<="" <="" th=""></t>

Question 30 (***+)

KR

i C.B.

A function relationship is given parametrically by the equations

$$x = \cos 2t$$
, $y = 2\sin t$, $0 \le t \le \frac{\pi}{2}$

a) Find a Cartesian equation for these parametric equations, in the form y = f(x).

 $y = \sqrt{2 - 2x}$

(b) DON

20

F.G.B.

6

e.p

COM

 $-1 \le x \le 1$, $0 \le y \le 2$

b) State the domain and range of this function.

(***+) Question 31

Madasma

A. K. G.B. Mariana Mariana

I.C.P.

A curve is given parametrically by the equations

 $x = 3t - 2\sin t$, $y = t^2 + t\cos t$, $0 \le t < 2\pi$.

Show that an equation of the tangent at the point on the curve where $t = \frac{\pi}{2}$ is given by

 $y = \frac{\pi}{6} (x+2).$

	ASIDALIS.	$\begin{array}{c} \begin{array}{c} \chi=3t-2ant \\ g=2^{k}+tast \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=3-2ant \\ \frac{d}{dt}=2t+tast \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=2t+ast -tast \\ \frac{d}{dt}=\frac{d}{dt} \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \frac{d}{dt}=\frac{d}{dt} \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast -tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \end{array} \rightarrow \begin{array}{c} \frac{d}{dt}=\frac{2t+tast }{2-ast } \\ \frac{d}{dt}=\frac{2t+tast }{2-ast } \end{array} $	
		$\begin{array}{c} & \mathcal{J} = \left[\begin{array}{c} \mathcal{J} \\ \mathcal{J} \\$	2.
Bull	8. 11.2 C.	172	nadasn.
-13 1120235	Created by T. Mad	as	Inadas)

proof

2

6

ths.com

(***+) Question 32

The point P(-5,3) lies on the curve C with parametric equations

on the curve *C* with parametric eq. $x = \frac{a}{t} - 1, \quad y = \frac{t+a}{t+1}, \quad t \in \mathbb{R}, \quad t \neq 0, -1$

where a is a non zero constant.

A. C.B. Madasman

Show that a Cartesian equation of C is

Inadasman in the second

The Com

naths.com

1.1.6.1

1120	$y = \frac{2x+4}{x+3}.$		asm.
	asinatis co	$\frac{\alpha = \frac{\alpha}{\xi + i}}{g = \frac{\xi + i}{\xi + i}} \xrightarrow{\Rightarrow -s_{\pm}} \frac{\alpha - i}{\xi + i} \xrightarrow{\Rightarrow -\frac{\alpha}{\xi} = -4} \frac{\alpha - i}{\xi + i}$	asmaths.
		6t = -3 +- 11 /r D	2
it it a	N. I.J.	$\begin{aligned} & \left(\frac{t}{2}+1\right) & \left(\frac{t}{2}+\frac{2}{2x_1}\right) \\ & S_0 g_1 = \frac{3x_1+2}{\frac{2}{2x_1}+1} = \dots \text{ unally replacing yr } (g_1+) \\ & g_1 = \frac{2+2(2x_1)}{2+(2x_1+1)} = \frac{2+2x_1+2}{2+2x_1} = \frac{2x_14}{2+2} \text{ for } (g_1) \text{ for } (g_2) \end{aligned}$	I.Y.C.D
	172 6.13	r 48. r 10.	
			lasmarh.
The Wall		alls -	
1. 1.1.			7
Cp G	B. C.	GB	1. V.C
1120	Created by T. Madas	nan ^I	202
282 4352	-Sho.	asp.	The second

Question 33 (***+)

The curve C has parametric equations

 $x = \sin \theta$, $y = 3 - 2\cos 2\theta$, $0 \le \theta \le \frac{\pi}{2}$.

- **a)** Express $\frac{dy}{dx}$ in terms of θ .
- **b**) Explain why...
 - \dots no point on C has negative gradient.
 - ... the maximum gradient on C is 8.
- c) Show that C satisfies the Cartesian equation

$y = 1 + 4x^2.$

d) Show by means of a single sketch how the graph of $y=1+4x^2$ and the graph of C are related.

21/201

6

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
(a) $\frac{d_1}{d_1} = \frac{4(2\pi s_1 \theta_2 cm \theta_2)}{(sd)} = 8 \cos \theta$ $s = 8 \sin \theta_{-1}$ $s = 8 \sin \theta_{-1}$ $s = 8 \sin \theta_{-1}$ $s = 8 \sin \theta_{-1}$ (b) $\frac{d_1}{d_1} = \frac{3}{2} - 2 (1 - 2 \sin^2 \theta_1)$ $\frac{d_1}{d_2} = 3 - 2 (1 - 2 \sin^2 \theta_1)$ $\frac{d_2}{d_2} = 3 - 2 (1 - 2 \sin^2 \theta_1)$ $\frac{d_1}{d_2} = 3 - 2 (1 - 2 \sin^2 \theta_1)$ $\frac{d_2}{d_2} = 3 - 2 (1 - 2 \sin^2 \theta_1)$ $\frac{d_1}{d_2} = 3 - 2 (1 - 2 \sin^2 \theta_1)$ $\frac{d_2}{d_2} = 1 + 4 \sin^2 \theta_1$ (c) $\frac{d_2}{d_2} = 1 + 4 \sin^2 \theta_1$ $\frac{d_1}{d_2} = 1 + 4 \sin^2 \theta_1$	$\begin{bmatrix} a \\ \frac{dy}{dx} = \frac{dy}{dx} \frac{d\theta}{d\theta} = \frac{4 \sin 2\theta}{\cos \theta} \end{bmatrix}$	
$\begin{array}{c} \cdot \text{MM} & \text{S} \in \mathbb{R} \\ Grade as the set of the set o$	(b) $\frac{dy}{d\xi} = \frac{4(2s_0)\rho(ad\theta)}{(s_0\theta)} = 8s_0\theta$	
$\begin{array}{c} (\underline{j} = 3 - 2 (1 - 2\omega_{1} \overline{g})) \\ (\underline{j} = 3 - 2 + 4\omega_{1} \overline{g}) \\ (\underline{j} = 1 + 4\omega_{1} \overline{g}) \\ (\underline$	MINI GRADINT & ZENO	
(d) $\frac{g_{a}}{g_{a}} = 1 + \frac{g_{a}g_{a}}{g_{a}}$	$\dot{y} = 3 - 2(1 - 2sw^2\theta)$	$\Theta_{rad} = x_r$ To $\underline{\theta}$
		$\therefore g = 1 + 4\chi^2$
	(d) (1) (1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
	(1,5)	
1 . //		
	1 1/	

Question 34 (***+)

The curve C has parametric equations

 $x = \cos \theta$, $y = \sin 2\theta$, $0 \le \theta < 2\pi$.

The point *P* lies on *C* where $\theta = \frac{\pi}{6}$.

a) Find the gradient at P.

>

S.C.

b) Hence show that the equation of the tangent at *P* is

 $2y + 4x = 3\sqrt{3} \ .$

c) Show that a Cartesian equation of C is

$$y^2 = 4x^2 \left(1 - x^2\right).$$

 $\left|\frac{dy}{dx}\right|_P = -2$

C.J.

6

2017

Madasm.

(a) $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{2\cos^2\theta}{-\sin\theta}$	$ \begin{array}{c} \overset{\circ}{\leftrightarrow} \begin{array}{c} \frac{dy}{dz} \\ \theta = \frac{2}{2} \\ \theta = \frac{2}{2} \\ \end{array} \begin{array}{c} = \begin{array}{c} \frac{2}{2} \\ -\frac{2}{2} \\ \theta = \frac{2}{2} \\ \end{array} \begin{array}{c} \frac{2}{2} \\ -\frac{2}{2} \\ \end{array} \begin{array}{c} \frac{2}{2} \\ \frac{2}{2} \frac{2}{2} \\ \frac{2}{2} \\ \frac{2}{2} \\ \end{array} \begin{array}{c} \frac{2}{2} \\ \frac{2}{2} \\ \frac{2}{2} \\ \frac{2}{2} \\ \frac{2}{2} \\ \frac{2}{2} \\ \end{array} \begin{array}{c} \frac{2}{2} \\ \frac$
(b) when on T , x = (a) T = 1 (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$ \begin{array}{l} \stackrel{*}{\longrightarrow} \operatorname{Theorem}_{\mathcal{G}_{n},\mathcal{T}} + \operatorname{T} A \left(\frac{x_{2}^{\mathcal{G}_{n}}}{2} \right) \frac{y_{1}^{\mathcal{G}}}{2} \right) \operatorname{GLADINT} -2 \\ {\Longrightarrow} \left(\mathcal{G}_{n} - \mathcal{G}_{n} \right) = \left(\mathcal{G}_{n} - \mathcal{G}_{n} \right) \end{array} $
	$\Rightarrow y - \frac{y_1^2}{2} = -2(x - \frac{y_1^2}{2})$ $\Rightarrow y - \frac{y_2^2}{2} = -2x + \sqrt{3}$ $\Rightarrow 2y - \sqrt{3} = -4x + 2\sqrt{3}$
() y= sw20	= 4x+2y=313
⇒ y = 25m200 ⇒ y = 25m2000 ⇒ y²= 45uh9 (at9 ⇒ y²= 46ut9 (1-6at9)	* y= 4x ² (1-x ²)

(***+) Question 35

The point $P(a,\sqrt{2})$ lies on the curve C with parametric equations

COM

I.C.B.

$x = 4t^2,$ $y = 2^t$, $t \in \mathbb{R}$

where a is a constant.

3 ~

I.F.G.B.

2017

I.C.p

a) Determine the value of *a*.

b) Show that the gradient at P is $k \ln 2$, where k is a constant to be found.

?Ŀ

ne,

I.F.G.B.

1120250

COM

Maq_a

2017

24

3

6

2011

Question 36 (***+)

>

I.V.G.B.

ŀ.C.p.

A curve C is defined parametrically by

 $x = t + \ln t$, $y = t - \ln t$, t > 0.

- **a**) Find the coordinates of the turning point of C.
- **b**) Show that a Cartesian equation for C is

 $4e^{x-y} = (x+y)^2$

4)	DIFFERATINATE FACH PARAMETRIC WITH RESPECT TO t		
	$a = t + \frac{1}{2} \qquad \qquad$		
	NOW OBTITING IT TO BEADING FUNCTION & SETTING IT TO BEAD		
	$\frac{dy_{t}}{dt} = \frac{dy_{t}dt}{dy/dt} = 0 \implies \frac{dy}{dt} = 0$ $\implies l - t = 0$ $\implies t - l$		
	$\frac{1}{(l_1 + l_2)} \frac{1}{(l_1 + l_2)} \frac{1}{(l_1 + l_2)}$		
)	BY EUMINATION WE ON WOLK AS FOUNDS		
	a≈t+lut g≈t- lut		
	Adding a subtracting out obtains $x+y = 2t$, $2 \rightarrow \frac{1}{2}(x+g) = t$		

$\Rightarrow e^{-x} = \left[\frac{1}{2} (2xy) \right]^2$ $\Rightarrow e^{-x} = \frac{1}{2} (2xy)^2$ $\Rightarrow \frac{1}{2} (2xy)^2 = \frac{1}{2} (2xy)^2$ $\Rightarrow \frac{1}{2} (2xy)^2 = \frac{1}{2} (2xy)^2$ $\Rightarrow \frac{1}{2} (2xy)^2 = \frac{1}{2} (2xy)^2$

• L45= $4e^{2-y} = 4e^{(t+bt)-(t+t)} = 4e^{2bt} = 4e^{bt^2}$

COM

(1,1)

he.

I.C.P.

5

6

- $P + S = (x+y)^2 = [(t+lnt)+(t-lnt)]^2 = (zt)^2 = t^2$
 - NOTED THE CORRECT OVERTIAN EQUATION

200

Question 37 (***+)

Sp.	Created by T. Madas
- Ch	Question 37 (***+)
-0	The point $P(\frac{2}{5}, -\frac{2}{3})$ lies on the curve C with parametric equations
1.	$x = \frac{1}{t+a}, y = \frac{1}{t-a}, t \in \mathbb{R}, t \neq \pm a$
1.0	where <i>a</i> is a non zero constant.
Q	Show that the gradient at P is $\frac{25}{9}$.
1	i_{12} i_{12} i_{12} i_{12} i_{12}
2Sm	, proof
127	$\frac{(2a)\sqrt{a} \cdot Tht \ \text{Four evolution}\left(\frac{2}{b}, \frac{a}{2}\right)}{2a \cdot \frac{1}{b+a}} = \frac{1}{a}$
40	$\begin{cases} \frac{1}{3} = \frac{1}{5}t_{11} & -\frac{1}{5} = \frac{1}{5}t_{11} \\ \frac{1}{2} = \frac{1}{5}t_{11} & -\frac{1}{2} = \frac{1}{5}t_{11} \\ \frac{1}{2} = \frac{1}{5}t_{11} & -\frac{1}{5}t_{12} \\ \frac{1}{5}t_{12} \\ \frac{1}{5}t_{12} & -\frac{1}{5}t_{12} \\ \frac{1}{5}t_{12} & -\frac{1}{5}t_{12} \\ \frac{1}{5}t_{12} \\ \frac{1}{5$
F	$\begin{array}{c} t-\frac{1}{2} \begin{array}{c} q \begin{array}{c} \frac{q}{2} = \frac{1}{2} + a \\ a=2 \\ \end{array} \\ \hline h D h V = f t e \ e \ D D h V f \ h V t \ c \ b \ b \ b \ c \ b \ b \ b \ b \ c \ b \ b$
×.	$\frac{d_{a}}{dx} = \frac{d_{b}}{dx/dt} = \frac{-\frac{1}{(t-2)^{2}}}{-\frac{1}{(t-2)^{2}}} + \frac{(t+2)^{2}}{(t-2)^{2}} = \left(\frac{t+2}{t-2}\right)^{2}$ Finally The Graning Ar P is the graning to the log of the second seco
1.J.	$\frac{d_{\mathrm{eff}}}{dx} = \left(\frac{d_{\mathrm{eff}}}{d_{\mathrm{eff}}}\right)^2 = \left(\frac{d_{\mathrm{eff}}}{d_{\mathrm{eff}}}\right)^2 = \left(\frac{d_{\mathrm{eff}}}{d_{\mathrm{eff}}}\right)^2 = \frac{d_{\mathrm{eff}}}{d_{\mathrm{eff}}}$
- 6	B 'B 'GD 'B 'D
2.00	in Marin Marin
200	1200 1020 1020 1000 1000 1000 1000 1000
12	the Card Spa Share
-4	rs with the ways with
2	Con Sco. Con S.Co
\overline{a}	
61	No it to it.
×.	GD GD GD GD GP
2.	Created by T. Madas
4282	ash and ash and

Smaths.com

(***+) **Question 38**

A. C.B. Managaran

A curve C is given by the parametric equations

 $x = 7\cos\theta - \cos7\theta, \quad y = 7\sin\theta - \sin7\theta,$ $0 \le \theta < 2\pi$.

Show that the equation of the tangent to C at the point where $\theta = \frac{\pi}{6}$ is

GB GB	$y + \sqrt{3}x = 16.$	100	~ G.
		proof	Sm.
naths com	"Snarr	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Smaths.
S.Co. Alls	- as	$\begin{array}{c} \widehat{\mathcal{G}} \mapsto \widehat{\mathcal{G}}_{\mathcal{F}} & \widehat{\mathcal{G}}_{\mathcal{F}} \to \widehat{\mathcal{G}} \to$	
			1.
Kn. Ch	1. Ka	· Kon	·
SP S	no GB	S. In	Č,
Sp (1202	adash 1	ad. 12	135113 <i>1</i> 1
Walls Shar	, allo	"asmar	"Nath
		adasmana mans.co	
In the		1.1.	· .
Co Co	· · · Co	·Gp	·
10.	Man .	n. n	201
as alash	Created by T. Madas	allash .	43SD0

S.COM

aths con

i.G.b.

in.

Question 39 (***+)

A curve C is given parametrically by

 $x = \frac{1}{t}, \quad y = t^2, \quad t \in \mathbb{R}, \quad t \neq 0.$

The point *P* lies on *C* at the point where t = 1.

a) Show that an equation of the tangent to C at P is

y + 2x = 3.

The tangent to C at P meets the curve again at the point Q.

b) Determine the coordinates of Q.

Y.C.B.

I.F.G.B.

1		
a)	$\frac{1F t=1}{P(1,1)}$	
ł	$\frac{dy}{dx} = \frac{dy}{dx}\frac{dt}{dx} = \frac{2t}{-\frac{1}{tx}} = -\frac{2t^3}{-\frac{1}{tx}}$	
	$\frac{da}{dc} = -2$	
-	(1)-11-2(2-1) (1)-11-2(2-1) (1)-11-2(2-1)	
	y-1 = -2x+2 y+2x=3 +5 84601860	
5	00000 SUUTANGOULY 2-t, g=+2 AND g+	22 = 3
	$\Rightarrow t^{2} + 2(t) = 3$ $\Rightarrow t^{2} + \frac{2}{t} = 3$ $\Rightarrow t^{3} + 2 = 3t$ $\Rightarrow t^{3} - 3t + 2 = 0$	
	$\Rightarrow (t-1)^{(t+1)=0}$ $\Rightarrow t- (+)^{(t+1)=0}$ $\Rightarrow t- (+)^{(t+1)=0}$ $\therefore \frac{Q(-\frac{1}{2}, t)}{Q(-\frac{1}{2}, t)}$	$\begin{array}{c} \underbrace{t_{-1}}_{A} (2\mu\eta\eta_{0}) \underbrace{\mu_{0}\tau}_{BM} \underbrace{s_{-1}}_{A} \\ \underbrace{A_{-2}u_{UTO}}_{A} \underbrace{b_{0}}_{BM} \underbrace{b_{0}}_{A} \\ \underbrace{f_{-1}}_{A} \underbrace{h_{0}}_{A} \underbrace{b_{0}}_{A} \\ \underbrace{f_{-1}}_{A} \underbrace{f_{-1}}_{A} \underbrace{f_{-1}}_{A} \\ f$
	11	t ^a - 3t +2

Y.C.B.

I.Y.G.B.

COM

Madasm.

 $Q\left(-\frac{1}{2},4\right)$

Y.C.B.

3

6

Question 40 (***+)

The figure above shows the curve C with parametric equations

L

 $x = t^2 + 4$, y = 2t + 4, $t \in \mathbb{R}$.

R

The curve crosses the x axis at the point R.

V.

0

a) Find the coordinates of R.

The point P(5,6) lies on C. The straight line L is a normal to C at P.

b) Show that an equation of L is

x + y = 11.

The normal L meets C again, at the point Q.

c) Find the coordinates of Q.

(a) $w_{H_{0}}, y=0$: $z=t^{2}z_{1}^{2}$ 2t+4=0 $z=(-z)^{2}+4$: $R(g_{1}_{0})$ t=-2 z < y

 $\mathcal{A} = \underbrace{\frac{\partial u}{\partial x}}_{\mathcal{A}} = \underbrace{\frac{\partial u}{\partial x}}_{\mathcal{A}} = \underbrace{\frac{1}{2t}}_{\mathcal{A}} = \underbrace{\mathbf{A} \mathsf{T}}_{\mathcal{A}} + \mathbf{F}(\mathbf{S}, \mathbf{k})$ $\underbrace{\frac{\partial u}{\partial x}}_{\mathcal{A}} \underbrace{\frac{\partial u}{\partial x}}_{\mathcal{A}} = \mathbf{I}$

 $\begin{array}{cccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

y ta=11)

 $\begin{array}{c} x = t^{+} t^{+} \\ y = 2t^{+} t^{+} \\ y = 2t^{+} t^{+} \\ x \\ x \\ y \end{array} \xrightarrow{f} \begin{array}{c} t^{+} t^{+} \\ t^{+} \\ t^{+} \\ x \\ y \end{array}$

 $t^{2}+2t-3=0$ (t+3)(t-1)-5

t= 1 C POINT

 $-3 \leftarrow 10007 \ 0$ $-3 \leftarrow 10007 \ 0$ $-3 \leftarrow 10007 \ 0$

Q (131-2)

Question 41 (***+)

A curve is given parametrically by

 $x = \cos t$, $y = \cos 3t$, $0 \le t < 2\pi$.

a) By writing $\cos 3t$ as $\cos(2t+t)$, prove the trigonometric identity

 $\cos 3t \equiv 4\cos^3 t - 3\cos t \; .$

b) Hence state a Cartesian equation for the curve.

The figure below shows a sketch of the curve.

The points A and B are the endpoints of the graph and the points C and D are stationary points.

c) Determine the coordinates of A, B, C and D.

 $\boxed{y=4x^3-3x}, \ \boxed{A(-1,-1)}, \ \boxed{B(1,1)}, \ \boxed{C(-\frac{1}{2},1)}, \ \boxed{C(\frac{1}{2},-1)}$

a)	cost = cost cost - smith
	= (aust-1)cost - (2sinteest)sint
	= 2105t- cost - 25pit cost
	= 2(1-103+) cost - 2(1-103+) cost
	= 2003t-00st-2003t
	= 465t - 3605t
	= 121+3
<u>e)</u>	$\begin{array}{c} x = \iota_{OS}t \\ y = \iota_{S}s_{S}t \end{array} \begin{array}{c} \Rightarrow y = 4\iota_{OS}t - 3\iota_{OS}t \\ y = 4s^{2} - 3s_{S} \end{array}$
ș)	$\begin{array}{c c} -l \leq 66k \leq l \implies -l \leq 2 \leq l \qquad \therefore \mathcal{A}(-l,-l) \\ & -l \leq 9 \leq l \qquad \qquad \mathcal{B}(l,l) \end{array}$
	$\begin{array}{c c} \underbrace{g} = \left(h_{1}^{2} - 3 \right) \\ \underbrace{g h_{1}}_{2h} = \left 2 \lambda_{n}^{2} - 3 \right \\ \underbrace{g h_{1}}_{2h} = \left 2 \lambda_{n}^{2} - 3 \right \\ \underbrace{g h_{1}}_{2h} = \left 2 \lambda_{n}^{2} - 3 \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} + \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ \underbrace{g h_{1}}_{2h} = \left \lambda_{n}^{2} - \delta \right \\ $

6

The figure above shows part of the curve with parametric equations

 $x = t^2 - 9$, $y = t(4-t)^2$, $t \in \mathbb{R}$.

The curve meets the x axis at the points P and Q, and the y axis at the points R and T. The point T is not shown in the figure.

a) Find the coordinates of the points P, Q, R and T.

The point S is a stationary point of the curve.

b) Show that the coordinates of *S* are $\left(-\frac{65}{9}, \frac{256}{27}\right)$.

P(-9,0), Q(7,0), R(0,3), T(0,-147)

Question 43 (***+)

A parametric relationship is given by

 $x = \sin \theta \cos \theta$, $y = 4\cos^2 \theta$, $0 \le \theta < 2\pi$.

Show that a Cartesian equation for this relationship is

 $16x^2 = y(4-y).$

Question 44 (***+)

A curve is given parametrically by the equations

 $x = \frac{1}{t}$, $y = t^2$, $t \neq 0$.

The tangent to the curve at the point P meets the x axis at the point A and the y axis at the point B.

Show that for all possible coordinates of P, |BP| = 2|AP|.

.

proof

$$\begin{split} \frac{dg}{dx} &= \frac{dg_{4}g_{4}}{dx/4t} = \frac{2k}{-\frac{1}{4k}} = -\frac{2k^{2}}{-k} & \leftarrow GAND(t \text{ or } nANGAL At A \text{ GANDAL BANT})\\ \frac{dg_{4}AE}{dx/4t} &= \frac{2k}{-\frac{1}{4k}} = -\frac{2k^{2}}{-\frac{1}{4k}} & = \sqrt{2}(\frac{1}{2k}, \frac{1}{2k})\\ & \implies g - t^{2} = -2xt^{2}(x - \frac{1}{4k})\\ & \implies g - t^{2} = -2xt^{2} + 2k^{2}\\ & \implies \left[\frac{1}{2}(\frac{1}{2k}, t^{2}) + \frac{2k^{2}}{2k}\right]\\ \frac{dg_{4}}{dt} &= \frac{2k^{2}}{2k} &= \frac{2k$$

Question 45 (***+)

The curve C is given parametrically by the equations

$$x = 2t^2 - 1$$
, $y = 3t^3 + 4$, $t \in \mathbb{R}$.

a) Show that a Cartesian equation of C is

$$8(y-4)^2 = 9(x+1)^3$$

b) Find ...

i. ... an expression for $\frac{dy}{dx}$ in terms of *t*.

ii. ... the gradient at the point on C with coordinates (1,1).

c) By differentiating the Cartesian equation of C implicitly, verify that the gradient at the point with coordinates (1,1) is the same as that of part (b) (ii)

$\frac{dy}{dx}$	$=\frac{9}{4}t, \frac{dy}{dx}\Big _{(1,1)} = -\frac{9}{4}$	-
$t = 2t^2 - 1$ $t = 2t^2$ $t_1^3 = (2t^2)^3$ $(t_1)^3 = 8t^4$	$\begin{array}{c} \mathcal{Y} = 3\xi^{3} + \psi \\ \mathcal{Y} - \psi = -5\xi_{3} \\ (\mathcal{Y} - \psi)^{2} = (3\xi_{2})^{2} \\ (\mathcal{Y} - \psi)^{2} = -6\xi_{3} \\ (\mathcal{Y} - \psi)^{2} = -6\xi_{$	

(b) (a) de

Created	by T.	Madas
JI cuttu	~y 1.	TTUUU

Question 46 (***+)

The curve C is given parametrically by the equations

 $x = \cos t , \ y = 2\sin t , \ 0 \le t < 2\pi .$

a) Show that an equation of the normal to C at the general point $P(\cos t, 2\sin t)$ can be written as

 $\frac{2y}{\sin t} - \frac{x}{\cos t} = 3.$

The normal to C at P meets the x axis at the point Q. The midpoint of PQ is M.

b) Find the equation of the locus of M as t varies.

= dy = 9 = 2 swfsutient = <u>sintust</u>

N (- cost, smt)

=1

aths con

I.C.p

I.V.C.D.

1.4

Ths.com

(5,-3)

(***+) **Question 47**

A. K. G.B. Madasman

The curve C is given parametrically by the equations

 $x = 2e^t + 1$, $y = e^{3t} - 6e^t + 1$, $t \in \mathbb{R}$.

nadasmaths,

III303SII3IIS.COM I.Y.C.B. III303SII3IIS.COM

Determine the coordinates of the point on C with $\frac{dy}{dx} = 3$.

TATISCOM I.Y.C.B. MARASMANNISCOM I.Y.C.B. MARASM

Question 48 (***+)

A curve is defined by the following parametric equations

$$x = 4at^2$$
, $y = a(2t+1)$, $t \in \mathbb{R}$,

where a is non zero constant.

2

K.C.

F.C.B.

Given that the curve passes through the point A(4,8), find the possible values of a.

te form two (portious
8 = a(2+1)
$\frac{8}{a} = 2t+1$
a 2t= <u>9</u> -1
f Savaenia
$4t^2 = \left(\frac{6}{\alpha} - 1\right)^2$
2
٤
+1

i C.B.

1.4

COM

Question 49 (***+)

A curve is defined by the parametric equations

$$x = t^2 + t$$
, $y = 2t - 1$, $t \in \mathbb{R}$.

a) Show that an equation of the tangent to the curve at the point *P* where t = p can be written as

 $y(2p+1) = 2x + 2p^2 - 2p - 1.$

The tangents to curve at the points (2,1) and (0,-3) meet at the point Q.

b) Find the coordinates of Q.

Q(-1,-1)

11+

Question 50 (****)

A curve C is given by the parametric equations

 $x = \sec \theta$, $y = \ln(1 + \cos 2\theta)$, $0 \le \theta < \frac{\pi}{2}$.

a) Show clearly that

$$\frac{dy}{dx} = -2\cos\theta.$$

The straight line L is a tangent to C at the point where $\theta = \frac{\lambda}{2}$

b) Find an equation for L, giving the answer in the form y + x = k, where k is an exact constant to be found.

c) Show that a Cartesian equation of C is

 $x^2 e^y = 2.$

Question 51 (****)

A curve C is given by the parametric equations

$$x = \cos 2\theta$$
, $y = 2\sin^3 \theta$, $0 \le \theta < 2\pi$

a) Show clearly that

>

I.F.G.B.

i.C.p.

$$\frac{dy}{dx} = -\frac{3}{2}\sin\theta$$

b) Find an equation of the normal to *C* at the point where $\theta = \frac{\pi}{6}$.

c) Show that a Cartesian equation of C is

I.G.p.

 $2y^2 = \left(1 - x\right)^3.$

I.C.p

207

16x - 12y - 5 = 0

F.G.B.

COM

Madasma

2/3

6

Question 52 (****)

>

I.V.G.B.

200

I.C.B.

A curve C is given by the parametric equations

 $x = 2\cos\theta + \sin 2\theta$, $y = \cos\theta - 2\sin 2\theta$, $0 \le \theta < 2\pi$.

The point *P* lies on *C* where $\theta = \frac{\pi}{4}$.

a) Show that the gradient at *P* is $\frac{1}{2}$.

Y.G.B.

b) Show that an equation of the normal to C at P is

20

 $4x + 2y = 5\sqrt{2} \ .$

nadasmath

 $\begin{aligned} = \frac{2(\omega_{0}\theta + S_{0}N(\theta))}{2} & \Rightarrow \frac{4\omega_{1}}{2\pi} \frac{d\omega_{0}}{d\theta} = \frac{-5m\theta - 4\omega_{0}2\theta}{-2\omega_{0}\theta + 2\omega_{0}2\theta} \\ = \cos\theta - 2\omega_{0}\theta_{0} & \Rightarrow \frac{4\omega_{1}}{2\pi} \frac{d\omega_{0}}{d\theta} = \frac{-5m\theta - 4\omega_{0}2\theta}{-2\omega_{0}\theta + 2\omega_{0}2\theta} \\ \Rightarrow \frac{2\omega_{1}}{2} & = \frac{-\omega_{1}}{2} + \frac{2\omega_{1}}{2} + \frac{2\omega_{1$

I.C.B.

2017

proof

KGB

6

madasma

2017

Question 53 (****)

The curve C has parametric equations

 $x = \sin 2\theta$, $y = 2\cos^2 \theta$, $0 \le \theta < 2\pi$.

a) Show clearly that

>

I.F.G.B.

0

C.B.

$$\frac{dy}{dx} = -\tan 2\theta \,.$$

b) Find an equation of the tangent to *C*, at the point where $\theta = \frac{\pi}{3}$.

c) Show that a Cartesian equation of C is

 $x^2 = y(2-y).$

<u>(a)</u>	2= 91128 Y= 26038	$\begin{cases} \frac{dy}{dx} = \frac{dy}{dx} = \frac{-4\cos\theta \sin\theta}{2\cos^2\theta} = \frac{-2\cos\theta}{2\cos^2\theta} = \frac{-2\sin\theta}{2\sin^2\theta} \\ \frac{dy}{dx} = -\frac{1}{2\cos^2\theta} = \frac{-2\sin^2\theta}{2\cos^2\theta} \end{cases}$
(6)	when $\theta=\frac{T}{2}$	$\mathcal{Q} = \mathcal{Q} = \frac{1}{2} = \frac{1}{2} $ $\mathcal{Q} = \mathcal{Q} = \frac{1}{2} = \frac{1}{2} $ $\mathcal{Q} = \mathcal{Q} = Q$
		$\begin{array}{c} \theta \in \frac{1}{2}\\ \theta \in \frac{1}{2}$
(e)	$\alpha = sin 2\theta$	$\langle \Rightarrow \Omega^2 = 2i\alpha_0^2 \otimes \times 2(1-i\alpha_0^2 \otimes)$
-	$a = 2 \sin \theta_1$	$(\Rightarrow \lambda^2 = 2\omega_3^2\Theta \times (2 - 2\omega_3^2\Theta))$
1	$\alpha^2 = 4 \sin^2 \theta$ $\alpha^2 = 4 \cos^2 \theta$	$(\alpha \oplus \beta^2 - \mu (\alpha \oplus \beta))$

20

COM

Inadasm.

20

I.C.p

il.

1:0

6

2.4

 $y = \sqrt{3x-1}$

Question 54 (****)

A curve C is given parametrically by

cametrically by $x = \frac{1}{t} + \frac{1}{t^2}, \quad y = \frac{1}{t} - \frac{1}{t^2}, \quad t \in \mathbb{R}, \quad t \neq 0.$

Show clearly that ...

Y.C.

I.C.A.

a) $\dots \frac{dy}{dx} = \frac{t-2}{t+2}$.

b) ... an equation of the tangent to C at the point where $t = \frac{1}{2}$ is

3x + 5y = 8.

c) ... a Cartesian equation of C is

 $\frac{\left(x+y\right)^2}{x-y} = 2.$

You may find considering (x+y) and (x-y) useful in this part.

proof

·GA

 \mathbf{r}

6

(****) **Question 55**

A curve C is given parametrically by

 $x = \tan \theta$, $y = \sin 2\theta$, $0 \le \theta < 2\pi$.

- **a**) Find the gradient at the point on C where $\theta =$ $\frac{\pi}{6}$
- **b**) Show that

2

Y.C.

i.C.B.

$$\cos^2\theta = \frac{1}{x^2 + 1}$$

and find a similar expression for $\sin^2 \theta$.

c) Hence find a Cartesian equation of C in the form

$$y=f\left(x\right) .$$

$$f \theta = \frac{1}{x^2 + 1},$$

sin² θ .
of C in the form

$$= f(x).$$

$$\frac{dy}{dx}\Big|_{\theta = \frac{\pi}{6}} = \frac{3}{4}, \quad \boxed{\sin^2 \theta = \frac{x^2}{x^2 + 1}}, \quad \boxed{y = \frac{2x}{x^2 + 1}}$$

(9)	$\frac{du}{d\lambda} = \frac{dy}{dy} = \frac{2\omega_{S2}\theta}{s_{R2}\theta} = 2\omega_{S2}\theta\omega_{S2}S\theta$
	allow = 2× 63 = × 63 = × 64 = 2× 2× (2) = 3
6	$z = \tan \theta \qquad \text{areas array} \qquad \theta = 1 = \theta^{2} \sin 2 + \theta^{2} \cos 2 + \theta^{2} \sin 2 + \theta^{2}$
-	$\alpha^2 + 1 = bar^2 0 + 1$ \Rightarrow $arc - 1$
	$\begin{array}{cccc} & & & & & \\ & & & & \\ & & & \\ -\frac{1}{2^{2}+1} = & & & \\ & & & \\ -\frac{1}{2^{2}+1} = & & & \\ & & & \\ & & \\ & & \\ & & \\ \end{array} \xrightarrow{\begin{array}{c} (1+2)\\ (1$
ଜା	Y = Sm20
	$y = 2 \sin 0 \cos 0$ $y^2 = \frac{4\lambda^2}{(1+3^2)^2}$
	$\mathcal{G} = 4 \times \frac{\alpha^2}{1+\alpha^2} \times \frac{1}{1+\alpha^2} \qquad \mathcal{G} = \frac{2\alpha}{1+\alpha^2}$

i.C.B.

6

COM

Madasma

(****) **Question 56**

I.V.C.B. Madasmi

I.C.p

Mhs.com I.K.C.B.

>

A curve C is given parametrically by the equations

netrically by the equations $x = 4t^2 + t$, $y = \frac{1}{2}t^2 + 2t^3$, $t \in \mathbb{R}$.

The point $A\left(\frac{1}{2}, -\frac{1}{8}\right)$ lies on C.

a) Show that the gradient at A is $-\frac{1}{3}$.

b) By considering $\frac{y}{x}$, or otherwise, show that a Cartesian equation of C is

 $x^3 = 16y^2 + 2xy.$

I.V.C.B. Madasmatic

ths.com

proof

ths.com

Mada

I.F.G.B.

I.V.G.B.

R

6

Created by T. Madas

I.V.C.B.

Question 57 (****)

, i.F. G.B.

2017

I.G.B.

The point P(8,9) lies on the curve C with parametric equations

 $x = 2t^2$, $y = 3^t$, $t \in \mathbb{R}$.

nadasm

²017

I.V.G.B.

I.C.B.

The tangent to C at P meets the y axis at the point Q.

Determine the exact y coordinate of Q.

Ş

he,

I.C.B.

nadasma,

2017

11202sn

00

maq₂

\$.COM

 $9 - 9 \ln 3$

3

6

Created by T. Madas

madasmana mana

3

Question 58 (****)

The curve C is given parametrically by

$$x = 1 - 3t$$
, $y = \frac{t+6}{t+2}$, $t \in \mathbb{R}$.

a) Find a simplified expression for $\frac{dy}{dx}$, in terms of t.

b) Show that the straight line *L* with equation

$$4x - 3y = 1$$

is a tangent to C, and determine the coordinates of the point of tangency between L and C.

3(t+2)

4,5

1

dy

dx

(****) **Question 59**

A curve C is defined by the parametric equations:

the parametric equations. $x = \tan \theta$, $y = \sin 2\theta$, $-\frac{\pi}{2} \le \theta < \frac{\pi}{2}$

- a) State the range of C.
- **b**) Find an expression for $\frac{dy}{dx}$ in terms of θ .

I.C.P.

I.V.G.B.

I.C.B.

- c) Find an equation of the tangent to the curve where $\theta =$
- d) Show, or verify, that a Cartesian equation for C is

dy $2\cos 2\theta$ $-1 \le y \le 1$ y = 1dx

2017

Madasm.

ŀ.C.J.

3

6

I.C.B.

Question 60 (****)

A curve C is traced by the parametric equations

$$x = t^2 - t$$
, $y = \frac{at}{1 - t}$, $t \in \mathbb{R}$, $t \neq 1$.

a) Find an expression for $\frac{dy}{dx}$ in terms of the parameter t and the constant a.

b) Show that an equation of the tangent to C at the point where t = -1 is

12y + ax + 4a = 0.

dy

dx

а

(2t-1)(1-t)

This tangent meets the curve again at the point Q.

c) Determine the coordinates of Q in terms of a.

 $\frac{(1-t)\times a - at(-1)}{(1-t)^2}$ = (1-+)2 - - --1, a=2, y=-= I (2- ^q/₂) $2\left(\frac{at}{n-t}\right) + a(t^2-t) + la = a$ 12t++++++++=0 $12\xi + (1-\xi)(\xi^2-\xi) + \xi(1-\xi) = 0$ 126++2-6-+3++2+4-4+= $(t-4)(t^{2}+2t+1) = 0$ -t's+2t2+7t+4=0 t3-28-76-4=0

(12,

Question 61 (****)

The curve C has parametric equations

$$x = 2 \tan \theta$$
, $y = 2 \cos^2 \theta$, $0 \le \theta < \frac{\pi}{2}$

a) Show clearly that

$$\frac{dy}{dx} = -2\sin\theta\cos^3\theta.$$

b) Find an equation of tangent to C, at the point where $\theta =$

c) Show that a Cartesian equation of C is

$$y = \frac{8}{x^2 + 4},$$

and state its domain.

>

1.Y.C.

·C.P.

x + 2y = 4 $x \ge 0$

C.t.

11+

2017

madasm.

i G.B.

(a) (b)	Whith O=754	a= 26=3 y= 26033	[**2 [=	-Hruce 19- 24-1	2 = - + 2
(9	3 = tant	84 - 9.wk	3 € 3 = 3 =	$\begin{array}{c} x_{+} \\ 1 + \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$	23 = 4 3 JOUAN 3 JO

Question 62 (****)

The point P(20,60) lies on a curve with parametric equations

x = 2at, $y = 8at - at^2$, $t \in \mathbb{R}$, $t \ge 0$,

where a is a non zero constant.

a) Find the value of *a*.

b) Determine a Cartesian equation of the curve.

The above set of parametric equations represents the path of a golf ball, t seconds after it was struck from a fixed point on the ground, O.

The horizontal distance from O is x metres and the vertical distance above the ground level is y metres.

The ball hits the lowest point of a TV airship, which was recording the golf tournament from the air.

c) Assuming that the ground is level and horizontal, find the greatest possible height of the airship from the ground.

a) sues	TITUTING P(20,60) INTO THE PARAMETRIC GRUATIOUS
	$\begin{array}{c} 1 = 2at \\ 20 = 2at \\ \hline 10 = at \\ \hline 60 = 8xi0 - at^2 \\ \hline 60 = 8xi0 - at^2 \\ \hline 6t^2 = 2c \end{array}$
	$\begin{array}{l} \alpha t^2 = 2 \circ \\ \alpha t = 10 \end{array} \right) \implies \text{Drupe } t = 2, \\ \implies \alpha = 5 \end{array}$
b) 2.	$\begin{array}{rcl} & 2at & \Longrightarrow & 4a^2t^2 = x^2 \\ & \implies & g = 4(2at) - \frac{1}{4a}(4a^2t^2) \\ & \implies & g = 4a - \frac{1}{4a}x^2 \\ & \implies & g = 4a - \frac{1}{2a}x^2 \end{array}$
c) <u>secto</u> y 4	LING THE CHURCHING PHILL & CONSIDER SHAMHEY
• •	$\begin{array}{c} \cdot \underline{g} = \underline{b} - \underline{b}_{\underline{a}}^{\mathbf{x}} \\ g = \underline{b} - \underline{b}_{\underline{a}}^{\mathbf{x}} \\ g = \underline{b} + \underline{b}_{\underline{a}}^{\mathbf{x}} \\ g = \underline{b} + \underline{b}_{\underline{a}}^{\mathbf{x}} \\ g = \underline{b} + \underline{b}_{\underline{a}} \\ g = \underline{b} + \underline{b}_{\underline{a}} \\ g = \underline{b} + \underline{b}_{\underline{a}} \\ g = \underline{b} - \underline{b}_{\underline{b}} \\ g = \underline{b} - \underline{b} \\ g = \underline{b} \\ g = \underline{b} \\ g = \underline{b} - \underline{b} \\ g = \underline{b} - \underline{b} \\ g = \underline{b} \\ g = \underline{b} \\ g = \underline{b} \\ g = \underline{b} - \underline{b} \\ g = \underline{b} - \underline{b} \\ g = \underline{b} \\ g = \underline{b} \\ g = \underline{b} \\ g = \underline{b} - \underline{b} \\ g = \underline{b} \\ g = \underline{b} \\ g = \underline{b} \\ g = \underline{b} - \underline{b} \\ g = \underline{b} - \underline{b} \\ g = $

y = 4x -

a = 5

80

Question 63 (****)

A curve C is defined by the parametric equations

x = 2t - 1 $y = \frac{4}{t}, t \in \mathbb{R}, t \neq 0.$

The curve C meets the y axis at the point A.

a) Determine the coordinates of A.

b) Show that an equation of the normal to C at A is given by

8y = x + 64.

This normal meets C again at the point B.

c) Calculate the coordinates of B.

d) Find a Cartesian equation for C.

I.C.

ic.p.

A(0,8),	$B\left(-65,-\frac{1}{8}\right)$,	$y = \frac{8}{x+1}$

I.C.B.

2017

madasm.

·C.A

	$\chi = 0$ 0 = 2k - 1 $\frac{1}{k = \frac{1}{k}}$ $\therefore \frac{1}{k} = \frac{1}{k} = 8$	$\begin{cases} (2) South Structure (4) \\ (3 = 3t - 1) \\ (3 = 3t - 2) \\ (3 = 3t - 2) \\ (3 = 3t - 2) \\ (4 = 2t - 2) \\ (4 = 2$
	3. A (0,8)	
(6)	$\frac{dy}{dt} = \frac{dy}{dt} \frac{dt}{dt} = \frac{-\frac{1}{2}}{2} = -\frac{2}{2}$	-t 32 = 2t ² -63t 2t ² -63t - 32 = 0
	$\frac{dy}{d\alpha}\bigg _{\frac{1}{2}=\frac{1}{2}} - \frac{2}{(\alpha)^{2}} = -\frac{2}{\frac{1}{2}} = -8$	$\begin{cases} (2t-1)(t+32)=0 \\ t=\sqrt{12} \leftarrow A \\ t=\sqrt{-32} \leftarrow B \\ MDX G_{1}, \\ MDX G_{2}, \\ \end{pmatrix}$
	NORMAL CRADINGT IS & , A(0,8)	$\left\langle \begin{array}{c} & \cdot & B\left(-\epsilon c_{1}-\frac{1}{8}\right) \\ & & \end{array} \right\rangle$
	4-8= 4(x-0) 84-64=x	$ \begin{cases} \textbf{a} = 2t - 12 \\ \textbf{y} = \frac{2}{4} \end{cases} \Rightarrow \begin{array}{c} 2t = 2 + 1 \\ \textbf{y} = \frac{2}{4} \end{cases} $
	By = x+64 As Ropriero	the y= 8

F.C.B.

6

(****) **Question 64**

A curve C is given parametrically by the equations

$$x = 6 \ln t - 3t^2$$
, $y = 2t^3 - 36t + 6 \ln t$, $t \in \mathbb{R}$, $t > t_0$.
smallest possible value that t_0 can take.

- **a**) State the smallest possible value that t_0 can take.
- **b**) Show that

2

K.C.

ic.p.

 $\frac{dy}{dx} = \frac{t^3 - 6t + 1}{1 - t^2}$

c) Find the exact coordinates of the only point on C where the gradient is 1.

 $t_0 = 0$

۹	to a since it this to "so insuch " to
6)	$\frac{du}{dx} = \frac{dy_{\text{def}}}{dy_{\text{def}}} = \frac{6t^2 - 36 + \frac{6}{E}}{\frac{6}{E} - 6t} = \dots \text{ musing top (bottom by t)}$
	$= \frac{6t^3 - 36t + 6}{6 - 6t^2} = \frac{t^3 - 6t + 1}{1 - t^2} / s \text{ Beguileo}$
@)	$\frac{dy}{d\chi} = 1$
	$\frac{t^3-6t+1}{1-t^2}=1 \qquad \therefore t= 2$
	$t^2 - 6t + t^2 = 0$ To 0.2 $3n^2 - 6ho h$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	(OMC IL STOME)

Y.C.B.

6

 $(-12+6\ln 2, -56+6\ln 2)$

2017

Question 65 (****)

KG

A curve C is defined by the parametric equations

x = 2t + 4, $y = t^3 - 4t + 1$, $t \in \mathbb{R}$.

a) Show that an equation of the tangent to the curve at A(2,4) is

2y + x = 10.

The tangent to C at A re-intersects C at the point B.

b) Determine the coordinates of B.

-00
a) OBITHIN THE READING FINITION
$\frac{d\underline{u}}{d\underline{x}} = \frac{d\underline{u}}{\underline{u}}\frac{d\underline{t}}{dt} = \frac{3\underline{t}^2-\underline{u}}{2}$
4 THE ZUNCE 2+++ = 2 2t=-2 +=-1
GRADINT AT 4(2,4)
$\frac{dq}{dx}\Big _{\frac{1}{2}x_{-1}} \simeq \frac{3(-1)^2-4}{2} = -\frac{1}{2}$
ERNAMION OF THINDEND IS GRIGN BY
$ \underbrace{\langle \mathbf{j} - \mathbf{j}_{\mathbf{u}} = \mathcal{H}(\mathbf{\lambda} - \mathbf{J}_{\mathbf{u}}) }_{\mathbf{U}_{\mathbf{u}} - \mathbf{U}_{\mathbf{u}} = -\frac{1}{2}(\mathbf{\lambda} - \mathbf{z}) } $
2-+- 2(1-2)
2 + 2y = 10 +3 2442/2660
b) SOUTHER SHUGANION IN THE BUMICH OF THE THNGAUT AND THE BUMICH OF THE CODUC IN PARAMETRIC
=> 2+2y=10 : t=2 yitas
$= (2t+4)+2(t^{2}-4t+1)=10$
$\Rightarrow 2t^{4} + t^{2} - t + 2 = 0$ $\Rightarrow 2t^{3} - 6t - t = 0$
$\implies t^{\lambda} - bt - 4 = 0$ $\implies t^{\lambda} - 3t - 2 = 0$
$\Rightarrow (t+1)^2(t-2) = 0 \qquad \longleftarrow Quick of each (t-2)(t+2t+1)$
ϕ = $t^{4} + 2t^{4} + t$

F.G.B.

2017

B(8,1)

3

6

Question 66 (****)

A curve is given parametrically by the equations

 $x = 4 - t^2$, y = 1 - t, $t \in \mathbb{R}$.

a) Show that an equation of the normal at a general point on the curve is

 $y + 2tx = 1 + 7t - 2t^3$.

The normal to curve at P(3,0) meets the curve again at the point Q.

b) Find the coordinates of Q.

R.H.

6

Question 67 (****)

A curve is given by the parametric equations

barametric equations $x = \tan^2 t$, $y = \sqrt{2} \sin t$, $0 \le t < \frac{\pi}{2}$.

a) Find an expression for $\frac{dy}{dx}$ in terms of *t*.

b) Show that an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}$, is

$32y = (9x+10)\sqrt{2}.$

c) Show that a Cartesian equation of the curve is

Y.C.B.

I.V.C.B.

20

K.C.

	and the second se
5 22 2	XC 49
100	<i></i>
1.1	t at an a
	AF. 81
	¥280
	N
	the second s
1.	12 2223 4
av	$\sqrt{2}\cos^3 t$
=	
	I
daa	
I I X	$4 \tan t$
$\frac{dy}{dx}$	4 tan <i>t</i>

F.C.B.

hs.com

Y.G.B.

Z

6

ور ال	$ \begin{array}{c} \mathbf{L} = 3 \tan \left\{ \mathbf{L} \right\} & = \frac{1}{2} \left\{ $	
6	when to F = 2=2but F = 2($\frac{R}{2}$) = $\frac{2}{3}$. $g = A2but F = A(\frac{R}{2}) = \frac{R}{2}$. $\frac{dg}{dx} = \frac{A2(\frac{R}{2})^{R}}{4but R} = \frac{A2(\frac{R}{3})^{R}}{4 \times \frac{R}{3}} = \frac{R}{42}$	V2
4	$\begin{split} & \{0,\infty \in -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \sqrt{2} \cdot \left(\frac{\alpha}{\alpha} - \frac{\alpha}{2} \right) \\ & 3\beta_{1} - 6\beta_{1}^{2} - \alpha + 6\gamma_{1}^{2} - \alpha - 6\gamma_{1}^{2} \\ & 3\beta_{2} - \alpha + 6\gamma_{1}^{2} + 10\gamma_{1}^{2} \\ & 3\beta_{2} = -(\frac{\alpha}{2}, + 10\gamma_{1}) \sqrt{2} \text{ as Equation} \end{split}$	
1.41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Liquiero

Question 68 (****)

A curve C is given parametrically by

 $x = (t+2)^2, y = t^3 + 2, t \in \mathbb{R}.$

The point P(1,1) lies on C.

2

Y.C.

a) Show that the equation of the normal to C at P is

3y + 2x = 5.

b) Show further that the normal to C at P does not meet C again.

(a) $x = (t_{12})^2$ $y = t^2 + 2$	$ \begin{array}{ccc} \mathcal{H}_{1} \\ \mathcal{H}_{2} \\ \mathcal$
$\frac{dy}{da} = \frac{dy/dt}{da} = \frac{3t^2}{2(t+z)}$: dut = 3 : WORMAN US-2
Naturtic ====================================	$m(\alpha - x_0)$ $-\frac{2}{3}(\alpha - 1)$ $-2\lambda + 2$ -2
(6) Solunic Smuthitous	LETTER and
$ \begin{array}{l} \Rightarrow 2(t^{2}+4t+4)+3t^{2}+6\\ \Rightarrow 3t^{2}+8t+8+3t^{2}+6\\ \Rightarrow 3t^{2}+2t^{2}+8t+9=2t^{2}+6\\ \Rightarrow 3t^{3}+2t^{2}+2t+8t+9=2\\ \Rightarrow (t+1)(3t^{2}-t+6) \end{array} $	-5 -5
EOHUR E=-1 (POIND OF NOT	$02 3t^2 - t + 9 = 0$ $Bt b^2 - tac$ $= C()^2 - 4x3x9$ = -107 < 0
	- WO WORK SWITTING

Y.G.B.

20

F.G.B.

COM

proof

24

Z

6

Question 69 (****)

A curve C is given by the parametric equations

 $x = t^3 - 9t$, $y = \frac{1}{2}t^2$, $t \in \mathbb{R}$.

The point P(10,2) lies on C.

KR,

a) Show that the equation of the tangent to C at P is

3y + 2x = 26.

The tangent to C at P crosses C again at the point Q.

b) Find as exact fractions the coordinates of Q.

m

madasm

24

6

(9)	$\begin{array}{c} \mathfrak{Q} = \frac{1}{2} \mathfrak{L}^{1} \\ \mathfrak{g} = \frac{1}{2} \mathfrak{L}^{1} \end{array} \right) \frac{dq}{dx} = \frac{dq}{dy/dt} = \frac{t}{3\xi^{2}-q}$
	$\begin{array}{cccc} \underbrace{\mathcal{Y}}_{2} & 2 & \Rightarrow & 2\pm \frac{1}{2} + 2 & & & & & & \\ & & & & & & \\ & & & & &$
0	$\frac{4}{100} \frac{d_{12}}{d_{12}} = \frac{-2}{3(2)^2 - 9} = \frac{-2}{-3} = -\frac{2}{3}$
Ū	$\{q_{\mathcal{A}},q_{\mathcal{A}}\} \in \mathcal{M}_{\mathcal{A}}$ of $\mathcal{M}_{\mathcal{A}}$ and \mathcal{M}_{\mathcal
	3y-6=-2x+20 : 3y+22=26 AS ENFUREND
	Source summersy 3=ft-16 9 (3+2x=26)
	$3(\frac{1}{2}t^{2})+2(t^{3}-9t) = 26$ $\frac{3}{2}t^{2}+2t^{3}-18t = 26$
⇒	$3t^{2} + 4t^{2} - 36t = 52$ $4t^{2} + 3t^{2} - 36t - 52 = 0$
	$(\pm +2)(\pm +2)(4\pm -13) = 0$ $(\pm +2)^{2}(4\pm -13) = 0$ $3 = (\frac{12}{4})^{2} - q(\frac{13}{4}) = \frac{2}{66}$
	$f = \frac{1}{2} \left(\frac{1}{2} \right)_{S}^{2} = \frac{35}{104}$
	$\frac{1}{4} \leftarrow \frac{1}{2} \log \left(\frac{32}{6+1} \frac{64}{32} \right)$

I.C.B.

(****) **Question 70**

A curve C is given by the parametric equations

the parametric equations $x = 2t - \frac{1}{2t}, y = 2t + \frac{1}{2t} + 2, t \in \mathbb{R}, t \neq 0.$

a) Show that

>

I.V.G.B.

I.C.p.

 $\frac{dy}{dx} = \frac{4t^2 - 1}{4t^2 + 1}$

b) Hence find the coordinates of the stationary points of the curve.

c) Show that a Cartesian equation of the curve is

Y.G.B.

(y+x-2)(y-x-2)=4.

(0,0), (0,4)

2017

Y.G.B.

E,

6

madasm.

I.C.B.

Paths.com

I.G.B.

I.C.S

1.4

Ths.com

(****) **Question 71**

A. K. G.B. Mariana Mariana

A circle has Cartesian equation

 $x^2 + y^2 - 4x - 6y = 3.$

Determine a set of parametric equations for this circle in the form

 $x = a + p \cos \theta$, $y = b + p \cos \theta$, $0 \le \theta < 2\pi$. Madasmalls.com I.Y.C.B. Madasmalls.com

TAUSCOM I.Y.C.B. MARASHANSCOM I.Y.C.B. MARASH

Question 72 (****)

A curve C is given by the parametric equations

 $x = 3\cos 2\theta$, $y = -2 + 4\sin \theta$, $0 \le \theta < 2\pi$.

a) Show that a Cartesian equation of the curve is

$$3y^2 + 12y + 8x = 12$$
.

v = x - 3

The point *P* lies on *C*, where $\sin \theta = \frac{1}{3}$.

b) Show that an equation of the normal to C at P is

The normal to C at P meets C again at the point Q.

- c) Find the coordinates of Q.
- d) State the domain and range of C, and given further that C is not a closed curve describe the position of the point Q on the curve.

Q(-3,-6), $-3 \le x \le 3$, $-6 \le y \le 2$, Q is an endpoint of C

					-
(a)	Эс=360520 У=-2+4ат0	$\frac{df}{d\theta} = \frac{d\theta^{1}}{d\theta^{2}\theta} =$	= <u>4 cos6</u> = 6511789 =	<u>4.005</u> -125090080 =	- <u>1</u> 3ma
	$\sin \theta = \frac{1}{3} \Rightarrow$	$\frac{dy}{dx} = -\frac{1}{3x_{T}^{2}} = -$	i Cross	ute GRANNIN US 1	.)
	7	a = 3(1-2) $y = -2 + 4x\frac{1}{3}$	3)= <u>7</u>	4 - 2≈3(1-2	S970)
	7743 4+ == +	(a-z)			
65	θ = σ-3	3 th REQUENC			
	9-2-3				
	(2+45mb)=(30057b) -2+45mb = 301-25	:::(0fw)-3		a= 3(1-261) a=-3	Solver 1 = 1
	-2 + 45m8= 3-65				
	694°0+4940-2			y=-2+4(-1):	6
	3avg70+2amf0-1 (3amf0-1) (amf0+			: (-3,-6)	11
	$SIM\Theta = < \frac{V_3}{V_3}$	< ALLEADY bODOUS	ə	11	
(c)	x = 3(1-251420) 2 = 3 - 65140	y + 2 ≤ 4, <u>y + 2</u> ≤ 9	SinO M O	(d) Donubu	1-15652851 53
	2 = 3 - GSINO	~ 			1-155m041
	2=3-6(4+2 16 2=3-3(4+				j 62
	$8\chi = 24 - 3(y^2)$ $8\chi = 24 - 3(y^2)$			AS CURVE B NOBUAL PA	SSES THROUGH
	Bx = 24 - 3y2-	12y -12		THE GUDPON	
	8x = 12-3y2- 3y2+12y +8x =			\square) (a ,3)
	2.2.	AS REQUIRED		(-3-4)	//

Question 73 (****)

KQ,

A curve is given by the parametric equations

 $x = \cos t$, $y = \sin 2t$, $0 \le t < 2\pi$.

a) Find a Cartesian equation of the curve, giving the answer in the form

 $y^2 = f(x).$

- **b**) State the domain and range of the curve.
- c) Find an expression for $\frac{dy}{dx}$ in terms of t.
- d) Hence, find the coordinates of the 4 stationary points of the curve.

 a = cost y = sm2t 	(c) $\frac{dy}{dt} = \frac{dy}{dt} \frac{dt}{dt} = \frac{2\cos 2t}{-\sin t}$
STAR WITH AN	(d) $\frac{dy}{dx} = 0$ $\frac{2\cos 2t}{-\sin t} = 0$
$g^{2} = 4sihtsuit g^{2} = 4suit(1-uit)y^{2} = 4sit(1-uit)$	$ \begin{array}{c} (2\xi=5)\\ (2\xi=\frac{12}{2}\pm 2m) & \mathrm{werg}(2\beta_{j}),\\ (2\xi=\frac{32}{2}\pm 2m) \end{array} \end{array} $
$i \ge \pm 2\alpha i \ge 1$. $i \ge \pm 2g_{HC} \ge 1$.	$ \begin{pmatrix} t = \frac{m}{4} \pm i m \\ t = \frac{m}{4} \pm i m \end{pmatrix} $
Joment: -1≤ 21 ≤ 1 Remore + -1≤ y ≤ 1	t=単, ス = 60葉= 堡, Sm星=1 t= 発, ス = 65葉=-壁, Sm星=1
<i>v</i>	$\begin{array}{c} t_{n} \stackrel{\mathrm{deg}}{=} 1 & \mathcal{Z} = c_{n} \mathcal{G}_{p} = - \frac{c_{1}}{\mathcal{G}_{1}} \stackrel{\mathrm{Seg}}{=} \mathcal{G}_{1} \\ t_{n} \stackrel{\mathrm{deg}}{=} \frac{\mathcal{H}_{1}}{\mathcal{H}_{1}} \stackrel{\mathrm{Seg}}{=} \mathcal{G}_{1} \stackrel{\mathrm{Seg}}{=} \mathcal{G}_{1} \end{array}$
	$\text{HWGE} \left(\frac{\sqrt{2}}{2} l \right)^{\frac{1}{2}} \left(-\frac{\sqrt{2}}{2} l \right)^{\frac{1}{2}} \left(-\frac{\sqrt{2}}{2} l - l \right)^{\frac{1}{2}} \left(\frac{\sqrt{2}}{2} l - l \right)^{\frac{1}{2}} \left(\frac{\sqrt{2}}{2} l - l \right)$

P.C.P.

5

Created by T. Madas

Question 74 (****)

A curve C is defined by the parametric equations

 $x = t^3 - 3$, $y = t^2 - 4$, $t \in \mathbb{R}$.

The straight line L with equation 3y - 2x + 10 = 0 intersects with C.

Show that L and C intersect at a single point on the x axis, stating its coordinates.

(5,0)

Question 75 (****)

A curve C is defined by the parametric equations

 $x = 8 \operatorname{cosec}^3 \theta$, $y = 2 \cot \theta$, $\frac{\pi}{6} \le \theta \le \frac{\pi}{2}$.

a) Find a Cartesian equation for C, in the form y = f(x).

b) Determine the range of values of x and the range of values of y, which the graph of C can achieve.

$y = \sqrt{x^3}$	-4 , $8 \le x \le 6$	$4, 0 \le y \le 2\sqrt{3}$
L	(c) • Q = Bank ² O • $\underline{O} = 2d\theta$ $\frac{\underline{X}}{\underline{C}} = anzO$ $(\underline{axub} = \underline{ax}^{2})$ New 1 + cotto = cozeo 4 + cotto = cozeo 4 + $\underline{O}^{2} = 4(\underline{ax}^{2})^{2}$ $4 + \underline{O}^{2} = 4(\underline{ax}^{2})^{2}$	$ \begin{array}{l} (b) \bullet \ensuremath{\mathbb{S}} & \ensuremat$

Question 76 (****)

A curve C is defined by the parametric equations

$$x = t^2 + 1$$
, $y = 2t - 3$, $t \in \mathbb{R}$.

a) Show that the equation of the tangent to C, at the point where t = T, is given by

$$Ty - x = T^2 - 3T - 1.$$

b) Find the equations of the two tangents to C, passing through the point (5,2) and deduce the coordinates of their corresponding points of tangency.

-x+3=0, (2,-1),

(a) $x = t^{2} + 1$ $y = 2t - 3$ (b) $dy_{4}(t) = \frac{2}{2t} = \frac{1}{t}$
Thurson of (T+1,2T-3) & m=+
$+ + \omega_{CL} \qquad \qquad$
$\frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} + \frac{1}$
$\frac{T_{y}-2t^{2}+3t=x-t^{2}-1}{T_{y}-x=t^{2}-3t-1}$
TS ERVIREND
l = <_ 4
HINCE OTHER POINT (21-1) & ly -2 = 1-3x1-1
y-2.2 -3
44-2=3
44-2-300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

|4y-x-3=0, (17,5)|

(****) **Question 77**

>

I.F.C.B.

A curve C is defined by the parametric equations

 $x = \ln t$, $y = 6t^3$, t > 0.

²017

I.G.B.

nadasmaths,

ろ

.F.G.B.

13.51

20

I.F.G.B.

The point *P* lies on *C*, so that $\frac{d^2y}{dx^2} = 2$ at *P*.

Determine the exact coordinates of P.

120°	$P\left(-\ln 3, \frac{2}{9}\right)$
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	4 force Str = 2 $t^2 = \frac{1}{2T}$ $t = \frac{1}{2}$
BC IF galnt free t free t	$ \stackrel{*}{\underset{(-b_{13})}{\stackrel{*}{}}} \left(-\frac{b_{13}}{b_{13}} \right) $

nadasmat,

?*∩*Ŋ

Ć,

Ine,

I.F.G.B.

KG

hs.com

·C.A

3

6

nadasn.

nn

mana

Question 78 (****)

The figure above shows the curve C known as the "lemniscate of Bernoulli", defined by the parametric equations

$$x = 3\sin\theta$$
, $y = 2\sin 2\theta$, $0 \le \theta \le 2\pi$

The curve is symmetrical in the x axis and in the y axis.

a) Show that a Cartesian equation of C is

$$81y^2 = 16x^2(9-x^2)$$

In the figure above, the curve C is shown bounded by a rectangle whose sides are tangents to the curve parallel to the coordinate axes.

The shaded region represents the points within the rectangle but outside C.

b) Given that the area of one loop of C is 8 square units, find the area of the shaded region.

area = 8

$\begin{array}{c c} (\mathbf{A}) & y = 2 \sin \alpha & \mathbf{A} \\ & y = 2 \sin \alpha & \mathbf{A} \\ & y = y = \frac{1}{2} (\sin \alpha & \sin \alpha & \sin \alpha & \sin \alpha \\ & y = y = \frac{1}{2} (\sin \alpha & \sin \alpha & \sin \alpha & \sin \alpha & \sin \alpha \\ & y = y = \frac{1}{2} (\sin \alpha & \sin \alpha & \sin \alpha & \sin \alpha & \sin \alpha \\ & y = y = \frac{1}{2} (\sin \alpha & \cos \alpha & \sin \alpha & \sin \alpha & \sin \alpha \\ & y = y = \frac{1}{2} (\sin \alpha & \cos \alpha & \sin \alpha & \sin \alpha & \sin \alpha \\ & y = y = \frac{1}{2} (\sin \alpha & \cos \alpha & \sin \alpha & \sin \alpha & \sin \alpha \\ & y = y = y = \frac{1}{2} (\sin \alpha & \cos \alpha & \sin \alpha & \sin \alpha & \sin \alpha \\ & y = y = y = y = y = y = y = y = y = y$
(b) a=38100 1F 0≤0≤21 -3≤2≤3
y= 25m20 0≤ 0≤ 2∏ -2≤ y ≤ 2
$\begin{array}{c} \vdots \\ \vdots $

Question 79 (****)

The figure above shows the curve C with parametric equations

 $x = \cos \theta$, $y = \sin 2\theta - \cos \theta$, $0 \le \theta < 2\pi$.

- **a)** Find an equation of the tangent to *C* at the point where $\theta = \frac{\pi}{4}$.
- **b)** Show that the tangent to *C* at the point where $\theta = \frac{5\pi}{4}$ is the same line as the tangent to *C* at the point where $\theta = \frac{\pi}{4}$.
 -) Show further that a Cartesian equation of the curve is

 $4x^2(1-x^2)=(x+y)^2.$

x + y = 1

Madasm;

1

 $\begin{array}{l} () \\ ()$

 $\begin{array}{c} \sum_{i=1}^{N} -e_{i} = \frac{2}{\pi}e_{i} + \frac{2}{\pi}e_{i} = \frac{2}{\pi}e$

C) WE EQUILIBRIE BY MUNIPOLITING THE Y EQUILION
tea) - 0211 e = 12 €
- y= 25mBast - cast
→ y = (2sm0 - 1) cos0
$\rightarrow \frac{y}{\cos \theta} = 2 \sin \theta = 1$
$\implies \frac{9}{\cos\theta} + \iota = 2 \sin\theta$
$\rightarrow \frac{1}{2} + 1 = 2 \sin \theta$
$\Rightarrow \frac{y+x}{x} = 2m\theta$
$\rightarrow \frac{(y+z)^2}{z^2} = 4z \sqrt{0}$
$\longrightarrow \frac{(\underline{u}+\underline{x})^2}{\underline{x}^2} = 4(1-\cos^2\theta)$
$\rightarrow \frac{(\underline{u}+\underline{\lambda})^{\lambda}}{\underline{\lambda}^{2}} = 4(1-\lambda^{2})$
$\Rightarrow (9+x)^2 = 4x^2(1-x^2)$ $\Rightarrow (9+x)^2 = 4x^2(1-x^2)$

The figure above shows the curve C with parametric equations

$$x = 2 + 2\sin\theta, \ y = 2\cos\theta + \sin 2\theta, \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

The curve meets the x axis at the origin O and at the point P. The point Q is the stationary point of C.

- **a**) Find an expression for $\frac{dy}{dx}$ in terms of θ .
- **b**) Hence find the exact coordinates of Q.
- c) Show that the Cartesian equation of C can be written as

 $y^2 = x^3 - \frac{1}{4}x^4 \,.$

The finite region bounded by C and the x axis is rotated by 2π radians about the x axis to form a solid of revolution S.

d) Find the exact volume of S.

0	$\frac{dy}{dx} = \frac{\cos 2\theta - \sin \theta}{\cos \theta}$	$\left[\frac{Q}{2}, \frac{Q\left(3, \frac{3}{2}\sqrt{3}\right)}{2}, \right]$	$V = \frac{64}{5}\pi$
Co.	1	On.	18
-un	2	(c) $x = 2+2sm\theta$ $y = sm\theta = f(x,z)$ $y = 2us\theta + sm(\theta)$ $y = 2us\theta + zm(\theta)(x)\theta$ = 4uce $= 4 = 2us\theta (+usm\theta)$	$\begin{cases} (a) MAX \; \mathfrak{Q}_{2} \in (BY \; MSRETION) \\ \Rightarrow \forall = \pi \int_{x_{1}}^{x_{2}} (\mathfrak{Y}(Q))^{2} \; \mathrm{d}_{X} \\ \Rightarrow \forall = \pi \int_{x_{1}}^{y} \mathfrak{d}_{x}^{3} - \frac{1}{4} \mathfrak{d}_{y}^{4} \; \mathrm{d}_{x} \end{cases}$
(a) $\frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dy} = \frac{-1}{2}$ (b) $\frac{dy}{dx} = \frac{dy}{dy} \frac{dy}{dy} = -\frac{-1}{2}$ (b) $\frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dy} = -\frac{-1}{2}$ $\frac{dy}{dx} = -\frac{dy}{dx} \frac{dy}{dy} = -\frac{-1}{2}$	$\frac{22m\theta + 2\cos\theta}{2\cos\theta} = \frac{\cos2\theta - sm\theta}{\cos\theta}$ $\begin{cases} Sm\theta = -[-2] = 0 + -\frac{12}{2} \\ = 2\cos\theta \end{cases}$	$ \begin{array}{l} \rightarrow \begin{array}{l} \begin{array}{l} \begin{array}{l} \rightarrow \end{array} \end{array} \\ \rightarrow \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \rightarrow \end{array} \end{array} \end{array} \end{array} \\ \rightarrow \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \left\{ 1 \\ \left(1 \\ \left(2 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \right) \\ \left(1 \\ \left(1 \right) \\ \left(1$	$\begin{cases} \Rightarrow \forall z = \pi \left[\frac{1}{2} \alpha_{z}^{2} - \frac{1}{22} \sigma_{z}^{2} \right]_{v}^{2} \\ \Rightarrow \forall z = \pi \left[\frac{1}{2} \alpha_{z}^{2} - \frac{1}{22} \sigma_{z}^{2} \right]_{v}^{2} \end{cases}$
$2sn^{2}\theta + 9n\theta - 1=0$ $(2sn^{2}\theta - 1)Cm\theta +$ $Sm\theta = \sqrt{-1}$ $\frac{-1}{2} = \theta m^{2}$	· スキ2+2m葉=3 ジェ2105葉+5m葉=2137	$ \Rightarrow y_1^2 \neq (x - \frac{1}{2}x^2)(\frac{1}{2}x^2) $ $ \Rightarrow y_1^2 = x^2(x - \frac{1}{2}x^2)$ $ \Rightarrow y_1^2 = x^2 - \frac{1}{2}x^4 $	V = ⁶⁴ / ₅ π
_	$(1) \Rightarrow \varphi(z) \Rightarrow \varphi(z)$	HB Borth)

The figure above shows the curve with parametric equations

 $x = \sin\left(t + \frac{\pi}{6}\right), y = 1 + \cos 2t, 0 \le t < 2\pi.$

The curve meets the coordinate axes at the points A, B and R.

a) Find an expression for $\frac{dy}{dx}$ in terms of *t*.

b) Determine the coordinates of the points A, B and R.

At the points C and D the tangent to the curve is parallel to the x axis, and at the points P and Q the tangent to the curve is parallel to the y axis.

c) Find the coordinates of C and D.

d) State the x coordinates of P and Q

[continues overleaf]

[continues from previous page]

The curve is reflected in the x axis to form the design of a window.

The resulting design fits snugly inside a rectangle.

The sides of this rectangle are tangents to the curve and its reflection, parallel to the coordinate axes. This is shown in the figure below.

It is given that the area on one of the four loops of the curve is $\frac{2}{3}\sqrt{3}$ square units.

e) Find the exact area of the region which lies within the rectangle but not inside the four loops of the design.

The figure above shows the curve C with parametric equations

$$x = t^2, \ y = \sin t, \ 0 \le t \le \pi$$

The curve crosses the x axis at the origin O and at the point A.

a) Find the coordinates of *A*.

The point P lies on C where $t = \frac{2\pi}{3}$. The line T is a tangent to C at the point P.

b) Show that the equation of T can be written as

$$24\pi y + 9x = 4\pi \left(\pi + 3\sqrt{3}\right).$$

The point Q lies on the x axis, so that PQ is parallel to the y axis. The point B is the point where T crosses the x axis.

c) Show that the area of the triangle PBQ is π square units.

 $\begin{array}{c} \left(\left(\frac{1}{2}^{T}, \left(\frac{T}{2}^{T} \right) \right) \\ = \left(\frac{1}{2}^{T}, \left(\frac{T}{2}^$

 $A(\pi^2,0)$

area = π

Question 83 (****)

The figure above shows a curve C and a straight line L, meeting at the origin and at the point R. The points P and Q are such so the tangent to C at those points is horizontal and vertical, respectively.

The curve C has parametric equations

 $x = 2\sqrt{2}\sin 2t$, $y = 1 - \cos 2t$, $0 \le t < \pi$,

and the straight line L has equation y = x.

- **a**) Find the coordinates of P and Q.
- **b**) Show that at *R*, $\tan t = 2\sqrt{2}$.
- c) Hence determine the exact value of the gradient at R.
- **d**) Show that a Cartesian equation for C is

 $8y^2 - 16y + x^2 = 0.$

100	10.	<u></u>							-1	1
	(a)	2= 212 Sm2t	Ð	47 P	, y u	MAX	: P(012)			-4
		y=1-cos2E	٠	AT 9	2 2 14	MAX	S+ 3= 2N2			2
							262 = 2625	met		
					CONC	72	SM2t = 1 2t = 포.			(5)
				- E	VALLE	πţ	モー車			
						· y=	1-65至			
1						~	R(ZAEL)	//		
	6	q = x		S	eaitte	Suta	//			(d)
1	\rightarrow	212 am2t = 1- 0022t	21	8	- dec	the	->00	5		
	1	$2\sqrt{2}$ (2sinteest) = 1-(1-2) $4\sqrt{2}$ sinteest = 2sint	1940	3		2/2/0	t-smt=0	R		
į.		the sinticet - 25mit=0		(262.000	t= Smt			
le,		2ant (2/2lost-smt)=0				202. 3	but_			
	_									

$ \begin{array}{c} \hline \\ \frac{\partial y}{\partial t} = \frac{\partial y}{\partial t} + \frac{2sm2t}{4k^2 \cos t} = \frac{\sqrt{2}}{4} \tan 2t = \frac{\sqrt{2}}{4} \left(\frac{2\log k}{1 - \log k} \right) \end{array} $	
$ \frac{du_{1}}{du_{1}} = \frac{du_{1}}{du_{1}} = \frac{\sqrt{2}}{4} \left(\frac{2 \times 2\sqrt{2}}{1 - (2\sqrt{2})} \right) = \frac{\sqrt{2}}{4} \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{2}}{7} $	e-built
$\begin{array}{c} (b) \\ = & 5^{2}h^{2} + 5^{2}h^{2} \\ = & 5^{2}h^{2}h^{2} \\ = & 5^{2}h^{2}h^{2$	
$\log z_{\pm} = \frac{1-y}{2} (-y) \stackrel{-}{\rightarrow} \frac{z}{2} = 1$ $\Rightarrow \sqrt{-z_{2}} + y^{2} + \frac{z^{2}}{2} = \sqrt{-z_{2}}$	
> 8y2-ky +32=0	

6

 $P(0,2), Q(2\sqrt{2},1)$

Question 84 (****)

A curve C is defined by the parametric equations

 $x = \sin^2 \theta$, $y = \sin 2\theta$ $0 \le \theta < \pi$.

a) Show that

$\frac{dy}{dx} = 2\cot 2\theta \,.$

The straight line with equation y = 2x intersects C, at the origin and at the point P.

b) Find the coordinates of P, and show further that P is a stationary point of C.

c) Show further that a Cartesian equation of C is

$$y^2 = 4x(1-x).$$

 $P\left(\frac{1}{2},\right.$

6

$\begin{array}{c} \frac{dS_{1}dc}{dc} = dS_$	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $
 G SATING WITH 9= SAT20	: y= 42(1-2) / + 240100

Question 85 (****)

The curve C is given parametrically by

 $x = \cos t + \sin t - 2$, $y = \sin 2t$, $0 \le t < 2\pi$.

a) By using appropriate trigonometric identities, show that a Cartesian equation for *C* is given by

$y = x^2 + 4x + 3$.

- b) Sketch the part of *C* which corresponds to the above parametric equations.The sketch must include
 - the coordinates of any points where C meets the coordinate axes.
 - the exact coordinates of the endpoints of C.

graph

Question 86 (****)

>

I.F.G.B.

arns

I.G.p

A curve has parametric equations

 $x = 1 - \cos \theta$, $y = \sin \theta \sin 2\theta$, $0 \le \theta \le \pi$.

Determine in exact form the coordinates of the stationary points of the curve.

No credit will be given for methods involving a Cartesian form of this curve.

20

I.C.B.

naths.com

i C.S.

6

1202

The Com

Question 87 (****)

A curve is given parametrically by the equations

 $x = 3\cos t$, $y = 4\sin t$, $0 \le t \le 2\pi$.

a) Show that the equation of the tangent to the curve at the point where $t = \theta$ is

 $3y\sin\theta + 4x\cos\theta = 12$.

The tangent to the curve at the point where $t = \theta$ meets the y axis at the point P(0,8) and the x axis at the point Q.

b) Find the exact area of the triangle POQ, where O is the origin.

	6		
Ч	al	START BY OBDANIUG THE PRADINT FUNDRIN IN PARAMATER	$\therefore x = \pm 2\sqrt{3} \models Q(\pm 2\sqrt{3}/c)$
		$\frac{d_{4}}{dx} = \frac{d_{3,4t}}{dx/4t} = \frac{t_{0,5}t}{-3s_{1}t} = -\frac{t_{0,5}t}{3s_{1}s_{1}t}$	FUTUR ARM SON & GULD
		$\left \frac{dy}{dt} \right = -\frac{4i\alpha_{B}\theta}{2i\zeta_{M}\theta}$ At points (3600),45100)	$404 = \frac{1}{2} \times 8 \times \left \pm 2\sqrt{2} \right $
		Equation or unnost is involved	$\frac{4214 \times 4 \times 2\sqrt{3}}{4214 \times 8\sqrt{3}}$
		$\Rightarrow \underbrace{y}_{-} \underbrace{y}_{0} = \underbrace{4}_{00} \underbrace{(x - \chi_{0})}_{3 - 100} \underbrace{(x - 3}_{000} ($	
		$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$	
5	Ь)	(BD) 2011 REDUCT THE DO INFORMED THE ON OUT JUNEDE	
Y		$\begin{array}{cccc} & \longrightarrow & 3 \times 8 \mathfrak{g}_{\mathcal{H}} \mathfrak{g}_{$	
		$\begin{array}{llllllllllllllllllllllllllllllllllll$	
		Sounds foot quation for you to optimal a	
		$2\sqrt{s}' x = 12 \qquad -2\sqrt{s}' x = 12$ $x = \frac{c}{12} \qquad e^{2} \qquad x = -\frac{c}{12}$	
		300.	20

 $8\sqrt{3}$

Question 88 (****)

The figure above shows the curve C with parametric equations

 $x = a\cos^3\theta$, $y = b\sin\theta$, $0 \le \theta < 2\pi$,

where a and b are positive constants.

The point *P* lies on *C*, where $\theta = \frac{\pi}{6}$.

a) Show that an equation of the tangent to C at P is

 $9ay + 4bx\sqrt{3} = 9ab$.

The tangent to C at P crosses the coordinate axes at (0,12) and $\left(\frac{3\sqrt{3}}{4},0\right)$.

b) Find the value of a and the value of b.

24

1

$ \begin{array}{c} (\mathbf{a}) & = \mathbf{a} & (\mathbf{a}) \\ (\mathbf{y}) & = \mathbf{b} & sm\theta \end{array} $	$=\frac{dg/d\theta}{dx/d\theta}=\frac{b\cos\theta}{-3a\cos\theta\sin\theta}=\frac{-b}{3a\cos\theta\sin\theta}$
0	mÆ = ±b
$\frac{dy}{dx} = -$	3000755m7 = - 3/39 = - 3/39
EQUATION OF TANGLET :	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$y = -\frac{q_0}{3\sqrt{3}}x + b$ (89a)
	$\begin{array}{l} 9 \alpha y = -\frac{36ab}{36^3} x + 9ab \\ 9 \alpha y + \frac{12}{\sqrt{3}} x = 9ab \\ 9 \alpha y + 445b x = 9ab \\ \end{array}$
b) When 2=0 y=12 When y=0 x=3.15	\Rightarrow 108a = 9ab \Rightarrow 9b = 9ab b $\neq D$
+160000 + 108 = 90000000000000000000000000000000000	a a=1

2.

L

B

D

Question 89 (****)

The figure above shows an ellipse with parametric equations

$$x = 2\cos\theta \ y = 6\sin\left(\theta + \frac{\pi}{3}\right), \ 0 \le \theta < 2\pi$$

The curve meets the coordinate axes at the points A, B, C and D.

a) Determine the coordinates of the points A, B, C and D.

The straight line L is the tangent to the ellipse at the point A.

- **b**) Find an equation of L.
- c) Show that a Cartesian equation of the ellipse is

 $y^2 + 9x^2 = 9 + 3xy\sqrt{3} \; .$

A(-1,0), B(1,0), C(-3,0), D(-3,0)

1	l'a	20
(9)	$\begin{array}{cccc} \mathcal{Y}_{\pm} & \mathcal{C}(p_{1}) \\ \mathcal{Y}_{\pm} & $	
	$ \begin{aligned} \theta &= \underbrace{ $	·) 3-
(6)	$\frac{dy}{dx} = \frac{dy}{dq}\frac{dq}{d\theta} = \frac{6\cos(\theta + \frac{\pi}{2})}{-2\sin\theta}$	⇒y= ⇒y=
	$\frac{dq}{da} \begin{vmatrix} z & dy \\ A & dy \end{vmatrix}_{b=\frac{2\pi}{3}} = \frac{du_{a}(\frac{\pi}{3},\frac{\pi}{3})}{-2\pi m^{\frac{2\pi}{3}}} = \frac{-6}{-\pi^{\frac{2\pi}{3}}} = 2\sqrt{3}^{-1} a A(-I_{c})$	
	$g - g_{*} = a_{*}(z_{*} - x_{0})$ $g - 0 = 2i\Gamma(z_{*} + i)$ $g = 2iF_{*}(z_{*} + i)$	$\Rightarrow 2y$ $\Rightarrow (2y)$

() y=6sm(0	+#) {	=> (1y2- 12/32xy + 8722= 36(1-6080)
⇒y=6sm966 ⇒y= 3sm8	St +600800mg	$\Rightarrow 4y^2 - 12y_5 xy + 27x^2 = 36(1 - \frac{x^2}{4})$
⇒ y - 313605)	⇒ 4y²-12x5ay+27a²= 36-9a² ⇒ 4y²+36a²= 36+12x53ay
⇒ y -3x37(€	-/ }	$y^2 + 9\chi^2 = 9 + 3\chi \sqrt{3}^2$
⇒ 2y - 3152 ⇒ (2y - 3152)		to Barley

 $y = 2\sqrt{3}(x+1)$

G

Question 90 (****)

KQ,

A curve C is given parametrically by the equations

arametrically by the equation $x = \sin^2 \theta$, $y = 6\sin \theta - \sin^3 \theta$, $\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

- **a**) Find an expression for $\frac{dy}{dx}$, in terms of $\sin \theta$.
- **b**) Hence show that *C* has no stationary points.
- c) Determine the exact coordinates of the point on C, where the gradient is $8\frac{1}{2}$.

 $y^2 = x(x-6)^2.$

d) Show that a Cartesian equation of C is

 $6-3\sin^2\theta$ $P\left(\frac{1}{9}, \frac{53}{27}\right)$ $2\sin\theta$

R.H.

6

$\begin{array}{c} (\alpha) \alpha = sm^2\theta \\ \qquad $	~000 #0
0=0fuee-2 = 0=0	2sw 6
5400 = 2 SNO = 2 SNO = ±NZ	* NO RAC SEUTION'S SINCE -LESMIDSI * NO STATIONARY POUT
$ \begin{array}{c} (4) \frac{dy}{d\lambda} = 8.5 \\ \Rightarrow \frac{2-3\omega^2 \theta}{2.8 + \theta} = 8.5 \end{array} $	(d) y = (6amo-sm2) y ² = (9 ² mz-9mz) ²
⇒ 6-35478 = 175MB ⇒ 0= 35M78 +175M8-6	y ² = 36an ² 0-12sm ⁴ 0+sm ⁶ 0 BIT a= sm ² 0
$\Rightarrow (3cm\theta - 1)(sm\theta - 6)$ $\Rightarrow sh\theta = \langle \frac{1}{2} \rangle$	$i = \frac{1}{2} \frac{y^2}{y^2} = 3(2y^2\theta) - 12(3y^2\theta)^2 + (2y^2\theta)^2$ $i = \frac{1}{2} \frac{y^2}{y^2} = 36x - 12x^2 + x^3$
$\int dx = c_{2} N d = \frac{1}{2}$ $\int dx = c_{2} N d = 2 N d = c_{2} + \frac{1}{2}$	y ² = 2(36-122,+22) y ² = 2(2-6) ² - → 2+441240
$\left(\frac{1}{2}\right) \left(\frac{1}{2\gamma}\right)$	U STENED

Question 91 (****)

The figure above shows a curve C with parametric equations

$$x = \frac{t^2}{t-1}, y = \frac{t^3}{t-1}, t \in \mathbb{R}, t > 1.$$

The points P and Q lie on C so that the tangents to the curve at those points are horizontal and vertical respectively.

a) Show that

$$\frac{dy}{dx} = \frac{t(2t-3)}{t-2}.$$

b) Find the coordinates of P and Q.

c) Show further that a Cartesian equation for C is

 $y^2 - yx^2 + x^3 = 0 \,.$

(a)	$\frac{d_2}{dt} = \frac{(t-1)2t - t^2(t)}{(t-1)^2} = \frac{2t^2 - 2t - t^2}{(t-1)^2} = \frac{t^3 - 2t}{(t-1)^2}$
	$\frac{du}{dt} = \frac{(t-1)3t^{4} - t^{4}(1)}{(t-1)^{2}} = \frac{3t^{4} - 3t^{2} - t^{3}}{(t-1)^{2}} + \frac{2t^{4} - 3t^{2}}{(t-1)^{4}}$
	$\frac{du}{dx} = \frac{du}{dt/dt} = \frac{\frac{2t^2-3t^2}{(t-1)^2}}{\frac{t^2-2t^2}{(t-1)^2}} \xrightarrow{\text{prime}}_{\text{prime}} \frac{t^2t-3t^2}{t-2t} = \frac{t(2t-3)}{t-2}$
(6)	du = 0 (BR P du = 00 AS BEPUERO
	t(2t-3) =0 t=2 = 0 (MAKET DENCEMBERTOR
	$t = \begin{pmatrix} \chi(t>1) \\ \frac{3}{2} \end{pmatrix}$ to 2
	$\mathcal{I} = \frac{\frac{1}{2}}{\frac{3}{2}-1} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{9}{2}$ $\mathcal{I} = \frac{22}{2-1} = 4$
	$y = \frac{(\frac{1}{2})^2}{\frac{1}{2}} = \frac{27}{4} = \frac{27}{4}$ $y = \frac{23}{2-1} = 0$
	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \begin{array}{c} \\ \end{array}} \end{array} \begin{array}{c} & \\ \end{array} \end{array} \xrightarrow{ \begin{array}{c} \end{array}} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} $

$\begin{pmatrix} \frac{1}{3} = \frac{\frac{1}{1+1}}{\frac{1}{1+1}} = \frac{1}{1+1} = \frac{1}{1+1} = \frac{1}{1+1} = \frac{1}{1+1}$	er (ant)
$\#hute x = \frac{\pm 2}{t-1}$	$\implies x^2 y - x^3 = y^2$
$\implies = \frac{\left(\frac{1}{2}\right)^2}{\frac{1}{2} - 1}$	$\Rightarrow 0 = y^2 - xy + T^2$
$\Rightarrow \lambda = \frac{u^2}{2^{L}}$	= x3-xy+y2 to BADURHO
HOTTRY TOP BOTTON BY 32	
$\Rightarrow a = \frac{y^2}{2y - a^2}$	

The figure above shows the curve defined by the parametric equations

$$x = 4\theta - \sin \theta$$
, $y = 2\cos \theta$, for $0 \le \theta < 2\pi$.

The curve crosses the x axis at points A and B.

The point C is the minimum point on the curve and CD is perpendicular to the x axis and a line of symmetry for the curve.

- **a**) Find the exact coordinates of A, B and C.
- **b**) Show that an equation of the tangent to the curve at the point A is given by

 $x + 2y = 2\pi - 1.$

c) Show that the area of the region R bounded by the curve and the coordinate axes is given by

$$\int_0^{\overline{2}} 8\cos\theta - 2\cos^2\theta \ d\theta.$$

d) Find an exact value for this integral.

Question 93 (****)

The curve C is given parametrically by the equations

 $x = \cos^3 t$, $y = \sin^3 t$, $0 < t < \frac{\pi}{2}$.

a) Show that an equation of the normal to C at the point where $t = \theta$ is

 $x\cos\theta - y\sin\theta = \cos 2\theta$.

The normal to C at the point where $t = \theta$ meets the coordinate axes at the points A and B.

b) Given that O is the origin, show further that the area of the triangle AOB is

$\cos 2\theta \cot 2\theta$.

2	1
a) Obtany the stating function in -themmatic	
$ \begin{array}{c} \cdot \frac{dy}{dx} = \frac{dy/4t}{dx/4t} = 3 \sin^2 t \cosh t \\ \ \ \ \ \ \ \ \ \ \ \ \ \$	= - sint
$\cdot \frac{dy}{da}\Big _{t=0} = -\frac{sm\theta}{cos\theta}$	
EQUINTION OF NORMAL AT (COSTO, SMID) WITH CRADINIT	Qual +
$\begin{array}{rcl} (s^{r} - s)^{sr} = _{g_{0}} - (s^{r} - s)^{sr} \\ (g^{r} - s)^{sr} = g^{sr} - g^{sr} - g^{sr} \\ (g^{r} - s)^{sr} = g^{r} - g^{sr} \\ g^{r} = g^{r} - g^{r} - g^{r} \\ g^{r} = g^{r} - g^{r} - g^{r} \\ (g^{r} - g^{r} - g^{r})^{sr} \\ (g^{r} - g^{r})^{sr} = g^{r} \\ (g^{r} - g^{r})^{sr} \\ (g^{r} - $	
$\begin{array}{c} dd \\ dd$	
$\frac{A(A + S - G_{AAA}) B}{\frac{1}{2} \left -\frac{G_{AAA}}{S_{AAA}} + \frac{G_{AAA}}{G_{AAA}} + \frac{G_{AAA}}{G_{AAA}} \right _{a} = \frac{G_{AAA}}{G_{AAA}} =$	05203 0520 05812
= (12) (12)	

proof

Question 94 (****)

The curve C is given parametrically by the equations

$$x = 3t$$
, $y = \frac{3}{t}$, $t \neq 0$

a) Show that an equation of the normal to C at the point with parameter t is

 $yt + 3t^4 = xt^3 + 3.$

The point $A(12,\frac{3}{4})$ lies on C. The normal at $A(12,\frac{3}{4})$ meets the curve again at B.

b) Determine the coordinates of B.

4y = 64x - 765> 4 (3/+) = 64 (3t) -76 92t2 - 765+ -- POINT B * B(3-1192)

 $\frac{3}{64},192$

SMATHS.COM

l.Y.G.B

1.60

1.1.6

naths.com

144

(****) **Question 95**

A curve is defined parametrically by the equations

 $0 \le t < 2\pi \; .$ $x = 3\cos 2t , \quad y = 6\sin 2t ,$

I.F.G.B. Express $\frac{d^2 y}{dx^2}$ in terms of y.

ASTRAITS COM I.Y.C.P. MARIASTRAITS COM I.Y.C.P. MARIASTR

HIRDRINGUR I.Y.C.B. HRRINGHRS.COM

Question 96 (****+)

The curve C is given by the parametric equations

 $x = \frac{2}{t}, y = 4t, t > 0.$

The tangent to the C at the point P where t = p, meets the coordinate axes at the points A and B.

Show that the area of the triangle OAB, where O is the origin, is independent of p and state that area.

area	=	16

1+

No. of the second se
$\frac{z}{t} = \frac{2}{t} \left\langle \begin{array}{c} \Rightarrow \\ \Rightarrow \end{array} \right\rangle = \frac{dy}{dx} = \frac{dy}{dx} = \frac{4}{-\frac{2}{t}} = -2t^{2}$
$ u_{i} _{p_{i}} = p$, $P(\frac{2}{p_{i}}, 4p) = -2p^{2}$
Spurition) of the threadout : $(4 - 4p = -2p^2(\alpha - \frac{\alpha}{p}))$ $(9 - 4p = -2p^2\alpha + 4p)$
$y + 2p^2 x = 8p$
vation area, y = BP y=0, a = 4 Hunt = 1/x Bpx 4 4
40A=16

Question 97 (****+)

F.G.B.

C.B.

The curve C is given parametrically by the equations

 $x = 2t+1, y = 8t^3 + 4t^2, t \in \mathbb{R}$.

a) Find the coordinates of the stationary points of C, and determine their nature.

It is further given that C has a single point of inflection at P.

b) Determine the coordinates of P.

dy = 12t2+4t 0 = yb UNIOG VARAN $\frac{d^2 g}{dx^2} = \frac{d}{dx} \left(\frac{dg}{dx} \right) = \frac{d}{dx} \left(12t^2 + 4t \right) = (24t + 1) \left(\frac{dt}{dx} \right) = (4t + 4) \times \frac{1}{2} = 12t + 2.$ $\begin{array}{c} t_{\pm 0} \ , \ \mathfrak{A} = 1 \ , \ \mathfrak{B} = \mathcal{O} \ , \ \frac{d \mathcal{B}}{d \mathfrak{A}} = \mathfrak{A} > \mathcal{O} \\ t_{\pm -\frac{1}{3}} \ , \ \mathfrak{A} = \frac{1}{3} \ , \ \mathfrak{B} = \frac{1}{3} \ , \ \mathfrak{B} = \frac{\mathfrak{B}}{27} \ , \ \frac{d \mathcal{B}}{d \mathfrak{A}} = \mathfrak{A} > \mathcal{O} \end{array}$ (b) Point of instantion $\rightarrow \frac{d_{ij}}{dx^2} = 0$ so 12t+2=c $t=-\frac{1}{2}$ · P(2,2)

 $P\left(\frac{1}{3},\frac{2}{27}\right)$

F.C.P.

6

 $\min(1,0)$, $\max(\frac{1}{3},\frac{4}{27})$

Question 98 (****+)

The curve C is given by the parametric equations

$$x = 3at, y = at^3, t \in \mathbb{R}$$

where a is a positive constant.

a) Show that an equation of the normal to C at the general point $(3at, at^3)$ is

 $yt^2 + x = 3at + at^5.$

The normal to C at some point P, passes through the points with coordinates (7,3) and (-1,5).

b) Determine the coordinates of P.

And in case of the local division of the loc		
	$\begin{array}{l} \displaystyle \frac{f_{DD}}{f_{D}} \frac{T_{H}}{T_{H}} \left(\frac{\partial A_{D}}{\partial t_{H}} + \frac{\partial A_{H}}{\partial t_{H}} +$	$\begin{array}{c} AUTRIANTL BY for UPAR THE REMITTER OF THE CONTROL OF THE $
g	$\begin{aligned} \frac{dMc}{dt} & \text{int} De \text{ the Diff} (\text{tot}) Mc \text{the } \frac{de + MZ}{dt} \text{ what} \\ \hline (7,4) & \rightarrow 3^{1+2} = 3d_{1+}a_{1+}^{2} \\ (-x,5) & \rightarrow 3^{1+2} = 3d_{2+}a_{1+}^{2} \\ \rightarrow 3d_{2+}a_{2+}^{2} \\ \rightarrow 3d_{2+}a_{2+}^{2} \\ \rightarrow 3d_{2+}a_{2+}^{2} \\ \frac{de + 2}{dt} \\ \frac{de + 2}{d$	(7,3): (2+7=380, (7,3) 13=380, (7,3) 13=380, (7,3) (02 (1,5): 20-1=380, (7,3) (12 3662, a=1, t=2 760, (7,3)) 4: 3662, a=1, t=2 760, (7,3))
	~	

P(3,4)

 $\frac{\Gamma = -2}{2} = -6 - 32a$ a = -36 (12 + 7 = -38a a > 0

(****+) Question 99

nadası,

i. K. G.B. Madasm

I.V.G.B

Com I.V.C.J.

The curve C is given parametrically by the equations

 $x = t^2$, $y = 1 + \cos t$, $t \in \mathbb{R}$.

Show that the value of t at any points of inflection of C is a solution of the equation

 $t = \tan t$.

172025

.com

I. C.B. Madasman

Z=> du = dytte = -sut

I.C.B.

I.Y.C.B. Madasmatics.Com

ths.com

proof

aths com

8

6

Madasn.

Question 100 (****+)

>

I.V.G.B.

ins,

I.V.G.p

011

A curve has parametric equations

 $x = \frac{3}{t^2}$, $y = 5t^2$, t > 0.

If the tangent to the curve at the point *P* passes through the point with coordinates $\left(\frac{9}{2}, \frac{5}{2}\right)$, determine the possible coordinates of *P*.

1202.01

inn

I.C.B.

(9,5)

2011

Ing.

I.F.C.P.

3

6

Mada

ths.com

Created by T. Madas

nadasmaths,

Question 101 (****+)

>

KG

A curve is given parametrically by the equations

$$x = 3\sin 2\theta$$
, $y = 4\cos 2\theta$, $0 \le \theta \le 2\pi$

The point *P* lies on the curve so that

$$\cos\theta = \frac{3}{5}, \ 0 \le \theta \le \frac{\pi}{2}$$

Show that an equation of the tangent at P is

$$32x - 7y = 100$$

m

madas,

2017

$\begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{c} & \begin{array}{c} & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & \begin{array}{c} & & \\ $
$P\left(\frac{T_2}{2S_1},-\frac{2\theta}{2S}\right)$
du = dyde = -BSM20 = -IGSMQLOSO
or 93/90 0 00000 0 00000-1)
$\frac{\frac{d}{d}q}{d\lambda} = \frac{-16 \times \frac{q}{2} \times \frac{q}{2}}{6 \left[\left[2 \left(\frac{q}{2} \right)^2 + 1 \right] \right]} = \frac{-\frac{12}{25}}{-\frac{42}{25}} = \frac{32}{7}$
$(\chi - \chi_{2}) = (\chi - \chi_{2})$ $(\chi - \chi_{2}) = (\chi - \chi_{2})$ $(\chi - \chi_{2}) = (\chi - \chi_{2})$ $(\chi - \chi_{2})$ $(\chi - \chi_{2})$ $(\chi - \chi_{2})$
= 7y = 32x - 100 = 32x - 7y = 100

F.G.B.

6

 \hat{D}

F.G.B.

Question 102 (****+)

$$y = a^x, a > 0, x \in \mathbb{R}$$

a) Show clearly that

$$\frac{dy}{dx} = a^x \ln a \,.$$

A curve C is given by the parametric equations

$$x = 2^{2-t}$$
, $y = 8^t + 1$, $t \in \mathbb{R}$.

b) Show that for points on C,

.Y.G.

C.B.

$$\frac{dy}{dx} = -3 \times 4^{2t-1}$$

c) Find in simplified form a Cartesian equation for C.

2.4.

6

COM

madasma

F.G.B.

lasma,

Q2	(1) 2-t 2-t 2-t.
	$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
lina ² 2chia	$y = 8 + 1$ $\frac{dy}{dt} = 8^{t} \ln 8$
= lna	$\frac{\mathrm{d} \mathfrak{g}}{\mathrm{d} \mathfrak{g}} = \frac{\mathrm{d} \mathfrak{g} \mathrm{d} \mathfrak{g}}{\mathrm{d} \mathfrak{g} \mathrm{d} \mathfrak{g}} = \frac{\mathrm{d}^{\frac{1}{2}} \mathrm{l}_{M} \mathrm{d}}{-2^{2 \cdot 2} \mathrm{l}_{M} \mathrm{g}} = \frac{\left(2^{\frac{3}{2}}\right)^{\frac{1}{2}} \times 2^{\frac{1}{2}} \mathrm{h}_{Z}}{-2^{\frac{3}{2}} \times 2^{\frac{1}{2}} \mathrm{h}_{M}} = \frac{3 \times 2^{\frac{3}{2}} \times \mathrm{l}_{M} \mathrm{g}}{-4 \times 2^{\frac{3}{2}} \mathrm{g} \mathrm{l}_{M} \mathrm{g}}$
y lha	$\frac{d_{9}}{d\lambda} = -\frac{3}{4} \times 2^{\frac{1}{4}} = -3 \times \frac{1}{4} \times (2^3)^{\frac{1}{2}} = -3 \times \frac{1}{4} \times 4^{\frac{1}{4}}$
a ha	: du = -3×42-1 +5 REMILIO
	(c) $\alpha = a^{2-t} = a^{2} \times a^{-t} = 4 \times 2^{-t}$
	$\Rightarrow \frac{x}{4} = 2^{-t}$
	$\begin{bmatrix} \frac{1}{2\pi} = 3^{t} \\ \frac{1}{2\pi} = 3^{t} \end{bmatrix} \qquad This \ g = 8^{t} + 1$ $g = (3)^{t} + 1$
	$y = (2^{t})^{3} + 1$
	Ý = (₹) ³ +1
	7= 64+1

Question 103 (****+)

A curve C is given parametrically by

$$x = \frac{4\cos t}{1 + 4\sin^2 t}, \quad y = \frac{4\sin 2t}{1 + 4\sin^2 t}, \quad t \in \mathbb{R}$$

Show that ...

>

1.Y.C.

a) ... an equation of the tangent at the point where $t = \frac{\pi}{4}$ is

 $7y - 4\sqrt{2}x = 4.$

b) ... a Cartesian equation of C is

(4)

 $(x^{2} + y^{2})^{2} = 4(4x^{2} - y^{2})$

$2x = \frac{4\cos t}{1+4\sin^2 t} \text{as } y = \frac{4\sin 2t}{1+4\sin^2 t}$
$\frac{dx}{dt} = \frac{(1+4\omega t)(-4\omega t) - 4(\omega t)(\omega t)(\omega t)}{(1+4\omega t)^2} \frac{dx}{dt} \bigg _{z} = \frac{3(2\delta t^2) - (2\delta t^2) x q}{q}$
$\frac{dy}{dt} = \frac{(1+dy)t^2_{y}(y)(y)(y) - \frac{dy}{2}(\theta)(y)(y)}{(1+dy)t^2_{y}} \frac{dy}{dt(y)} = \frac{-\frac{14}{7}\sqrt{2}}{4}$
= - 6
$\frac{d_{B}}{dt} = \frac{d_{M}dt}{dt/dt} \implies \frac{d_{M}}{dt}\Big _{t=\frac{T}{T}} = \frac{\frac{d_{M}}{dt}}{-\frac{d_{M}}{dt}} = \frac{d_{T}}{T} \sqrt{2} \leftarrow \frac{T}{T} \frac{d_{M}(T)}{G^{2}}$
$\begin{array}{l} \eta_{m} f = \frac{1}{2} J \leq z = \frac{542}{3} J = \frac{2}{3} = \frac{1}{44z} \left(3 - \frac{2}{3} + \frac{1}{3} \right) \\ \eta_{m} f = \frac{1}{2} J \leq z = \frac{1}{3} J = \frac{1}{3} = \frac{1}{44z} \left(3 - \frac{1}{3} + \frac{1}{3} \right) \end{array}$
$\implies 2l_{ij} - 2k = 124\overline{2}'(\lambda - \frac{2\sqrt{2}}{k})$ $\implies 2l_{ij} - 2k = 124\overline{2}'(\lambda - \frac{2\sqrt{2}}{k})$ $\implies 2l_{ij} - 2k^2 = 124\overline{2}'\lambda = -16$ $\implies 2l_{ij} - 2\sqrt{2}\lambda = 12$
$\Rightarrow 7y - 462z = 4$

(ધ	$ \begin{aligned} \alpha &= \frac{4\omega st}{1+4\omega ft} \\ y &= \frac{8s_{\rm W} b_{\rm W} st}{1+4\omega ft} \end{aligned} $ Drops	$\frac{9}{2} = \frac{800tuat}{4uat} = 200t$
	$\begin{array}{l} \frac{1}{4} \text{there} \\ \frac{1}{4} \text{there} \\ \Rightarrow \mathbf{x} = \frac{1}{1+4} \frac{1}{4} \frac{1}{4$	$ \Rightarrow x^{2} + \frac{\frac{d(d^{2}, q^{2})}{d^{2}}}{(d^{2}, q^{2})} $ $ \Rightarrow x^{2} = \frac{d^{2}c(d^{2}, q^{2})}{(d^{2}+q^{2})^{2}} $ $ \Rightarrow 1 = \frac{4(d^{2}, q^{2})}{(d^{2}+q^{2})^{2}} $ $ \Rightarrow (z^{2}+q^{2})^{2} = 4(d^{2}, q^{2}) $ $ \Rightarrow (z^{2}+q^{2})^{2} = 4(d^{2}, q^{2}) $ $ \Rightarrow (z^{2}+q^{2})^{2} = 4(d^{2}, q^{2}) $

2017

proof

C.4.

6

madasm.

2

F.G.B.

Question 104 (****+)

A curve is defined by the parametric equations

 $x = 2\cos t, \ y = 4\sin t, \ 0 \le t \le \frac{\pi}{2}.$

a) Show that an equation of the tangent to the curve at the point P where $t = \theta$ can be written as

 $y\sin\theta + 2x\cos\theta = 4$.

The tangent to curve at P meets the coordinate axes at the points A and B.

The triangle OAB, where O is the origin, has the least possible area.

b) Find the coordinates of P.

Question 105 (****+)

A curve C is given parametrically by the equations

 $x = t^2 - 1$, $y = t^3 - t$, $t \in \mathbb{R}$.

Find a Cartesian equation C, in the form $y^2 = f(x)$.

$ \begin{array}{l} x = t^{2} - t \\ y = t^{3} - t \end{array} \xrightarrow{\cong} \begin{array}{l} x = t^{2} - t \\ y = t (t^{2} - t) \end{array} \xrightarrow{\cong} \begin{array}{l} \text{Dwide} \end{array} $	$\frac{\mathcal{H}}{\mathcal{H}} = \frac{\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)}{\frac{1}{2} + \frac{1}{2} + 1$
Thus $\underline{Q} = \frac{\underline{Q}}{\underline{X}} \left(\frac{\underline{Q}^2}{\underline{Q}^2} - l \right)$ $l = \frac{l}{\underline{X}} \left(\frac{\underline{Q}^2}{\underline{Q}^2} - \frac{\chi^2}{\underline{X}^2} \right)$	
$l = \frac{y_{-x^2}^2}{x^3}$ $x_{-x^2}^3 = y_{-x^2}^3$	
$\psi^2 = x^3 + x^2$	

Question 106 (****+)

A curve is given parametrically by the equations

$$x = 2t$$
, $y = t^2$, $t \in \mathbb{R}$

The normal to the curve at the point P meets the x axis at the point A and the y axis at the point B.

Given that |OB| = 3|OA|, where O is the origin, determine the coordinates of P.

an	
Created by T. Madas	Y

P(3,4)

(****+) Question 107

Y.C.

i.C.p.

A curve is given parametrically by the equations

$$x = \frac{2t}{1+t^2}, y = \frac{1-t^2}{1+t^2}, t \in \mathbb{R}$$

The point $P\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ lies on this curve.

Show that an equation of the tangent at the point P is given by

 $x + y = \sqrt{2} \; .$

6

i G.B.

/	START BY OBTIMUTING THE REPORT FUNCTION	USRIW WITH THE & EQUATION (02 SOUTHOUS)
	$a = \frac{2t}{1+t^2} \qquad \qquad$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{\mathrm{d} x}{\mathrm{d} t} = \frac{(t+t^2)x_2 - 2t\cdot(2t)}{(1+t^2)^2} \qquad \frac{\mathrm{d} y}{\mathrm{d} t} = \frac{(t+t^2)(2t) - (t-t^2)(2t)}{(1+t^2)^2}$	$t^2 = 3 + 2\sqrt{2}$ $t^3 = 3 - 2\sqrt{2}$
	$\frac{dx}{dt} = \frac{2 + 2t^2 - 4t^2}{(1 + t^2)^2} \qquad \frac{dy}{dt} = \frac{-2t - 2t^2 - 2t + 2t^2}{(1 + t^2)^2}$	$y = \frac{1 - (2 + 2\sqrt{2})}{1 + (2 + 2\sqrt{2})}$ $y = \frac{1 - (2 - 2\sqrt{2})}{1 + (2 - 2\sqrt{2})}$
h	$\frac{dx}{dt} = \frac{2 - 2t^2}{(1+t^2)^2} \qquad \frac{dy}{dt} = -\frac{4t}{(1+t^2)^2}$	
Jr	$dt = (1+t^2)^2$ $dt = (1+t^2)^2$	$\begin{split} y_{\pm} &= -\frac{2+2\sqrt{c}}{4+2\sqrt{c}} \qquad $
	$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dt} = \frac{-4t}{2-2t^2} = \frac{-2t}{1-t^2} = \frac{-2t}{t^2-1}$	$y = -\frac{1}{2+\sqrt{2}}$ $y = -\frac{(1+\sqrt{2})(2+\sqrt{2})}{4-2}$ $y = -\frac{(1-\sqrt{2})(2+\sqrt{2})}{4-2}$
. 0		4 - 2 $4 = -\frac{3}{2} - \frac{6}{2} + \frac{16}{2} + \frac{3}{2}$ $4 = -\frac{3}{2} - \frac{6}{2} - \frac{26}{2} + \frac{3}{2}$
12	24 - A	$y = -\frac{f_{2}}{2} \qquad y = +\frac{f_{2}}{2}$
51	$\Rightarrow \frac{2t}{1+t^{-1}} = \frac{t^{2}}{2}$ $\Rightarrow \sqrt{t^{2}(1+t^{2})} = 4t.$	∴ t= -1+√2'
	\Rightarrow 1+t ² = 242t	$\frac{du}{d\lambda}\Big _{\substack{\xi = -1 + \xi_{2}^{2}}} = \frac{2(-1+\xi_{2}^{2})}{(3-2\xi_{2}^{2}) - 1} = \frac{-2 + 2\xi_{2}^{2}}{2 - 2\xi_{2}^{2}} = \frac{-1 + \xi_{1}^{2}}{1 - \xi_{2}^{2}}$
	$\Rightarrow t^2 - 2i2t + 1 = 0$ $\Rightarrow (t - i2)^2 - 2 + 1 = 0$	· · · · · · · · · · · · · · · · · · ·
	$\Rightarrow (t \cdot t)^{1} = 1 \qquad \therefore t = \langle \cdot \cdot t \rangle$	$\Rightarrow \frac{-(1-\sqrt{2})}{1-\sqrt{2}} \Rightarrow -1$
	FILMULY WE HAVE THE SEVERICUL OF THE TRUGENT	
	$d^2 - \sqrt{\frac{2}{2}} = -l(x - \sqrt{2})$	$\implies \left[t - (\sqrt{2} t) \right]^2 = 0$
1	$y - \frac{\sqrt{2}}{2} = -2 + \frac{\sqrt{2}}{2}$	= REPERTED POOT AC to F-1
\mathcal{D}_{n}	$a+y=\sqrt{2}$	INDEED A TANDOWT
19 P	LUTPENATION BY UTERGATION	MUD FOR THE POINT OF TANGENCY
	SOLIDO-SIMUTANDOLOY	• $t = \sqrt{2} - 1$ • $t^{\lambda} = (\Re - 1)^{\lambda} = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2}$
	$\begin{array}{c} \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\lambda = \frac{2k}{1+2}$
	Emme !!	$\lambda = \frac{2(\sqrt{2}-1)}{1+3-2\sqrt{2}} = \frac{2(\sqrt{2}-1)}{4-2\sqrt{2}} = \frac{\sqrt{2}-1}{2-\sqrt{2}}$
	$\implies \frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} = \sqrt{2}'$	$= \frac{(\sqrt{2}-1)(2+\sqrt{2})}{4-2} = \frac{2\sqrt{2}+2-\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$
	$\implies 2t+1-t^2 = \sqrt{2}(1+t^2)$ $\implies 2t+1-t^2 = \sqrt{2} + \sqrt{2}t^2$	
D	\implies 0 = $(1+\sqrt{2})t^{\lambda}-2t + (\sqrt{2}-1) = 0$	$\Theta_{1} = \frac{1 - \frac{1}{2}}{(1 + \frac{1}{2})}$ $= \frac{1 - (3 - 26^{2})}{(1 + \frac{1}{2})}$
· .	$\longrightarrow 0 = (\sqrt{2} - 1)(1+\sqrt{2}) t^2 - 2(\sqrt{2} - 1)t + (\sqrt{2} - 1)(\sqrt{2} - 1) = 0(\sqrt{2} - 1)$	$ \bigcup_{i} c_{i} = \frac{1 - (3 - 2\xi_{i})}{1 + (3 - 2\xi_{i}^{2})} = \frac{-2 + 2\xi_{i}^{2}}{4 - 2\xi_{i}^{2}} = \frac{-1 + \sqrt{2}}{2 - \sqrt{2}} $ $ (=1 + \xi_{i}^{2})(2 + \xi_{i}^{2}) = 2 - \sqrt{2} + $
	$ 0 = t^{2} - 2(g^{2} - 1)t + (g^{2} - 1)^{2} = 0 $ $ = - t^{2} - 2(g^{2} - 1)t + (g^{2} - 1)^{2} = 0 $	$= \frac{(-1+\sqrt{2})(2+\sqrt{2})}{4-2} = \frac{-2\sqrt{2}+\sqrt{2}+\sqrt{2}+2\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$
	PRACE _PONCE	· TANGER AT (12)
- " (s.		
- 45		A 76
1		0 0
		7 8°
	- <u>A</u>	1

Created k	oy T. Madas
------------------	-------------

Question 108 (****+)

K.G.

i.C.B.

A curve is given parametrically by the equations

 $x = 4\sin\theta$, $y = \cos 2\theta$, $0 \le \theta < \pi$.

COM

 $(2,\frac{1}{2})$ or (4,-1)

 $\frac{dy}{dt} = \frac{dy}{dt}\frac{dy}{dt} = -\frac{-2s_{12}g}{4(s_{12}b)} = -\frac{4s_{12}h_{12}h_{22}g}{4(s_{12}b)} =$ a) of 4 GRARAL TRADENT $-(s_{12}b) = -s_{12}h_{12}(s_{1} - 4s_{12}h_{22})$

 $\begin{array}{l} 0=2\alpha a_{0}^{2}\beta-3\alpha a_{0}\beta+1\\ (2sub-1)(sub-1)=0\\ sub_{x}<\underset{L}{\overset{1}{\downarrow}}\end{array}$

THUS WE HAVE

20

= -3am0+4siv9)=-3am9+4siv9

 $(4_{340}, 1_{2340}) = (4_{540}, 1_{-2540}) = (4_{1}, 1_{-2\times1^{+}})$

: $(4_i-1) \in (2, \frac{1}{2})$

 $< {}^{(4_1-1)}_{(2_1,\frac{1}{2})}$

F.C.P.

2

6

The tangent to the curve at the point P meets the x axis at the point (3,0).

Determine the possible coordinates of P.

Question 109 (****+)

>

I.V.G.B

I.C.p

A curve is defined by the parametric equations

 $x = \cos \theta$, $y = \sin \theta - \tan \theta$, $0 \le \theta < 2\pi \,.$ 2017

proof

E,

6

A8 86Gar.

I.C.P.

200

Show that a Cartesian equation of the curve is given by

Question 110 (****+)

, K.G.B.

A parametric relationship is given by

 $x = \sin 2\theta$, $y = \cot \theta$, $0 < \theta < \pi$.

Show that a Cartesian equation for this relationship is

COM

.....

13.SM

CO17

I.V.G.B

y(2-xy)=x.madasn.

I.F.G.B.

madasmaths,

COM

$ \begin{array}{c} (2 = sim2\theta) \\ (3 = sim2\theta) \\ (3 = soft) \\ (3 = sof$	·)
Now $y^2 = \omega t^2 \Theta = \omega$	$2\delta c_{c}^{2}\Theta - 1$
$y^2 + 1 = \cos t \overline{c} \Theta$	
$Shq^2 \Theta = \frac{1}{g^2 + 1}$	
$\overline{\Pi} h \underline{U} = \underline{U}^2 = -4 \times \frac{1}{\underline{U}^{2} + 1} \times \left(1 - \frac{1}{\underline{U}^{2} + 1} \right)$	$S \xrightarrow{\circ R} \Rightarrow 2y^2 + x = 2y$
$\Rightarrow 2^2 = \frac{4}{9^{2}+1} \times \frac{9^2 + 1}{9^2 + 1}$	$\left\langle \Rightarrow a = 2y - ay^2 \right\rangle$
$\Rightarrow 3^2 = \frac{4y^2}{(y^2+1)^2}$	$\Rightarrow x = y(z - ay)$
$\Rightarrow x = \frac{2y}{y^{t+1}}$	14 y(2-2y)=2
,	

. G.B.

I.F.C.B.

nadasmaths,

00

nadasn.

nn

Maga

6

(Sm

·G.J.

the com

proof

Question 111 (****+)

A curve has parametric equations

x = 3-t, $y = t^2 - 1$, $t \in \mathbb{R}$.

a) Find, in terms of t, the gradient of the normal at any point on the curve.

The distinct points P and Q lie on the curve where t = p and t = q, respectively.

b) Show that the gradient of the straight line segment PQ is -(p+q).

The straight line segment PQ is a normal to the curve at P.

c) Show further that

 $2p^2 + 2pq + 1 = 0$.

The point A(2,0) lies on the curve.

The normal to the curve at A meets the curve again at B. The normal to the curve at B meets the curve again at C.

d) Find the exact coordinates of C.

1		-		
dy	= _	1	$C\left(\frac{7}{6},\frac{8}{3}\right)$	<u>85</u>)
$dx_{(1)}$	normal) $\frac{-2}{2}$	2t	$\mathbb{C}\sqrt{6},\overline{3}$	86)
5	2			Y
N	dat.			
	3-P du = du/d	$\frac{t}{t} = \frac{2t}{t} =$	-2t e buyurl	
(9=	tz]) ar dys	. NOR	WAL GEWHERE GRADIUT IS	÷.
(6)			/	1
<i>C</i> /	Q(3-4144)	$M = \frac{y_2}{y_2}$	- 91 - Xr	
×	(3-9, P ⁴ -1)	$M = \frac{(q^2 - q^2)}{(q^2 - q^2)}$	$\frac{(q^2-1)}{(q^2-1)} = \frac{(q^2-p^2)}{(q^2-q)}$	
1.1		w = (9_	$\frac{P}{(q+P)} = \frac{(q-P)(q)}{-(q-P)}$	r-p)
(2)		∴ ky = _ (P+q) to Esporecio	
- Р Ж	€ (F	PQ IS A NOT	oliver. To THE CUBNE AT F	
	1 th T	N IT IS GRAD		
	`_ ę	m = 2p	POM Pout (4)	
		m= -(t	+d) NOW Past(b)	
+++	$ivC \leftarrow \frac{1}{2p} = -(p+q)$			
	l = -2p(p+q) $l = -2p^2-2pq$			
	$2p^2 + 2pq + = 0$	45 REPUBLY		
¥ (210)	HÁS TEI IF PEI			
	$HAPPY I = \frac{1}{2} \Rightarrow 2$	c 2x/-3/2 (- 3)	$1^{\alpha} - \frac{3}{2} \leftarrow \frac{1}{B} - \frac{3}{2}$	
			$\leftarrow + t_c = \frac{11}{6}$	
	$\mathcal{A}_{\mathcal{A}} \subset \left(\mathcal{J}_{\mathcal{A}} - \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} \mid \left(\mathcal{A}_{\mathcal{A}}^{\mathcal{A}} \right)_{\mathcal{A}}^{\mathcal{A}} - 1 \right) = \left(\mathcal{A}_{\mathcal{A}}^{\mathcal{A}} \mid \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} \right)$	そ.影		
		//		

Question 112 (****+)

The curve with equation xy = 3 is traced by the following parametric equations

$$x = \frac{4tp}{t+p}, \ y = \frac{4}{t+p}, \ t, p \in \mathbb{R}, \ t \neq p$$

where t and p are parameters.

50

Find the relationship between t and p, giving the answer in the form p = f(t).

6

(****+) Question 113

madasma

The com

A. K. C.B. Marian Marian Statistics

0m /.

I.V.G.B.

A parametric relationship is given by

is given by $x = \sin^2 \theta$, $y = \tan 2\theta$, $0 \le \theta < \frac{\pi}{4}$. whip is

Show that a Cartesian equation for this relationship is

$$y^2 = \frac{4x(1-x)}{(1-2x)^2}$$

·G.B.

14.15

6

madasn.

Maq_a

The Com

Sinafis Col		$\begin{cases} \theta \\ \theta $
I.F.C.P	1.1.6.5	1.1.0.5

Madasmaths.com

I.C.B.

Question 114 (****+)

A curve C is given by the parametric equations

$$x = 2\cos 2t$$
, $y = 5\sin t$, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$

The point $P(1,\frac{5}{2})$ lies on C.

a) Find the value of the gradient at P, and hence, show that an equation of the normal to C at P is

8x - 10y + 17 = 0.

The normal at P meets C again at the point Q.

b) Show that the y coordinate of Q is $-\frac{165}{16}$

Shit + & HUST BK A SOUTION (POINT P) => (2sint-1)((6sigt+32)=0 $\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ 0 AT Q y = Sayt = Sx -33 == dy = white AS BERVIEND du le F BASNE $= \frac{16(1-25m^2t)}{t} = \frac{16}{5} = \frac{16}{5} = \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$ $2\cos 2t$ $\} \Rightarrow Bx = 16(1-Sint = \frac{14}{5})$ - 32 x 42 (10y 17) = 16 - 32 4 x (10y 17) = 16 - 32 4 x Magnet 441 fixed Trans & 2 - 10y + 17=0 6) - 10y - 33 = D 3242 8x-10y+17=0 0=258 - 1072 + 250- - 825= 0 8(2052)-10(55Mt) P RIVOR, NOTINGS + 4 2 = E 208 16 (1-254) - 50514+17=0 (2y-5)(16y+165)=0 -16 - 32514t - 5094t +17=0 y = - 16 45 BHF084 32.519t + sint - 33

 $\frac{dy}{dx}\Big|_P$

1.

Question 115 (****+)

A curve C is defined by the parametric equations

$$x = t^3 + 2$$
, $y = t^2 + 3$, $t \in \mathbb{R}$.

Show clearly that

>

K.C.

$$\frac{d^2 y}{dx^2} = f(y),$$

where f must by explicitly stated.

$a t_{+2} \cdot y = t^2 + 3 \cdot t \in \mathbb{R}$			
METHER A - DIELECTLY IN PRETNUTTELL			
$\frac{dy}{da} = \frac{dy}{dx} = \frac{zt}{3t^2} = \frac{z}{3t}$			
DIFFECTURE LEADN W.R.C 2 AGAN			
$\Longrightarrow \frac{d}{dx} \left(\frac{du}{dx} \right) = \frac{d}{dx} \left(\frac{2}{3t} \right)$			
$\Rightarrow \frac{\partial^2 y}{\partial t^2} = -\frac{2}{3t^2} \frac{\partial t}{\partial t} = \frac{2}{3t^2} \times \frac{1}{\frac{\partial t}{\partial t}}$			
$\Rightarrow \frac{dy}{dy^2} = -\frac{2}{3t^2} \times \frac{1}{3t^2}$			
$ \Rightarrow \frac{d^{2}g}{dt^{2}} = -\frac{2}{q(4)} $ $ \Rightarrow \frac{d^{2}g}{dt^{2}} = -\frac{2}{q(g-3)^{2}} $ $ t^{2} = g-3 $			
METLED B - LOOKENS IN OPERENTY			
$\begin{array}{c} \mathfrak{a}_{=} t^{2} \mathfrak{t}_{+2} \\ \mathfrak{g}_{=} t^{2} \mathfrak{t}_{3} \end{array} \right\} \implies \begin{array}{c} \mathfrak{a}_{-2} = t^{3} \\ \mathfrak{g}_{-3} = t^{2} \end{array} \xrightarrow{=} t^{4} \mathfrak{a}_{-2} \mathfrak{a}_{-3} t^{4} \mathfrak{a}_{-3} t^{4} \mathfrak{a}_{-3} t^{4} t^{4} \mathfrak{a}_{-3} t^{4} t^{4} t^{4} \mathfrak{a}_{-3} t^{4} t^{$			

1211
$\Rightarrow (y-3)^3 = (z-2)^2$
DIAFRENSHATE W.E.F. J.
\rightarrow $3(y-3)^2 \frac{dy}{dx} = 2(x-2)$
LUS TUDONT - HAT WILLO, LARDA, J. T. J. W TTAITRIFIELD
$\implies \qquad \qquad$
$\implies \frac{9}{3} + 3(y-3)^2 \frac{dy}{dx^2} = 2$
$\implies 3(y-3)^2 \frac{dy}{dx^2} = -\frac{2}{3}$
$= \frac{d^2 g}{dx^2} = -\frac{2}{q(y-3)^2}$
49 Blf68

Ĉŀ;

proof

2

6

KR,

Question 116 (****+)

A curve C is defined parametrically by the equations

 $x = t^3$, $y = t^2$, $t \in \mathbb{R}$.

The com

ths.com

(-1,1), (-64,16), (125,25)

I.C.B.

Madasn.

mana

6

(-1,1), (-64,16), (125,25)

dy = dy/dt = zt = z

The tangent to C at point P passes through the point with coordinates (-10,7).

nadasn

200

ŀ.G.p.

2017

Y.G.B.

Find the possible coordinates of P.

>

I.V.G.B

I.C.p

Question 117 (****+)

Ka,

A curve C is defined by the parametric equations

 $x = \cos\theta + (\theta + \varphi)\sin\theta$, $y = \sin\theta - (\theta + \varphi)\cos\theta$,

where φ is a constant and θ is a parameter, such that

 $0 < \theta < \frac{\pi}{2}$, $0 < \varphi < \frac{\pi}{2}$ and $\theta + \varphi \neq 0$.

Show that the equation of a normal to C at the point with parameter θ is given by

 $y\sin\theta + x\cos\theta = 1$

m

proof

R.B.

G

(****+) **Question 118**

202.80

CO17

I.F.G.B

A curve C is defined parametrically by the equations

 $x = t^4$, $y = 2t^2 - 8t + 9$, $t \in \mathbb{R}$.

COM

I.F.G.B.

madasmaths,

00

Find the value of $\frac{d^2y}{dx^2}$ at the stationary point of C.

I.G.B.

I.G.B.

nadasmana Mans.com

I.F.C.P.

COM

P.C.P.

ths.com

 $\frac{1}{256}$

aths com

£.

i C.S.

6

Sm.

madasn.

17₂₀₂

Question 119 (****+)

KR

The curve C is given parametrically by

 $x = \frac{1}{2} \left(1 + t^2 \right), \quad y = t^3, \quad t \in \mathbb{R} \; .$

a) Show that an equation of the tangent to the curve at the point P where t = p is

 $2y+3p+p^3=6px.$

b) Show further that the straight line with equation

y = 9x - 18

is a tangent to C and determine the coordinates of the point of tangency.

2	-0
(a) $ \begin{array}{c} x = \frac{1}{2}(1+t^2) \\ y = t^3 \end{array} $ $ \begin{array}{c} dy \\ dy \\ dy \\ dy \\ dt \end{array} $	$=\frac{3t^2}{t}=3t$
$\begin{array}{rcl} & & & & & & \\ & & & & & & \\ & & & & & $	$\begin{cases} (Puttion) Of TANGET \\ (g-p^3) = 2p(\frac{3}{2} - \frac{1}{2}(1+p)] \\ (g-p^3) = 2p(3 - \frac{3}{2}p(1+p)) \\ (g-p^3) = (p(3 - \frac{3}{2}p - \frac{3}{2}p) \\ (g-p^3) = (p(3 - \frac{3}{2}p - \frac{3}{2}p) \\ (g-p^3) = (p(3 - \frac{3}{2}p) \\ (g-p^3) = (g-p^3) $
(b) 9+18 = 92 12 4 Глизыл Ву соценкихон) 182 4 брл p=3.	VIELIAL NEXT $3p + p^3$ $3x3 + 3^3 = 36$
$ \begin{array}{ll} & \sqrt{2} \left(1 + 3^2 \right) = \\ & \sqrt{2} \left(1 + 3^2 \right) = \\ & \sqrt{2} \left(1 + 3^2 \right) = 27 \end{array} $	2) 4 (5151) 2) 4 (2151)

Con

(5, 27)

C.H.

6

Question 120 (****+)

A curve C is given by the parametric equations

 $x = \cos t$, $y = \cos 2t$, $-\pi \le t \le \pi$.

The point *P* lies on *C*, where $t = \frac{\pi}{3}$

a) Show that an equation of the normal to C at P is

2x+4y+1=0.

The normal at P meets C again at the point Q.

b) Determine, by showing a clear detailed method, the exact coordinates of Q.

)	-"S.CO	$\boxed{\qquad}, \boxed{\mathcal{Q}\left(-\frac{3}{4},\frac{1}{8}\right)}$
1	a) about the condition through	FINATLY TO FIND THE CO-DEDINATES OF P
	$\frac{du}{dx} = \frac{dy}{dx}\frac{dt}{dx} = \frac{-2su2t}{-sut} = \frac{-4sutast}{-sut} = 4ust$	Q(art,as2t)
	$\frac{A_1 + \pi_1 + \pi_2}{P(\underline{b}_1 - \underline{t})} = \frac{B_1 - \pi_2}{B_2} = \frac{B_1 - \pi_2}{B_2}$	$O_{t}(\operatorname{fast}, \operatorname{Jac}(t-1))$ $\frac{B_{t}}{2} \operatorname{fast} = -\frac{2}{4}$
-	EQUATION OF + NORMAL AT	$Q\left(-\frac{3}{4}, 2(-\frac{1}{4})^2-1\right)$
	$(\underline{1}) + \underline{1} = -\underline{1}(\underline{1}, -\underline{1})$	$Q\left(-\frac{\pi}{4}, 2\left(\frac{q}{2b}\right)-1\right)$
	$y + \frac{1}{2} = -\frac{1}{2}z + \frac{1}{4}$ 4y + z = -2z + 1	$\mathcal{Q}\left(-\frac{3}{2},\frac{1}{8}\right)$
	2x + 4y +1 = 0 At Expores	
	AR REPORT	
	6) SOUDING SMULTIPHOULY WITH THE QUARTION OF THE CURVE	
1	$\implies 2x + 4y + 1 = 0$	
	-> 26at+46a2t+1=0	
	= 260st + 4(200gt-1)+1 = 0	
	\implies last + $8a_{st}^2 - 3 = 0$	
	- Binit 1 righ 3 - 0	
	→ (2(ast + 3)(2(ast - 1)) = 0	
	$\Rightarrow \log_{t_{2}} < \overset{1}{\underset{\frac{1}{4}}{\overset{1}{}}} \text{dense of the second of t$	

Question 121 (****+)

The figure above shows a curve known as a Cardioid. The curve crosses the y axis at the point A and the point B is the highest point of the curve.

The parametric equations of this Cardioid are

 $x = 4\cos\theta + 2\cos 2\theta$, $y = 4\sin\theta + 2\sin 2\theta$, $0 \le \theta < 2\pi$.

a) Find a simplified expression for $\frac{dy}{dx}$, in terms of θ .

b) Hence show that the coordinates of B are $(1, 3\sqrt{3})$.

c) Find the exact value of $\cos \theta$ at A.

[continues overleaf]

F.C.B.

2

6

nn

[continued from overleaf]

The distance of a point P(x, y) from the origin is $\sqrt{x^2 + y^2}$

d) Show that for points that lie on this cardioid

dy dx $x^2 + y^2 = 20 + 16\cos\theta,$

Sec.

and use this result to find the shortest and longest distance of any point on the cardioid from the origin. de.

	Z-		17 Mar	
$=-\frac{\cos\theta+\cos 2\theta}{2\theta}$	$\cos\theta = \frac{-1+2}{2}$	$\frac{\sqrt{3}}{ OP }$	$\overline{ OP } = 2 , OP $	= 6
$\sin\theta + \sin 2\theta$	$\frac{1}{2}$	$-$, $ OI _{r}$	$\min = 2$, $ OP $	$\max_{max} = 0$
Uh.	(a) 2=4050 + 20020	r		S.n.
	u = 4sm0 + 2sm20			· (/)
"Co	$\frac{du}{dh} = \frac{dy/2\theta}{dx/2\theta} = \frac{4\cos\theta + 4\cos2\theta}{-4\sin\theta} = \frac{4}{4} \frac{1}{2} $	$\frac{1}{20} = -\frac{\cos\theta + \cos2\theta}{\sin\theta + \sin2\theta}$		S
	() TOR T.P du =0 /	FOT - it.		
~//>	=> (as) + (as20 = 0	y = 3x3		
	$\Rightarrow 2lo_2^2\Theta - (+lo_1\Theta = 0)$ $\Rightarrow 2lo_2^2\Theta + lo_2\Theta - (= 0)$	$ F \Theta = \frac{ST}{3} \implies \infty \approx 1$		
· · · · · · · · · · · · · · · · · · ·	$\Rightarrow (2los0 - 1)(los0 + 1)=0$	y = 36	A 12	
	-> 6050= <1/2	it of a sec	1 S.	
<i>~</i>	7%	3=0	π^2 , 2 (1) (2) χ^2	(An ())))) () () () () () () (
r r.	$\Theta = \sqrt{\frac{\pi}{3}}$	∴ B(1,3x3)	$\pi^2 + y^2 = (4 \log \theta + 2 \log \theta)^2 + (6 \log \theta + 16 \log \theta)^2$	
			165449 + 16 SMOSAM	20+45220
510	(c) AT A, 2=0 =>4(us0 + 2(us20 = 0)		= 16 + 1640506520	
15	= 440510 + 2(26030-1)=0		= 20 + 16 (USB WSR)	
	======================================		$= 20 + 16 \cos(20 - 0)$	
	$\Rightarrow (2\omega s \theta + 1)^2 - 3 = 0$		$= 20 + 16\cos\theta$	TEQUIEEO
	$=>(21086+1)^2=.3$			~~~~~
	$\Rightarrow 2\log \theta + 1 = \pm \sqrt{3}^{-1}$		lf d2 = 20+ Ubust	$\left(d = \sqrt{x^2 + g^2}\right)$
~~~~	$\widehat{C}(\pm 1) - = -\frac{1}{2} \cos C = -\frac{1}$		d ² = 20+16 = 36	00000
	£		$\hat{d}_{\mu\nu\mu}^{\mu\nu\mu} = 20 - 16 = 4$	
	$\therefore \cos \theta = -\frac{1+107}{2}$	4	: dmax=6	1
	(THE COURD FOULD & NEFATTUE Q (C. OCDINIATE )	5 - e	d = 2	
~ 6	venterut y workprodut			
			10	
	~//s		Cariff in	

Question 122 (****+)

KQ,

The figure above shows the curve C given parametrically by the equations

 $x = \cos t + 2\sin t$ ,  $y = \sin 2t$ ,  $0 \le t < 2\pi$ .

a) Find the coordinates of the points where C crosses the x axis.

There are two points on C where the tangent to C is parallel to the y axis.

**b**) Determine the exact coordinates of these two points.

c) Show that a Cartesian equation of C is

 $9(1-y^2) = (5+4y-2x^2)^2.$ 

# $(-2,0), (-1,0), (1,0), (2,0), (-\sqrt{5},\frac{4}{5}), (\sqrt{5},\frac{4}{5})$

(b) $y_{\alpha\beta} = 0$ find $p_{\alpha\beta} = 0$ for $p_{\alpha\beta}(z_{\alpha\beta})$ $y_{\alpha\beta} = 0$ $p_{\alpha\beta}(z_{\alpha\beta})$ $p_{\alpha\beta}(z_{\alpha\beta})$ $y_{\alpha\beta} = 0$ $p_{\alpha\beta}(z_{\alpha\beta})$ $p_{\alpha\beta}(z_{\alpha\beta})$
$ \begin{array}{c} (b)  \frac{dy}{dt} = \frac{dy}{dt} \frac{de}{dt} = \frac{2 \cos 2t}{-\sin t + 2 \sin t} \\ \qquad $
$\begin{split} & \left  \operatorname{fore}  \alpha = \operatorname{cost} + 2\operatorname{sub} = \frac{1}{\tau_{12}} + \frac{1}{\tau_{12}} + \frac{1}{\tau_{12}} + \frac{1}{\tau_{12}} + \frac{1}{\tau_{12}} \\  \mathcal{G} =  \operatorname{sub} + 2\operatorname{sub} \operatorname{cost} = 2\operatorname{sub} \frac{1}{\tau_{12}} + \frac{1}{\tau_{12}} + \frac{1}{\tau_{12}} \\  \mathcal{G} =  \operatorname{sub} + 2\operatorname{sub} + 2\operatorname{sub} = 2\operatorname{sub} \frac{1}{\tau_{12}} + \frac{1}{\tau_{12}} + \frac{1}{\tau_{12}} \\  \operatorname{Aub}  \mathrm{Fi}  \operatorname{sub} + \mathrm{Fi} \\  \mathrm{sub} + \mathrm{Fi} \\ \sub} + \mathrm{Fi} \\ \\mathrm{sub} + \mathrm{Fi} \\ \\mathrm{sub} + \mathrm{Fi} \\ \$
$\begin{array}{c} (c)  x = \cosh t + 2\operatorname{synt} \\ \Rightarrow 3t^* + (\operatorname{synt} + 4\operatorname{synt} + 4\operatorname{synt} + 4\operatorname{synt} + 3\operatorname{synt} + 4\operatorname{synt} + 3\operatorname{synt} + 4\operatorname{synt} + 3\operatorname{synt} + 3$

2

#### Question 123 (****+)

A curve given parametrically by the equations

 $x = 1 - \cos 2t$ ,  $y = \sin 2t$ ,  $0 \le t < 2\pi$ 

Find the turning points of the curve and use  $\frac{d^2y}{dx^2}$  to determine their nature.

# $\max(1,1), \min(1,-1)$

C. Tall I.	10
$ \begin{array}{c} \begin{array}{c} \alpha = 1 - \cos 2t \\ y = \sin 2t \end{array} \end{array}  \begin{array}{c} \frac{dy}{dx} = \frac{dy}{dx} = \frac{2\omega}{dx} \\ \end{array} $	uzt = <u>cuzt</u> mzt = <u>imz</u> t
FOR MINIMAX du = 0 => cos2t = c	
th 2t=-	- 1½ ± 2mp - 3型 ± 2mp
t. <	774 ± mm 發土mm
t= =	1等1年1年
$\mathcal{E}_{\mathcal{A}} = A(t_1) = B(t_1 - t) = C(t_1, t) = D(t_1 - t_2)$	1
4 4 4 4	
	E 64 IT REAMON ITCLE
$t_{43} \int_{3}^{1} \frac{1}{6} = \left(\frac{1}{52\pi^2}\right) \frac{b}{56} \approx \left(\frac{b}{56}\right) \frac{b}{56} = \frac{b}{56} \frac{b}{56}$	$(2t) = -\cos^2 2t \times 2 \times \frac{dt}{dx}$
$= -2\cos\epsilon^2 2t \times \frac{1}{2\sin^2 t}$	
2sm2t	SI432E.
$:= \begin{pmatrix} I^{(j)} \end{pmatrix}^{-1} + \frac{d}{dz} + \frac{dg_{j}}{dz} + \frac{dg_{j}}{d$	<0 .; (j) is & MAX
$\begin{pmatrix} 1_{i} - 1 \end{pmatrix}_{i} = \frac{1}{2} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2} \end{bmatrix}_{i} = \frac{1}{2$	0 .: (1,-1) RAMIN
÷	

## Question 124 (****+)

For the curve given parametrically by

 $x = \frac{t}{1-t}$ ,  $y = \frac{t^2}{1-t}$ ,  $t \in \mathbb{R}$ ,  $t \neq 1$ 

find the coordinates of the turning points and determine their nature.

# $\max(-2,-4), \min(0,0)$

	$y = \frac{+z}{1-z}$
$\frac{dx}{dx} = \frac{(1-t)x_1 - t(-t)}{(1-t)x_1}$	$\frac{du}{dt} = -\frac{(1-t)(2t) - t^2}{(1-t)^2} C_{11}$
$\frac{da}{dt} = \frac{1-t+t}{(1-t)^2}$	$\frac{du_{1}}{dt} = \frac{2t - 2t^{2} + t^{2}}{(1-t)^{2}}$
$\frac{d\epsilon}{dx} = \left(\frac{t-\epsilon}{t}\right)_s$	$\frac{du}{dt} = \frac{(1-t)s}{(1-t)s}$
• $\frac{du}{d\lambda} = \frac{dy_{df}}{dy_{df}} = \frac{\frac{2t-4t}{(t-t)^2}}{\frac{1}{(t-t)^2}}$	$-=2t-t^{2n}=t(2-t)$
· The TP dy =0 :	$t_{2} < \overset{\circ}{\underset{2}{\longrightarrow}} \xrightarrow{\chi_{2}} \overset{\chi_{2}}{\underset{\chi_{2}}{\rightarrow} z_{1}} \overset{g=0}{\underset{y=+}{\xrightarrow}}$
$\begin{array}{lll} & \bigvee_{dx} & \frac{dy}{dx} = 2t - t^{1/2} \\ & \Rightarrow \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{d}{dx} \left( 2t - t \right) \\ & \Rightarrow \frac{d^{1}y}{dx} = \left( 2 - 2t \right) \frac{dt}{dx} = \end{array}$	$(2-2t)^{C-t^{2}} \begin{pmatrix} \frac{1}{6t} = \frac{1}{(1-t)^{2}} \\ \frac{1}{6t} = \frac{1}{(1-t)^{2}} \\ \frac{1}{6t} = (1-t)^{2} \\ \frac{1}{6t} = (1-t)^{2} \\ \frac{1}{6t} \end{pmatrix}$
$\left. \left. \frac{d_{y}^{2}}{d\lambda^{2}} \right _{t=0} = 2 \times t = 2 >$	(MIM + 21 (0,0) :. 0
$\frac{d^2 g}{d\lambda^{\nu}}\Big _{t=2} = (-z)(z) = -2$	1 <0 5 (-2,-4) 15 4 MAX

6

## Question 125 (****+)



 $x = t + \frac{1}{4t}$ ,  $y = t - \frac{1}{4t}$ , t > 0.

The figure above shows part of the curve C with parametric equations

The curve crosses the x axis at P.

- a) Determine the coordinates of P.
- **b**) Show that the gradient at any point on C is given by

$$\frac{dy}{dx} = \frac{4t^2 + 1}{4t^2 - 1}.$$

c) By considering x + y and x - y, or otherwise, find a Cartesian equation for C.

[continues overleaf]

[continued from overleaf]

Y.C.B.

The finite region R bounded by C, the line  $x = \frac{5}{3}$  and the x axis is shown shaded in the figure.

 $\int_{\frac{1}{2}}^{\frac{3}{2}} \left(t - \frac{1}{4t}\right) \left(1 - \frac{1}{4t^2}\right) dt.$ 

P(1,0)

**d**) Show that the area of R is given by

e) Hence calculate an exact value for the area of R.

$\begin{cases} 0 & \mathbf{y}_{-1} = 0 \\ 1 & \mathbf{y}_{-1} = 1 + \frac{1}{2} \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} = 1 + \frac{1}{2} \mathbf{f}_{-1}^{-1} \\ \mathbf{y}_{-1} = 1 + \frac{1}{2} \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} = \mathbf{f}_{-1}^{-1} + \frac{1}{2} \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} + \frac{1}{2} \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} + \frac{1}{2} \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} \\ \mathbf{f}_{-1}^{-1} & \mathbf{f}_{-1}^{-1} $	$\frac{1}{y^2-y^2=1},$	Area = $\frac{10}{9} - \frac{1}{2} \ln 3$
$ \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2.	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} 1$	たった 445-1 たっよ (150) Mince 2=15年=生花 2=1	$ \begin{array}{l} \begin{array}{l} \displaystyle \frac{d_{1}}{dt} - \frac{d_{2}d_{2}}{dt_{2}} = \frac{(1 - \frac{1}{d_{1}} - 1)^{2} d^{2}}{(1 + \frac{1}{d_{1}})^{2} d^{2}} = \frac{d_{1} + 1}{dt_{-1}} \\ \end{array} \\ \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \displaystyle \bigg \\ \displaystyle \end{array} \\ \displaystyle \bigg \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \\ \displaystyle \bigg \\ \\ \displaystyle \bigg \\ \\ \displaystyle \bigg \\ \\ \\ \displaystyle \end{array} \\ \\ \\ \displaystyle \end{array} \\ \\ \\ \displaystyle \bigg \\ \\ \\ \\ \displaystyle \bigg \\ \\ \\ \\ \\ \\ \\ \\ \\$
$\begin{array}{c c} y_{i}^{T}=y_{i}^{T}\\ y_{i}^{T}+y_{i}^{T}\\ $	$\begin{array}{c} \neg \overline{g} = t + \frac{1}{4t} \left( \chi b \right) \\ \neg \partial b = \partial c + \frac{3}{4t} \left( \chi t \right) \\ \Rightarrow \partial b t = \partial c + \frac{3}{4t} \left( \chi t \right) \\ \Rightarrow \partial b t = \partial c + 3 \\ \Rightarrow  2t^2 - 20t + 3 = 0 \\ \Rightarrow (2t - 3)(dt - 1) = 0 \\ t = \frac{3}{2} \end{array}$	$= \begin{pmatrix} g_{1} - \frac{1}{2}\mu^{\frac{1}{2}} - \frac{1}{\mu^{2}} \end{pmatrix} \begin{pmatrix} -\mu_{1} + \frac{1}{\mu^{2}}\mu_{1} \\ -\mu_{2} + \frac{1}{\mu^{2}}\mu_{2} \\ -\mu_{1} + \frac{1}{\mu^{2}}\mu_{2} \\ -\mu_{2} \\ -\mu_{2} + \frac{1}{\mu^{2}}\mu_{2} $
$\begin{array}{c c} \left\{ \begin{array}{c} \displaystyle \int_{\mathbb{R}^{2}} e^{-i\xi} h^{2} d\xi \\ \displaystyle \int_{\mathbb{R}^{2}} e^{-i\xi} $		
Sinth (arcah $\frac{1}{5}] = \frac{4}{3}$	Lit zerahle duranhe dh zi e Beao zi z Beaolach diranhe zi z Beaolach z e calad di z	$ \begin{split} &= \frac{1}{6} \frac{\partial \phi}{\partial x} \frac{1}{2} \frac{1}{2} \phi_{3} \\ &= \frac{1}{6} \frac{\partial \phi}{\partial x} \frac{1}{2} \frac{1}{2} \phi_{3} \\ &= \frac{1}{6} \frac{\partial \phi}{\partial x} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{6} \frac{1}$

in C.P.

20/201

6

Q

R

C

Question 126 (****+)

y

0

L

The figure above shows part of the curve C with parametric equations

Р

$$x = 2t + \frac{1}{t}$$
,  $y = 2t - \frac{1}{t}$ ,  $t > 0$ 

The curve crosses the x axis at the point P and the L is a normal to C at the point Q, where t = 2.

- a) Determine the exact coordinates of P.
- **b**) Show that the gradient at any point on C is given by

$$\frac{dy}{dx} = \frac{2t^2+1}{2t^2-1}.$$

[continues overleaf]

#### [continued from overleaf]

K.C.

ic.p.

The normal L crosses the x axis at R. The region bounded by C, by L and the x axis, shown shaded in the figure, has area A.

- c) Find the coordinates of R.
- **d**) Calculate an exact value for A.



(C.b.

mana,

6

athe,

m



The figure above shows a symmetrical design for a suspension bridge arch ABCD.

The curve *OBCR* is a cycloid with parametric equations

$$x = 6(2t - \sin 2t), y = 6(1 - \cos 2t), 0 \le t \le \pi$$
.

a) Show clearly that

$$\frac{dy}{dx} = \cot t \; .$$

- **b**) Find the in exact form the length of *OR*.
  - c) Determine the maximum height of the arch.

# [continues overleaf]

1+

#### [continued from overleaf]

The arch design consists of the curved part BC and the straight lines AB and CD.

The straight lines AB and CD are tangents to the cycloid at the points B and C.

The angle BAO is  $\frac{\pi}{c}$ 

d) Find the value of t at B, by considering the gradient at that point.

 $|OR| = 12\pi$ ,  $y_{\text{max}} = 12$ 

e) Find, in exact form, the length of the straight line AD.

POINT B, t=# T. sin2t to x = 9.5 1-(1-2014+ [AP] = 9.5 USING THE PARA AT POINT B, t= TF x= 4T-35 -9 OP = 41-3N3 ~ OR = 120 2=1217, y=e = A0 = AP1- OP 0 = 9NS-(4TT-3NS) → 1401 = 12N3-4T  $y = 6 \left[1 - \cos(2x \Xi)\right]$ - 12 • BOT (401=12D) & [OR]= 1277 (Riow (HELLSE)  $\implies [AB] = 2|AO| + |OB| = 2(12\sqrt{3}-4\pi) + 12\pi$ : MAX Y IS 12 > (AD)= 411+24N3 d) IF  $\overrightarrow{BAO} = \overrightarrow{1/6} \implies \overrightarrow{GRADIDT} \overrightarrow{OF} - \overrightarrow{AB} \xrightarrow{IS} \overrightarrow{further} = \overrightarrow{\frac{AS}{S}}$ BOT AB 15 A TRADIENT TO THE CURVE

 $\frac{\pi}{3}$ 

 $t_B =$ 

 $||AD| = 4\pi + 24\sqrt{3}$ 

### Question 128 (****+)

A curve is given parametrically by the equations

 $x = 2\theta + \sin 2\theta$ ,  $y = \cos 2\theta$ ,  $0 \le \theta < \pi$ .

Show that ...

i.K.G.B.

I.F.G.p

**a**)  $\dots \frac{dy}{dx} = -\tan\theta$ .

I.F.G.B.

Com I.V.C.S

**b**) ... the value of  $\frac{d^2 y}{dx^2}$  evaluated at the point where  $\theta = \frac{\pi}{6}$  is  $-\frac{4}{9}$ .

COM

proof

hs.com

is con

I.C.B

5

1.4.6

(m)

21/201

Ins.

I.F.C.p.

2010

Maga

 $\begin{aligned} \hat{\mathbf{Q}} &= 2\theta + 3n(2\theta) \\ \hat{\mathbf{y}} = 6n(2\theta) \\ \hat{\mathbf$ 

COM

I.C.B.

Created by T. Madas

I.V.C.

nadasmaths,

0

Question 129 (****+)



The figure above shows the curve C with parametric equations

$$x = t^2, y = 2t, t \in \mathbb{R}, t \ge 0.$$

The point P lies on C, where t = p. The point R lies on the x axis so that PR is parallel to the y axis. The tangent to C at the point P meets the x axis at the point Q, so that the angle  $\measuredangle PQR = \theta$ .

**a**) Find the coordinates of Q in terms of p.

**b**) By considering the triangle PQR, show  $\tan \theta = \frac{1}{2}$ 

The point S has coordinates (1,0) and  $\angle PSR = \varphi$ .

c) Find an expression for  $\tan \varphi$  in terms of p and hence show that  $\varphi = 2\theta$ 

**d**) Deduce that |SP| = |SQ|.

2p $n^{2}.0$  $\tan \varphi =$ 

[solution overleaf]



#### (****+) Question 130

A curve C is given by the parametric equations

 $x = \tan \theta - \sec \theta$ ,  $y = \cot \theta - \csc \theta$ ,  $0 < \theta < \frac{\pi}{2}$ .

COM

, proof

Otto Oseco + Obecau

 $\sin(h_0) = \frac{q^2 - 1}{2q}$ 

I.C.B.

 $\frac{y}{x}\left(\frac{y^{2}-1}{2y}\right)$  $\frac{1}{\chi}\left(\frac{y^{2}-1}{2}\right)$ 

nadasm.

24

3

6

Show clearly that ..

I.V.C.P.

I.G.B.

**a**) ... a Cartesian equation of C is

 $\left(x^2-1\right)\left(y^2-1\right)=4xy.$ 

 $\frac{dy}{dx} = \frac{1 - y^2}{2x}$ b)

<u></u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
a timinate as bucos		b) By IMPULAT DIFFERENTIATION OR ARRA
Q322 - Quet = I an		$\Rightarrow \frac{du}{du} = \frac{du}{du} = \frac{du}{du} = \frac{du}{du}$
$\Rightarrow \underline{x}^2 \circ (bull - Stell)^2$ $\Rightarrow \underline{x}^2 = bull - 2bull Stell + Stell$		= <u>conce</u> (wto-conce) ecce (sece - two
= 2° = tuf0 - 2tu0eue + (1+tuf0)		
$\Rightarrow \alpha^2 = 2b_0^2\theta - 2b_0\theta_{\Theta(\Theta)} + 1$		$=\frac{\psi}{z-x}$ $\times \frac{\Theta_{MBO}}{\Theta_{MBO}} =$
1 1 ( Ore- Owned) and - 2 a		$\left(\begin{array}{c} \mu \\ \overline{x} \end{array}\right) \times \frac{A_{MD}^{-1}}{B_{MD}} \simeq$
$\Rightarrow 3^2 = 2 \tan \theta \times 3^2 + 1$		$= \frac{\Theta \omega}{\pi} - \frac{\Theta \omega}{A m^2} =$
$\implies \frac{1}{2x} = \frac{x^2 - 1}{2x}$		() < ,,
With Andreads wollings of the identity 1+ato-asside		$= - \frac{9 \text{ orb}}{\alpha}$
$\omega t \theta = \frac{q^2 - l}{2y}$		BOT IN PART (a) WE OBTAINING OUT
THOS WE FINITURY HAVE		da a (až-l
$\implies 4a_{\mu}\theta a\theta = \left(\frac{\chi^2 - 1}{2\chi}\right)\left(\frac{\eta^2 - 1}{2\eta}\right)$		$\frac{dy}{d\lambda} = -\frac{y}{x} \left( \frac{y^2 - 1}{2y} \right)$
$\implies$ $l = \frac{(\overline{a}^2 - l)(\overline{a}^2 - l)}{-4\pi i}$		$= -\frac{1}{\chi} \left( \frac{y^2-1}{2} \right)$
$\rightarrow (a^{2}-1)(y^{2}-1) = 4xy$		$= \frac{1-y^2}{2x}$
As Reputed	- 10 A	
	1	

## Question 131 (****+)

The point  $P(\frac{1}{2}, \frac{1}{2})$  lies on the curve given parametrically as

 $x = \cos 2t$ ,  $y = 4\sin^3 t$ ,  $0 \le t < 2\pi$ .

The tangent to the curve at P meets the curve again at the point Q.

Determine the exact coordinates of Q.

. K.G.B.

nada.

I.V.G.B.

I.C.B.



2017

I.C.B.

6

hs.com

#### Question 132 (****+)

S.

The point P lies on the curve given parametrically as

 $x = t^2$ ,  $y = t^2 - t$ ,  $t \in \mathbb{R}$ .

The tangent to the curve at P passes through the point with coordinates  $\left(4,\frac{3}{2}\right)$ 

Determine the possible coordinates of P.



ろ

C.4.

G

2017

#### Question 133 (****+)

A curve C is given parametrically by

ametrically by  $x = a + \tan t$ ,  $y = b + \cot^2 t$ ,  $0 < t < \frac{\pi}{2}$ ,

where a and b are non zero constants.

a) Show that ...

 $\mathbf{i.} \quad \dots \quad \frac{dy}{dx} = -2\cot^3 t \; .$ 

**ii.** ... a Cartesian equation of C is

# $(y-b)(x-a)^2=1.$

b) Given that C meets the straight line with equation y=6x+2 at the points where y=2 and y=5, show further that a is a solution of the equation

$$(a-1)(12a^3+3a-1)=0$$
.

, a = -1 , b = 1

A

c) Hence, state a possible value for a and a possible value for b.

	CAL.	
a) I) <u>acatout</u> <u>yabtott</u>	b) STATING with THE UNX we thrug	$\Rightarrow (2a^{4} - 12a^{3} + 3a^{2} - 12a^{4} + 1) = 0$
$\frac{du}{dt} = \frac{1}{2} \frac{du}{dt} = \frac{1}{2} \frac{du}{dt} + \frac{1}{2} du$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} q \in 6x+2\\ 2 \in 6x+2\\ z \in 6x+2\\ z \in 0\end{array} & \begin{array}{c} y \in 6x+2\\ z \in 6x+2\\ z \in 0\end{array} & \begin{array}{c} z \in 6x+2\\ z$	$\frac{d}{dt} = \frac{d}{dt} $
II) $\alpha = \alpha + \tan t$ $\alpha = b + 64^{2}t$ $\alpha = \alpha + \tan t$ $y = b = 64^{2}t$ $\tan^{2}t = (\alpha - \alpha)^{2}$ $+ \tan^{2}t = \frac{1}{y - b}$ $(\alpha - \alpha)^{2} = \frac{1}{y - b}$	$ \Rightarrow \begin{pmatrix} 2-b & = \frac{1}{4^{2}} \\ 5-b & = \frac{1}{4^{2}-\frac{1}{2}} \\ \vdots & \vdots \\ -\frac{1}{2} & = \frac{1}{4^{2}-\frac{1}{2}} \\ \Rightarrow & \vdots \\ -\frac{1}{2} & = \frac{1}{4^{2}-\frac{1}{2}} \\ \Rightarrow & 3 & = \frac{1}{4^{2}-\frac{1}{4}} \\ \Rightarrow & 3 & = 1$	
$\frac{d-e}{ d-e ^2(a-e)}$	$ \begin{array}{c} (2^{-5})^{-4} & \alpha \\ \Rightarrow & 3 & \alpha & \frac{4}{(1-\alpha_0)^2} - \frac{1}{\alpha^2} \\ \Rightarrow & 3(1-\alpha_0)^2 \alpha^2 & = 4\alpha^2 - (1-2\alpha)^2 \\ \Rightarrow & 3\alpha^2 (4\alpha^2 - 4\alpha + 1) = 4\alpha^2 - (4\alpha^2 - 4\alpha + 1) \\ \Rightarrow & 5\alpha^2 (4\alpha^2 - 4\alpha + 1) = 4\alpha^2 - (4\alpha^2 - 4\alpha + 1) \\ \Rightarrow & 5\alpha^4 - (2\alpha^4 + 2\alpha^2 + 4\alpha - 1) \end{array} $	

# Question 134 (*****)

A curve C is given parametrically by the equations

 $x = 2 + 2\sin\theta$ ,  $y = 2\cos\theta + \sin 2\theta$ ,  $0 \le \theta < 2\pi$ .

- a) By considering a simplified expression for  $\frac{y}{x}$ , show that a Cartesian equation of C is given by
  - $y^2 = x^3 \frac{1}{4}x^4.$
- **b)** Given that C meets the straight line with equation y = x at the origin and at the point P, determine the coordinates of P.

c) Use differentiation to show that the straight line with equation y = x is in fact a tangent to C at the point P.

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Guad
210077004000 197777902019-1-2- 197877725	
$\implies \frac{Q}{2c} = \log \Theta$	
$\begin{array}{l} & \varphi_{\alpha}^{2} = \omega_{\alpha}^{2} \varphi_{\alpha} \\ & \varphi_{\alpha}^{2} = -\omega_{\alpha}^{2} \varphi_$	$\begin{array}{rcl} & \delta T & 2 - 2 & 2 & 2 & 0 \\ \Rightarrow & \left(2 - 2\right)_{-n}^{2} & \delta & 2 & \delta \\ \Rightarrow & \left(2 - 2\right)_{-n}^{2} & \frac{\delta & 2 & \delta \\ + & 2 & 2 \\ \end{array}$ $\Rightarrow & \delta_{-1}^{2} & \frac{\delta & 2 & 2 \\ + & 2 & 2 \\ \Rightarrow & \delta_{-1}^{2} & 2 & \delta_{-1}^{2} \\ \end{array}$
) now interesting with $g=x$ $\Rightarrow 2^{2} = 2^{2} = \frac{1}{4}x^{4}$ $\Rightarrow \frac{1}{4}x^{4} - 2^{2} + 2^{2} = 0$ $\Rightarrow x^{4} - (x^{2} + 4)^{2} = 0$ $\Rightarrow z^{2} (x^{2} - (4) + 4) = 0$	(c) $y_{\pm}^{2} x_{\pm}^{1} - \frac{1}{4}x_{\pm}^{4}$ $z_{\pm} \frac{du}{dx} = z_{\pm}^{2} - \frac{1}{4}x_{\pm}^{4}$ $z_{\pm} \frac{du}{dx} = \frac{z_{\pm}(z_{\pm}x_{\pm})}{z_{\pm}^{2}}$ $\frac{du}{dx} = \frac{z_{\pm}(z_{\pm}x_{\pm})}{z_{\pm}^{2}}$
$\Rightarrow x^{2}(x-2)^{2}=0$ $\Rightarrow x= \sqrt{y}=\sqrt{y}$	(212)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(SMH+GRADINT AS $y=x$ ) MET = REATION FLOT & MUT AUARILA Throwen or August A Throwen or August A The second of the second

P(2,2)

(****) Question 135

nadasm.

A. C.B. Madasman

I.C.p

Com I.V.C.S

A parametric relationship is given by

 $x = \csc \theta - \sin \theta$, $y = \sec \theta - \cos \theta$, $0 < \theta < \frac{\pi}{2}$.

 $y^2 x^2 \left(x^{\frac{2}{3}} + y^{\frac{2}{3}}\right)^3 = 1.$

Show that a Cartesian equation for this relationship is

120

proof

·G.B.

3

6

madasn.

Maq_a

ths.com

See.		$\frac{\partial S_{NG}}{\partial m} = \frac{\partial S_{NG}}{\partial m} = \frac{1}{S_{NG}} + \frac{1}{S_{NG}$
12h	×12.	$\Theta_{\mu\nu} = \Theta_{\mu\nu} = \frac{\Theta_{\mu\nu}}{\Theta_{\mu\nu}} = \Theta_{\mu\nu} =$
Va.	119	$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\partial}{\partial t} = $
10111	· 10~	
· ()_	V //	$\begin{array}{c} \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} &= 0 \\ \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} &= 0 \\ \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} \\ \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} \\ \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} \\ \frac{f_{\rm ex}}{f_{\rm ex}}} \\ \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} \\ \frac{f_{\rm ex}}{f_{\rm ex}} &= \frac{f_{\rm ex}}{f_{\rm ex}} \\ \frac{f_{\rm ex}$
V. O	41	$\begin{array}{c} y_{1}^{a} = \tan\{\theta(1-\tan\theta)\} \\ y_{2}^{a} = \tan\{\theta(1-\tan\theta)\} \\ y_{2}^{a} = \tan\{\theta(1-\tan\theta)\} \\ y_{3}^{a} = \tan\{\theta(1-\tan\theta)\} \\ y_{3}^{a} = -\frac{y_{3}^{a}}{1} \\ y_{3}^{a} = -\frac{y_{3}^{a}}{1} \end{array}$
20	- L,	$y^{2} = t_{3}y^{2} \left(1 - \frac{1}{1 + t_{3}y_{3}}\right)$
· · · · · · · · · · · · · · · · · · ·	(C	$g^{2} = \frac{t_{11} - t_{12} - t_{12}}{t_{11} - t_{12} - t_{12}} \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{11} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}}{t_{12} - t_{12}} \right) \xrightarrow{1 + \tau_{12} - t_{12}} \left(\frac{t_{12} + t_{12} - t_{12}$
· · · · · · · · · · · · · · · · · · ·	2.	$\begin{array}{c} g = \sup \left\{ \frac{1}{1 + \log \theta} \right\} \\ g^2 = \frac{1}{1 + \log \theta} \\ g^2 = 1$
Sinaths Col	1	······································
J. K	v <u>1</u>	
10 K -		Se la
1. M	- C. I.s.	
- "/ <u>`</u>	11-	30 M Y .
510	N. P.	U
		1 - M
1 A A	54	·
_	· ·	
0. 14		<n- td="" v<=""></n->
101	42	V.2.>
Un	9.P.	
190.	20	42.
-0/2-	Vo.	10 P.A.
VIA-	~ <i>qy</i>	4/2
dr.	· (D)	×122.
Ch.	N.P	- 711
-V.O	400	n Da
· · · · · ·	<u>۲</u>	
っ てご	2.	413 VI
r	10-	
1 h	X X	
SP		
10 M Y	· · · · ·	Sell Y.

madasmaths.com

I.F.G.B.

(*****) Question 136

nadasm.

Com

2017

I.F.G.B.

The curve C has parametric equations

 $x = 4\cos t - 3\sin t + 1$, $y = 3\cos t + 4\sin t - 1$, $0 \le t < 2\pi$.

COM

Find a Cartesian equation of the curve.

60	50	$(x-1)^2$ +	$-(y+1)^2 = 25$
			0
100	. <	$\frac{du}{dt} = \frac{dy_{dt}}{dx_{dt}} = \frac{-3g_{0}g_{t+1}}{4g_{0}g_{0}g_{0}} = \frac{3g_{0}g_{0}}{4g_{0}g_{0}}$	L-Aust = L-3 +-Aust = L-3 +-Aust = L-3
, [•] ¶0.	n	$ \Rightarrow \frac{dy}{dt} = \frac{1-2}{1+9} $ $ \Rightarrow \int 1+y dy = \int 1-x dx $	when two $2=5$ $y=2$ $\frac{46xc}{(5-1)^2+(2+1)^2=0}$
2. 9	Pm	$\Rightarrow \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$(2 - 3)^{2} + (3 - 1)^{2} = 25$
Sh.	1200	$\Rightarrow (2 \cdot i)^{2} - 1 + (y \cdot i)^{2} - 1 = C$ $\Rightarrow (2 \cdot i)^{2} + (y \cdot i)^{2} = C$	
1211	"Cho	[MtTHD_B] 400t-33ml = 5605(t+ar) = 5005005x-5504500	a Santi-Usint = 5547(t+~) = 5547664, +Sintsing
- 20	S'n	$\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	E= жиего 4 - колг 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
°Co.	6	$\begin{array}{l} & {}^{*} \mathcal{L}(\operatorname{sst} + \operatorname{Scos} t = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \operatorname{scos} t + {}^{*} \operatorname{dsut} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) + {}^{*} \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Scos}(t + \operatorname{arccos} t) \\ & {}^{*} \mathcal{L} = \operatorname{Arccos} t \\ & {}^{*} \mathcal{L} = \operatorname$	$\frac{2L-1}{2} = \log(1+\cos(2L))$
× 0	-1		$\frac{3}{\beta_{1}^{2}} + \left(\frac{2}{\beta_{1}}\right)_{z} + \left(\frac{2}{\beta_{1}}\right)_{z} = 1$ $\frac{3}{\beta_{1}^{2}} = 2\omega \left(2 + \alpha c^{\alpha z} \frac{1}{\beta_{1}}\right)_{z} = 1$
6.12		(3	$\frac{(3)^{2}}{25} + \frac{(3+1)^{2}}{25} = 1$ $-1)^{2} + ((3+1)^{2} = 25$ $A = 25$ $A = 25$ $A = 25$ $A = 25$
S.A.	60 "		2
40	S.O.		62
	40		0
100			
~ °0	6 1	00 .	
2	Sm	905	
	1200		b .
4212	"Cha		1225
10	100	2	The.
Co.	6	2	100
		V/	

lasmaths.

I.F.C.B.

00

18.COM

2

6

(Cm

21/2.57

COM

Maga

(****) Question 137

A curve C is given parametrically by

 $x = t^2 - p^2, \qquad y = 2tp \; ,$

where t and p are real parameters.

The parameters t and p are related by the equation

 $p^2 = 2t^2 - 1.$

Show that a Cartesian equation for C is

Y.C.B.

I.C.B.

>

I.F.G.B.

2017

ŀ.C.B.

 $y^2 = 4(x-1)(2x-1).$

ろ

112112

k to house		
$a = t^{2} - p^{2}$ $\sum_{k=1}^{n} \left\{ p_{k}^{2} a_{k}^{2} + \frac{1}{2} \right\}$ $a = t^{2} - (pt^{2} - t)$	y = 2tp $y^2 - 4t^2p^2$ $y^{2} = 4t^2(2t^2-1)$	
a = 1-+2 When By SUBSTRUTION +2=1-2C	y² = 41²(24²-1).	
$y^2 = 4(1-x)[\gamma(1-x)]$ $y^2 = 4(1-x)(2-2x-1)$	- (]	

COM

hs.com

, proof

ne,

I.F.C.B.

COM

6

·C.J.

Inadasma

I.C.B.

- 94		¥		
eat	ed ł	ov T.	Ma	das

I.C.P.

Cr

(****) Question 138

21/15.1

21/15.COM

I.C.B.

>

The curve C has parametric equations

 $x = t^2 + 2t$, $y = 2t^2 + t$, $t \in \mathbb{R}$.

Show that a Cartesian equation of the curve is given by

 $4x^2 + y^2 - 4xy + 3x - 6y = 0.$

- 22-9=3t => 3t= 21-9
- a= +2+2 9x= 92+18
- $Pa = (3t)^2 + 6(3t)^2$
- $\Rightarrow \theta_1 = (2x-y)^2 + \zeta(2$ I.V.G.B. Madasm $9 q_{\pi} = 4b^2 - 4a_{0} + u^2 + 12a$

00

 $\int \Rightarrow \frac{b}{a} = \frac{2t^2 + t}{t^2 + 2t} = \frac{2t + 1}{t + 2}$ $\Rightarrow ty + 2y = 2at + a$ $\Rightarrow ty - 2at = a - 2y$ $\Rightarrow t(y - 2a) = a - 2y$ => t= $a = \left(\frac{x - 2y}{y - 2z}\right)^2 + 2\left(\frac{x - 2y}{y - 2z}\right)^2 \left(\frac{x(y - 2z)^2}{y - 2z}\right)^2$

naths.com

6

Madasn.

I.C.B. Madasm

adasmaths.com

ths.com

proof

- $a(y-2a)^{2} = (x-2y)^{2} + 2(x-2y)(y-2a)$
- = $2u_1^2 42u_2 + 4u_3^2 = u_1^2 42u_2 + 4u_3^2 = u_1^2 42u_2 + 4u_3^2 = u_1^2$ -4x2-442+824 $= -3a^{2} + 6au$
- $2(y^2 4x^2y + 4x^3)$
- -32 +69

Created by T. Madas

Madasmans.com

Question 139 (*****)

A curve C is given parametrically by the equations

$$x = \frac{4-t^2}{4+t^2}, y = \frac{4t}{4+t^2}, t \in \mathbb{R}$$

By using the substitution $t = tan \frac{\theta}{2}$, or otherwise, show that the Cartesian equation of

C represents a circle.

$\mathfrak{A}^{\pm} = \frac{4 - \frac{1}{2}^{2}}{4 + t^{4}} = -\frac{4 - \frac{(2 \tan \frac{3}{2})^{2}}{4 + (2 \tan \frac{3}{2})^{2}}}{4 + (2 \tan \frac{3}{2})^{2}} = -\frac{4 - \frac{1}{2} \tan \frac{3}{2}}{4 + 4 \tan \frac{3}{2}} = -\frac{1 - \tan \frac{3}{2}}{1 + 4 \tan \frac{3}{2}} = \frac{1 - \tan \frac{3}{2}}{5 \tan \frac{3}{2}}$
$G_{223} = \frac{g_{1}^{2}}{g_{1}^{2}g_{2}} - \frac{g_{2}^{2}}{g_{2}^{2}} = -\frac{g_{1}^{2}}{g_{2}^{2}} - \frac{g_{1}^{2}}{g_{2}^{2}} = -\frac{g_{1}^{2}}{g_{2}^{2}} = -\frac{1}{g_{1}^{2}} = -\frac{1}{g_{1}^{2}}$
$y = \frac{4t}{4+t_2} = \frac{4(2\tan \frac{9}{2})}{4+(2\tan \frac{9}{2})^2} = \frac{8\tan \frac{9}{4}}{4+4\tan \frac{9}{2}} = \frac{2\tan \frac{9}{4}}{1+\tan \frac{9}{2}} = \frac{2\tan \frac{9}{2}}{2+2\frac{9}{2}}$
= $2 \tan \frac{1}{2} \log \frac{1}{2} = 2 \times \frac{\log \frac{1}{2}}{\log \frac{1}{2}} \times \log \frac{1}{2} = 2 \sin \frac{1}{2} \cos \frac{1}{2} = \sin \frac{1}{2}$
Sinzt = Zimhaud
: CARMIAN GUATION 2+42=1 A 2=660 IF ORDE (RODE (QO), ENDUL 1 Y-5000

	100		
$\frac{dg}{dg} = \frac{1 - \frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2}}$ $\frac{dg}{dg} = \frac{1 - \frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2}}$ $\frac{dg}{dg} = \frac{1}{2}$ $\frac{dg}{dg} = \frac{1}{2}$ $\frac{dg}{dg} = \frac{1}{2}$	$\begin{array}{c} \underline{OHAOMC} & \underline{WTPA} \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} +ijvxt\\ \Rightarrow \forall = \frac{4t}{4t+k}\\ \Rightarrow \forall = \frac{4t}{4t+k}\\ \Rightarrow y^{2} = \frac{1}{4t+k}\\ \Rightarrow y^{2} = \frac{1}{4t+k}\\ \Rightarrow y^{2} = \frac{1}{4t+k}\\ \Rightarrow y^{2} = \frac{1}{4t+k}\\ \Rightarrow y^{2} = \frac{4}{4t+k}\\ \vdots\\ \vdots\\$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$

 $y^2 + x^2 = 1$

Question 140 (*****)

A curve is defined by the parametric equations

 $x = \sin^2 t$, $y = \sin t \cos t + \cos t$, $0 \le t < 2\pi$.

Show that the Cartesian equation of the curve is

$$\left(x^2 + y^2 - 1\right)^2 = 4x(1 - x)^2$$

proof

2.	10
$\begin{array}{c} \phi \ g = \cosh((\operatorname{sub} + 1)) \\ \to \ g^{+_{\alpha}} \ (\omega \xi \in (\operatorname{sub} + 1))^{\zeta} \\ \to \ g^{+_{\alpha}} \ (\omega \xi \in (\operatorname{sub} + 1)^{\zeta} \\ \to \ g^{+_{\alpha}} \ (- \sin \xi) (\operatorname{sub} + 2\operatorname{sub} + 1) \\ \to \ g^{+_{\alpha}} \ (- \cos \xi) (\operatorname{sub} + 2\operatorname{sub} + 1) \\ \to \ g^{+_{\alpha}} \ (- \cos \xi) (\operatorname{sub} + 2\operatorname{sub} + 1) \\ \to \ g^{+_{\alpha}} \ (- \cos \xi) (\operatorname$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$

The figure above shows the curve C with parametric equations

$$x = 4\cos\theta, y = 3\sin\theta, 0 \le \theta < 2\pi$$
.

The point *P* lies on *C* where $\theta = \alpha$, where $0 < \alpha < \frac{\pi}{2}$.

The line T is a tangent to C at P.

The tangent T meets the coordinate axes at the points A and B.

The area of the triangle OAB, where O is the origin, is less than 24 square units.

Find the range of the possible values of α .

×02.	42.2	
START BY OBTHENING THE PRADINT FUNCTION IN PARAMETER	OBTAIN THE GENTLOK WAWKS FOR THE MAGU	Αu
$\frac{dy}{dh} = \frac{dy}{dx} = \frac{3\cos\theta}{-4\sin\theta} = -\frac{3}{4}\cos\theta = -\frac{3}{45\pi\theta}$,514 ² x = 1	
EquiPTICAL OF THNOSUT AT θ=α	$\begin{pmatrix} 2\chi = -\frac{1}{2}\sqrt{2} \pm 2\pi \Pi \\ 2\chi = -\frac{5}{2}\sqrt{2} \pm 2\pi \Pi \\ \Pi = -\frac{1}{2}$	=0,
y- 3541 x = -3 (2 - 4400x)	$(\mathbf{w} = \frac{1}{2} \frac{1}{2} \pm \frac{1}{2} \frac$	
$y - 3 \sin \alpha = -\frac{3 \cos \alpha}{4 \sin \alpha} (x - 4 \tan \alpha)$	$\sqrt{\kappa} = \frac{5}{2} \frac{1}{2} \frac{1}{$	
9544 × -125424 = -37600 × + 120434	\uparrow	
$\int S^{M} dx + 3 \cos \kappa = 12 \left(S^{M} + \cos^{2} \kappa \right)$		
yerra + alosa = 12		L
NOW MAHEN X=0 & al=0 X16400	_5424	i
$\left(\begin{array}{c} 0 \\ 1 \end{array} \right) \left(\begin{array}{c} 3 \\ 5 \end{array} \right) \left(\begin{array}{c} 1 \\ 6 \end{array} \right) \left(\begin{array}{c} 1 \\ \left(\begin{array}{c} 1 \\ 6 \end{array} \right) \left(\begin{array}{c} 1 \\ \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \\ \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\begin{array}{c} 1 \end{array} \right) \left(\left(\begin{array}{c} 1 \end{array} \right) \left(\left(\left$	\therefore $\frac{1}{l_2} < \alpha < \frac{1}{l_2}$	51 12
THE ARIA OF THE TRIADLE IS GIVN BY		
ALA = 1 × 3. × U		
$AEA = \frac{12}{\sin 2x}$		
SETTING OP TH INFQUALTY		
$\frac{12}{3624}$ < 24		
ZHSINGZW > 12. (-15 or 11 40177; SIMZX >0)		
$\frac{1}{2} < x \sin 2x$		

π

 $\leq \alpha \leq$

 5π

Question 142 (*****)

A cycloid is given by the parametric equations

 $x = \theta - \sin \theta$, $y = 1 - \cos \theta$, $0 < \theta < \pi$.

The gradient at the point P on this cycloid is $\frac{1}{2}$.

Show that at the point *P*, $\tan \theta = -\frac{4}{3}$.

$ \begin{array}{rcl} & \theta & = & \alpha \epsilon_{\text{SM}} \mu_{\text{S}}^{\perp} - \alpha \epsilon_{\text{SM}} \mu_{\text{S}}^{\perp} & = & 2 \pi \pi \\ & \theta & = & \pi - \alpha \epsilon_{\text{SM}} \mu_{\text{S}}^{\perp} - \alpha \mu_{\text{SM}} \mu_{\text{S}}^{\perp} & = & 2 \pi \pi \\ \end{array} $
BOT aretauly $\pm = \arcsin \frac{1}{32}$
$I = \frac{1}{2}$ $Siny = \frac{1}{2}$ $Siny = \frac{1}{2}$
··· · · · · · · · · · · · · · · · · ·
Tinguy we orthin
$\theta = 0 \pm 2mT$ $\theta = \pi - 2mc = \frac{1}{2} \pm 2mT$
\underline{BOT} $o < \theta < \eta$
= θ = π - 20ntm z
\Rightarrow $t_{u_1\theta} = t_{u_1}(\frac{1}{2} - 2ant_{u_1}\frac{1}{2})$ $\left\{ t_{u_1(k-1)u_1} \frac{t_{u_1k-1}t_{u_2k}}{1 + b_{u_1}t_{u_2k}} \right\}$
= tay 0 = tent - bun(2anbut) European
= trup= - tru (200 trut)
$\Rightarrow an\theta = -\frac{2\tan(aabn \pm)}{1 - \tan^2(aabn \pm)} \qquad \qquad$
= $\tan \theta = -\frac{2 \times \frac{1}{2}}{1 - (\frac{1}{2})^2} = -\frac{1}{1 - \frac{1}{2}} = -\frac{1}{\frac{2}{2}}$
= trub = - 4 to Repuero

CICL	VATIVE METHOD	
dy_=	<u>sma</u> (Rivio Gre	utl)
du =	2009 Black 2 1 - (1 - 2007 2)	SIN2A = 25mAcust { cus2A = 1-25m ² d
ų -	25m8/2056/2 26142 8/2	
<u>u</u> =	$\frac{\cos \Theta \underline{2}}{\sin \Theta \underline{2}} = - \cot \frac{\Theta}{2}$	
inter l	we think $\frac{da}{dt} = \frac{1}{2}$	
<u>4</u> 9	= 1/2	
an §	- 2	
8	= arictur2 ± MT , 40	91,2,3,
θ.	= 2anton 2 ± 2nii	
- 1	o < θ < η	
ρ.	= 2antay2	
v .		by24 = 25ml) }
10 =		multing 3
n0 =	- tau(20105h2) { 2 fuu(1012tu2) 1 - tau?(012tu2)	and the second second

F.G.B.

6

m

proof

Question 143 (*****)

>

ic.p.

A straight line with negative gradient passes though the point with coordinates (2,4). The point *M* the midpoint of the two intercepts of this line with the coordinate axes.

Sketch a detailed graph of the locus of M.

, graph

21/2.57

Mada

6

I.C.P.

Question 144 (*****)

The curve has parametric equations

$$x = \frac{t^2 + 5}{t^2 + 1}, \quad y = \frac{4t}{t^2 + 1}, \quad t \in \mathbb{R}$$

Show, by eliminating the parameter t, that the curve is a circle, stating the coordinates of its centre, and the size of its radius.

G

Question 145 (*****)

>

I.C.B.

i.C.B.

The curve C has parametric equations

$$x = \frac{3t-1}{t^2-1}, \quad y = \frac{t}{t^2-1}, \quad t \in \mathbb{R}$$

Show by eliminating the parameter t, that a Cartesian equation of C is

(x-2y)(x-4y) = x-3y

F.G.B.

6

m

Question 146 (*****)

A curve is given parametrically by the equations

 $x = \sin t$, $y = \cos^3 t$, $0 \le t < 2\pi$.

a) Find a simplified expression for $\frac{dy}{dx}$, in terms of t.

b) Show that ...

I.F.G.B.

I.V.G.B.

i. $\dots \frac{d^2 y}{dx^2} = -6\cos t + 3\sec t$.

ii. ... $\frac{d^3y}{dx^3} = 3\tan t \left(2 + \sec^2 t\right)$.

Y.G.A

I.F.C.B

c) Show further that the value of $\frac{d^3y}{dx^3}$ at the points where $\frac{d^2y}{dx^2} = 0$ is ± 12 .

 $\frac{dy}{dx} = -\frac{3}{2}\sin 2t$

2017

madasma,

ŀ.G.p.

I.C.P.

Z

6

 $\alpha = \operatorname{synt} \int \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = \frac{-3\cos^2 t}{\cos t} = -3\cos t \operatorname{synt}$ (b) (I) DIFFE $\bigotimes \frac{\partial^2 y}{\partial \alpha^2} = \frac{d}{\partial \alpha} \left(\frac{dy}{\partial \alpha} \right) = \frac{d}{\partial \alpha} \left(-\frac{3}{2} SN_2 t \right) = \frac{d^4}{dx} \times \frac{d}{\partial t} \left(-\frac{5}{2} SN_2 t \right) = \frac{1}{dx} \times \frac{d}{dt} \left(-\frac{3}{2} SN_2 t \right)$ $\frac{1}{66}\left(-3\cos 2t\right) = -\frac{3\cos 2t}{\cos t} = -\frac{3(2\cos t-1)}{\cos t} = \frac{-6\cos 2t+3}{\cos t}$ $(\underline{\mathfrak{I}}) \bullet \frac{d\underline{\mathfrak{I}}}{d\underline{\mathfrak{I}}^3} = \frac{d}{dt} \Big(\frac{d\underline{\mathfrak{I}}}{d\underline{\mathfrak{I}}^2} \Big) = \frac{d}{dt} \Big(3set - 6iost \Big) = \frac{d\underline{\mathfrak{I}}}{d\underline{\mathfrak{I}}} \times \frac{d}{d\underline{\mathfrak{I}}} \Big(3set - 6iost \Big)$ 1 (3section + 6 smt) = 1 (section + 6 smt) tant + 6 tant = 3 tant (sect+2) NOW du $\omega_{5t} = \frac{1}{\kappa_{2}^{1}} \Longrightarrow t_{*} = \frac{1}{4} \cdot \frac{\pi}{4}$ $(act = -\frac{1}{\sqrt{2}} \Rightarrow t = \frac{3}{4} + \frac{37}{4}$ = 2103t : t=要1要1要1要 68t = ± $st = \pm \frac{1}{\sqrt{2}}$ $\begin{array}{c} \text{finally} \quad \frac{d^3y}{ds} \bigg|_{t=1/4} = 3 \times \log \frac{\pi}{2} \times \left(2t^2 \frac{\pi}{4} + 2 \right) = 3 \times 1 \times \left(2 + 2 \right) = 12 \\ \end{array}$ $\frac{\partial y}{\partial \lambda^2}\Big|_{t=\frac{2\pi}{2}} = 3t_{eq}\frac{\pi}{4} \times (4t_{eq}^{eq}+2) = 3(-1)(2+2) = -12$ $\frac{d^3y}{dx^3} = 3 \tan \frac{\pi}{2} (3c^2 \frac{\pi}{2} + 2) = 3 \times (1 \times (2+2)) = 12$ $\frac{d\tilde{g}}{d\tilde{g}}\Big|_{t=\overline{T}} = 3 \tan \frac{\eta}{4} \times \left(\operatorname{sc}^2 \overline{T} + 2 \right) = 3 \times (\eta) \times (2+2) = -12 \operatorname{Re}_{V(\eta)}$

Question 147 (*****)

A curve is given by the parametric equations

 $x = \sin \theta$, $y = \theta \cos \theta$, $-\pi < \theta < \pi$.

The tangents to the curve, at the points where $\theta = -\frac{\pi}{4}$ and $\theta = \frac{\pi}{4}$, are parallel to one another, at a distance d apart.

Show that

.Y.G.

I.C.B.

 $\frac{8\pi^2 - 32\pi + 32}{\pi^2 - 8\pi + 32}$

, proof

 $1 - \frac{\pi}{4} = \frac{4 - \pi}{4}$

F.G.B.

6

• A(0, 罕(17-2) • B(0, 辱(2-17)

• $\left| \mathcal{A} B \right| = \frac{\sqrt{2}}{4} (\pi^{-2}) - \frac{\sqrt{2}}{4} (2 - \pi)$ = $\frac{\sqrt{2}}{4} (2\pi - 4)$

 $= \frac{12}{2}(\pi - 2)$

Question 148 (*****)

A curve is given parametrically by

 $x = \ln(\sec t + \tan t), \quad y = 2\sec t, \quad t \in \mathbb{R}, \quad t \neq \frac{(2n-1)\pi}{2}$

Find a Cartesian equation for the curve in the form y = f(x).

6

Question 149 (*****) A curve is given parametrically by

 $x = t^2 + t + 3$, $y = 2t^2 - 3t + 1$, $t \in \mathbb{R}$

Find a Cartesian equation for the curve in the form f(x, y) = 0.

Question 150 (*****)

Eliminate θ from the following pair of equations.

$$\tan\theta + \cot\theta = x^3$$

$$\sec\theta - \cos\theta = y^3$$

Write the answer in the form

>

I.V.C.P.

I.F.G.p

f(x, y) = 1.

2010

Y.C.B.

12.81

$x^4y^2 - y^4x^2 = 1$
"Do
$\frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} \right\} \right\} = \left\{ \frac{1}{2} \left\{ \frac{1}{2$
SAUTUL BOTH GOURTIONS INTO SINGS & COENIES
$\frac{1}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \mathcal{R}^3 \qquad \qquad \frac{1}{\cos \theta} - \frac{\theta}{\cos \theta} = \mathcal{Q}^3$
$\frac{SM^2\theta + 60S^2\theta}{60S\theta + 0} = 3C^3 \qquad \qquad \frac{1 - 60S^2\theta}{60S\theta} = C^3$
$\frac{1}{\cos\theta \sin\theta} = \alpha^3 \qquad \qquad \frac{\sin^2\theta}{\cos\theta} = \sqrt[3]{3}$
$d = \frac{1}{\theta k u \theta z \omega}$
AWATING THE TWO EXPRESSIONS SIDE BY SUDE
$\frac{1}{\omega_s^2 \omega_s^2} \approx \frac{\omega_s^2 \omega_s^2}{\omega_s^2} = \omega_s^2 \omega_s^2$
$\frac{1}{(as^3\theta)} = x^6 \theta^3$
$\varpi_z \Theta = \frac{1}{x_e^6 \theta_z}$
$\frac{1}{y_{2}^2} = -\theta_{200}$
SUBSTILLE INTO THE SECOND EQUATION
$266\theta - 608\theta = 3^3$
$\frac{a^2g}{a^2y} = \frac{l}{a^2y} = \frac{g^3}{a^2y^4}$

ne,

I.C.B.

2017

6

Y.C.B.

18.COM

Created by T. Madas

nadasman

The figure above shows a set of coordinate axes superimposed with a cotton reel.

Cotton thread is being unwound from around the circumference of the fixed circular reel of radius a and centre at O.

The free end of the cotton thread is marked as the point B(x, y) which was originally at P(a, 0).

The unwound part of the cotton thread AB is kept straight and θ is the angle OA subtends at the positive x axis, as shown in the figure above.

Find the parametric equations that satisfy the locus of B(x, y), as the cotton thread is unwound in the fashion described.

, $x = a(\cos\theta + \theta\sin\theta)$, $y = a(\sin\theta - \theta\cos\theta)$

Question 152 (*****)

y

The figure above shows a rigid rod AB of length 4 units which can slide through a hinge located at the point M(1,0). The hinge allows the rod to turn in any direction in the x-y plane. The end of the rod marked as A can slide on the y axis so that $|OA| \le 4$. Let θ be the angle of inclination of the rod to the positive x axis.

M(1,0)

a) Show that as A slides on the on the y axis, the locus of B satisfies the parametric equations

$$x = 4\cos\theta$$
, $y = 4\sin\theta - \tan\theta$, $-\theta_0 \le \theta \le \theta_0$,

stating the exact value of θ_0 .

b) Show further that a Cartesian equation of this locus is given by

	- Un
(ର	$\begin{array}{c} \mathbf{y} \\ \mathbf{y} \\ \mathbf{z} \\ $
× ⁷	A $+4\alpha\kappa x = (\alpha \lambda + 1)\kappa c 2 = (\alpha + 1)\kappa$

(b) y= 4sm0-6	mft (
-> 4 = 40n0-	sm0 2 °	$\frac{52}{4} = 0^{\frac{2}{2}} \omega \in \frac{2}{4} = 0^{\frac{2}{2}} \omega$
1	5	$\binom{1}{2} = \binom{1}{1-\frac{3}{2}} \times \binom{2-1}{2}$
$\Rightarrow y = Sm\theta \left(\frac{dle}{dle} \right)$		$\bigcup_{i=1}^{n} = \left(1 - \frac{2i_i}{16}\right) \times \frac{(2i-1)^2}{\frac{2i_i^2}{16}}$
$\rightarrow g^2 \in side (4)$	1-010	$\mathcal{G}^{\lambda} = \frac{ \mathcal{L} - \chi^2 }{ \mathcal{L} } \times \frac{ \mathcal{L}(\chi - 1)^2}{ \chi^2 }$
$\rightarrow g^{z_{e}}(1-\omega \partial)$	$\times \frac{(4 \log \theta - 1)^2}{(\cos^2 \theta)}$	$y^2 = \frac{(16-x^2)(3-1)^2}{x^2} + \frac{1}{8} \frac{1}{8} \frac{1}{16} \frac{1}{16}$

proof

Question 153 (*****)

The curve C has parametric equations

 $x = \frac{(u+v)^2}{u^2+v^2}, \quad y = \frac{u^2-v^2}{u^2+v^2},$

where *u* and *v* are real parameters with $u^2 + v^2 \neq 0$.

By considering the tangent half angle trigonometric identities, or otherwise, show that C is a circle, stating the coordinates of its centre and the size of its radius.

(1,0), $(R=1)$
$\mathfrak{A} = \frac{(u+v)^2}{(u^2+v^2)} \qquad \mathfrak{Y} = \frac{u^2-v^2}{u^2+v^2} \qquad u^2+v^2 \mathfrak{E} \mathfrak{D}$
$\mathcal{X} = \frac{\sqrt{k} \sqrt{2} + 2\omega}{\frac{\omega^2 + 2\omega}{\omega^2 + 2\omega}} = \frac{1 + \frac{2\omega}{\omega^2}}{1 - \frac{1}{\omega^2} \sqrt{2}} = \frac{1 + \frac{2\omega}{\omega^2}}{1 - \frac{1}{\omega^2} \sqrt{2}}$
$ \begin{array}{c} \bullet \text{ too } \text{ the theorem } \text{ theorem } \text{ too } \text{ theorem } theorem$
$\begin{array}{c} \cos\theta = \frac{1 - \frac{1}{4} \frac{1}{4} \frac{1}{5} \frac{1}{4} \frac{1}{5} \frac{1}{4} \frac{1}{1 + \frac{1}{4}}}{\frac{1}{1 + \frac{1}{4}}} \\ \end{array}$
$x = (+ \sin \theta) \qquad $
$(2-1)^2 + y^2 = 1$ (4 - ORDE CHORE 4T (1,0) & RADUS 1

ð

Question 154

The figure above shows a set of coordinate axes superimposed with a circular cotton reel of radius a and centre at C(0,a).

A piece of cotton thread, of length πa , is fixed at one end at O and is being unwound from around the circumference of the fixed circular reel. The free end of the cotton thread is marked as the point B(x, y) which was originally at A(0, 2a).

The unwound part of the cotton thread *BD* is kept straight and θ is the angle *OCD* as shown in the figure above.

Find the parametric equations that satisfy the locus of B(x, y), as the cotton thread is unwound in the fashion described, for which x > 0, y > 0.

 $x = a [\sin \theta + (\pi - \theta) \cos \theta], \quad y = a [1 - \cos \theta + (\pi - \theta) \sin \theta]$

Question 155 (*****)

The straight line L has equation

$$\frac{x}{p} + \frac{y}{q} = 1,$$

where p and q are non zero parameters, constrained by the equation

 $\frac{1}{p^2} + \frac{1}{q^2} = \frac{1}{2}.$

The point P is the foot of the perpendicular from the origin O to L.

Show that for all values of p and q, P lies on a circle C, stating its radius.

<u>-</u>	$R = \sqrt{2}$
$ \begin{array}{c} \textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$	• So the an equivalent of $p\left(\frac{2}{q},\frac{2}{q}\right)$ On the through 4. A set of Machurtac equivalent q Allands $X = \frac{2}{p}$, $Y = \frac{2}{p} + \frac{4}{q_2}$ $X^2 + Y^2 = \frac{1}{p} + \frac{4}{q_2}$ $X^2 + Y^2 = 4\left(\frac{1}{q_2} + \frac{1}{q_1}\right)$ $X^2 + Y^2 = 4 + \frac{1}{2}$.
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$ \begin{array}{l} \wedge + \gamma &= 2 \\ \text{Le } + \operatorname{operic crass_{\mathcal{H}}} (q p) \\ \operatorname{pob} \operatorname{Dapuis} (27) \end{array} \end{array} $
$ \begin{array}{c} \bullet & \left \frac{1}{\sqrt{p^2 + q^2}} + \frac{1}{p^2 + q^2} \right \\ \bullet & \left 1 + \frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{2} \right \\ & \Rightarrow \frac{1}{p^2} + \frac{1}{q^2} + \frac{1}{2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = 2 \\ & \Rightarrow \frac{1}{p^2 + q^2} = 2 \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{2}{p^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + q^2} = \frac{1}{p^2 + q^2} \\ & \Rightarrow \frac{1}{p^2 + $	

Question 156 (*****)

A family of straight lines passes through the point with coordinates (4,2).

The variable point M denotes the midpoint of the x and y intercepts of this family of straight lines.

Sketch a detailed graph of the curve that M traces, for this family of straight lines.

- N	$\sigma \sim \gamma$, graph
	'h	no. Vá
	START BY THE GRIERAL EQUIPTION OF A UNE PARSING THROUGH (a_{1}, y_{1})	· ATTIMPTING TO SKETCH MA TRANSFORMATIONS
F	$ \begin{array}{cccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	$\frac{2}{2} \longmapsto \frac{2}{2-2} \longmapsto \frac{2}{2-2} + 1$
2	=> y-ma = 2-449	
Som	• DENTER A BENERRY OF THE WAR IN THEME OF HY	 Hince + Sketaet and Be Acabuted
$\langle n \rangle$	$\mathcal{Y} = 0 \implies -w(\mathfrak{X} = 2 - \psi_M)$ $\mathcal{J} = \frac{4\mathfrak{h}_1 - 2}{\mathfrak{h}_1} \text{if} \left(\psi - \frac{2}{\mathfrak{h}_1} + 0 \right)$	34
19	• Update the co-deliverties of the midplewith of the avec indecasts the $\left(2-\frac{1}{W_{1}}\right)^{-1}-2w_{1}$	$\mathcal{Y} = \frac{2}{3r_2} + 1$
	· ELIMINATE in As A PARAMETER	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x
2	$ \begin{array}{l} \frac{1}{b\eta} \times 2\theta_{1} & \sim (2 - x) \left(1 - y\right) \\ 2 & = \left(2 - 2\right) \left(y - 1\right) \end{array} $	
. p	$\frac{3}{3} = \frac{3}{2} + ($	1
× - (B KC	6.0

(*****) Question 157

The point P lies on the curve given parametrically as

 $x = t^2$. $y = t^2 - t$, $t \in \mathbb{R}$.

The tangent to the curve at P meets the y axis at the point A and the straight line with equation y = x at the point B.

P is moving along the curve so that its x coordinate is increasing at the constant rate of 15 units of distance per unit time.

Determine the rate at which the area of the triangle OAB is increasing at the instant when the coordinates of P are (36, 30).

1.1			
	START BY FINDING THE QUARTICAL OF THE TANGENT 4F A RAWRENCE POINT P on THE WARES WHEE t=p, so $P(p^2, p^2-p)$	b	$\implies 2p^3 - p^2 - 2p^3 + 2p^2 = 2p^2 - x - 2p^2$
Q	$\frac{du}{dx} = \frac{du}{dx} \frac{dt}{dt} = \frac{2t-1}{2t}$	Ľ	$\implies 2 = -p^2$ $\therefore \underline{B}(-p_1^2 - p_2^2)$
	$\frac{du}{dx}\Big _{xp} = \frac{2p-1}{2p}$		All the status of the status o
	$\frac{d \mathcal{L} \mathcal{M} \mathcal{A} \mathcal{A} \mathcal{A}}{\mathcal{Y} - (p^2 - p)} = \frac{p - 1}{2p} \left((x - p^2) \right)$		$z \rightarrow z (z_1 z_2) \rightarrow z \rightarrow z_1 z_2 \rightarrow z_2 \rightarrow z_2 \rightarrow z_1 \rightarrow z_2 \rightarrow z_2 \rightarrow z_2 \rightarrow z_1 \rightarrow z_2 \rightarrow z_$
	WHM X=0		$\Phi(q, \frac{1}{2} q) = \frac{1}{2} p^3$
)			$\frac{Now}{4} \begin{cases} P(p_1^2 p_{-1}^2) & i \in x = p^2 \\ \frac{dw}{d\tau} = 20 (T = Twite) \end{cases}$
Å	$\Rightarrow \bigcup = p^2 - p - p^2 + \frac{1}{2}p$ $\Rightarrow \bigcup = -\frac{1}{2}p \qquad : A(o_1 - \frac{1}{2}p)$		So we there
2	wethor of = x	P	$\frac{dA}{dT} = \frac{dA}{dp} \times \frac{dp}{dx} \times \frac{dz}{dT}$
1	$\Rightarrow x - p^{2} + p = \frac{2p-1}{2p} (x - p^{2})$ $\Rightarrow 2px - 2p^{3} + 2p^{2} = (2p-1)(x - p^{2})$	ľ	$\frac{dA}{dT} = \left(\frac{3}{4}p^2\right)\left(\frac{1}{2p}\right) \times 20$
	$\Rightarrow 2p_{1} - 2p^{3} + 2p^{2} = (2p-1)x - p^{2}(2p-1)$ $\Rightarrow p^{2}(2p-1) - 2p^{3} + 2p^{2} = (2p+1)x - 2p_{1}x$		$\frac{dA}{dT} = \frac{15}{2} p$
	27(4-1)-47+20 = 64-10 - 40		$\frac{dA}{dT}\Big _{\substack{a=\frac{dA}{dT}}} = \frac{dA}{dT}\Big _{\substack{a=\frac{U}{2}xc}} = U \text{ ound}^2$

45

(*****) Question 158

A curve has Cartesian equation

 $y = \frac{1}{2}x^2, \quad x \in \mathbb{R}.$

The points P and Q both lie on the curve so that POQ is a right angle, where O is the origin.

The point M represents the midpoint of PQ.

Show that as the position of P varies along the curve, M traces the curve with equation

proof

 $p^2 + 2pc$

EQUARING. THE FIRST OF $y = \frac{1}{2}\chi^2$ $\chi^2 = (p+q)^2$ $2y = x^2$ AND Q(29, 292) NE OPLOQ Pd = THE PO $M\left(\begin{array}{c} \frac{2p+2q}{2} \\ \frac{2p^2+2q^2}{2} \end{array}\right) \implies M\left(\begin{array}{c} p+q \\ \frac{p^2+q^2}{2} \end{array}\right)$

Question 159 (*****)

A curve is given parametrically by the equations

 $x = 2t^2 - 3t + 1, \ x = t^2 + t + 1, \ t \in \mathbb{R}$.

The tangents to the curve, at two distinct points P and Q, intersect each other at the point with coordinates (2,9).

a) Determine the coordinates of P and Q.

b) Show that the Cartesian equation of the curve is

25(y-1) = (2y-x-1)(2y-x+4).

You may not use a verification method in this part.

	5
$\begin{aligned} \mathcal{I} &= 2t^{2} - 5t + 1 \text{Auts} \mathcal{G} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + 1 \end{aligned}$ $\begin{aligned} & \text{Detrivitive} \mathcal{G}_{3} &= t^{2} + t + t + t^{2} + $	$\begin{array}{c} \Rightarrow & 2 \\ \Rightarrow & 1 \\ \Rightarrow & (\\ \Rightarrow & (\\ \Rightarrow & 1 \\ \end{array} \right)$
$\begin{array}{rcl} \Rightarrow & & & & & & & & & & & & & & & & & & $	5085 7 3 7 254 7 254 7 254

P(0,3), Q(36,31)

Question 160 (*****)

The points P and Q are two distinct points which lie on the curve with equation

$$y = \frac{1}{x}, x \in \mathbb{R}, x \neq 0$$

P and Q are free to move on the curve so that the straight line segment PQ is a normal to the curve at P.

The tangents to the curve at P and Q meet at the point R.

Show that R is moving on the curve with Cartesian equation

 $\left(y^2 - x^2\right)^2 + 4xy = 0.$

, proof

1

START BY TINDING THE GRADINST FUNCTION ON THE CURUE • Smuther the throat of q 1 will be y=1 $A_{1}^{2} = \frac{2}{q} - \frac{1}{q^{2}} \mathcal{I}$ $\frac{dy}{dx} = -\frac{1}{x^2}$ Soluing simultignifously to find the town R $\frac{2}{p} - \frac{1}{p^2}x = \frac{2}{q} - \frac{1}{q^2}x$ ● Let P(P1F) Q(d1L) $\mathcal{I}\left(\frac{1}{q^2} - \frac{1}{p^2}\right) = \frac{2}{q} - \frac{2}{p}$ · GRADINGT OF GHORD PO $\frac{p^2 - q^2}{p^2 q^2} \mathfrak{L} = 2\left(\frac{\mathfrak{P} - q}{\mathfrak{P} q}\right)$ - Pag (pag) = $\frac{(p-q)(p+q)}{p^2 d^2} \mathcal{I} = \frac{2(p-q)}{p d}$. GHORD PO I GRAD AT P (NORMAL) to p+q p+o q+o ± - 21 9 TF GRAD AT P IS P2) $S = x \frac{p+q}{pq}$ $-\frac{1}{pq} \times \left(-\frac{1}{pq}\right) = -1$ J = p+q $\psi_{0} \quad \psi_{1} = \frac{d}{2} - \frac{d}{d_{1}} \left(\frac{5bd}{b+d}\right) = \frac{d}{2} - \frac{d}{2b}$ $= \frac{2(P+q) - 2P}{q(P+q)} = \frac{2P+2q - 2P}{q(P+q)} = \frac{2P+2q - 2P}{q(P+q)}$ NOT WE FIND THE SPUATION OF THE TRAGENT AT P(P, +) $\frac{d(b;d)}{5d} = \frac{b+d}{5}$ y-==-==(x-+) : R (2pd 1 2) 3 = · NOW WE ON ELLINDATE THE PARTMETRES P 9 9 ROW THE SEPURITIONS $\implies \frac{(y^2 - x^2)^2}{x^4} = - \frac{4y}{x^3}$ $\chi = \frac{2pq}{p+q}$ THE CONSTRANT $\Rightarrow (y^2 - x^2)^2 = -4xy \Rightarrow x \neq 0$ 9 = pd = -1 $q = -\frac{1}{p^3}$ $\Rightarrow (y^2 - x^2)^2 + 4xy = c$ $\frac{2p\left(-\frac{1}{p_3}\right)}{p_{-}-\frac{1}{p_3}}$ $\frac{\frac{-2}{p^2}}{\frac{p^4-1}{p^3}} = -\frac{2p}{p^4-1}$ = $\frac{2}{\frac{p^4-1}{p_3}} = \frac{2p^3}{p^4-1}$ y= 2 ++q = P - 1 2400TAUS SHT SOLVICE $\frac{\chi}{y} = -\frac{2p}{2p^3} = -\frac{1}{p_2} \qquad \text{if } p^2 = -\frac{g}{\chi}$ SUB INTO THE MY GRUATTION & TIDY 10P $\mathcal{Y} = \frac{2\mathfrak{p}^3}{\mathfrak{p}\mathfrak{l}_1} \implies \mathcal{Y}(\mathfrak{p}\mathfrak{l}_1) = 2\mathfrak{p}^3$ $\implies g^2(p^4-1)^2 = 4p^4$

Created by T. Madas

1

Question 161 (*****)

1.Y.C.

I.C.B.

A curve is given parametrically by

 $x = \frac{1}{3}t^2$, $y = \frac{2}{3}t$, $t \in \mathbb{R}$.

nn

proof

6

The normal to the curve at the point P meets the curve again at the point Q.

Show that the minimum value of |PQ| is $\sqrt{12}$.

124 + 9py2 = 8p + 4p3 2= ++27 美な = 告も y= =t ∫ -> 9py2+12yy= 4+2 $(3y-2p)(3py-4+2p^2)=0$ 2y dy = 4 2010 LET THE POINT P LLE ON THE CURVE,A THE POINT t=P, I.E P(fp23P) • $\frac{du}{dx}\Big|_{g=\frac{2}{3}p} = \frac{2}{3\left(\frac{2}{3}p\right)} = \frac{1}{p}$ ● WE REPUTE THE VALUE OF E, AT POINT Q $\frac{2}{3}t = -\frac{4+2p^2}{3p}$ WHIT IS -P $t = -\frac{p^2+2}{p}$ $\frac{3}{2}b = -b\left(x - \frac{7}{7}b_{5}\right)$ @ TO TTANISOOD_ ATTA UND SW ZUTT @ $\alpha = \frac{1}{3} \frac{1}{7^2} = \frac{1}{3} \left[-\frac{p^2 + 2}{p} \right]^2 = -\frac{(p^2 + 2)^2}{3p^2}$ 2p+p • $P\left(\frac{1}{3}r^{2}\frac{2}{3}r^{2}\right) = \Phi\left(\frac{(p^{2}+2)^{2}}{3p^{2}}\right) - \frac{2p^{2}+4}{3r}$ $31 = \frac{3}{4}y^2$ 6 $3y + 3p1 = 2p + p^3$ $\Longrightarrow \left| PQ \right|^2 = d^2 = \left[\frac{\left(p^2 + z \right)^2}{z^2 p^2} - \frac{1}{z^2} p^2 \right]^2 + \left(\frac{2}{3} p + \frac{z p^2 + 4}{3 p} \right)^2$ \Rightarrow $3y + 3p\left(\frac{3}{4}y^2\right) = 2p + p^3$ \rightarrow $|P\varphi| = d^2 = \left[\frac{(P^2+2)^2 - P^4}{3P^2}\right]$ 2p2+2p2+4 $= \frac{1}{p} \left| p q \right|_{a}^{2} d^{2} = \left(\frac{p^{q} + 4p^{2} + 4 - p q}{3p^{2}} \right)^{2} + \left(\frac{4p^{2} + 4}{3p} \right)$ SOUTING FOR ZENO, YIELDS P = #2 (BY INSPECTION) BUTH THESE VALUES SHOULD YIELD SYMMETRICAL MINIMULS $\Rightarrow \left| P \varphi \right|^{2} e^{-d^{2}} = \left(\frac{4p^{2} + 4}{3p^{2}} \right)^{2} + \left(\frac{4p^{2} + 4}{3p} \right)^{2}$ $= \sqrt{|Pq|^2} = d^2 = \frac{16(p^2+1)^2}{q_p 4} + \frac{16(p^2+1)^2}{q_p 2}$ $= |pq|^2 = d^2 = \frac{|G|}{q} \left[\frac{(p^2+1)^2}{p^4} + \frac{(p^2+1)^2}{p^4} \right]$ $\Rightarrow |pq|^2 = d^2 = \frac{|g|}{q} \left[\frac{(p^2+1)^2 + p^2(p^2+1)^2}{p^4} \right]$ $\Rightarrow |pq|^2 d^2 = \frac{16}{q} \left[\frac{(p^2+1)^2(1+p^2)}{p^4} \right] =$ $\frac{|l(p^2+1)|^3}{qp^4}$ when p===2, 10 t=p=2 • Let $-f(p) = \frac{(p^2+1)^2}{p^4}$ $\left[\widehat{PQ}\right]_{=}^{2} = \frac{1}{2} \frac{\left[\mathcal{L}\left(\widehat{P^{2}(1)}\right)^{2}}{\frac{q}{p}^{4}} - \frac{\left[\mathcal{L}\left(2+1\right)^{3}\right]}{\frac{q}{q}\times2^{2}} = \frac{\frac{4}{p}}{\mathcal{N}\times\mathcal{N}} = \frac{1}{2}$ $-\left((p)\right) = -\frac{p^{4} \times 3(p^{2}+1)^{2} \times 2p - (p^{2}+1)^{2} \times 4p^{3}}{p^{8}}$ " MINIMUM DISTANCE IS JIZ' = 2J3 $= \frac{6p^{5}(p^{2}+1)^{2} - 4p^{2}(p^{2}+1)^{2}}{p^{2}}$ $= \frac{6p^{2}(p^{2}+1)^{2}-4(p^{2}+1)^{3}}{p^{5}}$ $= \frac{2(p^2+i)^2 [3p^2-2(p^2+i)]}{2(p^2+i)^2}$ $= \frac{2(p^2+1)^2(p^2-2)}{2(p^2-2)}$ N.C.

Question 162 (*****)

The function f maps points from a Cartesian x-y plane onto the same Cartesian x-y plane by

$$f:(x,y) \mapsto \left(\frac{1-x^2-y^2}{x^2+(1-y)^2}, \frac{-2x}{x^2+(1-y)^2}\right), x \in \mathbb{R}, y \in \mathbb{R}, (x,y) \neq (0,1).$$

The set of points, S, which lie on the x axis are mapped by f onto a new set of points S', which in turn are mapped by f onto a new set of points S''.

Use algebra to determine the equation of S''.

f: Cay H $\frac{1-x^2-y^2}{x^2+(1-y)^2}, \frac{-2x}{x^2+(1-y)^2}$ (≈y)≠ (o1) IF & POINT LIES ON THE & XXIS THIN 9=0 $\rightarrow f: (x_{i}y) \longmapsto \left[\begin{array}{c} \frac{1-\chi^2}{\chi^2+1}, & \frac{-2\chi}{\chi^2+1} \end{array} \right]$ $\Rightarrow (X_1Y) \longmapsto \left[\begin{array}{c} \frac{1-\chi^2}{1+\chi^2} & \frac{-2\chi}{1+\chi^2} \end{array} \right]$ ELIMINATE THE 2 WHICH ADD ALL A PARAMETER AS FOLLOWS $= \frac{1-\chi^2}{1+\chi^2}$ + 22X = 1 - 2 x-) = X = x2(1+x) = 1-x $\Im \quad \mathfrak{X}^2 = \frac{1-X}{1+X}$ (1-X)(1+X)

	110m
NOW ARIST MARTERIAL WARD WOOD	tat ut an THIS CIERE AFAIN
NOTICE THAT 22+42=1 ->>	
* X = 0 .	
$Y = \frac{-2x}{x^2 + y^2 - 2y + 1} = -$	$\frac{2x}{2-2y} = \frac{x}{y-1} \qquad \begin{array}{c} x\neq 0\\ y\neq 1 \end{array}$
ы с⊙≠Х гагаанна с	ZIXA B- HAT
ALTERNATIVE EUMINATION	
$X = \frac{1-\alpha^2}{1+\alpha^2}$	$\gamma = \frac{-2x}{1+x^2}$
uer a=t	
$X = \frac{1 - b_{1} 2}{1 + b_{1} 20}$	Y= -2two
$X = \frac{1 - 6u^2_{10}}{8e^2_{10}}$	Y= - 2 bull
$X = \cos^2 \theta - \tan^2 \theta \cos^2 \theta$	Y = - 2600 costo
$\chi = \frac{62}{6} - \frac{5}{6} + \frac{1}{2} +$	$\gamma = -2 \frac{\sin \theta}{\cos \theta} \times \cos^2 \theta$
-952a) = X	$\gamma = -2 \sin \theta \cos \theta$
	95 NIZ - = Y
$\therefore X^2 + Y^2 = (\cos 2)$	

x = 0

STRATUS CORT 1. Y. C. P. INAUGSTRATIS CORT 1. Y. C. P. INAUGSTRATIS

T.Y.C.P. INBUSINGING IN T.Y.C.P. INBUSINGING INSCORT ASTRAITS COM T.Y. C.B. MARIAS MARINE COM T.Y. C.B. MARIAS COM T.Y. C.B. MARIAS MARINE COM T.Y. C.B. MARIAS COM