NUMERICAL SOLUTIONS OF

 EQUATIONS
ITERATIVE METHODS

Created by T. Madas

Question 1 (**)

$$
x^{3}+10 x-4=0
$$

a) Show that the above equation has a root α, which lies between 0 and 1 .

The recurrence relation

$$
x_{n+1}=\frac{4-x_{n}^{3}}{10}
$$

starting with $x_{0}=0.3$ is to be used to find α.
b) Find, to 4 decimal places, the value of x_{1}, x_{2}, x_{3} and x_{4}.
c) By considering the sign of an appropriate function $f(x)$ in a suitable interval, show clearly that $\alpha=0.39389$, correct to 5 decimal places.
\square
$\square, x_{1}=0.3973, x_{2}=0.3937, x_{3}=0.3939, x_{4}=0.3939$

Created by T. Madas

Question 2 (**)

$$
\mathrm{e}^{-x}+\sqrt{x}=2
$$

a) Show that the above equation has a root α, which lies between 3 and 4 .

The recurrence relation

$$
x_{n+1}=\left(2-\mathrm{e}^{-x_{n}}\right)^{2}
$$

starting with $x_{0}=4$ is to be used to find α.
b) Find, to 3 decimal places, the value of x_{1}, x_{2} and x_{3}.
c) By considering the sign of an appropriate function $f(x)$ in a suitable interval, show clearly that $\alpha=3.9211$, correct to 4 decimal places.
\square , $x_{1}=3.927, x_{2}=3.922, x_{3}=3.921$

Created by T. Madas

Created by T. Madas

Question 3 (**)

$$
\mathrm{e}^{3 x}=x+20
$$

a) Show that the above equation has a root α between 1 and 2 .

The recurrence relation

$$
x_{n+1}=\frac{1}{3} \ln \left(x_{n}+20\right)
$$

starting with $x_{0}=1.5$ is to be used to find α.
b) Find to 4 decimal places, the value of x_{1}, x_{2} and x_{3}.
c) By considering the sign of an appropriate function $f(x)$ in a suitable interval, show clearly that $\alpha=1.0151$, correct to 4 decimal places.
$\square, x_{1}=1.0227, x_{2}=1.0152, x_{3}=1.0151$

Created by T. Madas

Question $4 \quad(* *+)$

$$
f(x)=4 x-3 \sin x-1, \quad 0 \leq x \leq 2 \pi .
$$

a) Show that the equation $f(x)=0$ has a solution α in the interval $(0.7,0.8)$.

An iterative formula, of the form given below, is used to find α.

$$
x_{n+1}=A+B \sin x_{n}, x_{1}=0.75,
$$

where A and B are constants.
b) Find, to 5 decimal places, the value of x_{2}, x_{3}, x_{4} and x_{5}.
c) By considering the sign of $f(x)$ in a suitable interval show clearly that $\alpha=0.775$, correct to 3 decimal places.
$\square, x_{2}=0.76123, x_{3}=0.76736, x_{4}=0.77068, x_{5}=0.77247$

Created by T. Madas

Question 5 (**+)

$$
x^{3}-x^{2}=6 x+6, \quad x \in \mathbb{R}
$$

a) Show that the above equation has a root α in the interval $(3,4)$.
b) Show that the above equation can be written as

$$
x=\sqrt{\frac{6 x+6}{x-1}}
$$

An iterative formula of the form given in part (b), starting with x_{0} is used to find α.
c) Give two different values for x_{0} that would not produce an answer for x_{1}.
d) Starting with $x_{0}=3.3$ find the value of x_{1}, x_{2}, x_{3} and x_{4}, giving each of the answers correct to 3 decimal places.
e) By considering the sign of an appropriate function in a suitable interval, show clearly that $\alpha=3.33691$, correct to 5 decimal places.

Question 6 (***)
The curves C_{1} and C_{2} have respective equations

$$
y=9-x^{2}, x \in \mathbb{R} \quad \text { and } \quad y=\mathrm{e}^{x}, x \in \mathbb{R} .
$$

a) Sketch in the same diagram the graph of C_{1} and the graph of C_{2}.

The sketch must include the coordinates of the points where each of the curves meet the coordinate axes.
b) By considering the graphs sketched in part (a), show clearly that the equation

$$
\left(9-x^{2}\right) \mathrm{e}^{-x}=1
$$

has exactly one positive root and one negative root.

To find the negative root of the equation the following iterative formula is used

$$
x_{n+1}=-\sqrt{9-\mathrm{e}^{x_{n}}}, x_{1}=-3
$$

c) Find, to 5 decimal places, the value of x_{2}, x_{3} and x_{4}.

To find the positive root of the equation the following iterative formula is used

$$
x_{n+1}=\sqrt{9-\mathrm{e}^{x_{n}}}, x_{1}=2
$$

d) Explain, clearly but briefly, why do these iterations fail.

$$
\begin{array}{r}
\square, C_{1}:(-3,0),(3,0),(0,9), C_{2}:(0,1), \\
x_{2}=-2.99169, \quad x_{3}=-2.99162, \quad x_{4}=-2.99162 \\
\hline
\end{array}
$$

Created by T. Madas

Question 7 (***)

$$
x^{3}+3 x=5, x \in \mathbb{R} .
$$

a) Show that the above equation has a root α, between 1 and 2

An attempt is made to find α using the iterative formula

$$
x_{n+1}=\frac{5-x_{n}^{3}}{3}, x_{1}=1
$$

b) Find, to 2 decimal places, the value of $x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6}.

The diagram below is used to investigate the results of these iterations.

[continues overleaf]
[continued from overleaf]
c) On a copy of this diagram draw a "staircase" or "cobweb" pattern marking the position of x_{1}, x_{2}, x_{3} and x_{4}, further stating the results of these iterations.
d) Use the iterative formula

$$
x_{n+1}=\sqrt[3]{5-3 x_{n}}, x_{1}=1
$$

to find, to 2 decimal places, the value of $x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6}.
\square , $x_{2}=1.33, x_{3}=0.88, x_{4}=1.44, x_{5}=0.67, x_{6}=1.57$,

$$
x_{2}=1.26, \quad x_{3}=1.07, \quad x_{4}=1.22, \quad x_{5}=1.11, \quad x_{6}=1.19
$$

Created by T. Madas

Created by T. Madas

Question 8 (***)

$$
x^{3}=5 x+1, x \in \mathbb{R}
$$

a) Show that the above equation has a root α between 2 and 3 .

The iterative formula

$$
x_{n+1}=\sqrt[3]{5 x_{n}+1}, x_{1}=2
$$

is to be used to find α
b) Find, to 2 decimal places, the value of x_{2}, x_{3} and x_{4}.

Created by T. Madas

[continued from overleaf]

The diagram below is used to investigate the results of these iterations.

c) On a copy of this diagram draw a "staircase" or "cobweb" pattern showing how these iterations converge to α, marking the position of x_{1}, x_{2}, x_{3} and x_{4}.

$$
\text { , }, x_{2}=2.22, \quad x_{3}=2.30, \quad x_{4}=2.32
$$

Question 9 (***)
A cubic equation has the following equation.

$$
x^{3}+1=4 x, x \in \mathbb{R}
$$

a) Show that the above equation has a root α, which lies between 0 and 1 .
b) Show further that the above equation can be written as

$$
x=\frac{1}{4-x^{2}} .
$$

An iterative formula, based on the rearrangement of part (b), is to be used to find α.
c) Starting with $x_{1}=0.1$, find to 4 decimal places, the value of x_{2}, x_{3} and x_{4}.

Created by T. Madas

[continued from overleaf]

The diagram below is used to show the convergence of these iterations.

d) Draw on a copy of this diagram a "staircase" or "cobweb" pattern showing how these iterations converge to α, marking the position of x_{1}, x_{2}, x_{3} and x_{4}.
\square
\square $x_{2}=0.2506, \quad x_{3}=0.2540, \quad x_{4}=0.2541$

Created by T. Madas

Question 10
(***)

$$
f(x)=x^{3}-6 x^{2}+12 x-11, x \in \mathbb{R}
$$

a) Show that the equation $f(x)=0$ has a root α between 3 and 4 .

An approximation to the value of α is to be found by using the iterative formula

$$
x_{n+1}=\sqrt[3]{6 x_{n}^{2}-12 x_{n}+11}, x_{1}=3
$$

b) Find, to 3 decimal places, the value of x_{2}, x_{3} and x_{4}.
[continued from overleaf]

The diagram below shows the graphs of

c) Draw on a copy of the diagram a "staircase" or "cobweb" pattern showing how these iterations converge to α, marking the position of x_{2}, x_{3} and x_{4}.
d) By considering the sign of $f(x)$ in a suitable interval show that $\alpha=3.442$, correct to 3 decimal places.

Created by T. Madas

Question 11 (***)

$$
4 \arccos x=x+1, x \in \mathbb{R},-1 \leq x \leq 1 .
$$

The above equation has a single root α.
a) Show that $0.5<\alpha<1$.

An iterative formula of the form $x_{n+1}=\cos \left(f\left(x_{n}\right)\right)$ is used to find α.
b) Use this iterative formula, starting with $x_{0}=1$, to find the value of x_{1}, x_{2}, x_{3}, x_{4} and x_{5}.

Give the answers correct to 5 decimal places.
c) Write down the value of α to an appropriate accuracy.
\square , $x_{1}=0.87758, x_{2}=0.89184, x_{3}=0.89022, x_{4}=0.89041, x_{5}=0.89039$,

$$
\alpha=0.8904
$$

Created by T. Madas

The diagram above shows the graph of
a) Write down the equations of the two horizontal asymptotes.
b) Copy the diagram above and use it to show that the equation

$$
3 x-\arctan x=1
$$

has only one positive real root.
c) Show that this root lies between 0.45 and 0.5 .
d) Use the iterative formula

$$
x_{n+1}=\frac{1}{3}\left(1+\arctan x_{n}\right), x_{0}=0.475
$$

to find, to 3 decimal places, the value of x_{1}, x_{2} and x_{3}.

Created by T. Madas

Created by T. Madas

Question 13 (***+)
The curve C has equation

$$
y=x^{3}-3 x^{2}-3
$$

and crosses the x axis at the point $A(\alpha, 0)$.
a) Show that α lies between 3 and 4 .
b) Show further that the equation $x^{3}-3 x^{2}-3=0$ can be rearranged to

$$
x=3+\frac{3}{x^{2}}, x \neq 0 .
$$

The equation rearrangement of part (b) is written as the following recurrence relation

$$
x_{n+1}=3+\frac{3}{x_{n}^{2}}, x_{1}=4
$$

c) Use the above iterative formula to find, to 4 decimal places, the value of x_{2}, x_{3}, x_{4} and x_{5}.

Created by T. Madas

[continued from overleaf]

The diagram below is used to describe how the iteration formula converges to α, and shows the graph of $y=x$ and another curve D.

d) Write down the equation of D.
e) On a copy of the diagram draw a "staircase" or a "cob-web" pattern to show how the convergence to the root α is taking place, marking clearly the position of x_{1}, x_{2} and x_{3}.

$$
x_{1}=3.1875, x_{2}=3.2953, x_{3}=3.2763, x_{4}=3.2794
$$

$$
D: y=3+\frac{3}{x^{2}}
$$

Created by T. Madas

Question 14 (***+)

$$
x^{3}-1-\frac{1}{x}=0, x \neq 0 .
$$

a) By sketching two suitable graphs in the same diagram, show that the above equation has one positive root α and one negative root β.

The sketch must include the coordinates of the points where the curves meet the coordinate axes.
b) Explain why $\alpha>1$

To find α the following iterative formula is used

$$
x_{n+1}=\sqrt[3]{\frac{1}{x_{n}}+1}, x_{0}=1.5
$$

c) Find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.
d) By considering the sign of an appropriate function $f(x)$ in a suitable interval, show clearly that $\alpha=1.221$, correct to 3 decimal places.

Created by T. Madas

Question 15 (***+)

$$
f(x)=x^{4}+3 x-1, x \in \mathbb{R} .
$$

a) By sketching two suitable graphs in the same set of axes, determine the number of real roots of the equation $f(x)=0$.
b) Show that the equation $f(x)=0$ has a root α between 0 and 1 .

The recurrence relation

$$
x_{n+1}=\frac{1-x_{n}^{4}}{3}
$$

starting with $x_{0}=0.3$ is to be used to find α.
c) Find to 4 decimal places, the value of x_{1}, x_{2}, x_{3} and x_{4}.
d) Explain whether the convergence to the root α, can be represented by a cobweb or a staircase diagram.
e) By considering the sign of $f(x)$ in a suitable interval, show that $\alpha=0.32941$, correct to 5 decimal places.

cobweb, because of oscillation

Created by T. Madas

Question 16 (***+)

The curve with equation $y=2^{x}$ intersects the straight line with equation $y=3-2 x$ at the point P, whose x coordinate is α.
a) Show clearly that ...
i. $\quad . \quad 0.5<\alpha<1$.
ii. ... α is the solution of the equation

$$
x=\frac{\ln (3-2 x)}{\ln 2} .
$$

An iterative formula based on the equation of part $(\mathbf{a i i i}$) is used to find α.
b) Starting with $x_{0}=0.5$, find the value of x_{1}, x_{2} and x_{3}, explaining why a valid value of x_{4} cannot be produced.
c) Use the iterative formula

$$
x_{n+1}=\frac{3-2^{x_{n}}}{2}, x_{0}=0.5
$$

with as many iterations as necessary, to determine the value of α correct to 2 decimal places.

Created by T. Madas

Question 17 (***+)
A curve C has equation

$$
y=4 x^{\frac{3}{2}}-\frac{7}{8} \ln 4 x, \quad x \in \mathbb{R}, \quad x>0
$$

The point A is on C, where $x=\frac{1}{4}$.
a) Find an equation of the normal to the curve at A.

1

$$
+
$$

C Coses)

This normal meets the curve again at the point B, as shown in the figure above.
b) Show that the x coordinate of B satisfies the equation
$x=\left(\frac{16 x+7 \ln 4 x}{32}\right)^{\frac{2}{3}}$

Created by T. Madas

Created by T. Madas

[continued from overleaf]

The recurrence relation

$$
x_{n+1}=\left(\frac{16 x_{n}+7 \ln 4 x_{n}}{32}\right)^{\frac{2}{3}}, x_{0}=0.7
$$

is to be used to find the x coordinate of B.
c) Find, to 3 decimal places, the value of x_{1}, x_{2}, x_{3} and x_{4}.
d) Show that the x coordinate of B is 0.6755 , correct to 4 decimal places.

$$
y=2 x, \quad x_{1}=0.692, \quad x_{2}=0.686, \quad x_{3}=0.683, \quad x_{4}=0.680
$$

Created by T. Madas

Created by T. Madas

Question 18 (****)
The curve C has equation

$$
y=x \cos x, 0 \leq x \leq \frac{\pi}{2}
$$

The curve has a single turning point at M.
a) Show that x coordinate of M is a solution of the equation

$$
x=\arctan \left(\frac{1}{x}\right)
$$

b) Show further that the equation

$$
x=\arctan \left(\frac{1}{x}\right)
$$

has root α between 0.8 and 1 .

The iterative formula

c) Find, to 3 decimal places, the value of x_{2}, x_{3} and x_{4}.
[continues overleaf]

Created by T. Madas

Created by T. Madas

[continued from overleaf]

The diagram below shows the graphs of $y=x$ and $y=\arctan \left(\frac{1}{x}\right)$

d) Use a copy of the above diagram to show how the convergence to the root α takes place, by constructing a staircase or cobweb pattern.
Indicate clearly the positions of x_{2}, x_{3} and x_{4}.

$, x_{2}=0.838, x_{3}=0.873, x_{4}=0.853$

Created by T. Madas

Created by T. Madas

Question 19 (****)

$$
f(x) \equiv\left|4 \mathrm{e}^{2 x}-28\right|, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any intersections with the coordinate axes and the equations of any asymptotes.

The equation $f(x)-40=3 x$ has a negative root α.
b) Show that $\alpha=-4.00045$, correct to 5 decimal places.

The equation $f(x)-40=3 x$ also has a positive root β.
c) Use a numerical method, based on an iterative method, to determine the value of β correct to 5 decimal places.

Created by T. Madas

Question 20 (****)
The curve C has equation

$$
y=\frac{3 x+1}{x^{3}-x^{2}+5}
$$

The curve has a single stationary point at M, with approximate coordinates $(1.4,0.9)$.
a) Show that the x coordinate of M is a solution of the equation

$$
x=\sqrt[3]{\frac{1}{3} x+\frac{5}{2}}
$$

b) By using an iterative formula based on the equation of part (a), determine the coordinates of M correct to three decimal places.

Question 21 (****)
The curves C_{1} and C_{2} have respective equations

$$
y_{1}=3 \arcsin (x-1) \text { and } y_{1}=2 \arccos (x-1)
$$

a) Sketch in the same set of axes the graph of C_{1} and the graph of C_{2}.

The sketch must include the coordinates.

- ... of any points where each of the graphs meet the coordinate axes.
- ... of the endpoints of each of the graphs.
b) Use a suitable iteration formula of the form

$$
x_{n+1}=f\left(x_{n}\right) \text { with } x_{1}=1.6
$$

to find an approximate value for the x coordinate of the point of intersection between the graph of C_{1} and the graph of C_{2}.

Question 22 (****)
At the point P which lies on the curve with equation

$$
x=\ln \left(y^{3}-4 y\right),
$$

the gradient is 2 .

The point P is close to the point with coordinates $\left(\frac{11}{2}, \frac{13}{2}\right)$.
a) Show that the y coordinate of P is a solution of the equation

$$
y=\frac{6 y^{2}-8}{y^{2}-4}
$$

b) By using an iterative formula based on the equation of part (a), determine the coordinates of P correct to three decimal places.
\square
, $P(5.480,6.429)$

Question 23 (****)
At the point P which lies on the curve with equation

$$
y=\frac{x}{y+\ln y}
$$

the gradient is 2 .

The point P is close to the point with coordinates $(-0.3,0.3)$.
a) Show that the y coordinate of P is a solution of the equation

$$
y=\mathrm{e}^{-\frac{1}{2}(4 y+1)}
$$

b) By using an iterative formula based on the equation of part (a), determine the coordinates of P correct to three decimal places.
\square , $P(-0.262,0.320)$

Created by T. Madas

Question 24 (****)
A curve has equation

$$
y=\frac{x+1}{x^{3}+2 x+1} .
$$

It is given that the curve has a local maximum at the point M, whose approximate coordinates are $(-1.7,0.1)$.
a) Show that the x coordinate of M is a solution of the equation

$$
x=-\frac{3 x^{2}+1}{2 x^{2}}
$$

b) By using an iterative formula based on the equation of part (a), determine the coordinates of M correct to three decimal places.
c) State, with a reason, whether the convergence taking place using the formula of part (b) is of the "cobweb" type or the "staircase" type.

$M(-1.678,0.096)$

Created by T. Madas

Question 25 (****)
It is required to find the approximate coordinates of the points of intersection between the graphs of

$$
y_{1}=9-x^{2}, x \in \mathbb{R} \quad \text { and } \quad y_{2}=\ln (x-1), x \in \mathbb{R}, x>1
$$

a) Show that the two graphs intersect at a single point P.
b) Explain why the x coordinate of P lies between 2 and 3 .

The recurrence formula

$$
x_{n+1}=\sqrt{9-\ln \left(x_{n}-1\right)}
$$

starting with a suitable value for x_{1}, is to be used to find the x coordinate of P.
c) Calculate the x coordinate of P, correct to three decimal places.
d) By considering two suitable transformations, determine correct to two decimal places the coordinates of the points of intersection between the graph of

$$
y_{3}=3\left[9-(x+1)^{2}\right], x \in \mathbb{R} \quad \text { and } \quad y_{4}=3 \ln x, x \in \mathbb{R}, x>0
$$

\square $, x \approx 2.892,(1.89,1.91)$

Created by T. Madas

Question 26 (****)

$$
y=\arctan x, x \in \mathbb{R}
$$

a) By writing $y=\arctan x$ as $x=\tan y$ show that

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}}
$$

The curve C has equation

$$
y=\arctan x-4 \ln \left(1+x^{2}\right)-3 x^{2}, x \in \mathbb{R}
$$

b) Show that the x coordinate of the stationary point of C is a root of the equation

$$
6 x^{3}+14 x-1=0
$$

c) Show that the above equation has a root α in the interval $(0,1)$.

The iterative formula is used to find this root.
d) Find, correct to 6 decimal places, the value of x_{1}, x_{2} and x_{3}.
e) Hence write down the value of α, correct to 5 decimal places.

Created by T. Madas

Question 27 (****)

$$
y=\arctan x, x \in \mathbb{R}
$$

a) By writing $y=\arctan x$ as $x=\tan y$ show that

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}}
$$

The curve C has equation

$$
y=2 \arctan x-3 \ln \left(1+x^{2}\right)-7 x^{2}, x \in \mathbb{R}
$$

b) Show that the x coordinate of the stationary point of C is a solution of the cubic equation

$$
7 x^{3}+10 x-1=0
$$

c) Hence show further that the x coordinate of the stationary point of C is 0.099314 , correct to 6 decimal places.

, proof

Created by T. Madas

Question 28 (****)

$$
y=\arcsin x,-1 \leq x \leq 1 .
$$

a) By writing $y=\arcsin x$ as $x=\sin y$ show that

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

The curve C has equation

$$
y=3 \arcsin x-4 x^{\frac{3}{2}}+5,0 \leq x \leq 1 .
$$

b) Show that the x coordinates of the stationary points of C are the solutions of the equation

$$
4 x^{3}-4 x+1=0
$$

c) Show that the above equation has a root α in the interval $(0,0.5)$.

The root α can be found by using the iterative formula

$$
x_{n+1}=x_{n}^{3}+\frac{1}{4}, \text { with } x_{0}=0.5
$$

d) Find, correct to 3 decimal places, the value of x_{1}, x_{2}, x_{3} and x_{4}.
e) By considering the sign of an appropriate function $f(x)$ in a suitable interval, show that $\alpha=0.2696$, correct to 4 decimal places.
$\square, x_{1}=0.375, x_{2}=0.303, x_{3}=0.278, x_{4}=0.271, \alpha=0.07127$

	3(c) LE $f(x)=4 x^{3}-4 x+1$ 4 bia in mos withor (d) (e) $\therefore \alpha=a \times 96 / / \operatorname{lin} \sin \pi x$

Created by T. Madas

Question 29 (****)
It is known that the cubic equation

$$
x^{3}-2 x=5, \quad x \in \mathbb{R},
$$

has a single real solution α, which is close to 2.1.

Four iterative formulas based on rearrangements of this equation are being considered for their suitability to approximate the value of α to greater accuracy.

- $x_{n+1}=\frac{1}{2}\left(x_{n}^{3}-5\right)$
- $x_{n+1}=\frac{5}{x_{n}^{2}-2}$
- $x_{n+1}=\sqrt[3]{2 x_{n}+5}$
- $x_{n+1}=\sqrt{2+\frac{5}{x_{n}}}$
a) Use a differentiation method, and without carrying any direct iterations, briefly describe the suitability of these four formulas.

In these descriptions you must make a reference to rates of convergence or divergence, and cobweb or staircase diagrams.
b) Use one of these four formulas to approximate the value of α, correct to 6 decimal places

Question $30 \quad(* * * *+)$
A function f is defined in the largest real domain by the equation

$$
f(x) \equiv \frac{50 x^{2}-142 x+95}{2 x-5}
$$

a) State the domain of f.
b) Evaluate $f(1), f(2)$ and $f(3)$, and hence briefly discuss the number of possible intersections of f with the coordinate axes, ...
i. \ldots in the interval [1,2].
ii. \quad... in the interval $[2,3]$.
c) Express $f(x)$ in the form $A x+B+\frac{C}{2 x-5}$, where A, B and C are constants.
d) Calculate, correct to 3 decimal places, the x coordinates of the stationary points of f.
\square
\square $x \approx 3.525, \quad x \approx 1.475$
\square

Created by T. Madas

Question 31 (****+)

$$
y=\arcsin x,-1 \leq x \leq 1 .
$$

a) By writing $y=\arcsin x$ as $x=\sin y$ show that

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

The curve C has equation

$$
y=2 \arcsin x-4 x^{\frac{3}{2}}, 0 \leq x \leq 1 .
$$

b) Show that the x coordinates of the stationary points of C are the solutions of the equation

$$
9 x^{3}-9 x+1=0
$$

c) Show further that one of the roots, α, of the equation of part (b) is 0.9390 , correct to 4 decimal places.

It is further given that the equation of part (b) has 2 more real roots, $\beta \approx-1.0515$, and γ.
d) Determine the value of γ, correct to 3 places.

$\gamma \approx 0.112$

Created by T. Madas

Question 32 (****+)

The curve C has equation

$$
f(x) \equiv 3 x^{4}+8 x^{3}+3 x^{2}-12 x-6, \quad x \in \mathbb{R} .
$$

The curve has a single stationary point whose x coordinate lies in the interval $[n, n+1]$, where $n \in \mathbb{Z}$.
a) Determine with full justification the value of n.

A suitable equation is rearranged to produced three recurrence relations, each of which may be used to find the x coordinate of the stationary point of C.

These recurrence relations, all starting with $x_{0}=\frac{1}{2} n$ are shown below.
(i) $x_{n+1}=\frac{2}{2 x_{n}^{2}+4 x_{n}+1}$
(ii) $x_{n+1}=\frac{1}{x_{n}^{2}}-\frac{1}{2 x_{n}}-2$
(iii) $x_{n+1}=\sqrt{\frac{2-x_{n}}{4+2 x_{n}}}$
b) Use a differentiation method, to investigate the result in attempting to find an approximate value for the x coordinate of the stationary point of $f(x)$, with each of these three recurrence relations.

The method must include ...

- ... whether the attempt is successful
- ... whether the convergence or divergence is a "cobweb" case or a "staircase" case.
- ... which recurrence relation converges at the fastest rate.

You may not answer part (b), by simply generating sequences.

Created by T. Madas

Created by T. Madas

Question 33 (****+)
The curve C has equation

$$
y=\sqrt{\mathrm{e}^{2 x}-2 x}, \mathrm{e}^{2 x}>2 x
$$

The tangent to C at the point P, where $x=p$, passes through the origin.
a) Show that $x=p$ is a solution of the equation

$$
(1-x) \mathrm{e}^{2 x}=x
$$

b) Show further that the equation of part (a) has a root between 0.8 and 1 .

The iterative formula
with $x_{0}=0.8$ is used to find this root.
c) Find, correct to 3 decimal places, the value of x_{1}, x_{2}, x_{3} and x_{4}.
d) Hence show that the value of p is 0.8439 , correct to 4 decimal places.
$\square, x_{1}=0.838, x_{2}=0.843, x_{3}=0.844, x_{4}=0.844$

Question 34 (*****)
The point P lies on the curve C with equation

$$
y=\sqrt{1+2 \mathrm{e}^{2 x^{2}}}, x \in \mathbb{R}
$$

Given that the tangent to C at P passes through the origin, determine the coordinates of P, correct to 3 significant figures.
\square $P(\pm 0.761,2.71)$

FResty let us noth that $y=\sqrt{1+2 e^{2 x^{2}}}$ is Evin, so thifer Ale tho sugh poinis with idtrical y words a "opposite" x COORONATES Let THe Pont P Hnut coordinates $\left(P, \sqrt{1+2 e^{3 P^{2}}}\right)$ - differmonare anid find the gevation of the tanceñ at P $\begin{aligned} & \Rightarrow y=\left(1+2 e^{2 x^{2}}\right)^{\frac{1}{2}} \\ & \Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(1+2 e^{2 x^{2}}\right)^{-\frac{1}{2}} \times 2 e^{2 x^{2}} \times 4 x \\ & \Rightarrow \frac{d y}{d x}=\frac{4 x e^{2 x^{2}}}{\sqrt{1+2 e^{2 x^{2}}}} \\ & \left.\Rightarrow \frac{d y}{d x}\right\|_{p}=\frac{4 p e^{2 p^{2}}}{\sqrt{1+2 e^{2 x^{2}}}} \end{aligned}$ GưATION OF TANOENS IS $\Rightarrow y-\sqrt{1+2 e^{2 p^{2}}}=\frac{4 p e^{2 p^{2}}}{\sqrt{1+2 e^{2} p^{2}}}(x-p)$ $\begin{aligned} & \Rightarrow-\sqrt{1+2 e^{2 p^{2}}}=\frac{4 p e^{2 p^{2}}}{\sqrt{1+2 e^{2 p^{2}}}}(-p) \\ & \Rightarrow 1+2 e^{2 p^{2}}=4 p^{2} e^{2 p^{2}} \\ & \Rightarrow e^{-2 p^{2}}+2=4 p^{2} \end{aligned}$	

- ratrrange the quamton As
$f(p)=4 p^{2}-e^{-2 p^{2}}-2 \quad$ व $p=+\frac{1}{2} \sqrt{2+e^{-2 p^{2}}}$ $f(0)=-3<0$
$f(1)=2-e^{-1}>0$
(2) As weit is continuous, sTater SAy wirt $x=p=0.5$ $x_{n+1}=\frac{1}{2}\left(2+e^{-2 x^{2}}\right)^{\frac{1}{2}}$ $x_{1}=0.5$
$x_{2}=0.80724$. $x_{3}=0.75360 \ldots$ $x_{4}=0.76127 \ldots$ $x_{5}=0.76048 \ldots$
$x_{6}=0.76068$ $x_{7}=0.76065$
\qquad
$\therefore \underline{P(50.766,271)}$

Question 35 (${ }^{* * * * * *) ~}$
A curve C is defined in the largest real domain by the equation

$$
y=\log _{x} 2
$$

a) Sketch a detailed graph of C.

The point P, where $x=2$ lies on C.
The normal to C at P meets C again at the point Q.
b) Show that the x coordinate of Q is a solution of the equation

$$
[1+x \ln 4-\ln 16] \ln x=\ln 2
$$

c) Use an iterative formula of the form $x_{n+1}=\mathrm{e}^{f\left(x_{n}\right)}$, with a suitable starting value, to find the coordinates of Q, correct to 3 decimal places.

EquATTON OF THF NORMAC IS GVON BY Sownens simulannousy wnit the quation of tite wole cains the form
$y=\frac{\ln 2}{\ln 2}$
$\Rightarrow \frac{\ln 2}{\ln x}-1=x \ln 4-2 \ln 4$
$\Rightarrow \ln 2-\ln x=x \ln x \ln 4-2 \ln x \ln 4$
$\Rightarrow \ln 2=\ln x+x \ln x \ln 4-2 \ln x \ln 4$ $\Rightarrow \ln 2=\ln x[1+x \sin 4-2 \ln 4]$ $\Rightarrow[1+\sin 4-\ln 6] \ln x=\ln 2$
c) "EAPONENTATING" GUKES
$\Rightarrow \ln x=\frac{\ln 2}{1+2 \ln 4-\ln 16}$
$\Rightarrow x=e^{\frac{1, \ln 2}{1+x \ln 4-\ln 16}}$
$\Rightarrow x_{h+1}=e^{\frac{\ln 2}{1+\ln ^{2} t-h t b}}$
Sanetrat- SA\% wnt $x_{4}=0.5$

$\begin{aligned} & x_{1}=0.5 \\ & x_{2}=0.526168 \\ & x_{3}=0.514549 \\ & x_{4}=0.519774 \\ & x_{5}=0.517437 \\ & x_{8}=0.518485 \\ & x_{7}=0.518016 \\ & x_{8}=0.518226 \end{aligned}$ $\therefore x=0.518$	ton usims $\begin{aligned} & y=\frac{\ln 2}{\ln (0.518)} \\ & y \approx-1.054 \end{aligned}$ $\therefore Q(0.518,-1.054)$

LINEAR

INTERPOLATION

Created by T. Madas

Question $1 \quad(* *+)$
The following cubic equation is to be solved numerically.

$$
x^{3}=8 x-1, x \in \mathbb{R} .
$$

a) Show that the equation has a root α, in the interval $[2,3]$.
b) Use linear interpolation three successive times, to find α correct to an appropriate degree of accuracy.

Created by T. Madas

Question 2 (**+)
The following quartic equation is to be solved numerically.

$$
x^{4}+7 x-15=0, x \in \mathbb{R}
$$

Given that the above quartic has a real root α in the interval [1.4,1.5] , use linear interpolation twice, to find α correct to an appropriate degree of accuracy.

Created by T. Madas

Question 3 (***)

$$
\mathrm{e}^{x}-2 x^{2}=0
$$

a) Show that the above equation has a root α, which lies between 1 and 2 .
b) Use linear interpolation three times, starting in the interval [1,2] to find, correct to 2 decimal places the value of α.

$$
x_{1} \approx 1.540, \quad x_{2} \approx 1.486, \quad x_{3} \approx 1.488, \quad \alpha \approx 1.49
$$

Created by T. Madas

Question 4 (***)

$$
\tan x=4 x^{2}-1
$$

a) Show that the above equation has a root α, which lies between 1.4 and 1.5 .
b) Use linear interpolation twice, starting in the interval $[1.4,1.5]$ to find, correct to 3 decimal places two approximations for α.

NEWTON RAPHSON METHOD

Created by T. Madas

Question 1 (**)

$$
x^{3}+10 x-4=0
$$

a) Show that the above equation has a root α, which lies between 0 and 1 .
b) Use the Newton-Raphson method twice, starting with $x_{1}=0.5$ to find, correct to 4 decimal places, an approximation for α.

Created by T. Madas

Question 2 (***+)
It is known that the cubic equation below has a root α, which is close to 1.25 .

$$
x^{3}+x=3
$$

Use an iterative formula based on the Newton Raphson method to find the yalue of α, correct to 6 decimal places.

Created by T. Madas

Question 3 (***+)
The curve with equation $y=2^{x}$ intersects the straight line with equation $y=3-2 x$ at the point P, whose x coordinate is α.
a) Show that $0<\alpha<1$.
b) Starting with $x=0.5$, use the Newton Raphson method to find the value of α, correct to 3 decimal places.

$$
x^{3}+x y+y^{3}=10
$$

The straight line with equation $y=x+2$ meets this curve at the point A.

Created by T. Madas

Question 5 (****)
A curve has equation

The straight line with equation $y+3 x+1=0$ meets this curve at the point A.
a) Show that the x coordinate of A lies in the interval $(-0.4,-0.3)$.
b) If P and Q are integers, use an iterative procedure based on the formula

$$
x_{n+1}=\frac{1}{2}\left[P x^{3}+Q x^{2}-1\right], x_{1}=-0.35
$$

to find the x coordinate of A, correct to 2 decimal places.
The straight line with equation $y+3 x+1=0$ meets the above mentioned curve at another point B, whose the x coordinate lies in the interval $(0.8,0.9)$.
c) Use the Newton Raphson method twice, starting with $x=0.8$, to find a better approximation for the x coordinate of B.

Created by T. Madas

Question 6 (****)
A curve C has equation

$$
y=\mathrm{e}^{-x} \ln x, x>0 .
$$

a) Show that the x coordinate of the stationary point of C lies between 1 and 2 .
b) Use an iterative formula based on the Newton Raphson method to find the x coordinate of the stationary point of C, correct to 8 decimal places.

Question 7 (****)
At the point P, which lies on the curve with equation

$$
x=\ln \left(y^{3}-y\right)
$$

the gradient is 4 .

The point P is close to the point with coordinates $(7.5,12)$.
a) Show that the y coordinate of P is a solution of the equation

$$
y^{3}-12 y^{2}-y+4=0
$$

b) Use the Newton Raphson method once on the equation of part (a), in order to determine the coordinates of P, correct to two decimal places.
\square
${ }^{\circ} \mathrm{CO}$, $P(7.46,12.06)$ Coss) \square

LI BY Difigherviation
$\Rightarrow x=\ln \left(y^{3}-y\right)$
$\Rightarrow \frac{d x}{d y}=\frac{3 y^{2}-1}{y^{2}-y}$
$\Rightarrow \frac{d y}{d x}=\frac{y^{3}-y}{3 y^{2}-1}$
Setting $\frac{d y}{d x}=4$
$\Rightarrow \frac{y^{3}-y}{3 y^{2}-1}=4$
$\Rightarrow \quad y^{3}-y=12 y^{2}-4$
$\Rightarrow \quad y^{3}-12 y^{2}-y+4=0$
b)

LET $f(y)=y^{3}-12 y^{2}-y+4$

- $f^{\prime}(y)=3 y^{2}-24 y-1$
- $f(12)=-8$
- $f^{\prime}(12)=143$

By THE NEWTON RTPHSON METRDD
$\Rightarrow y_{r+1}=y_{t}-\frac{f\left(g_{r}\right)}{f^{\prime}\left(y_{r}\right)}$

Question 8 (****)
It is required to find the single real root α of the following equation

$$
x^{2}=\frac{2}{\sqrt{x}}+\frac{3}{x^{2}}, x>0
$$

a) Show that the α lies between 1 and 2 .
b) Use the Newton Raphson method to show that α can be found by the iterative formula

$$
x_{n+1}=\frac{x_{n}^{5}+3 x_{n}^{\frac{5}{2}}+9 x_{n}}{2 x_{n}^{4}+x_{n}^{\frac{3}{2}}+6}
$$

starting with a suitable value for x_{1}.
c) Hence find the value of α, correct to 8 decimal places.
\square $\alpha \approx 1.63756623 .$.

Question 9 (****)
It is required to find the approximate coordinates of the points of intersection between the graphs of

$$
y_{1}=1-x^{2}, x \in \mathbb{R} \quad \text { and } \quad y_{2}=\ln (x+1), x \in \mathbb{R}, x>-1
$$

a) Show that the two graphs intersect at a single point P, explaining further why the x coordinate of P lies between 0 and 1 .
b) Use the Newton Raphson method once, starting $x=0.7$, to calculate the x coordinate of P, giving the answer correct to 3 decimal places.
c) By considering two suitable transformations, determine correct to 2 decimal places the coordinates of the points of intersection between the graph of

$$
2 \rho y_{3}=2\left[1-(2 x+1)^{2}\right], x \in \mathbb{R} \quad \text { and } \quad y_{4}=2 \ln (2 x+2), x \in \mathbb{R}, x>-\frac{1}{2} .
$$

Created by T. Madas

Question 10 (****)
An arithmetic series has first term 2 and common difference X.

A geometric series has first term 2 and common ratio X.

The sum of the $11^{\text {th }}$ term of the arithmetic series and the $11^{\text {th }}$ term of the geometric series is 900 .
a) Show that X is a solution of the equation

$$
X^{10}+5 X=449
$$

b) Show further that

$$
1.8<X<1.9 .
$$

c) Use the Newton Raphson approximation method twice, with a starting value of 1.8 , to find an approximate value for X, giving the answer correct to 3 decimal places.

Question 11 (****+)
The curve C has equation

$$
y=\sqrt{\mathrm{e}^{2 x}+1}, x \in \mathbb{R}
$$

The tangent to the curve at the point P, where $x=p$, passes through the origin.
a) Show that $x=p$ is a solution of the equation

$$
(x-1) \mathrm{e}^{2 x}=1
$$

b) Show further that the equation of part (a) has a root between 1 and 2 .
c) By using the Newton Raphson method once, starting with $x=1$, find an approximation for this root, correct to 1 decimal place.

It is further given that the Newton Raphson method fails on this occasion.
d) Use an appropriate method to verify that the root of the equation of part (a) is 1.10886 correct to 5 decimal places.

Created by T. Madas

Question $12(* * * *+)$

The point P has x coordinate 2 and lies on the curve with equation

$$
x y=\mathrm{e}^{x}, \quad x y>0 .
$$

a) Determine an equation of the tangent to the curve at P.

The tangent to the curve found in part (a) meets the curve again at the point Q.
b) Show that the x coordinate of Q is -0.6 , correct to one significant figure.
c) Use the Newton Raphson method twice to find a better approximation for the x coordinate of Q, giving the answer correct to 4 significant figures.

Created by T. Madas

Created by T. Madas

Question 13 (****+)

It is required to find the real solutions of the equation

$$
x^{2}=2^{x} .
$$

a) State the 2 integer solutions of the equation.
b) Sketch in the same set of axes the graph of $y=x^{2}$ and the graph of $y=2^{x}$.
c) Use the Newton Raphson method, with a suitable function and an appropriate starting value, to find the third real root of this equation correct to 4 decimal places.

You may use as many steps as necessary in part (c), to obtain the required accuracy.

