PARAMETRIC EQUATIONS

Created by T. Madas

ALGEBRAIC ELIMINATIONS

Created by T. Madas

Question 1
Find a Cartesian equation for each of the following parametric relationships.
a) $x=t+1, \quad y=4-3 t, \quad t \in \mathbb{R}$
b) $\quad x=2 t+1, \quad y=3 t-2, \quad t \in \mathbb{R}$
c) $x=\frac{2}{t}, \quad y=2 t-1, \quad t \in \mathbb{R}, \quad t \neq 0$
d) $x=2 t+1, \quad y=t^{2}-1, \quad t \in \mathbb{R}$
$y=7-3 x, 3 x-2 y=7, \quad y=\frac{4}{x}-1, \quad(x-1)^{2}=4(y+1)$

Created by T. Madas

Question 2

Find a Cartesian equation for each of the following parametric relationships.
a) $\quad x=2 t-1, \quad y=4-3 t, \quad t \in \mathbb{R}$
b) $x=2 t-1, \quad y=\frac{1}{t+1}, \quad t \in \mathbb{R}, \quad t \neq-1$
c) $x=t^{2}, \quad y=2 t^{3}, \quad t \in \mathbb{R}$
d) $\quad x=\frac{1}{4 t-1}, \quad y=\frac{t}{4 t-1}, \quad t \in \mathbb{R}, \quad t \neq \frac{1}{4}$

$$
3 x+2 y=5, y=\frac{2}{x+3}, y^{2}=4 x^{3}, y=\frac{1}{4}(x+1)
$$

Created by T. Madas

Question 3
Find a Cartesian equation for each of the following parametric relationships.
a) $x=1-4 t^{2}, \quad y=1+2 t, \quad t \in \mathbb{R}$
b) $x=3-4 t, \quad y=1+\frac{2}{t}, \quad t \in \mathbb{R} \quad t \neq 0$
c) $x=t+2, \quad y=\ln (t-1), \quad t \in \mathbb{R} \quad t>1$
d) $x=\mathrm{e}^{t-1}, \quad y=t+7, \quad t \in \mathbb{R}$

$$
x=2 y-y^{2}, y=1-\frac{8}{x-3}, y=\ln (x-3), y=8+\ln x
$$

Created by T. Madas

Question 4

Find a Cartesian equation for each of the following parametric expressions.
a) $x=t^{2}-1, \quad y=\frac{t^{3}}{5}, \quad t \in \mathbb{R}$
b) $x=\sqrt{t}+1, \quad y=t-1, \quad t \in \mathbb{R}, t \geq 0$
c) $x=3 t-1, \quad y=(t-2)(t+1), \quad t \in \mathbb{R}$
d) $\quad x=\frac{1}{t-2}, \quad y=t^{2}, \quad t \in \mathbb{R}, t \neq 2$

$$
25 y^{2}=(x+1)^{3}, y=x^{2}-2 x, 9 y=(x-5)(x+4), y=\left(\frac{2 x+1}{x}\right)^{2}
$$

Created by T. Madas

Question 5

Find a Cartesian equation for each of the following parametric equations.
a) $x=4 t+3, \quad y=\frac{1}{2 t}-1, \quad t \in \mathbb{R}, \quad t \neq 0$
b) $x=3-4 t, \quad y=\frac{2}{t}+1, \quad t \in \mathbb{R}, \quad t \neq 0$
c) $x=\frac{1}{t-1}, y=\frac{1}{t+2}, \quad t \in \mathbb{R}, t \neq 1,-2$
d) $x=\frac{t}{2 t-1}, \quad y=\frac{t}{t+1}, \quad t \in \mathbb{R}, t \neq-1, \frac{1}{2}$

$$
y=\frac{2}{x-3}-1, y=\frac{x-11}{x-3}, y=\frac{x}{1+3 x}, y=\frac{x}{3 x-1}
$$

Created by T. Madas

Question 6

Find a Cartesian equation for each of the following parametric expressions.
a) $x=1-3 t, \quad y=1+2 t^{3}, \quad t \in \mathbb{R}$
b) $x=\frac{1}{2 t-3}, \quad y=\frac{t}{2 t-3}, \quad t \in \mathbb{R}, t \neq \frac{3}{2}$
c) $x=\frac{2}{2 t-5}, \quad y=\frac{t}{4-t}, \quad t \in \mathbb{R}, \quad t \neq 4, \quad t \neq \frac{5}{2}$
d) $x=t+\mathrm{e}^{t}, \quad y=t-\mathrm{e}^{t}, \quad t \in \mathbb{R}$

$$
y=1+\frac{2}{27}(1-x)^{3}, 2 y-3 x=1, y=\frac{5 x+2}{3 x-2}, x-y=2 \mathrm{e}^{\frac{1}{2}(x+y)}
$$

Created by T. Madas

Question 7

Find a Cartesian equation for each of the following parametric expressions.
a) $x=t+\frac{1}{t}, \quad y=t-\frac{1}{t}$, $t \in \mathbb{R}, t \neq 0$
b) $x=t^{2}+\frac{1}{t}, \quad y=t^{2}-\frac{1}{t}, \quad t \in \mathbb{R}, \quad t \neq 0$
c) $x=3 t+\frac{1}{t^{2}}, \quad y=3 t-\frac{1}{t^{2}}, \quad t \in \mathbb{R}, t \neq 0$
d) $x=\frac{1-t^{2}}{1+t^{2}}, \quad y=\frac{2 t}{1+t^{2}}, \quad t \in \mathbb{R}$

$$
x^{2}-y^{2}=4, \quad(x+y)(x-y)^{2}=8,(x-y)(x+y)^{2}=72, x^{2}+y^{2}=1
$$

Created by T. Madas

Question 8

Find a Cartesian equation for each of the following parametric equations.
a) $x=t-\frac{1}{t^{3}}, \quad y=\frac{1}{t}-t^{3}, \quad t \in \mathbb{R}, \quad t \neq 0$
b) $x=\frac{4 t}{1+t^{2}}, \quad y=\frac{1-3 t^{2}}{1+t^{2}}, \quad t \in \mathbb{R}$
c) $\quad x=\frac{1}{t}+\frac{1}{t^{2}}, \quad y=\frac{1}{t}-\frac{1}{t^{2}}, \quad t \in \mathbb{R}, t \neq 0$
d) $x=\frac{t^{2}}{1+t^{3}}, \quad y=\frac{2 t}{1+t^{3}}, \quad t \in \mathbb{R}, t \neq-1$

$$
\left(y^{2}-x^{2}\right)^{2}+x^{3} y^{3}=0, x^{2}+(y+1)^{2}=4,(x+y)^{2}=2(x-y), y^{3}+8 x^{3}=4 x y
$$

	(c) (d)

TRIGONOMETRIC
 ELIMINATIONS

Created by T. Madas

Question 1

Find a Cartesian equation for each of the following parametric relationships.
a) $x=5 \cos t, \quad y=5 \sin t, \quad 0 \leq t<2 \pi$
b) $x=1+2 \cos \theta, \quad y=2+\sin \theta, \quad 0 \leq \theta<2 \pi$
c) $x=2 \tan \theta, \quad y=\cos \theta, \quad 0 \leq \theta<2 \pi$
d) $x=\cos t, \quad y=\operatorname{cosec} t, \quad 0 \leq t<2 \pi$
e) $x=\tan \theta, \quad y=\sin \theta, \quad 0 \leq \theta<2 \pi$
f) $x=\cos \theta, \quad y=\cos 2 \theta, \quad 0 \leq \theta<2 \pi$
g) $x=\frac{1}{2} \cos 2 \theta, \quad y=2 \sin \theta, \quad 0 \leq \theta<2 \pi$
h) $x=\cos t, \quad y=\sin 2 t, \quad 0 \leq t<2 \pi$

$$
\begin{array}{r}
x^{2}+y^{2}=25, \frac{(x-1)^{2}+4(y-2)^{2}=4,}{y^{2}=\frac{4}{4+x^{2}}, y^{2}=\frac{1}{1-x^{2}}, y^{2}=\frac{x^{2}}{1+x^{2}},} \\
y=2 x^{2}-1, y^{2}=2-4 x,, y^{2}=4 x^{2}\left(1-x^{2}\right)
\end{array}
$$

Created by T. Madas

Question 2
Find a Cartesian equation for each of the following parametric relationships.
a) $x=2 \cos t, \quad y=2 \sin t, \quad 0 \leq t<2 \pi$
b) $x=4+3 \cos t, \quad y=-2+3 \sin t, \quad 0 \leq t<2 \pi$
c) $x=4+\cos t, \quad y=2 \sin t, \quad 0 \leq t<2 \pi$
d) $x=\sin t, \quad y=\sec t, \quad 0 \leq t<2 \pi$

$$
x^{2}+y^{2}=4, \quad(x-4)^{2}+(y+2)^{2}=9,4(x-4)^{2}+y^{2}=4, y^{2}=\frac{1}{1-x^{2}}
$$

Created by T. Madas

Question 3

Eliminate θ to obtain a Cartesian equation for the following parametric equations.
a) $x=\tan \theta, \quad y=\sec \theta, \quad 0 \leq \theta<2 \pi$
b) $x=2 \sin \theta, \quad y=3 \operatorname{cosec} \theta, \quad 0 \leq \theta<2 \pi$
c) $x=\sin \theta, \quad y=\sec ^{2} \theta, \quad 0 \leq \theta<2 \pi$
d) $x=\cos \theta, \quad y=\tan ^{2} \theta, \quad 0 \leq \theta<2 \pi$

$$
y^{2}=x^{2}+1, y=\frac{6}{x}, y=\frac{1}{1-x^{2}}, y=\frac{1}{x^{2}}-1
$$

Created by T. Madas

Question 4

Eliminate the parameter θ to obtain a Cartesian equation for each of the following parametric equations.
a) $x=\sin \theta, \quad y=\tan ^{2} \theta, \quad 0 \leq \theta<2 \pi$
b) $x=2 \sec \theta, \quad y=\sin ^{2} \theta, \quad 0 \leq \theta<2 \pi$
c) $x=3 \cos \theta, \quad y=2 \cot \theta, \quad 0 \leq \theta<2 \pi$
d) $x=\frac{1}{2} \cos \theta, \quad y=2 \cos 2 \theta, \quad 0 \leq \theta<2 \pi$

$$
y=\frac{x^{2}}{1-x^{2}}, y=1-\frac{4}{x^{2}}, y^{2}=\frac{4 x^{2}}{9-x^{2}}, y=2\left(8 x^{2}-1\right)
$$

Created by T. Madas

Question 5
Find a Cartesian equation for each of the following parametric relationships.
a) $x=2 \sin ^{2} \theta, \quad y=\cot \theta, \quad 0 \leq \theta<2 \pi$
b) $x=2 \sin \theta, \quad y=\cos 2 \theta, \quad 0 \leq \theta<2 \pi$
c) $x=2 \cos \theta, \quad y=6 \cos 2 \theta, \quad 0 \leq \theta<2 \pi$
d) $x=2 \cos \theta, \quad y=6 \sin 2 \theta, \quad 0 \leq \theta<2 \pi$

$$
y^{2}=\frac{2-x}{x}, y=1-\frac{1}{2} x^{2}, y=3 x^{2}-6, y^{2}=9 x^{2}\left(4-x^{2}\right)
$$

Created by T. Madas

Question 6

Eliminate the parameter θ to obtain a Cartesian equation for each of the following parametric equations.
a) $x=\sin ^{2} \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta<2 \pi$
b) $x=\sin \theta+\cos \theta, \quad y=\sin \theta-\cos \theta, \quad 0 \leq \theta<2 \pi$
c) $x=\cos 2 \theta, \quad y=\tan \theta, \quad 0 \leq \theta<2 \pi$
d) $x=\tan \theta, \quad y=2 \sin 2 \theta, \quad 0 \leq \theta<2 \pi$

$$
y^{2}=4 x(1-x), x^{2}+y^{2}=2, y^{2}=\frac{1-x}{1+x}, y=\frac{4 x}{1+x^{2}}
$$

Created by T. Madas

Question 7

Eliminate the parameter θ to obtain a Cartesian equation for each of the following parametric expressions.
a) $x=\sin \theta \cos \theta, \quad y=4 \cos ^{2} \theta, \quad 0 \leq \theta<2 \pi$
b) $x=\sin 2 \theta, \quad y=\cot \theta, \quad 0 \leq \theta<2 \pi$
c) $x=\sin ^{2} \theta, y=\tan 2 \theta, \quad 0 \leq \theta<2 \pi$
d) $x=\operatorname{cosec} \theta-\sin \theta, \quad y=\sec \theta-\cos \theta, \quad 0 \leq \theta<2 \pi$

$$
16 x^{2}=y(4-y), y(2-x y)=x, y^{2}=\frac{4 x(1-x)}{(1-2 x)^{2}}, y^{2} x^{2}\left(x^{\frac{2}{3}}+y^{\frac{2}{3}}\right)^{3}=1
$$

PARAMETRIC

ALGEBRA

Created by T. Madas

Question 1

Find the x and y intercepts for each pair of parametric equations.
a) $x=2 t+1, \quad y=2 t+6, \quad t \in \mathbb{R}$
b) $x=t^{2}, \quad y=(t+1)(t+2), \quad t \in \mathbb{R}$
c) $x=\frac{t-1}{t+1}, \quad y=\frac{2 t}{t^{2}+1}, \quad t \in \mathbb{R}, \quad t \neq-1$

$$
(0,5) \&(-5,0),(0,2) \&(4,0),(1,0),(0,1) \&(-1,0)
$$

Question 2

A curve is defined by the following parametric equations

$$
x=4 a t^{2}, \quad y=a(2 t+1), t \in \mathbb{R}
$$

where a is non zero constant.

Given the curves passes through the point $A(4,0)$, find the value of a.

Created by T. Madas

Question 3

A curve is given by the parametric equations

$$
x=2 t^{2}-1, \quad y=3(t+1), \quad t \in \mathbb{R} .
$$

Find the coordinates of the points of intersection of this curve and the line with equation

$$
3 x-4 y=3 \text {. }
$$

Question 4

The curve C_{1} has Cartesian equation

$$
x^{2}+y^{2}=9 x-4 .
$$

The curve C_{2} has parametric equations

$$
x=t^{2}, \quad y=2 t, \quad t \in \mathbb{R}
$$

Find the coordinates of the points of intersection of C_{1} and C_{2}.

$$
(4,4),(4,-4),(1,2),(1,-2)
$$

Created by T. Madas

Question 5

The curve with Cartesian equation $x y=3$ is also traced by the following parametric equations

$$
x=\frac{4 t p}{t+p}, y=\frac{4}{t+p}, \quad t, p \in \mathbb{R}, t \neq p
$$

where t and p are parameters.

Find the relationship between the two parameters t and p in the form $p=f(t)$.

$$
p=3 t \text { or } p=\frac{1}{3} t
$$

PARAMETRIC DIFFERENTIATION

Created by T. Madas

Question 1
A curve is given parametrically by the equations

$$
x=1-\cos 2 \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta<2 \pi
$$

The point P lies on this curve, and the value of θ at that point is $\frac{\pi}{6}$.

Show that an equation of the normal at the point P is given by

$$
y+\sqrt{3} x=\sqrt{3} .
$$

Created by T. Madas

Created by T. Madas

Question 2
A curve is given parametrically by the equations

$$
x=\frac{2}{t}, y=t^{2}-1, t \in \mathbb{R}, t \neq 0 .
$$

The point $P(4, y)$ lies on this curve.

Show that an equation of the tangent at the point P is given by

$$
x+8 y+2=0 .
$$

Created by T. Madas

Question 3

A curve is given parametrically by the equations

$$
x=3 t-2 \sin t, y=t^{2}+t \cos t, 0 \leq t<2 \pi .
$$

Show that an equation of the tangent at the point on the curve where $t=\frac{\pi}{2}$ is given by

$$
y=\frac{\pi}{6}(x+2)
$$

Question 4

Find the turning points of the curve given parametrically by the equations

$$
x=1-\cos 2 t, y=\sin 2 t, 0 \leq t<2 \pi .
$$

Determine the nature of these turning points.

$$
\max (1,1), \min (1,-1)
$$

Created by T. Madas

Question 5

A curve is given parametrically by the equations

$$
x=3 \sin 2 \theta, \quad y=4 \cos 2 \theta, \quad 0 \leq \theta \leq 2 \pi .
$$

The point P is such so that $\cos \theta=\frac{3}{5}$ with $0 \leq \theta \leq \frac{\pi}{2}$.

Show that an equation of the tangent at the point P is

$$
32 x-7 y=100 .
$$

Created by T. Madas

Question 6
For the curve given parametrically by

$$
x=\frac{t}{1-t}, \quad y=\frac{t^{2}}{1-t}, \quad t \in \mathbb{R}, t \neq 1
$$

find the coordinates of the turning points and determine their nature.

Created by T. Madas

Question 7

A curve is given parametrically by the equations

$$
x=\frac{2 t}{1+t^{2}}, \quad y=\frac{1-t^{2}}{1+t^{2}}, \quad t \in \mathbb{R} .
$$

The point $P\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ lies on this curve.

Show that an equation of the tangent at the point P is given by

$$
x+y=\sqrt{2}
$$

proof

