MODULUS
 FUNCTION
 EXAM QUESTIONS

Created by T. Madas

Question 1 (**)

$$
f(x)=|3 x+2|, x \in \mathbb{R} .
$$

a) Sketch the graph of $f(x)$, clearly indicating the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.
b) Solve the equation

$$
f(x)=1
$$

$x=-2,0,2,4$

Created by T. Madas

Question 3 (**)

The figure above shows part of the graph of the curve with equation $y=f(x)$.

The graph meets the coordinate axes at $B(0,3)$ and $D(4,0)$ and has stationary points at $A(-2,1)$ and $C(2,5)$.

Sketch on separate diagrams the graph of ...
a) $\ldots y=|f(x)|$
b) $\ldots y=f(|x|)$

Indicate the new coordinates of the points A, B, C and D in these graphs.

Created by T. Madas

Question $4{ }^{(* *)}$
Acurve C has equation

$$
y=|x(x-1)(x-2)|, x \in \mathbb{R}
$$

a) Sketch the graph of C, indicating the coordinates of any intercepts with the coordinate axes.

The straight line with equation $y=6$ intersects the graph of C at the point $P(3,6)$ and at the point Q.
b) State the coordinates of Q

Created by T. Madas

The figure above shows part of the graph of the curve with equation $y=f(x)$.

The graph has stationary points at $A(0,-3)$ and $B(4,1)$.

Sketch on separate diagrams the graph of ...
a) $\ldots y=|f(x)|$.
b) $\ldots y=f(|x|)$.

Indicate the new coordinates of the points A and B in these graphs.
\square , graph

Created by T. Madas

Question $6 \quad(* *+)$

The figure above shows part of the graph of the curve with equation $y=f(x)$.

The graph meets the coordinate axes at $A(0,-4)$ and $C(7,0)$ and has a stationary point at $B(3,-7)$.

Sketch on separate diagrams, indicating the new coordinates of the points A, B and C, the graph of ...
a) $\ldots y=|f(x)|$.
b) $\ldots y=f(|x|)$.
c) $\ldots y=|f(|x|)|$.

Created by T. Madas

Question $7 \quad(* *+)$
The functions f and g are defined by

$$
f(x)=x+4, \quad x \in \mathbb{R}
$$

$$
g(x)=|2 x+1|+3, x \in \mathbb{R}
$$

Solve the inequality
"2,$x<-3$ or $x>2$

Created by T. Madas

Created by T. Madas

Question 8 (**+)

The functions f and g are defined by

$$
\begin{aligned}
& f(x)=\mathrm{e}^{2 x}-1, \quad x \in \mathbb{R} \\
& g(x)=|x|, \quad x \in \mathbb{R} .
\end{aligned}
$$

a) Find the composite function $g f(x)$, and sketch its graph.
b) Solve the inequality

$$
g f(x) \geq 1 .
$$

Created by T. Madas

Question 10 (***)
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=|2 x-4|, \quad x \in \mathbb{R} \\
& g(x)=|x|, \quad x \in \mathbb{R}
\end{aligned}
$$

a) Sketch in the same diagram the graph of f and the graph of g.

Mark clearly in the sketch the coordinates of any x or y intercepts.
b) Solve the equation

$$
f(x)=g(x) .
$$

c) Hence, or otherwise, solve the inequality

$$
f(x)<g(x)
$$

$$
(0,0),(2,0),(0,4), x=\frac{4}{3}, 4, \frac{4}{3}<x<4
$$

Question 11 (***)
Solve the following modulus inequality.

$$
\text { 2) } 12-2|2 x-3| \geq 7 \text {. }
$$

<s,
\square

Question 12 (***)
Solve the following modulus equation.

$$
4 x+|3 x+2|=1
$$

\square

$$
x=-\frac{1}{7}
$$

\square
\square

Created by T. Madas

Question 13 (***)
Find the solutions of the following equation.

$$
\left|2 x^{2}-5\right|=13 .
$$

Question 14 (***)

A curve has equation

$$
y=|3 x-2|, x \in \mathbb{R}
$$

a) Sketch the graph of the above curve, indicating the coordinates of any intercepts with the coordinate axes.
b) Hence solve the equation

$$
|3 x-2|=x
$$

$(0,2),\left(\frac{2}{3}, 0\right), x=\frac{1}{2}, 1$

Created by T. Madas

Created by T. Madas

Question 15 (***)
The curve C_{1} and the curve C_{2} have respective equations

$$
y=|x| \quad \text { and } y=|x-2|+1 .
$$

a) Sketch the graph of C_{2}, indicating the coordinates of any intercepts with the coordinate axes.
b) Determine the coordinates of the point of intersection between the graph of C_{1} and the graph of C_{2}.

Created by T. Madas

Question 16 (***)

$$
f(x)=\left|x^{2}-3 x-4\right|, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$, clearly indicating the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.
b) Solve the equation

$$
f(x)=6 .
$$

$$
(0,4),(-1,0),(4,0), x=-2,1,2,5
$$

\square

Created by T. Madas

Question 17 (***)
A curve has equation

$$
y=|2 x+2|, x \in \mathbb{R}
$$

a) Sketch the graph of the above curve, indicating the coordinates of any intercepts with the coordinate axes.
b) Hence solve the equation

$$
(0,2),(-1,0), x=-\frac{1}{5}
$$

\square

Created by T. Madas

Question 18 (***)

$$
f(x)=\frac{2}{x-3}, x \in \mathbb{R}, x \neq 2
$$

a) Sketch the graph of $y=|f(x)|$, clearly indicating the coordinates of any points where the graph of $y=|f(x)|$ meets the coordinate axes.
(The sketch should include the equation of the vertical asymptote of the curve.)
b) Solve the equation

Created by T. Madas

Question 19 (***)

A curve has equation

$$
y=|2 x+5|, x \in \mathbb{R} .
$$

a) Sketch the graph of the above curve, indicating the coordinates of any intercepts with the coordinate axes.
b) Hence solve the equation

$$
|2 x+5|=3 x
$$

$$
(0,5),\left(-\frac{5}{2}, 0\right), x=5
$$

Question 20 (***)

A curve has equation

$$
y=|3 x-6|, x \in \mathbb{R}
$$

a) Sketch the graph of the above curve, indicating the coordinates of any intercepts with the coordinate axes.
b) Solve the equation

Created by T. Madas

Question 21 (***)
The functions f and g have equations

$$
\begin{aligned}
& f(x)=|x|, x \in \mathbb{R} \\
& g(x)=|5 x+1|, x \in \mathbb{R}
\end{aligned}
$$

a) Sketch in the same diagram the graph of $f(x)$ and the graph of $g(x)$.

The sketch must include the coordinates of any points where the graphs meet the coordinate axes.
b) Find the x coordinates of the points of intersection between the two graphs.
c) Hence solve the inequality

$$
x=-\frac{1}{4},-\frac{1}{6},-\frac{1}{4}<x<-\frac{1}{6}
$$

Created by T. Madas

Question $22 \quad(* * *)$
0

The figure above shows the gr
The graph of $y=f(x)$..?

The figure above shows the graph of the curve with equation $y=f(x)$.
\ldots has as asymptotes the lines with equations $y=0, x=0$ and $x=10$.
\ldots crosses the x axis at the point $A\left(-\frac{1}{2}, 0\right)$.
\ldots has local minimum and local maximum at $B(-3,-1)$ and $C(2,-4)$, respectively.

Sketch on separate diagrams the graph of ...
a) $\ldots y=|f(x)|$
b) $. . y=f(|x|)$

Each of the two sketches must clearly indicate the coordinates of the new position of A, B and C, and the equations of any asymptotes

Created by T. Madas

Created by T. Madas

Question 23 (***)
A curve has equation

$$
f(x)=\left|2 x^{2}-4 x-11\right|, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graphs meet the coordinate axes.
b) Solve the equation

Created by T. Madas

The figure above shows the graph of

$$
y=\operatorname{cosec} x, \text { for } 0 \leq x<360^{\circ} .
$$

a) Sketch the graph of

$$
y=|\operatorname{cosec} x|, \text { for } 0 \leq x<360^{\circ} .
$$

b) Solve the equation

$$
\operatorname{cosec} x=2, \text { for } 0 \leq x<360^{\circ}
$$

c) Hence solve the equation

$$
|\operatorname{cosec} x|=2 \text { for } 0 \leq x<360^{\circ} .
$$

\square

$$
, x=30^{\circ}, 150^{\circ}, x=30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}
$$

Created by T. Madas

Question 25 (***)

$$
f(x)=|2 x-k|, k>0, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.

Indicate clearly in the sketch the coordinates of any point where the graph of $f(x)$ meets the coordinate axes.
b) Given that $x=6$ is a solution of the equation

$$
f(x)=\frac{1}{3} x
$$

find the possible values of k.

Created by T. Madas

Question 26 (***)
Two curves y_{1} and y_{2} have equations

$$
y_{1}=|3 x+3| \quad \text { and } \quad y_{2}=\left|x^{2}-1\right|
$$

a) Sketch the graph of y_{1} and the graph of y_{2} on the same diagram.

Mark clearly in the sketch the coordinates of any x or y intercepts.
b) Solve the equation

Created by T. Madas

Question 27 (***)
A curve C has equation

$$
y=\left|5-x^{2}\right|, x \in \mathbb{R}
$$

a) Sketch the graph of C.

Mark clearly in the sketch the coordinates of any x or y intercepts.
b) Solve the equation

$$
\left|5-x^{2}\right|=4
$$

c) Hence, or otherwise, solve the inequality

$$
\left|5-x^{2}\right|<4 .
$$

$(\sqrt{5}, 0),(-\sqrt{5}, 0),(0,5), x= \pm 1, x= \pm 3,-3<x<-1$ or $1<x<3$

Created by T. Madas

Question 28 (***)

$$
f(x)=|x-80|, x \in \mathbb{R} .
$$

a) Solve the inequality

$$
f(x)<10
$$

b) Find the value of the integer n, such that $f\left(1.2^{n}\right)<10$.

31, $70<x<90, n=24$

Created by T. Madas

$$
f: x \mapsto|2 x-5|, \quad x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.

Mark clearly in the sketch the coordinates of any x or y intercepts.
b) Solve the equation

$$
f(x)=x
$$

The function g is defined as

$$
g: x \mapsto x^{2}-x, \quad x \in \mathbb{R}
$$

c) Solve the equation
$f g(x)=7$.

Created by T. Madas

Created by T. Madas

Question 30 (***)

$$
f(x) \equiv 1+\frac{4 x}{2 x-5}-\frac{15}{2 x^{2}-7 x+5}, x \in \mathbb{R}, x \neq \frac{5}{2}, x \neq k .
$$

a) Show that

$$
f(x) \equiv \frac{3 x+2}{x-k}, x \in \mathbb{R}, x \neq k
$$

stating the value of k.
b) Express $f(x)$ in the form

$$
A+\frac{B}{x-k}, x \in \mathbb{R}, x \neq k,
$$

where A and B are integers to be found.
c) Sketch on separate set of axes the graph of ...
i. $\quad . \quad y=f(x)$.
ii. ... $y=|f(x)|$.
iii. $\ldots y=f(|x|)$.

Each sketch must include the coordinates of any points where the graph meets the coordinate axes and the equations of any asymptotes.

Created by T. Madas

Question 31 (***)
Find the solution interval of the following modulus inequality.

Created by T. Madas

Question 32 (***+)

The figure above shows part of the graph of the curve with equation

$$
y=4 x-x^{2}, x \in \mathbb{R}
$$

The graph meets the coordinate axes at the origin O and $B(4,0)$, and has a stationary point at $A(2,4)$.

Sketch on separate diagrams, indicating the new coordinates of the points A and B, the graph of ...
a) $\ldots y=\left|4 x-x^{2}\right|$.
b) $\ldots y=4|x|-|x|^{2}$.
c) $\ldots \quad y=|4| x\left|-|x|^{2}\right|$.

Question 33 (***+)
The curve C_{1} has equation

The curve C_{2} has equation

$$
y=|x-1|, x \in \mathbb{R}
$$

\square

$$
y=|2 x+1|, x \in \mathbb{R} .
$$

a) Sketch the graph of C_{1} and the graph of C_{2} on the same set of axes, indicating the coordinates of any intercepts of the graphs with the coordinate axes.
b) Hence, solve the inequality

$$
|2 x+1| \geq|x-1|
$$

\square, \square $x \leq-2$ or $x \geq 0$

Created by T. Madas

Question 34 (***+)
The curves C_{1} and C_{2} have equations

$$
\begin{aligned}
& C_{1}: y=4 x+3, x \in \mathbb{R} \\
& C_{2}: y=|3 x+2|, x \in \mathbb{R}
\end{aligned}
$$

a) Sketch in the same diagram the graph of C_{1} and the graph of C_{2}.

The sketch must include the coordinates of any points where the graphs meet the coordinate axes.
b) Solve the inequality

$$
4 x+3>|3 x+2|
$$

$$
x>-\frac{5}{7}
$$

\square
\square

Created by T. Madas

Created by T. Madas

Question 35 (***+)
The function f is given by

$$
f: x \rightarrow 4-|2 x|, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.

Mark clearly in the sketch the coordinates of any x or y intercepts.
b) Solve the equation

$$
f(x)=x
$$

c) Hence, or otherwise, solve the inequality

$$
f(x) \geq x
$$

$(2,0),(-2,0),(0,4), x=-4, x=\frac{4}{3},-4 \leq x \leq \frac{4}{3}$

Created by T. Madas

Question 36 (***+)
The curve C_{1} and the curve C_{2} have respective equations

$$
y=|x-3| \quad \text { and } \quad y=|2 x+1| .
$$

a) Sketch the graphs of C_{1} and C_{2} on the same diagram, indicating the coordinates of any intercepts of the graphs with the coordinate axes.
b) Solve the inequality

$$
|2 x+1| \leq|x-3|
$$

$$
(0,3),(3,0),(0,1),\left(-\frac{1}{2}, 0\right),-4 \leq x \leq \frac{2}{3}
$$

Question 37 (***+)

$$
\begin{aligned}
& f(x) \equiv \ln x, x \in \mathbb{R}, x>0 \\
& g(x) \equiv 2 \ln (x+\mathrm{e}), x \in \mathbb{R}, x>-\mathrm{e} .
\end{aligned}
$$

a) Describe mathematically the transformations which map the graph of $f(x)$ onto the graph of $g(x)$.
b) Sketch the graph of $y=|g(x)|$, indicating the coordinates of any intercepts of the graph with the coordinate axes.
c) Solve the equation

$$
|g(x)|=2
$$

d) Hence solve the inequality $|g(x)| \geq 2$.

Created by T. Madas

Question 38 (***+)
The figure below shows the graph of

$$
y=f(x), x \in \mathbb{R}
$$

which consists of two straight line segments that meet at the point $P(1, p)$.

The points A, B and C are the points where $f(x)$ crosses the coordinate axes.

Sketch, in separate diagrams, the graph of ...
a) ... $y=f(x+1)$.
b) $\ldots y=f(|x|)$.

Each of these sketches must show the coordinates of any intersections with the x axis and the new position of the point P.

Created by T. Madas
[continued from overleaf]

It is now given that

$$
f(x)=|x-1|-3, x \in \mathbb{R}
$$

c) Find the full coordinates of the points P and C.
d) Solve the equation

$$
f(x)=4 x .
$$

Y, $P(1,-3), C(0,-2), x=-\frac{2}{5}$

(G)

Pal b
$|x-1|-3=4 x$
$|x-1|=4 x+3$
$\left(\begin{array}{l}x-1=4 x+3 \\ x-1=-4 x-3\end{array}\right.$
ateck gevartion
$=1-\frac{4}{3}-1(-3=4$

- $1-2-1-\frac{1}{3} \neq-\frac{16}{3}$
\square

Created by T. Madas

Question 39 (***+)

$$
f(x)=2|x+1|, \quad x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$. Indicate clearly in the sketch the coordinates of any point where the graph of $f(x)$ meets the coordinate axes.
b) Hence solve the equation

$$
(-1,0),(0,2), x=0,-4
$$

Created by T. Madas

Question 40 (***+)
0

Created by T. Madas
[continued from overleaf]

It is now given that

$$
f(x)=4-|x+2|, x \in \mathbb{R}
$$

c) Find the coordinates of the points A, B and C.
d) Solve the equation

$$
f(x)=-\frac{1}{2} x
$$

ए, $A(-2,4), B(0,2), C(2,0), x= \pm 4$

Created by T. Madas

$(* * *+)$
y

The figure above shows the graph of the curve with equation

$$
y=-\frac{1}{2} x^{\frac{1}{2}}, x \geq 0 .
$$

Sketch on separate diagrams, the graphs of ...
$1 \quad$ a) $\ldots y=\left|-\frac{1}{2} x^{\frac{1}{2}}\right|$.
b) $\ldots y=-\frac{1}{2}|x|^{\frac{1}{2}}$.
[continued from overleaf]

The figure below shows the graph of $y=f(x)$, which is related to the graph of

Created by T. Madas

Question 42 (***+)
The function f is defined by

$$
f(x)=|2 x-3|-1, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$.

Mark clearly in the sketch the coordinates of any x or y intercepts as well as the coordinates of any minima or maxima.
b) State the range of $f(x)$.
c) Solve the equation

$$
f(x)=x
$$

$$
(1,0),(2,0),(0,2), \quad \min \left(\frac{3}{2},-1\right), f(x) \geq-1, x=\frac{2}{3}, 4
$$

Question 43 (***+)
The function $f(x)$ is given by

$$
f(x)=|2 x-4|, \quad x \in \mathbb{R}
$$

a) Sketch the graph of $y=f(x)$.

Mark clearly in the sketch the coordinates of any x or y intercepts.
b) Find the coordinates of the intersections between the graphs of

$$
y=|2 x-4| \quad \text { and } \quad y=x
$$

c) Solve the inequality

$$
|2 x-4| \leq x
$$

The graph of $y=|2 x-4|+k$, where k is a constant, touches the straight line with equation $y=x$.
d) State the value of k.

Created by T. Madas

Question 44 (***+)
Find the set of values of x for which $\left|x^{2}-4\right|>3 x$.

Question 45

Solve each of the following equations.
a) $x=|3 x+2|-4$.
b) $x^{2}+1=|2 x-4|$.

Created by T. Madas

Created by T. Madas

Question 46 (***+)
The function f is defined by

$$
f(x)=\left|8-\mathrm{e}^{3 x}\right|, x \in \mathbb{R}
$$

a) Sketch the graph of $f(x)$. Mark clearly in the sketch the coordinates of any x or y intercepts as well as the equations of any asymptotes.
b) State the range of $f(x)$.
c) Solve the equation $f(x)=19$.

$$
(\ln 2,0),(0,7), x=8, f(x) \geq 0, x=\ln 3
$$

Question $47 \quad(* * *+)$

$$
\frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)}-2, x \neq \frac{1}{2}, x \neq 1 .
$$

a) Show that the above expression can be simplified to $\frac{3}{2 x-1}$.
b) Sketch the graph of the curve with equation

$$
y=\frac{3}{2 x-1}, x \neq \frac{1}{2},
$$

c) Hence sketch the graph of the curve with equation

$$
y=\frac{3}{2|x|-1}, x \neq \pm \frac{1}{2}
$$

Each of sketches in parts (b) and (c), must include the equation of the vertical asymptote of the curve, and the coordinates of any points where the curve meets the coordinate axes.

Question $48 \quad(* * *+)$
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=\frac{1}{3}(x+2 a), x \in \mathbb{R}, \\
& g(x)=|2 x-a|, x \in \mathbb{R}
\end{aligned}
$$

where a is a positive constant.
a) Sketch in the same set of axes the graph of $f(x)$ and the graph of $g(x)$. The sketch must include the coordinates of any points where these graphs meet the coordinate axes.
b) Find, in terms of a, the coordinates of the points of intersection between the graphs of $f(x)$ and $g(x)$.

Question 49 (***+)
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=|2 x-1|, x \in \mathbb{R} \\
& g(x)=\ln (x+2), x \in \mathbb{R}, x>-2
\end{aligned}
$$

a) State the range of $f(x)$.
b) Find, in exact form, the solutions of the equation

$$
g f(x)=2
$$

c) Show that the equation $f(x)=g(x)$ has a solution between 1 and 2 .
d) Use the iteration formula

$$
x_{n+1}=\frac{1}{2}\left[1+\ln \left(x_{n}+2\right)\right], x_{1}=1
$$

to find the values of x_{2}, x_{3} and x_{4}, correct to three decimal places.
$\square, f(x) \geq 0, x=\frac{1}{2}\left(\mathrm{e}^{2}-1\right), x=\frac{1}{2}\left(3-\mathrm{e}^{2}\right), x_{2}=1.049, x_{3}=1.057, x_{4}=1.059$

Question 50 (***+)
It is given that $|y|=2, y \in \mathbb{R}$.
a) Find the possible values of $|3 y-1|$.

It is next given that $5 \leq t \leq 13, t \in \mathbb{R}$.
b) Express the above inequality in the form $|t-a| \leq b$, where a and b are positive integers to be stated.

It is finally given that

$$
|x-\sqrt{2}|=|x+5 \sqrt{2}|, x \in \mathbb{R}
$$

c) Determine the value of x.
$,|3 y-1|=5,|3 y-1|=7,|t-9| \leq 4, x=-2 \sqrt{2}$

Created by T. Madas

Question 51 (***+)

The figure above shows the graphs of

$$
C_{1}: y=|x-2 a|, x \in \mathbb{R}
$$

$C_{2}: y=2 x+a, x \in \mathbb{R}$.
The finite region bounded by C_{1}, C_{2} and the coordinate axes is shown shaded in the above diagram.

Find, in terms of a, the exact area of the shaded region.

Question 52 (***+)

The figure above shows the graphs of

$$
\begin{aligned}
& C_{1}: y=|3 x-2|, x \in \mathbb{R} \\
& C_{2}: y=|x-5|, x \in \mathbb{R}
\end{aligned}
$$

a) State the coordinates of the points where each of the graphs meet ...
i. ... the x axis, indicted by A and B.
ii. ... the y axis, indicted by C and D.

The two graphs intersect at the points P and Q.
b) Find the exact area of the triangle $A P Q$.

Question 53 (****)
Find the solution interval for the following inequality.

$$
x(x-4)<|5 x-16|-4
$$

$$
--4<x<3 \cup 4<x<5
$$

Question 54 (****)
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=4 a^{2}-x^{2}, x \in \mathbb{R} \\
& g(x)=|4 x-a|, x \in \mathbb{R}
\end{aligned}
$$

where a is a constant, such that $a \geq 1$.
a) Sketch in the same diagram the graph of $f(x)$ and the graph of $g(x)$. The sketch must include the coordinates of any points where each of the graphs meets the coordinate axes.
b) Find, in exact form where appropriate, the solutions of the equation

$$
4-x^{2}=|4 x-1|
$$

Question 55 ($* * * *$)
The straight line L with equation

$$
y=x+3, x \in \mathbb{R}
$$

intersects the curve C with equation

$$
y=\left|x^{2}-9\right|, \quad x \in \mathbb{R},
$$

at three distinct points.
a) Sketch on the same set of axes the graph of L and the graph of C. The sketch must include the coordinates of any x or y intercepts.
b) Find the coordinates of the points of intersections between L and C.

Created by T. Madas

Question 56 (****)
The function f is defined by

$$
f(x)=\frac{x^{2}-4}{|x|+2}, \quad x \in \mathbb{R}
$$

a) Show that $f(x)$ is even.
b) Solve the equation

Question 57 (****)
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=x^{2}-4 x+3, x \in \mathbb{R}, x \geq 2 \\
& g(x)=|x-15|, \quad x \in \mathbb{R}
\end{aligned}
$$

a) Find an expression for $g f(x)$ and state its domain.
b) Sketch the graph of $g f(x)$ and hence state its range.

The sketch must include the coordinates of any points where the graph meets the coordinate axes, and the starting point of the graph.
c) Solve the equation

$$
g f(x)=12 \text {. }
$$

$g f(x)=\left|x^{2}-4 x-12\right|, x \geq 2,(2,16),(6,0), x=4, x=2+2 \sqrt{7}$

Created by T. Madas

Question 58
$(* * * *)$

$$
f(x)=a-|x-2 a|, x \in \mathbb{R}
$$

where a is a positive constant.
a) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph meets the coordinate axes, and the coordinates of the cusp of the curve.
b) Find the value of $\int_{0}^{3 a} f(x) d x$.

Created by T. Madas

Question 59 (****)
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=|x|-a, x \in \mathbb{R} \\
& g(x)=|2 x+4 a|, x \in \mathbb{R}
\end{aligned}
$$

where a is a positive constant.
a) Sketch in the same diagram the graph of $f(x)$ and the graph of $g(x)$. The sketch must include the coordinates of any points where the graphs meet the coordinate axes.
b) Find the solutions of the equation

$$
|x|-3=|2 x+12|
$$

\square $, x=-5, x=-9$

Created by T. Madas

Question 60 (****)
The function f is defined as

$$
f(x)=a \ln (b x), x \in \mathbb{R}, x>0
$$

where a and b are positive constants.
a) Given that the graph of $f(x)$ passes through the points $\left(\frac{1}{3}, 0\right)$ and $(3,4)$, find the exact value of a and the value of b.
b) Sketch the graph of

$$
y=|f(x)| .
$$

c) Find, in exact form where appropriate, the solutions of the equation

$$
|f(x)|=8
$$

Created by T. Madas

Question 61 (****)
The function f is defined by

$$
f: x \mapsto|2 x-3|-1, \quad x \in \mathbb{R}
$$

a) Sketch the graph of f.

Mark clearly in the sketch the coordinates of any x or y intercepts as well as the coordinates of any minima or maxima.
b) State the range of f.
c) Solve the inequality

$$
|2 x-3|-1<x
$$

$$
(1,0),(2,0)(0,2), \min \left(\frac{3}{2},-1\right), f(x) \geq-1, \frac{2}{3}<x<4
$$

Created by T. Madas

Question 62 (****)
The curve C has equation

The straight line L has equation

$$
y=3 x-9, x \in \mathbb{R}
$$

a) Sketch in the same diagram the graph of C and L.

Mark clearly in the sketch the coordinates of any x or y intercepts.
b) Solve the equation

$$
2\left|x^{2}-6 x+8\right|=3 x-9
$$

c) Hence or otherwise, solve the inequality

$$
2\left|x^{2}-6 x+8\right|>3 x-9
$$

$\square, C:(2,0),(4,0),(0,16), \quad L:(3,0),(0,-9) \quad x=5, \frac{7}{2}, x<\frac{7}{2}$ or $x>5$

Created by T. Madas

Question 63 (****)

$$
f(x)=9 x^{2}+6 x+2, x \in \mathbb{R} .
$$

$$
g(x)=(x+1)(x+3), x \in \mathbb{R}
$$

Show clearly that ...
a) $\ldots f(x)=|f(x)|$.
b) \ldots the equation $g(|x|)=2$ has no solutions.

Created by T. Madas

Question 64 (****)
Sketch the graph of

$$
y=1-|1-|x||, x \in \mathbb{R} .
$$

The sketch must include the coordinates ...

- ... of any points where the graph meets the coordinate axes
- ... of any cusps of the graph.

Question 65 (****)
The functions f and g are defined as

$$
\begin{aligned}
& f(x) \equiv|3 x+a|+b, \quad x \in \mathbb{R} \\
& g(x) \equiv 2 x+5, \quad x \in \mathbb{R}
\end{aligned}
$$

where a and b are positive constants.

The graph of f meets the graph of g at the points P and Q.

Given that the coordinates of P are $(0,5)$, find the coordinates of Q in terms of a.
\square , $Q\left(-\frac{1}{2} a, 5-\frac{4}{5} a\right)$

$\begin{aligned} & \text { Now Sowina Simuntintoosly } \\ & \|3 x+a\|+b=2 x+5 \\ & \|3 x+a\|+8-a=2 x+8 \\ & \|3 x+a\|=2 x+a \end{aligned}$
$\begin{aligned} & \text { SOLOING WH OBTAN } \\ & \left(\begin{array}{l} 3 x+a=2 x+a \\ 3 x+a=-(2 x+a) \end{array}\right. \\ & \left(\begin{array}{l} x \neq 6 \text { (Axeray kNown) } \\ 5 x=2 a \end{array}\right. \end{aligned}$
Q(-5, $x+50$

Created by T. Madas

Question 66 (****+)
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=|a-2 x|+a, x \in \mathbb{R} \\
& g(x)=|3 x+a|, x \in \mathbb{R}
\end{aligned}
$$

where a is a positive constant.
a) Sketch in the same set of axes the graph of $f(x)$ and the graph of $g(x)$. The sketch must include the coordinates of any points where the graphs meet the coordinate axes.
b) Determine, in terms of a, the coordinates of any points of intersection between the two graphs.
c) Find a simplified expression for $g f(x)$.
d) Solve, in terms of a, the equation $g f(x)=10 a$.
$\square,(0, a),\left(-\frac{1}{3} a, 0\right) \&(0,2 a),(a, 4 a), f g(x)=3|a-2 x|+4 a$,

$$
x=-\frac{1}{2} a, \frac{3}{2} a
$$

Created by T. Madas

Question 67 (****+)
The function f is defined as

$$
f: x \mapsto \ln |4 x-12|, x \in \mathbb{R}, x \neq 3
$$

Consider the following sequence of transformations T_{1}, T_{2} and T_{3}

$$
\ln x \xrightarrow{T_{1}} \ln |x| \xrightarrow{T_{2}} \ln |x-12| \xrightarrow{T_{3}} \ln |4 x-12| .
$$

a) Describe geometrically the transformations T_{1}, T_{2} and T_{3}
b) Hence sketch the graph of f. Indicate clearly any intersections with the axes and the equation of its asymptote.
$T_{1}=$ maintains the graph for $x \geq 0$, and further reflects this section in the y axis,
$T_{2}=$ translation, "right", 12 units,$T_{3}=$ enlargement in x, scale factor $\frac{1}{4},(0, \ln 12)$,

Created by T. Madas

Question 68 (****+)
The function f is defined as

$$
f: x \mapsto \ln \left(\frac{1}{2} x-4\right), x \in \mathbb{R}, x>8
$$

Consider the following sequence of transformations T_{1} and T_{2}.

$$
\ln x \xrightarrow{T_{1}} \ln (x-4) \xrightarrow{T_{2}} \ln \left(\frac{1}{2} x-4\right) .
$$

a) Describe geometrically the transformations T_{1} and T_{2}.
b) Hence sketch the graph of f. Indicate clearly any intersections with the axes and the equation of its asymptote.
c) Find the set of values that satisfy the equation

$$
-\ln \left(\frac{1}{2} x-4\right)=\left|\ln \left(\frac{1}{2} x-4\right)\right|
$$

$T_{1}=$ translation, "right", 4 units,$T_{2}=$ enlargement in x, scale factor $2,(10,0)$,

Created by T. Madas

Question $69(* * * *+)$
By considering the following sequence of transformations T_{1}, T_{2} and T_{3}

$$
\sqrt{x} \xrightarrow{T_{1}} \sqrt{x+1} \xrightarrow{T_{2}} \sqrt{|x|+1} \xrightarrow{T_{3}} \sqrt{|x+1|+1}
$$

sketch the graph of $y=\sqrt{|x+1|+1}$.
Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.

Question 70 (****+)
Solve the equation
C2, $(0, \sqrt{2}),(1,1)$
\square

$$
x=\frac{1}{2}
$$

$$
f(x)=k\left(x^{2}-4 x\right), x \in \mathbb{R}
$$

where k is a positive constant
The equation $|f(x)|=12$ has three distinct roots.
a) Determine the value of k.
b) Find the three roots of the equation, in exact surd form where appropriate.

Created by T. Madas

Question 72 (****+)
Evaluate the following integral

Created by T. Madas

Question $73 \quad(* * * *+)$
Find the solution interval of the following modulus inequality.

Created by T. Madas

Question $74 \quad(* * * *+)$
0
\square

(O2

The figure above shows the curve with equation $y=f(x)$.
The equations of the three asymptotes to the curve, and the three intercepts of the curve with the coordinate axes are marked in the figure.

Sketch a detailed graph of $y^{2}=|f(|x|)|$.
\square graph

Question 75 (*****)
Determine the range of values of x that satisfy the inequality

$$
\left|\frac{x+3}{x}\right| \geq\left|\frac{x}{2-x}\right|
$$

\square
\square

Created by T. Madas

Question 76 (*****)

$$
f(x)=|2-|x+2||-4, x \in \mathbb{R} .
$$

a) Sketch the graph of $f(x)$

The sketch must include the coordinates ...

- ... of any points where the graph meets the coordinate axes
- ... of any cusps of the graph.
b) Hence, or otherwise, solve the equation

$$
|2-|x+2||=\frac{1}{4} x+1
$$

Created by T. Madas

Question 77 ($* * * * *$)
Sketch the graph of

$$
y=\left|x^{2}-16\right|+2 x, x \in \mathbb{R}
$$

The sketch must include the coordinates of any cusps or any stationary points

Created by T. Madas

Question 78 (*****)
Solve the following modulus inequality

Created by T. Madas

Question 79 (${ }^{* * * * *) ~}$
Sketch the graph of

$$
y=\frac{|x|}{x+1}, x \in \mathbb{R}
$$

The sketch must include the equations of any asymptotes of the curve, and the coordinates of any points where the curve meets the coordinate axes.
[No credit will be given to non analytical sketches based on plotting coordinates]

Question 80 (*****)
Find, in exact surd form, the solutions of the following equation

Created by T. Madas

Question 81 ($\left.{ }^{*} * * * * *\right)$
Sketch the graph of

$$
y=|2 x|-|2-x|, x \in \mathbb{R}
$$

The sketch must include the coordinates of any points where the curve meets the coordinate axes.
[No credit will be given to non analytical sketches based on plotting coordinates]

Created by T. Madas

Question 82 (*****)
Find the set of values of x that satisfy the inequality

Created by T. Madas

Question 83 (*****)
By considering a sequence of four transformations, or otherwise, sketch the graph of

$$
y=-\left||x-2|^{2}-4\right| x-2|-5|
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]
\square

Created by T. Madas

Question 84 (*****)
By considering the graphs of two separate curves, or otherwise, sketch the graph of

$$
y=x|x-4|
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]

Created by T. Madas

Question 85 (*****)

By considering the graphs of two separate curves, or otherwise, sketch the graph of

$$
y=(x-2)|x+1| .
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]

Question 86

(*****)
By considering the graphs of three separate lines, or otherwise, sketch the graph of

$$
y=|x+4|-|x-2|
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]

Question 87 (*****)
Find the set of values of x that satisfy the inequality

$$
\frac{x^{2}-4}{|x+5|}<8-4 x
$$

$$
x<-6 \quad \cup-\frac{22}{5}<x<2
$$

\square

$$
\Rightarrow x^{2}-4<|x+5|(8-4 x)
$$

Question 88 (*****)
By considering the graphs of three separate lines, or otherwise, sketch the graph of

$$
y=|x-4|+|x+1|
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]

Created by T. Madas

Question 89 (*****)
The point $A(1,-1)$ lies on the curve with equation

$$
y=\left|x^{2}-|2 x|\right|-2 x, x \in \mathbb{R} .
$$

The tangent to the curve at A meets the curve at three more points B, C and D.
Sketch the curve and its tangent at A in a single set of axes.
Give the coordinates of B, C and D in exact form where appropriate.

Created by T. Madas

Created by T. Madas

Question 90 (*****)
Sketch the graph of

$$
y=x|x-1|-x|x+4|, \quad x \in \mathbb{R}
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of any cusps of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]

Created by T. Madas

Question 91 ($* * * * * *)$
Solve the following inequality.

$$
(5-x)(5-|x|)>9, x \in \mathbb{R}
$$

\square

$$
-4<x<2, \cup x>8
$$

A fuey Alsebralc Approtat	
- \|f $x>0 \quad\|x\|=x$	- If $x \leq 0 \quad\|x\|=-x$
$\Rightarrow(s-x)(s+p x)>9$	$\Rightarrow(s-x)(5-\|x\|)>9$
$\Rightarrow(5-x)(5-x)>9$	$\Rightarrow(5-x)(5+x)>4$
$\Rightarrow(5-x)^{2}>9$	$\Rightarrow 25-x^{2}>9$
$\Rightarrow(x-5)^{2}>9$	$\Rightarrow x^{2}-25<-9$
$\Rightarrow\left\{\begin{array}{l}x-5>3 \\ x-5<-3\end{array}\right\}$	$\Rightarrow x^{2}<16$
$\Rightarrow\left\{\begin{array}{l}x>8 \\ x<2\end{array}\right\}$	$\Rightarrow \quad-4<x<4$
- Hence	- \#finct
$\begin{gathered} 0 \leq x<2 \\ \text { OR } \end{gathered}$	$-4<x \leqslant 0$
$x>8$	
COMBINING THE AROK PHSOLTS WE CBRAIN	
$-4<x<2$	$\text { OR } \quad x>8$

A Gehfilical approact CONSIDGRTTH GeARA1 of $y=(5-x)(5-\|x\|)$ (f $x \geqslant 0 \quad y=(5-x)(5-x)=(5-x)^{2}=(x-5)^{2}$ $1\left(-x \leqslant 0 \quad y=(5-x)(5+x)=25-x^{2}\right.$ If $x \leq 0 \quad y=(5-x)(s+x)=$ - Sowina to fino THe x co.ordnates of $P, Q Q R$ $(x-5)^{2}=9$ a \qquad - Wet repure the "ornabe genth" to be "trout' the unt $y=9$ $\frac{-4<x<2}{4}$ OR $\xrightarrow[R]{x>8}$	

Created by T. Madas

Question 92 ($* * * * *$)
Solve the following inequality in the largest real domain.

Created by T. Madas

Question 93 (*****)
Sketch the curve with equation

$$
y=\frac{x+1}{|x-1|}, x \in \mathbb{R}, x \neq 1
$$

The sketch must include ...

- ... the coordinates of all the points where the curve meets the coordinate axes.
- ... the equations of the asymptotes of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]

Question 94 (*****)
A curve C has equation

$$
y=\frac{3|x|-1}{2 x^{2}+2-|x+2|}, \quad x \in \mathbb{R}, \quad x \neq 0, \quad x \neq \frac{1}{2} .
$$

Find, in exact simplified surd form, the y coordinate of the stationary point of C.
\square

$$
y=7-2 \sqrt{10}
$$

\square

By considering a sequence of transformations, or otherwise, sketch the graph of

$$
y=\ln (|2 x-1|+2), x \in \mathbb{R}
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]

Created by T. Madas

Question 96 (*****)
Find the set of values of x that satisfy the inequality

Created by T. Madas

Question 97 (*****)
The curve C has equation

$$
y=\left|x^{2}-16\right|+2(x-4), x \in \mathbb{R}
$$

Sketch a detailed graph of C and hence show that the area of the finite region bounded by C and the x axis, for which $y<0$, is 32 square units.

Created by T. Madas

The figure above shows the graph of the function $f(x)$, consisting entirely of straight line sections. The coordinates of the joints of these straight line sections which make up the graph of $f(x)$ are also marked in the figure.

Given further that

$$
\int_{-2}^{2} k+f\left(x^{2}-4\right) d x=0
$$

determine as an exact fraction the value of the constant k.

Created by T. Madas

Question 99 (*****)
Sketch the curve with equation

$$
y=\frac{x^{2}-4}{|x+5|}, x \in \mathbb{R}, x \neq-5
$$

The sketch must include ...

- ... the coordinates of all the points where the curve meets the coordinate axes.
- ... the equations of the asymptotes of the curve.
[No credit will be given to non analytical sketches based on plotting coordinates]

Question 100
Sketch, in the largest real domain, the graph of

$$
y=\ln | | x+4|-6| .
$$

Indicate the coordinates of any intersections with the axes, the equations of any asymptotes and the coordinates of any cusps of the curve.
\square , graph

109

