Vasillaris Com

asmaths.com NUMERICAL NUMERICAL NUTIONS ALASINATIS COM L I.Y.C.B. MARIASINATIS COM I.Y.C.B. MARIASIN

h.K.G.B.

TERATIVE TERATIVE TUBLE THODS TREP IN INTERNATION IN TREE INSTRACTION IN THE INSTRACT IN THE INFORMATION IN THE INSTRACT INSTRACT IN THE INSTRACT INSTRACT INTO THE INSTRACT INSTRACT IN THE INSTRACT IN THE INSTRACT IN THE INSTRACT INSTRACT IN THE INSTRACT INTO THE INSTRACT INTO THE INSTRACT INTO THE INSTRACT IN THE INSTRACT INTO THE INSTRACT INTO THE INSTRACT IN THE INSTRACT IN THE INSTRACT INTO THE INSTRACT INTO THE INSTRACT INTO THE INSTRACT INSTRACT INTO THE INSTRUCT INTO THE INSTRU MASIRALIS COM LY, C.B. MARIASIRALIS COM LY, C.B. MARIASIR

Question 1 (**)

 $x^3 + 10x - 4 = 0.$

a) Show that the above equation has a root α , which lies between 0 and 1.

The recurrence relation

$$x_{n+1} = \frac{4 - x_n^3}{10}$$

starting with $x_0 = 0.3$ is to be used to find α .

- **b**) Find, to 4 decimal places, the value of x_1 , x_2 , x_3 and x_4 .
- c) By considering the sign of an appropriate function f(x) in a suitable interval, show clearly that $\alpha = 0.39389$, correct to 5 decimal places.

, $x_1 = 0.3973$, $x_2 = 0.3937$, $x_3 = 0.3939$, $x_4 = 0.3939$

a) a2+10a-4=0	(c) (ř *
4(2)=2.4+103-4 f(0)=-4 45 k0 11 contraces f(0): 7 the site of a Between 0 € 1	f(0.30382) = 0.000004- f(0.31382) = -0.000041 c 34382 0.34382 0.34380 c 34382 0.34380 0.34380 0.34380
(b) $G_{u_{11}} = \frac{4 - \chi_{1}^{3}}{10}$ $\chi_{u} = 0.3$ $\chi_{u} = 0.3313$ $\chi_{2} = 0.3387$ $\chi_{2} = 0.3139$ $\chi_{u} = 0.3139$	days if size = 0.37387 ⇒ ≈ = 0.37382 (5 2 4)

Question 2 (**)

 $e^{-x} + \sqrt{x} = 2$

a) Show that the above equation has a root α , which lies between 3 and 4.

The recurrence relation

$x_{n+1} = (2 - e^{-x_n})^2$

starting with $x_0 = 4$ is to be used to find α .

- **b**) Find, to 3 decimal places, the value of x_1 , x_2 and x_3 .
- c) By considering the sign of an appropriate function f(x) in a suitable interval, show clearly that $\alpha = 3.9211$, correct to 4 decimal places.

],
$$x_1 = 3.927, x_2 = 3.922, x_3 = 3.921$$

(a) e+12=2		6)	ton ~
6+1x-5=0		1. 1.	
-for=e+12'-2		3.9210 \$ 519	211 5-9212
£(3) = -0.218		Zarefs E	3.45.00
404 = 0.018 As foir is autimous 1 attrases 2003 (Thele w 18t A Rax Brown 3	40 m q 4	f(3.9265)= -0.0 f(3.92115)= 0.00 Ofthese OF STW =	000 K 00076 ≫
(b) Jun= (2- = x)2	ast	3-12145 < < <	3.9211.5
	21, 23.927 22, 23.922 23, 23.921	: : : : : 3.9211	/641x

Question 3 (**)

 $e^{3x} = x + 20$

a) Show that the above equation has a root α between 1 and 2.

The recurrence relation

$$x_{n+1} = \frac{1}{3} \ln \left(x_n + 20 \right)$$

starting with $x_0 = 1.5$ is to be used to find α .

- **b**) Find to 4 decimal places, the value of x_1 , x_2 and x_3 .
- c) By considering the sign of an appropriate function f(x) in a suitable interval, show clearly that $\alpha = 1.0151$, correct to 4 decimal places.

Question 4 (**+)

$$f(x) = 4x - 3\sin x - 1, \quad 0 \le x \le 2\pi.$$

a) Show that the equation f(x) = 0 has a solution α in the interval (0.7, 0.8).

An iterative formula, of the form given below, is used to find α .

 $x_{n+1} = A + B \sin x_n$, $x_1 = 0.75$,

where A and B are constants.

- **b**) Find, to 5 decimal places, the value of x_2 , x_3 , x_4 and x_5 .
- c) By considering the sign of f(x) in a suitable interval show clearly that $\alpha = 0.775$, correct to 3 decimal places.

], $x_2 = 0.76123$, $x_3 = 0.76736$, $x_4 = 0.77068$, $x_5 = 0.77247$

Question 5 (**+)

 $x^3 - x^2 = 6x + 6, \quad x \in \mathbb{R}.$

a) Show that the above equation has a root α in the interval (3,4).

b) Show that the above equation can be written as

$$c = \sqrt{\frac{6x+6}{x-1}} \ .$$

An iterative formula of the form given in part (b), starting with x_0 is used to find α .

- c) Give two different values for x_0 that would not produce an answer for x_1 .
- d) Starting with $x_0 = 3.3$ find the value of x_1 , x_2 , x_3 and x_4 , giving each of the answers correct to 3 decimal places.
- e) By considering the sign of an appropriate function in a suitable interval, show clearly that $\alpha = 3.33691$, correct to 5 decimal places.

 $x_0 \neq 1, 0, 0.5 \text{ etc}$, $x_1 = 3.349, x_2 = 3.333, x_3 = 3.338, x_4 = 3.336$

$x^{2} - x^{2} = 6x + 6$ $x^{2} - x^{2} - 6x - 6 = 0$ $-f(x) = x^{2} - x^{2} - 6x - 6$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{split} & \left(f \right) = -(c) \\ & -(c) $	$\begin{array}{c} x_{11} = 3 \\ x_{12} = 3 \\ x_{13} = 3 $
	$\begin{split} & \frac{1}{2^{3}-2} = 6a+6 \\ & \frac{1}{2^{3}-2^{3}-6a-6} = 0 \\ & \frac{1}{2^{3}(0)} = \frac{1}{2^{3}-2^{3}-6a-6} \\ & \frac{1}{2^{3}(0)} = \frac{1}{2^{3}-2^{3}-6a-6} \\ & \frac{1}{2^{3}(0)} = \frac{1}{2^{3}(0)} = \frac{1}{2^{3}(0)} \\ & \frac{1}{2^{3}(0)} \\ & \frac{1}{2^{3}(0)} = \frac{1}{2^{3}(0)} \\ & \frac{1}{2^{3}(0)} \\ & \frac{1}{$

Question 6 (***)

The curves C_1 and C_2 have respective equations

 $y=9-x^2$, $x \in \mathbb{R}$ and $y=e^x$, $x \in \mathbb{R}$.

a) Sketch in the same diagram the graph of C_1 and the graph of C_2 .

The sketch must include the coordinates of the points where each of the curves meet the coordinate axes.

b) By considering the graphs sketched in part (a), show clearly that the equation

 $\left(9-x^2\right)\mathrm{e}^{-x}=1$

has exactly one positive root and one negative root.

To find the negative root of the equation the following iterative formula is used

$$x_{n+1} = -\sqrt{9 - e^{x_n}}$$
, $x_1 = -3$.

c) Find, to 5 decimal places, the value of x_2 , x_3 and x_4 .

To find the positive root of the equation the following iterative formula is used

 $x_{n+1} = \sqrt{9 - e^{x_n}}, \ x_1 = 2.$

d) Explain, clearly but briefly, why do these iterations fail.

Question 7 (***)

 $x^3 + 3x = 5, \ x \in \mathbb{R}.$

a) Show that the above equation has a root α , between 1 and 2.

An attempt is made to find α using the iterative formula

 $x_{n+1} = \frac{5 - x_n^3}{3}, \ x_1 = 1.$

b) Find, to 2 decimal places, the value of x_2 , x_3 , x_4 , x_5 and x_6 .

The diagram below is used to investigate the results of these iterations.

[continues overleaf]

[continued from overleaf]

- c) On a copy of this diagram draw a "staircase" or "cobweb" pattern marking the position of x_1 , x_2 , x_3 and x_4 , further stating the results of these iterations.
- d) Use the iterative formula

$$x_{n+1} = \sqrt[3]{5 - 3x_n}$$
, $x_1 = 1$,

to find, to 2 decimal places, the value of x_2 , x_3 , x_4 , x_5 and x_6 .

$\mathcal{O}_{\mathcal{O}}$	20.	20	
62.5	$, \ x_2 = 1.33, \ x_3 = 0.88,$	$x_4 = 1.44, \ x_5 = 0.67,$	$x_6 = 1.57$
n.	$x_2 = 1.26, x_3 = 1.07,$	$x_4 = 1.22, x_5 = 1.11,$	$x_6 = 1.19$

Question 8 (***)

 $x^3 = 5x + 1, \ x \in \mathbb{R}.$

a) Show that the above equation has a root α between 2 and 3.

The iterative formula

$$x_{n+1} = \sqrt[3]{5x_n + 1}, \ x_1 = 2,$$

is to be used to find α

ĈĿ;

b) Find, to 2 decimal places, the value of x_2 , x_3 and x_4 .

[continues overleaf]

nadasn.

11

200

[continued from overleaf]

The diagram below is used to investigate the results of these iterations.

c) On a copy of this diagram draw a "staircase" or "cobweb" pattern showing how these iterations converge to α , marking the position of x_1 , x_2 , x_3 and x_4 .

> $x_3 = 2.30,$ = 2.22, 4= J Sa.

2.32

Question 9 (***)

A cubic equation has the following equation.

 $x^3 + 1 = 4x, \ x \in \mathbb{R}.$

- a) Show that the above equation has a root α , which lies between 0 and 1.
- **b**) Show further that the above equation can be written as

 $x = \frac{1}{4 - x^2}.$

An iterative formula, based on the rearrangement of part (b), is to be used to find α .

c) Starting with $x_1 = 0.1$, find to 4 decimal places, the value of x_2 , x_3 and x_4 .

[continues overleaf]

[continued from overleaf]

The diagram below is used to show the convergence of these iterations.

d) Draw on a copy of this diagram a "staircase" or "cobweb" pattern showing how these iterations converge to α , marking the position of x_1 , x_2 , x_3 and x_4 .

),
$$x_2 = 0.2506$$
, $x_3 = 0.2540$, $x_4 = 0.2541$

Question 10 (***)

G.B. Ma

20

$$f(x) = x^3 - 6x^2 + 12x - 11, \ x \in \mathbb{R}.$$

a) Show that the equation f(x) = 0 has a root α between 3 and 4.

An approximation to the value of α is to be found by using the iterative formula

 $x_{n+1} = \sqrt[3]{6x_n^2 - 12x_n + 11}, x_1 = 3.$

I.G.B.

2017

b) Find, to 3 decimal places, the value of x_2 , x_3 and x_4 .

20

[continues overleaf]

I.V.G.B.

Com

11+

Madasm

ma

12

[continued from overleaf]

0

The diagram below shows the graphs of

 $y = \sqrt[3]{6x^2 - 12x + 11}$

y = x and $y = \sqrt[3]{6x^2 - 12x + 11}$.

N.C. I.F. N.C.

y = x

- c) Draw on a copy of the diagram a "staircase" or "cobweb" pattern showing how these iterations converge to α , marking the position of x_2 , x_3 and x_4 .
- d) By considering the sign of f(x) in a suitable interval show that $\alpha = 3.442$, correct to 3 decimal places.

1+

Question 11 (***)

$4 \arccos x = x+1, \ x \in \mathbb{R}, \ -1 \le x \le 1.$

The above equation has a single root α .

a) Show that $0.5 < \alpha < 1$.

An iterative formula of the form $x_{n+1} = \cos(f(x_n))$ is used to find α .

b) Use this iterative formula, starting with $x_0 = 1$, to find the value of x_1 , x_2 , $x_3 = x_4$ and x_5 .

Give the answers correct to 5 decimal places.

c) Write down the value of α to an appropriate accuracy.

], $x_1 = 0.87758$, $x_2 = 0.89184$, $x_3 = 0.89022$, $x_4 = 0.89041$, $x_5 = 0.89039$

	(1)	-
$4 \operatorname{arcoss} = 30 + 1$	(b) 4anusz = 20+1	
$4 \operatorname{orcoss}_{-\infty-1} = 0$	ancess = 3(+1	
e-f(2)-dammen a-1	4	
- lear - talgeout - t- 1	$\left(\frac{1+2c}{c}\right)_{2o0} = c$	
-+(0.5) = 2.688	C+ I	
f(1)=-2	$\left(\frac{\partial u_{H+1}}{\partial t} = \frac{\partial u_{H+1}}{\partial t} \right)$	
(0)==2		
and someway a GD+ Ch-	Sta= 1	
GARNOES SUDD, THERE MUST	a1 = 0.87798	
BE + POOT SUGH THAT	CZ2 = 0.89184	
0.5<4<1	X3 = 0.89022	
	264 = 0.89041	
	25 = 0.83039	
	CI da 0 sanil -	

 $\alpha = 0.8904$

0

Question 12 (***)

The diagram above shows the graph of

 $y = \arctan x$.

- a) Write down the equations of the two horizontal asymptotes.
- b) Copy the diagram above and use it to show that the equation

 $3x - \arctan x = 1$

has only one positive real root.

- c) Show that this root lies between 0.45 and 0.5.
- **d**) Use the iterative formula

$$x_{n+1} = \frac{1}{3} (1 + \arctan x_n), \ x_0 = 0.475$$

to find, to 3 decimal places, the value of x_1 , x_2 and x_3 .

 $y = \pm \frac{\pi}{2}$, $x_1 = 0.481$, $x_2 = 0.483$, $x_3 = 0.483$

 $y = \arctan x$

(٩)	y=+生	
(b)	32-97542=1 32-1=076642	4.9 y=8a-1 4-7/2 g=0/2taya
	ouchous notescences) Brauers y=32-1 Q y=0xtory)	9=-£
(c)	$3x - ant_{app, -1} = 0$ let $f(x) = 3x - ant_{app, -1}$ f(0.45) = -0.028 ?	4: f(3) 13 (antinuous no (15-45,0.5)
	f(05) = 0.0364 J	$q f(x_0) = 0$: $f(x) = 0$
(4)	$\begin{aligned} \mathcal{X}_{n+1} &= \frac{1}{3} \left(1 + \operatorname{ontbar}_{n} \mathcal{X}_{n} \right) \\ \mathcal{X}_{n} &= 0 \cdot \frac{1}{3} \left[1 \\ \mathcal{X}_{1} &= 0.483 \\ \mathcal{X}_{2} &= 0.483 \\ \mathcal{X}_{1} &= 0.483 \end{aligned}$	

Question 13 (***+) The curve *C* has equation

 $y = x^3 - 3x^2 - 3,$

and crosses the x axis at the point $A(\alpha, 0)$.

- a) Show that α lies between 3 and 4.
- **b**) Show further that the equation $x^3 3x^2 3 = 0$ can be rearranged to

 $x = 3 + \frac{3}{x^2}, x \neq 0.$

The equation rearrangement of part (b) is written as the following recurrence relation

$$x_{n+1} = 3 + \frac{3}{x_n^2}, \ x_1 = 4.$$

c) Use the above iterative formula to find, to 4 decimal places, the value of x_2 , x_3 , x_4 and x_5 .

[continues overleaf]

[continued from overleaf]

The diagram below is used to describe how the iteration formula converges to α , and shows the graph of y = x and another curve D.

- **d**) Write down the equation of D.
- e) On a copy of the diagram draw a "staircase" or a "cob-web" pattern to show how the convergence to the root α is taking place, marking clearly the position of x_1 , x_2 and x_3 .

$$[x_1 = 3.1875, x_2 = 3.2953, x_3 = 3.2763, x_4 = 3.2794],$$

$$D: y = 3 + \frac{3}{x^2}$$

$$(9 \quad 9^{-3} \cdot 3^{+3} \cdot 3 \leftarrow 60001 \text{ y sci}}_{(1)} = (-1)^{-3} \cdot 3^{+3} \cdot 3^{-3} \cdot 3^{-3}$$

Question 14 (***+)

 $x^3 - 1 - \frac{1}{x} = 0, \ x \neq 0.$

a) By sketching two suitable graphs in the same diagram, show that the above equation has one positive root α and one negative root β .

The sketch must include the coordinates of the points where the curves meet the coordinate axes.

b) Explain why $\alpha > 1$.

To find α the following iterative formula is used

$$x_{n+1} = \sqrt[3]{\frac{1}{x_n} + 1}, x_0 = 1.5.$$

- c) Find, to 2 decimal places, the value of x_1 , x_2 and x_3 .
- d) By considering the sign of an appropriate function f(x) in a suitable interval, show clearly that $\alpha = 1.221$, correct to 3 decimal places.

$$, x_1 = 1.19, x_2 = 1.23, x_3 = 1.22$$

Question 15 (***+)

 $f(x) = x^4 + 3x - 1, \ x \in \mathbb{R}$

- a) By sketching two suitable graphs in the same set of axes, determine the number of real roots of the equation f(x) = 0.
- **b**) Show that the equation f(x) = 0 has a root α between 0 and 1.

The recurrence relation

$$\overline{x_{n+1}} = \frac{1 - x_n^4}{3}$$

starting with $x_0 = 0.3$ is to be used to find α .

- c) Find to 4 decimal places, the value of x_1 , x_2 , x_3 and x_4 .
- d) Explain whether the convergence to the root α , can be represented by a cobweb or a staircase diagram.
- e) By considering the sign of f(x) in a suitable interval, show that $\alpha = 0.32941$, correct to 5 decimal places.

 $x_1 = 0.3306, x_2 = 0.3293, x_3 = 0.3294, x_4 = 0.3294$

cobweb, because of oscillation

= (204P2E.0) flo scane)

Question 16 (***+)

The curve with equation $y = 2^x$ intersects the straight line with equation y = 3 - 2x at the point P, whose x coordinate is α .

a) Show clearly that ...

i. ... $0.5 < \alpha < 1$.

ii. ... α is the solution of the equation

$$x = \frac{\ln\left(3 - 2x\right)}{\ln 2}$$

An iterative formula based on the equation of part (a_{ii}) is used to find α .

- **b**) Starting with $x_0 = 0.5$, find the value of x_1 , x_2 and x_3 , explaining why a valid value of x_4 cannot be produced.
- c) Use the iterative formula

$$x_{n+1} = \frac{3 - 2^{x_n}}{2}, \ x_0 = 0.5,$$

with as many iterations as necessary, to determine the value of α correct to 2 decimal places.

F.	<u>h</u>	1.1
	$(\mathbf{q})(\mathbf{I}) = \mathbf{x}^{2} \qquad \qquad$	
	3° - 2 + 2 - 3=0	
	LET +(2)= 2+22-3	
	-f(0.5) = -0.585 7 ds f(0) is continuous AND f(0.5) f()) <0
	(<), , , , , , , , , , , , , , , , , , ,	
	(II) 2 ² = 3-2a	
	$\Rightarrow \ln 2^{2} = \ln (3-2a) \qquad \therefore \qquad 2 = \frac{\ln (3-2a)}{2}$	
	-> 2/12 = In (3-22) 14 2 / 45 Exporeno	
	(b) $T_{n_{H}} = \frac{\ln(3-23)}{\ln 2}$ (c) $T_{n_{H}} = \frac{3-2^{n_{H}}}{2}$	
	$\mathcal{X}_0 = 0.5$ $\mathcal{X}_0 = 0.5$	
	$x_1 = 1$ $x_1 = 0.7928$	
	$a_2 = 0$ $a_2 = 0.6337$	
	2(3 = 1.5 V 2(3 = 0.724-2	
	X4 = FAILS REFAUSE AROMAST 34 = 0.6139	
	OF LOSARTHM BEDAUED CX3 = 0.1022	
	NTHATINE DE DOBON.	
	0.7 = 0.003.	
	2 ₈ = 0.690 2 · · ·	
	≤19=0.0131	11
	: X & 0-69	
	1	7

 $x_1 = 1, x_2 = 0, x_3 = 1.584$, $\alpha = 0.69$

Question 17 (***+)

A curve C has equation

$$y = 4x^{\frac{3}{2}} - \frac{7}{8}\ln 4x, x \in \mathbb{R}, x > 0.$$

The point A is on C, where $x = \frac{1}{4}$.

a) Find an equation of the normal to the curve at A.

 $y = 4x^{\frac{3}{2}} - \frac{7}{8}\ln 4x$ Ά 0

This normal meets the curve again at the point B, as shown in the figure above.

b) Show that the x coordinate of B satisfies the equation

 $x = \left(\frac{16x + 7\ln 4x}{32}\right)^2$

[continues overleaf]

[continued from overleaf]

The recurrence relation

12

F.C.B.

$$x_{n+1} = \left(\frac{16x_n + 7\ln 4x_n}{32}\right)^{\frac{2}{3}}, \ x_0 = 0.7$$

is to be used to find the x coordinate of B.

c) Find, to 3 decimal places, the value of x_1 , x_2 , x_3 and x_4 .

d) Show that the x coordinate of B is 0.6755, correct to 4 decimal places.

y = 2x, $x_1 = 0.692$, $x_2 = 0.686$, $x_3 = 0.683$, $x_4 = 0.680$

É.B.

M2(12)

Question 18 (****)

The curve C has equation

 $y = x \cos x , \ 0 \le x \le \frac{\pi}{2} .$

The curve has a single turning point at M.

a) Show that x coordinate of M is a solution of the equation

 $x = \arctan\left(\frac{1}{x}\right).$

b) Show further that the equation

$x = \arctan\left(\frac{1}{x}\right)$

has root α between 0.8 and 1.

The iterative formula

$$x_{n+1} = \arctan\left(\frac{1}{x_n}\right)$$
 with $x_1 = 0.9$

is to be used to find α .

c) Find, to 3 decimal places, the value of x_2 , x_3 and x_4 .

[continues overleaf]

[continued from overleaf]

The diagram below shows the graphs of y = x and $y = \arctan\left(\frac{1}{x}\right)$

- y = x y = x $y = \arctan\left(\frac{1}{x}\right)$ $y = \arctan\left(\frac{1}{x}\right)$ x $y = \arctan\left(\frac{1}{x}\right)$
- d) Use a copy of the above diagram to show how the convergence to the root α takes place, by constructing a staircase or cobweb pattern.

Indicate clearly the positions of x_2 , x_3 and x_4 .

 $f(0.0) = -0.036022 \dots$ rctay (±)

, $x_2 = 0.838$, $x_3 = 0.873$, $x_4 = 0.853$

Question 19 (****)

$$f(x) \equiv \left| 4e^{2x} - 28 \right|, \ x \in \mathbb{R}.$$

a) Sketch the graph of f(x).

The sketch must include the coordinates of any intersections with the coordinate axes and the equations of any asymptotes.

The equation f(x) - 40 = 3x has a negative root α .

b) Show that $\alpha = -4.00045$, correct to 5 decimal places.

The equation f(x) - 40 = 3x also has a positive root β .

c) Use a numerical method, based on an iterative method, to determine the value of β correct to 5 decimal places.

-fG) -42-28 - ROCT BETWEEN 1 4 2 Ы -fa) -40 = 32 3x-68 =0 31.+68 (n(<u>3x+6</u> $\frac{1}{2} \ln \left(\frac{3x + 69}{4} \right)$ x = 1.84860 = 1.44758 447599 1.4759

 $\beta \approx 1.44760$

Question 20 (****)

The curve C has equation

 $y = \frac{3x+1}{x^3 - x^2 + 5} \,.$

The curve has a single stationary point at M, with approximate coordinates (1.4, 0.9).

a) Show that the x coordinate of M is a solution of the equation

 $x = \sqrt[3]{\frac{1}{3}x + \frac{5}{2}} \,.$

b) By using an iterative formula based on the equation of part (a), determine the coordinates of M correct to three decimal places.

2	- 0
(a) $y = \frac{32.41}{x^2 - x^2 + 5}$	(b) $\mathcal{I}_{k+1} = \sqrt[3]{\frac{1}{2}\mathcal{I}_{k+1} + \frac{5}{2}}$
$\begin{array}{l} \Rightarrow - (\widetilde{y}_{1}^{2} + Sx + i2 = 0 \\ \Rightarrow - \widetilde{y}_{2}^{2} + \widetilde{y}_{1}^{2} + \widetilde{y}_{1}^{2} + \widetilde{y}_{2}^{2} + \widetilde{y}_{$	$\begin{array}{l} \Box_1 = 1 \cdot \psi_{+} \\ \Box_2 = 1 \cdot \psi_3 \in \mathcal{B}_{1} \\ \Box_3 = 1 \cdot \psi_3 \mathcal{B} \mathcal{B}_{1} \\ \Box_{4+} = 1 \cdot \psi_3 \mathcal{B} \mathcal{B}_{1} \\ \Box_{5} = 1 \cdot \psi_3 \mathcal{B} \mathcal{B}_{1} \end{array}$
$\Rightarrow 63^{2} - 2x - 15 = 0$ $\Rightarrow 63^{2} = 2x + 15$	$\widehat{A} = \frac{(\widehat{1} \cdot 43 \cdots)_{3}^{-} (1 \cdot 43^{-})_{3}^{+} + 2}{3(1 \cdot 43^{-})_{3} + 1}$
$\Rightarrow x = \sqrt[3]{\frac{1}{3}x + \frac{5}{2}}$	ý ≈ 0.8998(
AS RHUIGHD	** M((1434 0.100)

M(1.439, 0.900)

Question 21 (****)

The curves C_1 and C_2 have respective equations

 $y_1 = 3 \arcsin(x-1)$ and $y_1 = 2 \arccos(x-1)$.

a) Sketch in the same set of axes the graph of C₁ and the graph of C₂.
 The sketch must include the coordinates.

- ... of any points where each of the graphs meet the coordinate axes.
- ... of the endpoints of each of the graphs.
- **b**) Use a suitable iteration formula of the form

$$x_{n+1} = f(x_n)$$
 with $x_1 = 1.6$,

to find an approximate value for the x coordinate of the point of intersection between the graph of C_1 and the graph of C_2 .

Question 22 (****)

At the point P which lies on the curve with equation

$$x = \ln\left(y^3 - 4y\right),$$

the gradient is 2

The point *P* is close to the point with coordinates $\left(\frac{11}{2}, \frac{13}{2}\right)$.

a) Show that the y coordinate of P is a solution of the equation

b) By using an iterative formula based on the equation of part (a), determine the coordinates of P correct to three decimal places.

, P(5.480, 6.429)

21		500	(n ² _P
9	$x = \ln(y^2 - 4y)$	SCA	yn = <u>yn</u> - 4
	$\frac{dx}{dy} = \frac{1}{y^3 - 4y} \times (3y^2 - 4)$	ξ	START WITH U1 = 13
	$\frac{dx}{dy} = \frac{3y^2 - 4}{13}$	ξ	y= 6.41830
	40 9-49	5	$G_3 = 6.43017$ ($A_1 = 6.43017$
	$\frac{\partial u}{\partial x} = \frac{y - 4y}{3y^2 - 4}$	ξ	94-6-42841 95 = 6-42867
	NOW	ζ	Y = 6.42863
	$\frac{y^3 - 4y}{3y^2 - 4} = 2$	ξ	USING. 2= 1/2 (y2-4g)
	y3_49 = 69= 8	5	$\Im \simeq h_1 \left(6.42863 - 4(6.42863) \right)$
	y(y²-4) = 6y²-8 ' //	2	a.~ 5.48049
	9 = 692-8 3-4 ARA	лено}	* P(5.480, 6.429)

Question 23 (****)

At the point P which lies on the curve with equation

 $y = \frac{x}{y + \ln y}$

the gradient is 2.

The point P is close to the point with coordinates (-0.3, 0.3).

a) Show that the y coordinate of P is a solution of the equation

$y = e^{-\frac{1}{2}(4y+1)}$.

b) By using an iterative formula based on the equation of part (**a**), determine the coordinates of *P* correct to three decimal places.

P(-0.262, 0.320)

Question 24 (****)

A curve has equation

It is given that the curve has a local maximum at the point M, whose approximate coordinates are (-1.7, 0.1).

 $y = \frac{x+1}{x^3 + 2x + 1}$

- **a**) Show that the x coordinate of M is a solution of the equation
- b) By using an iterative formula based on the equation of part (a), determine the coordinates of M correct to three decimal places.

 $x = -\frac{3x^2 + 1}{2x^2}$

c) State, with a reason, whether the convergence taking place using the formula of part (b) is of the "cobweb" type or the "staircase" type.

a START BY DIFFICENTIATION $\mathcal{Y} = \frac{\alpha + 1}{\alpha^3 + 2\alpha + 1} \implies \frac{dy}{d\lambda} = \frac{(\lambda^2 + 2\alpha + 1)x_1 - (\alpha + 1)(3\lambda^2 + 2)}{(\lambda^3 + 2\alpha + 1)^2}$ $\implies \frac{du}{d\lambda} = \frac{3^{2}+2(1-(3^{2}+3)^{2}+2(+2))}{2}$ UNG FOR ZERO TO SEARCH FOR STATIONARY POINTS 3-32-1=0 679

M(-1.678, 0.096)

Question 25 (****)

It is required to find the approximate coordinates of the points of intersection between the graphs of

$$y_1 = 9 - x^2, x \in \mathbb{R}$$
 and $y_2 = \ln(x - 1)$

- **a**) Show that the two graphs intersect at a single point P.
- **b**) Explain why the x coordinate of P lies between 2 and 3.

The recurrence formula

$$x_{n+1} = \sqrt{9 - \ln(x_n - 1)}$$

starting with a suitable value for x_1 , is to be used to find the x coordinate of P.

- c) Calculate the x coordinate of P, correct to three decimal places.
- **d**) By considering two suitable transformations, determine correct to two decimal places the coordinates of the points of intersection between the graph of

and

 $y_3 = 3 \left\lfloor 9 - (x+1)^2 \right\rfloor, \ x \in \mathbb{R}$

 $y_4 = 3\ln x, \ x \in \mathbb{R}, \ x > 0.$

 $x \approx 2.892$,

(1.89, 1.91)

 $x \in \mathbb{R}$.

x > 1

N9- In(24-1) 9-1) ~ 0.6375 .-P(2.842 0.638

Question 26 (****)

 $y = \arctan x$, $x \in \mathbb{R}$.

a) By writing $y = \arctan x$ as $x = \tan y$ show that

$$\frac{dy}{dx} = \frac{1}{1+x^2} \, .$$

The curve C has equation

$$y = \arctan x - 4\ln(1+x^2) - 3x^2, x \in \mathbb{R}.$$

b) Show that the x coordinate of the stationary point of C is a root of the equation

 $6x^3 + 14x - 1 = 0$.

c) Show that the above equation has a root α in the interval (0,1).

The iterative formula

$$x_{n+1} = \frac{1-6x_n^3}{14}$$
 with $x_0 = 0$,

is used to find this root.

- **d**) Find, correct to 6 decimal places, the value of x_1 , x_2 and x_3 .
- e) Hence write down the value of α , correct to 5 decimal places.

], $x_1 = 0.071429$, $x_2 = 0.071272$, $x_3 = 0.071273$, $\alpha = 0.07127$

 $\begin{aligned} & \underset{\partial X}{\partial t} = \frac{1}{1+3^2} - 4\left(\frac{1}{1+3^2}\right) \times 2 - 6 \\ \Rightarrow & \underset{\partial X}{\partial t} = \frac{1}{1+3^2} - \frac{8x}{1+3^2} - 6x \end{aligned}$

 $\frac{1}{2} 6a^{2} + 14a - 1 = 0$ $\frac{1}{2} 6a^{2} + 14a - 1 = 0$ $\frac{1}{2} 6a^{2} + 14a - 1$ (5 dp)

< <u>1-87</u>-60

 $\Rightarrow G_{\lambda} = \frac{1-\Theta_{\lambda}}{1+\chi^2}$ $\Rightarrow G_{\lambda} + G_{\lambda}^3 = 1-6$

Created	by T.	Madas
---------	-------	-------

-7 da - 1

= da = 1 Hota = 1+ buty Bot a = bury

 $\frac{du}{dx} = \frac{1}{1+x^2}$

Question 27 (****)

 $y = \arctan x, x \in \mathbb{R}$.

a) By writing $y = \arctan x$ as $x = \tan y$ show that

$$\frac{dy}{dx} = \frac{1}{1+x^2} \, .$$

The curve C has equation

$$y = 2 \arctan x - 3 \ln (1 + x^2) - 7x^2, x \in \mathbb{R}.$$

b) Show that the x coordinate of the stationary point of C is a solution of the cubic equation

$7x^3 + 10x - 1 = 0$.

 $=\frac{dx}{dy} = \sec^2 y$

4 =

1+ tangu = 1+x2 + da

= 1+x2

c) Hence show further that the x coordinate of the stationary point of C is 0.099314, correct to 6 decimal places.

proof

Question 28 (****)

 $y = \arcsin x \,, \, -1 \le x \le 1 \,.$

a) By writing $y = \arcsin x$ as $x = \sin y$ show that

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \,.$$

The curve C has equation

$$y = 3 \arcsin x - 4x^{\frac{3}{2}} + 5, \ 0 \le x \le 1.$$

b) Show that the x coordinates of the stationary points of C are the solutions of the equation

 $4x^3 - 4x + 1 = 0$.

c) Show that the above equation has a root α in the interval (0,0.5).

The root α can be found by using the iterative formula

$$x_{n+1} = x_n^3 + \frac{1}{4}$$
, with $x_0 = 0.5$.

- **d**) Find, correct to 3 decimal places, the value of x_1 , x_2 , x_3 and x_4 .
 - e) By considering the sign of an appropriate function f(x) in a suitable interval, show that $\alpha = 0.2696$, correct to 4 decimal places.

, $x_1 = 0.375$, $x_2 = 0.303$, $x_3 = 0.278$, $x_4 = 0.271$, $\alpha = 0.07127$

Question 29 (****)

It is known that the cubic equation

 $x^3 - 2x = 5, \ x \in \mathbb{R},$

has a single real solution α , which is close to 2.1.

Four iterative formulas based on rearrangements of this equation are being considered for their suitability to approximate the value of α to greater accuracy.

- $x_{n+1} = \frac{1}{2} \left(x_n^3 5 \right)$ • $x_{n+1} = \sqrt[3]{2x_n + 5}$ • $x_{n+1} = \sqrt{2 + \frac{5}{x_n^2 - 2}}$ • $x_{n+1} = \sqrt{2 + \frac{5}{x_n}}$
- a) Use a differentiation method, and **without** carrying any direct iterations, briefly describe the suitability of these four formulas.

In these descriptions you must make a reference to rates of convergence or divergence, and cobweb or staircase diagrams.

b) Use one of these four formulas to approximate the value of α , correct to 6 decimal places

		-1-
• g= ½ (x-s)	$\left(2+\frac{5}{2}\right)^{\frac{1}{2}}$	NEGATIVE === COBULHE
$\frac{dy}{d\lambda} = \frac{3}{2}\lambda^2$ $\frac{dy}{d\lambda}$	$= \frac{1}{2} \left(2 + \frac{S}{3_{c}} \right)^{-\frac{1}{2}} \times \left(- \frac{S}{3_{c}} \right)$	DIVERSES CONUM
y= (2x+s) ^{1/3}		PICCING THE FORMUCA WHAT THE
$\frac{\partial y}{\partial x} = \frac{2}{3} (2045)^{\frac{3}{3}}$		
4= 5(0 ² -2) ¹		(24+5) 3 3
$\frac{dy}{d\lambda} = -5(3^2-2)^2(2\lambda)$		24= 21
dy		J2= 2.095379106
6) () ² -2) ²		Cig= 2.014677239
A NUT IN SHUTTAINSME SPART FRANKS THE	416180001000 0F 0 - 2-1	34= 2.094 \$70 591
	The second se	21 ² = 54647 224382
$\frac{du}{dx} = 3u^2 \frac{du}{dx} = +6.615 > 1$	RAPIDLY DAVIESES WITHOUT OSCILLATION	JC = 2094551923
3/421	(STANDONGE AWAY ROM a)	327 = 2×094 SU S49
	DADADAL CHARGE AND AND POLICIES AL	Ω ₁ ≈ 2-044551492
$q_{P}^{(2)} = \frac{3}{2} (2\pi/2)_{\frac{1}{2}} \frac{q_{P}}{q_{P}} = +0.(2)8^{-1}$	AS THIS TEODE IS BETWEND D G 1	
$du = \frac{2}{3} \left(2x_1 t_3 \right)^{\frac{1}{3}} \frac{du}{dt} = \frac{1}{3} + 0 \cdot (x_1 g_{\dots})$	AS THIS TROVER IS BETWEND O G I (STAHBCARG TOWARDS ~)	
$\begin{split} \partial_{\lambda} &= \frac{2}{3} (z_{2} v_{3})^{\frac{2}{3}} \frac{d_{\lambda}}{d_{\lambda}} &= +0.158\\ \partial_{\lambda} &= \frac{-10\lambda}{(\lambda^{2}-2)^{2}} \frac{d_{\lambda}}{d_{\lambda}} \Big _{z=1} &= -361\% < -1 \end{split}$	AS THE TROVE IS BRITNERS O & 1 (STANGARE TOWARDS ~) DIVERSE MOTH OSCILLATION AS THIS FIGURE IN BRIDDE AND FIGURE ()	
$\begin{split} & \frac{dq}{dz} = \frac{2}{3} (z_{21} z_{3})^{\frac{2}{3}} \frac{dq}{dz} \Big _{z=z+1} = +0.110 \varepsilon_{-} \\ & \frac{dq}{dz} = \frac{-10z}{(z^{4}-z)^{2}} \frac{dq}{dz} \Big _{z=z+1} = -3615 \zeta < -1 \\ & \frac{dq}{dz} = \frac{1}{2} (z_{1} + \frac{z}{z})^{\frac{1}{3}} \left(-\frac{z}{z_{1}} \right) \frac{dq}{dz} \Big _{z=z=1/2} = -0.2708 \end{split}$	Λ. ΤΗΥ ΤΟΥΛΕ 15 ΑΡΙΛΑΝ ΟΙ 4 1 (

 $\alpha \approx 2.094551$

Question 30 (****+)

A function f is defined in the largest real domain by the equation

$$f(x) \equiv \frac{50x^2 - 142x + 95}{2x - 5}$$

- **a**) State the domain of f.
- b) Evaluate f(1), f(2) and f(3), and hence briefly discuss the number of possible intersections of f with the coordinate axes, ...
 - **i.** ... in the interval [1,2].
 - **ii.** ... in the interval [2,3].
- c) Express f(x) in the form $Ax + B + \frac{C}{2x-5}$, where A, B and C are constants.
- d) Calculate, correct to 3 decimal places, the x coordinates of the stationary points of f.

52.5 $f(x) \equiv 25x - 8.5 +$ $x \in \mathbb{R}, x \neq \frac{5}{2}$ $x \approx 3.525, x \approx 1.475$ 2x - 5

4	BY LONG DIVISION
	$\begin{array}{c c} 2x - 2 \\ - 5 \\ $
	$ \begin{array}{c} \leftarrow \left\{ \Omega \right\} = & \displaystyle \cos - \frac{17}{2} + \frac{185/2}{2z-5} & \displaystyle \Leftrightarrow & A = 25 \\ & B = -\frac{17}{2} \\ & C = \frac{162}{2} \end{array} $
.)	$\sum_{i=1}^{n} \frac{(2\pi i)^{2}}{(2\pi i)^{2}} + \frac{\pi i}{2} - \frac{2\pi}{2} - \frac{2\pi}{2} = (\chi)^{2}$ $\sum_{i=1}^{n} \frac{(2\pi i)^{2}}{(2\pi i)^{2}} + \frac{2\pi}{2} = (\chi)^{2}$ $\sum_{i=1}^{n} \frac{(2\pi i)^{2}}{(2\pi i)^{2}} + \frac{2\pi}{2}$
	$ \begin{array}{c} & & \\ & & $

Question 31 (****+)

 $y = \arcsin x \,, \, -1 \le x \le 1 \,.$

a) By writing $y = \arcsin x$ as $x = \sin y$ show that

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \,.$$

The curve C has equation

$$y = 2 \arcsin x - 4x^{\frac{3}{2}}, \ 0 \le x \le 1$$

b) Show that the x coordinates of the stationary points of C are the solutions of the equation

 $9x^3 - 9x + 1 = 0$.

c) Show further that one of the roots, α , of the equation of part (b) is 0.9390, correct to 4 decimal places.

It is further given that the equation of part (b) has 2 more real roots, $\beta \approx -1.0515$, and

d) Determine the value of γ , correct to 3 places.

1 2	A = 0KNAT	
	Silu = x	
	2 = 5100	
	dr. c	
	dy = vag	
	dy l	
	di = way	
	da	
	da this sing since and si	
	dy _ l	
	$d\lambda = \sqrt{1 - \lambda^2}$	
)	$y = 2 \arctan \alpha - 4 a^2$	
	dy _ 2 m2	
	di vi-zi - or	
	60 Street ward advants	
	TOR STATIONARY OARDES	
-	$\Rightarrow 0 = \frac{2}{(1-2i)^{\frac{1}{2}}} - 6\chi^{\frac{1}{2}}$	
	1	
-	$\Rightarrow 6x^2 = \frac{2}{(1-x^2)^2}$	
	-12- [±] 1	
	$- x = (1-x^2)^{\frac{1}{2}}$	
	= 92 =	
	(-χ ²	

 $\gamma \approx 0.112$

Question 32 (****+)

The curve C has equation

 $f(x) \equiv 3x^4 + 8x^3 + 3x^2 - 12x - 6, \quad x \in \mathbb{R}$

The curve has a single stationary point whose x coordinate lies in the interval [n, n+1], where $n \in \mathbb{Z}$.

a) Determine with full justification the value of n.

A suitable equation is rearranged to produced three recurrence relations, each of which may be used to find the x coordinate of the stationary point of C.

These recurrence relations, all starting with $x_0 = \frac{1}{2}n$ are shown below.

(i) $x_{n+1} = \frac{2}{2x_n^2 + 4x_n + 1}$ (ii) $x_{n+1} = \frac{1}{x_n^2} - \frac{1}{2x_n} - 2$ (iii) $x_{n+1} = \sqrt{\frac{2 - x_n}{4 + 2x_n}}$

b) Use a differentiation method, to investigate the result in attempting to find an approximate value for the x coordinate of the stationary point of f(x), with each of these three recurrence relations.

The method must include ...

- ... whether the attempt is successful
- ... whether the convergence or divergence is a "cobweb" case or a "staircase" case.

, [[0,1]]

 $6^{\prime}A_{U}A_{TE}A_{T} = 0.5$ $= -\frac{1}{2}\sqrt{\frac{2}{3}}\sqrt{\frac{1}{3^{\prime}}} - \sqrt{\frac{2}{3}} \times \frac{1}{5\sqrt{5}}$

 $a_{y_{u}} = \sqrt{\frac{2-2x_{u}}{4+2x}}$

... which recurrence relation converges at the fastest rate.

You may not answer part (b), by simply generating sequences.

۰.	
	a) START BY DIFFFRATION TO LOCATE THE STATIONARY POINT
0	$f(x) = 3x^4 + 8x^3 + 3x^2 - 12x - 6$
	$f(\alpha) = 12\chi^3 + 24\chi^2 + 6\lambda - 12$
1	$f'(x) = 6(xx^{2} + 4x^{2} + x - 2)$
	BY INSPECTION)
	f(0)= -12 <0
	f(i) = 30 > 0
	AS for is communic and atomic sign in the interval
	THERE IS AT LEAST A BOOT OF FOULD IN THIS INTINUML
	b) INVERTIGATE FACT OF THE THERE RELATIONS TAINED THE MIDDOINS
	OF THE INTROUGL DEOS
	• $\mathcal{I}_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_$
ł	EVALUATE AT 2=0.5 GNES - 48.
1	• $\mathfrak{T}_{\mathfrak{H}_{1}} = \frac{1}{2\mathfrak{I}_{1}} - \frac{1}{2\mathfrak{I}_{1}} - 2\mathfrak{I}_{2} + 2\mathfrak{I}_{2} = -\frac{1}{2\mathfrak{I}} - 2\mathfrak{I}_{2} = -\frac{2}{\mathfrak{I}^{2}} + \frac{1}{2\mathfrak{I}^{2}}$
	6.400417F AT 2=0-5 Grutt14
	• $\mathfrak{A}_{k_{1}k_{1}} = \sqrt{\frac{2-2a_{1}}{4+2\lambda_{1}}}$, $\frac{d}{d\lambda} \left[(2-\lambda)^{\frac{1}{2}} (4+2\lambda_{1})^{\frac{1}{2}} \right] = \dots$

Question 33 (****+) The curve *C* has equation

 $y = \sqrt{e^{2x} - 2x}$, $e^{2x} > 2x$.

The tangent to C at the point P, where x = p, passes through the origin.

a) Show that x = p is a solution of the equation

b) Show further that the equation of part (**a**) has a root between 0.8 and 1.

 $(1-x)e^{2x} = x.$

The iterative formula

 $x_{n+1} = 1 - x_n e^{-2x_n}$

with $x_0 = 0.8$ is used to find this root.

c) Find, correct to 3 decimal places, the value of x_1 , x_2 , x_3 and x_4 .

d) Hence show that the value of p is 0.8439, correct to 4 decimal places.

, $x_1 = 0.838$, $x_2 = 0.843$, $x_3 = 0.844$, $x_4 = 0.844$

Question 34 (*****)

I.C.B.

The point P lies on the curve C with equation

 $y = \sqrt{1 + 2e^{2x^2}} , x \in \mathbb{R} .$

Given that the tangent to C at P passes through the origin, determine the coordinates of P, correct to 3 significant figures.

Created by T. Madas

C.B.

nana

(*****) Question 35

A curve C is defined in the largest real domain by the equation

 $y = \log_x 2$.

a) Sketch a detailed graph of C.

The point P, where x = 2 lies on C.

The normal to C at P meets C again at the point Q.

b) Show that the x coordinate of Q is a solution of the equation

 $[1 + x \ln 4 - \ln 16] \ln x = \ln 2.$

c) Use an iterative formula of the form $x_{n+1} = e^{f(x_n)}$, with a suitable starting value, to find the coordinates of Q, correct to 3 decimal places.

Q(0.518, -1.054)

 $y = \frac{\ln 2}{\ln(0.510)}$

y ~ -1.054

= Q(0.518, -1.054)

- 0.526168

13 = 0·SI4 549

 $\lambda_4 = 0.519774$ $\lambda_5 = 0.517437$

Jc = 0. 518 485 310 812 ·0 = 71

= D- S18 226

JL~ 0.518

LINEAR DISTURBANCE INTERPOLATION ALASINGUISCOM I.X.C.B. MARIASINALISCOM I.X.C.B. MARIASINALISCOM I.X.C.B. MARIASIN

Question 1 (**+)

The following cubic equation is to be solved numerically.

 $x^3 = 8x - 1, \ x \in \mathbb{R}.$

- a) Show that the equation has a root α , in the interval [2,3].
- b) Use linear interpolation three successive times, to find α correct to an appropriate degree of accuracy.

OHEOK THE SIGN OF ((a) REWRITE THE BRUATION AS & FUNCTION $x^{\delta} = 8x - 1$ · (2.748 ...)= -0.2394 ... <0 >> 2748 < < < 3 $x^3 - \theta x + l = 0$ FINAL INTERDUCTION $f(x) = x^3 - Bx + 1$ · f(2) = 8-16+1 = -7 <0 7 $\frac{3-\alpha_3}{\alpha_5-2.748...}=\frac{4}{0.2344}$ f(3) = 27-24+1 = 4 >0 J AVES ∋ 07181... 0.2394 x = 4x3 -EAST ONE BOOT & IN (243) = 11.7101 ... = 4-2394. a ⇒ K3 = 2.7622... PROCEED TO INTERPOLATE (SIMILAR TRIMMES) $\Rightarrow \frac{3-\alpha_1}{\alpha_1-2} = \frac{4}{7}$ HAVE ~= 2.76 (2 d.p) AFTAL 3 INHEROCATIONS 7x = 4x-8 d1= 2.636. RT THE SIGN OF f(g). <0 => 2.636 < x < 3

 $\alpha \approx 2.76$

ng

Question 2 (**+)

The following quartic equation is to be solved numerically.

 $x^4 + 7x - 15 = 0, x \in \mathbb{R}$.

Given that the above quartic has a real root α in the interval [1.4,1.5], use linear interpolation twice, to find α correct to an appropriate degree of accuracy.

·	
- C	
WELTE THE OPDIATION	AS A FUNCTION & SUMWATE IT AT
THE FNDPDINTS OF T	HE INDOBUAL FINEN
$f(x) = x^4 + 7$	lz −1≤
· - f(1,4) = -1.3	SRL / o
. f(15) = 0.0	
. (0 0) - 0 3	020 > 0
MURDER CONCE ((SIMILAR TRUANSLES.)
$\frac{x}{x} = z \cdot \frac{1}{2}$ def	= 0.5625
- 0.5c2r2	1. 2284
= (.9209.00 =	5-85cl
- = = 1.470	07
-	6
HWD THE SHEN OF	+G4)
⇒ f(1·4707.) =	= -0.0264 <0
=> 1.4707 < ROST	· < 1.5
14 56	
TO SOUND MINUNOUTIE	ON THOUS
$\Rightarrow \frac{1 \cdot \zeta - \chi_{L}}{2} =$	0.5625
J ₂ - 1.4107	0.004
	0.2889 X2
	×.
, 2-,	

Question 3 (***)

 $e^x - 2x^2 = 0.$

- a) Show that the above equation has a root α , which lies between 1 and 2.
- **b**) Use linear interpolation three times, starting in the interval [1,2] to find, correct to 2 decimal places the value of α .

· .	$x_1 \approx 1.540, \ x_2 \approx 1.$	486, $x_3 \approx 1.488$,	$\alpha \approx 1.49$
22		2~	
asinathe da	a) $f(\phi) = e^2 - 2e^2$ • $f(z) = e^2 - 2e^2$ • $f(z) = e^2 - 2e^2 - 71828$ • $f(z) = e^2 - 8e^2 - 6001$ + $f(z) = b^2 - 6001$ + $f(z) = b^2 - 2e^2$ b) Now $\frac{2 - x_1}{x_1 - 1} = \frac{0.60074}{0.01820}$ · $\frac{1}{2} - \frac{x_1}{x_1 - 1} = \frac{0.60074}{0.01820}$	(2) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	22488 0 00717 0 002238 0 008102 x 0 00717x3-0 117 0 00800 x3 0 0000 0 000 0 000
1. V.C.	$\begin{array}{c} \frac{(1+y_0)-x_1}{x_1-\cdots x_n} = \underbrace{0 \text{ orbit}}_{0} \\ \Rightarrow \mapsto 106(5-0.108x_0) \\ \Rightarrow) 11055 = 0.1701153_2 \\ \Rightarrow x_2 \approx i.4\infty \end{array}$		2
		nan.	8
Smaths.Co.	Thaths.C		
I.F.C.B.	1. Y. G.J.		Ç
Create	ed by T. Madas	Mado	1

Question 4 (***)

C.P.

 $\tan x = 4x^2 - 1.$

- a) Show that the above equation has a root α , which lies between 1.4 and 1.5.
- **b**) Use linear interpolation twice, starting in the interval [1.4,1.5] to find, correct to 3 decimal places two approximations for α .

 $x_1 \approx 1.415, \ x_2 \approx 1.423$

 $\frac{(101.2)}{x_2 - x_1} = \frac{x_1 - x_2}{x_2 - x_1 - x_2}$

9-429

24

2

NEW SCHUTCHER STRATEGIER ARSTRAUSCOM F.Y.C.B. MARIASINALISCOM F.Y.C.B. MARIASIN

Question 1 (**)

 $x^3 + 10x - 4 = 0$.

- a) Show that the above equation has a root α , which lies between 0 and 1.
- **b**) Use the Newton-Raphson method **twice**, starting with $x_1 = 0.5$ to find, correct to 4 decimal places, an approximation for α .

5	x = 0.3939
	2.
d)	WRITE IN FUNCTION NOTATION
	$f(2) = 3_2 + 10s - 4$
	46) 4 <0 4(1) = +7 >0
Ь)	44 (C) IL CONDUCION AN (C)() of CHANGES SUP), THESE IL AT LEAST ON TOOT IN (C)() TERMARE THE NEWTON-EXARCON ITAM
	$f(x) = \mathcal{J}_{x} + PO$ $f(x) = \mathcal{J}_{x} + PO$
	$\mathfrak{A}_{u_{0,1}} \simeq \mathfrak{A}_{1} = -\frac{\frac{1}{2}(\mathfrak{A}_{1})}{\frac{1}{4}'(\mathfrak{A}_{1})}$
	$\Im_{q_{h_{l}}} = \Im_{q_{l}} - \frac{\Im_{q_{l}}^{2} + 10\Im_{h_{l}} - 4}{\Im_{q_{l}}^{2} + 10}$
	STARTING MITH Q1=05
	$Q_2 = 0.5 - \frac{n (t^2 + N_0(o_2) - \psi}{3(p_4)^2 + 10} \approx 0.3153 \psi_{} \left(\frac{\eta_2}{42}\right)$
	REARBY ONCE MORE
	$\Im_3 = 0.393889145$
	: <u> ~ ~ 0.3131</u> 4. 4p.

Question 2 (***+)

It is known that the cubic equation below has a root α , which is close to 1.25.

 $x^3 + x = 3.$

Use an iterative formula based on the Newton Raphson method to find the value of α , correct to 6 decimal places.

, <i>α</i> ≈ 1.213	4
REARPHORE THE ERUATION, AND WRITH IT AS A FUNCTION	
$\Rightarrow x^3 + x = 3$	
=> x +x-3=0	
$\Rightarrow f(x) = x^3 + x - 3$	
SET UP A RECORDENCE RELATION BASED ON NEWTON RAPHON	
• $-\int_{-\infty}^{\infty} (x) = 30^{2} + 1$	
• $\alpha_{n+1} = \alpha_n - \frac{f(\alpha_n)}{f(\alpha_n)}$	
$\Rightarrow \mathcal{X}_{hhi} = \mathcal{X}_{h} - \frac{\mathcal{X}_{h}^{3} + \mathcal{X}_{h} - 3}{\mathcal{X}_{h}^{2} + 1}$	
$\Rightarrow \Im_{u_{ij}} = \frac{\Im_{u_{ij}}^{3} + \chi_{u_{ij}} - (\Im_{u_{ij}}^{3} + \chi_{u_{ij}} - 3)}{\Im_{u_{ij}}^{3} + 1}$	
$\Rightarrow \Im_{\mathbf{y}_{\mathbf{y}_{i}}} = \frac{2\mathbf{x}_{i}^{\mathbf{x}} + 3}{3\alpha_{i}^{\mathbf{x}} + 1}$	
A DUDING HERE STATING WITH 24=1-25, DENGE THE GRAVES	
⇒ 34, = 1·25	
⇒ x ₂ = 1-214285714	
⇒ X3 = 1-213412.176	
= 34= (-213 411 663	
= 3 25 = 1.213411 665 x = 1.213411 66	

C.H.

Question 3 (***+)

The curve with equation $y = 2^x$ intersects the straight line with equation y = 3 - 2x at the point P, whose x coordinate is α .

- **a**) Show that $0 < \alpha < 1$.
- b) Starting with x = 0.5, use the Newton Raphson method to find the value of α , correct to 3 decimal places.

Question 4 (***+)

A curve has equation

 $x^3 + xy + y^3 = 10.$

The straight line with equation y = x + 2 meets this curve at the point A.

- a) Show that the x coordinate of A lies in the interval (0.1, 0.2).
- **b**) Use the Newton Raphson method once, starting with x = 0.1, to find a better approximation for the x coordinate of A.

		<u>x</u> ≈ 0.134
SOUNDE SIMUCRINIOULLY TO FIN	b "A"	
$\begin{aligned} x^3 + xy + y^3 = 10 \\ y = x + 2 \\ y = x + 2 \\ \Rightarrow x^3 + y^3 = x^3 + y^3 + y^3 = y^3 + y^$	$\frac{1}{2(x+z)} + (2x+z)^{3} = 10$ $\frac{1}{2(x+z)} + (2x+z)^{3} = 0$ $\frac{1}{2(x+z)^{3}} + (2x+z)^{3} = 0$	с эгіно
+(01) = -0.528 <0 +(02) = 1.036 >0	AS for is continuous a optimized allow in (0-1,02) is at least out durt in th INTIQUAL	h-10 5 mace yr.

f(0.1) = - 0.521

Question 5 (****)

A curve has equation

 $x^3 + y = xy.$

The straight line with equation y+3x+1=0 meets this curve at the point A.

- a) Show that the x coordinate of A lies in the interval (-0.4, -0.3).
- **b)** If P and Q are integers, use an iterative procedure based on the formula

 $x_{n+1} = \frac{1}{2} \Big[Px^3 + Qx^2 - 1 \Big], \ x_1 = -0.35,$

to find the x coordinate of A, correct to 2 decimal places.

- The straight line with equation y+3x+1=0 meets the above mentioned curve at another point *B*, whose the *x* coordinate lies in the interval (0.8,0.9).
 - c) Use the Newton Raphson method twice, starting with x = 0.8, to find a better approximation for the x coordinate of B.

A 100 M	
a) solding supertructions to flug with sectors	C) PERBAGING THE "N-R" NETHOD
$(j_{\pi} - \hat{s}_{\pi}) = 0$ $\hat{s}_{1}^{+} + (j_{\pi} - 2i_{\pi} - 0) = 0$ $\hat{s}_{2}^{+} + (j_{\pi} - 2i_{\pi} - 0) = 0$ $\hat{s}_{2}^{-} + \hat{s}_{2}^{+} - 2i_{\pi} - 1) = 0$ $\hat{s}_{2}^{-} + \hat{s}_{2}^{+} - 2i_{\pi} - 1) = 0$ $\hat{s}_{2}^{-} + \hat{s}_{2}^{+} - 2i_{\pi} - 1) = 0$	$\frac{1}{4}(q) = \frac{1}{2} + \frac{2q^2}{q^2} - \frac{2q - 1}{q} + \frac{1}{4}(q) = \frac{1}{2} + \frac{2q^2}{q} + \frac{2q^2}{q} - \frac{1}{4}(q) = \frac{1}{2} + \frac{1}{2} +$
$16T + (6x) \approx x^3 + 3x^2 - 2x - 1$	$\Box_{2k} = \Box_{k} - \frac{(C_{2k})}{\sqrt{C_{2k}}}$
f(-0.4) = -0.151 < 0.2 f(-0.4) = +0.216 > 0.2 f(-0.4) = +0.216 > 0.2 f(-0.4) = +0.216 > 0.2 f(-0.4) = +0.216 > 0.2	$\begin{array}{rcl} \Delta_{11} &= & \Delta_{11} &= & \frac{-\Delta_{1}^{2} + 3\chi_{1}^{2} - 2\chi_{2} - 1}{3\chi_{1}^{2} + 6\chi_{1}^{2} - 1} \\ \end{array}$ $\begin{array}{rcl} \Delta_{11} &= & \Delta_{11} &= & \frac{-6\sqrt{3} + 3\chi_{1}6}{3\chi_{1}6} \frac{6\chi_{1}^{2} + 3\chi_{2}6}{3\chi_{1}6} \frac{-1}{3\chi_{1}6} $
6) REARDANGE f(x)=0 TOP 22	a, ≈ 0 13124≲
$(\varepsilon + \varphi - 1 - \frac{1}{2}) \frac{1}{\sum_{i=1}^{n} e_{i}^{i} a_{i}^{i} + \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{a_{i}^{i}} + \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{a_{i}^{i}} + \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \frac{1}{a_{i}^{i}} + \frac{1}{2} \sum_{i=1}^{n} \frac{1}{$: 9 ₈ = 0694
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{l} \Delta_{q} = -0.33133394 \\ \Delta_{g} = -0.36687065 \\ \Delta_{g} = -0.36687065 \\ \Delta_{g} = -0.36687065 \\ \end{array}$	
$3_{17} = -0.3454504(1-)$ $3_{19} = -0.341879055$	
Xy = -03452447532- Xye = −0341847666[

 $x_A \approx 0.34$, $x_B \approx 0.834$

Question 6 (****)

C.B.

A curve C has equation

 $y = \mathrm{e}^{-x} \ln x \,, \ x > 0 \,.$

- a) Show that the x coordinate of the stationary point of C lies between 1 and 2.
- **b**) Use an iterative formula based on the Newton Raphson method to find the x coordinate of the stationary point of C, correct to 8 decimal places.

 $\Rightarrow \frac{du}{dx} = -e^{2} \times \ln x + e^{-x} \frac{1}{x}$ $\rightarrow \frac{dy}{dx} = e^{-x} \left[\frac{1}{x} - \ln x \right]$ TO FIND STAT e to 1 - ha = 0 1- xlar = 0 -> -f(x) = 1 - x/mx • f (1) = 1 >0 • f(z) = -0.386.. 45 fa) is consinuous and annuals sin in the inne (1,2) THERE IS AT WAST ONE ROOT IN THE INCHRUAC, LE HERE 4 STATIONIARY POINT

• f(x) = 1 - xlnz Ь) • $f(x) = -[1 \times \ln x + 2 \times \frac{1}{x}] = -[\ln x + 1]$ $= -1 - ly_{2}$ BY THE NEWTON RAPHSON MATTER an - fan 1-34 $= 3t_{y} + \frac{1 - 2u \ln 2u}{1 + \ln 2}$ = 34+34/24+1-36/24 $\partial_{u_{HI}} = \frac{x_u + 1}{1 + \ln x_u}$ NOW USING AS & SMITSMITS A SAILO WOU VALUE HAVFWAY IN THE IMHWAL WE OBTAIN 2,=15 $\chi_2 = 1.778770590...$ $\chi_3 = 1.763266078...$ $\chi_q = 1.763222035...$ Xs = 1.763222834 ... :. J≈ 1.76322283 A. = 1.7632220.34 / 8 de

x ≈ 1.76322283

C.4.

Maga

Question 7 (****)

At the point P, which lies on the curve with equation

$$x = \ln\left(y^3 - y\right),$$

the gradient is 4

The point P is close to the point with coordinates (7.5, 12).

a) Show that the y coordinate of P is a solution of the equation

 $y^3 - 12y^2 - y + 4 = 0.$

b) Use the Newton Raphson method once on the equation of part (a), in order to determine the coordinates of *P*, correct to two decimal places.

P(7.46, 12.06)

Question 8 (****)

It is required to find the single real root α of the following equation

$$x^2 = \frac{2}{\sqrt{x}} + \frac{3}{x^2}, \ x > 0.$$

- a) Show that the α lies between 1 and 2.
- b) Use the Newton Raphson method to show that α can be found by the iterative formula

$$c_{n+1} = \frac{x_n^5 + 3x_n^{\frac{5}{2}} + 9x_n}{2x_n^4 + x_n^{\frac{3}{2}} + 6},$$

starting with a suitable value for x_1 .

) Hence find the value of α , correct to 8 decimal places.

HE SQUATTION IN FUNCTION FORM USING ANY VALUE IN THE INTRUAL AND THE RECUBLINCE OF PART (b) $\mathfrak{X}^2 = \frac{2}{\sqrt{\chi^2}} + \frac{3}{\mathfrak{T}^2}$ $\mathcal{A}^{\mu e \ell} = \frac{\mathcal{D}_{\mu}^{2} + \mathcal{D}_{\mu}^{2}}{\mathcal{D}_{\mu}^{4} + \mathcal{D}_{\mu}^{2}} + \mathcal{D}_{\mu}^{2}}$ $\mathfrak{I}^2_{-} - \frac{2}{\sqrt{\lambda^2}} + \frac{3}{\mathfrak{I}^2} = 0$ $-(\chi) = \chi^2 - \frac{2}{\sqrt{\chi^2}} - \frac{3}{\chi^2}$ · 21 = 1.5 · f(1)= 1-2-3=-4<0 • $f(2) = 4 - \sqrt{2} - \frac{3}{4} = 1.8357... > 0$. 𝔅₂ = \.634594485 · 313 = 1.637565406 ... AS for is continuous on (1,2), the other stan (1,2) - 34 = 1.63756 62.28 .. O=(w)- TAHT OS (SID ON 10 HUND A TRADI TA ZAVING 250HT (a) $f(x) = x^2 - 2\bar{x}^{\frac{1}{2}} - 3\bar{x}^{-2}$ · X5 = 1.63756.6228... $f'(x) = 2x + x^{-\frac{3}{2}} + 6x^{-3}$ · REPUREN BOT IS 1.63756623 NEWTON RAPHSON STATES CORRECT TO B J.P. χ^2_{*} -22 + 3 + 623 - 3X, . 34 € + 6 +64 - 24 + 224 + 324 $= \frac{\chi_{1}^{5} + 3\chi_{2}^{\frac{5}{2}} + 9}{2\chi^{4} + \chi_{2}^{\frac{3}{2}} + 1}$

α ≈ 1.63756623...

Question 9 (****)

 $y_3 = 2 \left[1 - (2x+1)^2 \right], x \in \mathbb{R}$

It is required to find the approximate coordinates of the points of intersection between the graphs of

 $y_1 = 1 - x^2, x \in \mathbb{R}$ and $y_2 = \ln(x+1), x \in \mathbb{R}, x > -1.$

- a) Show that the two graphs intersect at a single point P, explaining further why the x coordinate of P lies between 0 and 1.
- b) Use the Newton Raphson method once, starting x = 0.7, to calculate the x coordinate of P, giving the answer correct to 3 decimal places.
- c) By considering two suitable transformations, determine correct to 2 decimal places the coordinates of the points of intersection between the graph of

and

(a) USANG A QUICK SECTED OF THE TWO GRAPH: $\begin{array}{c}
2z-1 & 4y & y & y = b(z_{1}+1) \\
2z-1 & 4y & y & y = b(z_{1}+1) \\
2z-1 & 4y & y & y = b(z_{1}+1) \\
2z-1 & y & y = b(z_{1}+1) \\
z-1 & y & y & y = b(z_{1}+1) \\
z-1 & y & y & y = b(z_{1}+1) \\
z-1$

 $, x \approx 0.690$, (-0.16,1.05)

 $y_4 = 2\ln(2x+2), x \in \mathbb{R}, x >$

Question 10 (****)

An arithmetic series has first term 2 and common difference X.

A geometric series has first term 2 and common ratio X.

The sum of the 11th term of the arithmetic series and the 11th term of the geometric series is 900.

a) Show that X is a solution of the equation

$$X^{10} + 5X = 449.$$

b) Show further that

1.8 < X < 1.9.

c) Use the Newton Raphson approximation method twice, with a starting value of 1.8, to find an approximate value for X, giving the answer correct to 3 decimal places.

Question 11 (****+)

The curve C has equation

 $y = \sqrt{e^{2x} + 1}, \ x \in \mathbb{R}.$

The tangent to the curve at the point P, where x = p, passes through the origin.

a) Show that x = p is a solution of the equation

$(x-1)e^{2x}=1.$

- **b**) Show further that the equation of part (**a**) has a root between 1 and 2.
- c) By using the Newton Raphson method once, starting with x=1, find an approximation for this root, correct to 1 decimal place.

It is further given that the Newton Raphson method fails on this occasion.

d) Use an appropriate method to verify that the root of the equation of part (**a**) is 1.10886 correct to 5 decimal places.

a) START BY OBTAINING THE GRUATION OF THE TANGENT AT (P.VE	<u>(1</u>)
$\Rightarrow g = (e_{+1}^{\infty})^{\frac{1}{2}}$	
$\implies \frac{dy}{dt} = \frac{1}{2} \left(e_{+1}^{2x} \right)^{\frac{1}{2}} \left(2e^{2x} \right)$	
$\Rightarrow \frac{\partial u}{\partial t} = \frac{e^{2t}}{(e^{2t}+1)^{\frac{1}{2}}}$	
$\Rightarrow \frac{dy_{+}}{dx} _{p} = \frac{e^{2t}}{(e^{2t}+1)^{\frac{1}{2}}}$	
$\implies \underbrace{g}_{-} \left(e^{2\theta_{+1}} \right)^{\frac{1}{2}} = \underbrace{e^{2\theta_{+1}}}_{\left(e^{2\theta_{+1}} \right)^{\frac{1}{2}}} \left((x - \theta) \right)$	
NOW IT IS PHILDS THAT THE PROOF THOUGHST PASSES THROUGH (9)	o)
$\implies -(e^{2P_{+1}})^{\frac{1}{2}} = \frac{e^{2P_{+1}}}{(e^{2P_{+1}})^{\frac{1}{2}}}(-P)$	
$\Rightarrow -\left(e^{2p}+1\right)^{\frac{1}{2}} = \frac{-Pe^{2p}}{\left(e^{2p}+1\right)^{\frac{1}{2}}}$	
=> e+1 = pe3	
\Rightarrow $1 = pe^{2p} - e^{2p}$	
\implies 1 = $e^{2t}(t-1)$	
OR WRITTAN IN 2 245 2=P	
$\Rightarrow (x_{-1})_{e}^{\alpha} = 1$	
the sepurition	

	$f(x) = (x-1)e^{2x} - 1$
	f(i) = -i < 0 $f(i) = e^{4} - i > 0$
	[51] ar will result the art wountains in (0) at
	THERE IS AT GAAT ONE SOLUTION IN THE INTERNAL
c)	$f'(x) = xe^{2x} + 2(x-1)e^{2x} = e^{2x}[1+2x-2] = (2x-1)e^{2x}$
	$\begin{array}{rcl} \mathfrak{A}_{rn} &=& \mathfrak{A}_r &-& \frac{f(\mathfrak{a}_r)}{f(\mathfrak{a}_r)} & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \qquad \qquad$
4	USING THE GRAPH OF THE ABOVE FUNCTION
	f(1.108865)= 0.000083 >0
	AT THERE IS A OMMORE OF STON! LINGBAS LINGBAS

 $\alpha \approx 1.1$

Question 12 (****+)

The point P has x coordinate 2 and lies on the curve with equation

 $xy = e^x$, xy > 0.

a) Determine an equation of the tangent to the curve at P.

The tangent to the curve found in part (a) meets the curve again at the point Q.

- **b**) Show that the x coordinate of Q is -0.6, correct to one significant figure.
- c) Use the Newton Raphson method twice to find a better approximation for the x coordinate of Q, giving the answer correct to 4 significant figures.

12	Y		<u> </u>
a) b)	by mouth defection a constraint and an analysis of a constraint of the second	$\begin{split} \dot{\Delta}_{\rm LVLC} \mbox{ TH} & "Extenses" or Process & (S) = 3(2^{2}-4e^{2}) \\ & (G) = 2(2^{2}_{-}-4e^{2}) \\ & (G) = 2(2^{2}_$	(4). (4).
	$\begin{array}{c} \mbox{the forms} \ \mbox{the form} \ \mbo$		2 4

 $4v = e^2 x$, ≈ -0.5569

 $x^2 = 2^x$.

Question 13 (****+)

It is required to find the real solutions of the equation

- a) State the 2 integer solutions of the equation.
- **b**) Sketch in the same set of axes the graph of $y = x^2$ and the graph of $y = 2^x$.
- c) Use the Newton Raphson method, with a suitable function and an appropriate starting value, to find the third real root of this equation correct to 4 decimal places.

You may use as many steps as necessary in part (c), to obtain the required accuracy.

 $x_3 \approx -0.7667$

 $x_1 = 2 \cup x_2 = 4$