INEQUALITIES FURTHER PRACTICE

RATIONAL

INEQUALITIES

Question 1 (**)
Solve the following inequality.
$\frac{3}{x-4} \geq 1$.

Question 3 (**)
Find the set of values of x, that satisfy the following inequality.

$$
\frac{5 x}{x^{2}+4}<x
$$

\square , $-1<x<0, x>1$

METRDD A	
$\frac{5 x}{z^{2}+4}<x$	
As $x^{2}+4>0$ wat may mutiley teruss	
$5 x<x^{3}+4 x$	
$0<x^{3}-x \quad$ M+Tte0 B	
$\mathrm{n}^{3}-7>0$	$\frac{5 x}{x^{2}+4}<x$
$x\left(x^{2}-1\right)>0$	$\frac{5 x}{x^{2}+4}-x<0$
$c_{v}=L_{0}^{-1}$	$\begin{aligned} & \frac{5 x-x\left(x^{2}+4\right)}{x^{2}+4}<0 \\ & \frac{5 x-x^{3}-4 x}{x^{2}+4}<0 \end{aligned}$
	$\frac{x-x^{3}}{x^{2}+4}<0$
$\therefore-1<x<0 \cup x>1$	$\frac{x\left(1-x^{2}\right)}{x^{2}+4}<0$
	$\frac{2(1-\lambda)(1+\lambda)}{x^{2}+4}<0$
	Tif Certiche vawes Att OQ \pm !
	Fout THf Numbelar, HA THE
	Dtwominater is irespuabce
	$\therefore-1<x<0 \cup x$

\square

Question 4 (**)
Find the set of values of x, that satisfy the following inequality.

$$
0<x<3 \cup x>5
$$

\square

Question 5 (**)
Solve the following rational inequality.

Question 7 (**+)
Find the set of values of x, that satisfy the following inequality.

Question $8 \quad\left({ }^{* *}+\right.$)
Find the set of values of x, that satisfy the following inequality.

$$
\frac{3}{x+3}>\frac{x-4}{x}
$$

Question 9 (**+)
Solve the following inequality.

Question 10 (***)
Determine the range of values of x that satisfy the following inequality.

$$
\begin{aligned}
& \text { hat satisfy the following inequality. } \\
& \frac{x+3}{x} \geq \frac{x}{2-x} \text {. } \\
& \qquad=x \leq-2 \cup 0<x \leq \frac{3}{2} \cup x>2
\end{aligned}
$$

Created by T. Madas

Question 11 (***)
Determine the solution interval of the following inequality.

$$
\frac{x-7}{x} \leq \frac{5}{x(x-3)}
$$

$$
\text {], } 0<x \leq 2 \cup 3<x \leq 8
$$

\square

Created by T. Madas

Question 12 (***)
Find, in terms of the positive constant k, the solution set of the following inequality.

$$
\begin{aligned}
& \frac{x+k}{x+4 k}>\frac{k}{x} \\
& x, x<-4 k \\
&
\end{aligned}
$$

Question $13 \quad(* * *+)$
Solve the following rational inequality.

$$
\frac{x^{2}}{(x-2)(x+1)} \geq 0
$$

$$
x<-1 \cup x=0 \cup x>2
$$

\square

Question 14 (***+)
Solve the following rational inequality.

$$
\frac{(x+1)^{2}(x-2)}{(x-1)^{2}(x+2)}<0
$$

\square

$$
\text { I, }-2<x<2, \quad x \neq 1
$$

Question 15 (***+)
Solve the following rational inequality.

$$
\frac{2 x}{x^{2}-x+2}>x \text {. }
$$

$$
x<0 \cup 0<x<1
$$

\square

Created by T. Madas

Question 16 (****+)
Solve the following inequality.

$$
x^{2}-x+\frac{1}{x}>1
$$

\square $x<-1 \cup 0<x<1 \cup x>1$

MODULUS

INEQUALTIES

Question 1 (**)
Find the set of values of x that satisfy the inequality

$$
|x-1|>6 x-1
$$

Question 2 (***)
Find the set of values of x that satisfy the inequality
$x, x \geq \frac{4}{7}, \quad x \neq \frac{3}{2}$

$$
\frac{5 x-1}{|2 x-3|} \geq 1
$$

Created by T. Madas

Question 3 (***)
Find the set of values of x that satisfy the inequality

$$
\begin{equation*}
\left|x^{2}-6 x+8\right|<6-2 x \tag{2}
\end{equation*}
$$

$$
2-\sqrt{2}<x<4-\sqrt{2}
$$

Question $4 \quad(* *+)$
Find the set of values of x that satisfy the inequality

$$
\left|x^{2}-2\right|<2 x
$$

- $-1+\sqrt{3}<x<1+\sqrt{3}$

Created by T. Madas

Question 5 (****)

$$
f(x) \equiv \frac{3 x-1}{x+2}, x \in \mathbb{R}, x \neq-2
$$

a) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph meets the coordinate axes and the equations of any asymptotes.
b) Hence, or otherwise, solve the inequality
$4\left|\frac{3 x-1}{x+2}\right|<2$.
\square

Question 6 (*****)
Find the set of values of x, that satisfy the following inequality.

$$
\begin{aligned}
& \left|\frac{(x-1)(x+4)}{x^{2}+4}\right|<1 \\
& \\
& \square, x<-\frac{3}{2} \text { or } 0<x<\frac{8}{3}
\end{aligned}
$$

Question 7 (*****)
Determine the range of values of x that satisfy the inequality

$$
\left|\frac{x+3}{x}\right| \geq\left|\frac{x}{2-x}\right|
$$

\square

$\begin{aligned} & \left\|\frac{x+3}{x}\right\| \geqslant\left\|\frac{x}{2-x}\right\| \\ \Rightarrow & \frac{\|x+3\|}{\|v\|} \geqslant \frac{\|x\|}{\|2 x\|} \end{aligned}$ Evgeything is non negatiut, so we may nwctiply athoss, BUT LeT us Nott titAT $x \neq 0, x \neq 2$ $\begin{aligned} & \Rightarrow\|r+z\|\|2-2\| \geqslant\|x\|^{2} \\ & \Rightarrow\|(x+3)(2-x)\| \geqslant x^{2} \\ & \Rightarrow\|(x+3)(x-2)\| \geqslant x^{2} \\ & \Rightarrow\left\|x^{2}\right\| x-c \mid \geqslant x^{2} \end{aligned}$ - If $x>2$ $\begin{gathered} x^{2}+x-6 \geqslant x^{2} \\ x \geqslant 6 \\ \therefore x \geqslant 6 \end{gathered}$ - IF $0<x<2$ $\begin{aligned} & -x^{2}-x+6 \geqslant x^{2} \\ & -2 x^{2}-x+6 \geqslant 0 \\ & 2 x^{2}+x-6 \leq 0 \end{aligned}$ $(2 x-3)(x+2)<0$ $\therefore \quad 0<x \leqslant \frac{2}{2}$	

Created by T. Madas

Question 8 (******)
Find the set of values of x that satisfy the inequality

$$
\frac{x^{2}-4}{|x+5|}<8-4 x
$$

Question 9 (*****)
Solve the following inequality.

$$
(5-x)(5-|x|)>9, x \in \mathbb{R}
$$

\square

$$
-4<x<2, \cup x>8
$$

- Sowina to fino tite x co.ordnates of $P, Q Q R$ $(a-5)^{2}=9$

$x=<^{8}-\frac{-3}{2}$

$\begin{array}{rr} & \frac{-4}{4} \\ & P\end{array}$
R At Bforf

Created by T. Madas

Question 10 (*****)
Solve the following inequality in the largest real domain.

Question 11 (*****)
Solve the following modulus inequality.

$$
3|x+1|-|x-4| \leq 11, x \in \mathbb{R}
$$

\square
\square $-9 \leq x \leq 3$

Created by T. Madas

Question 12 (*****)
Find the set of values of x that satisfy the inequality

$$
\left|\frac{4 x}{x+2}\right| \geq 4-x
$$

VARIOUS

 INEQUALITIES

 INEQUALITIES}

Question 1 (**)
Solve the inequality

$$
x>-\frac{17}{15}
$$

Question 2 (**+)
An advertising sign has a rectangular design so the its length is x metres and its width is $(6-x)$ metres.

Given that the area of the advertising sign must be at least 5 square metres, determine the range of possible values of x.

Question 3 (**+)

$$
T=8 x-12 y+7
$$

It is further given that $-\frac{1}{2}<x<\frac{7}{8}$ and $-\frac{1}{6}<y<\frac{2}{3}$.

Determine the range of possible values of T.
\square , $-5<T<16$

0

Question 4 (***)
Show clearly, without approximating and without using any calculating aid that

$$
\sqrt{2}+\sqrt{5}>\sqrt{7}
$$

Question 5 (***+)
Given that $k>0$ show clearly that

$$
\frac{k+1}{\sqrt{k}} \geq 2
$$

Consper THE ExPANSION of ($\sqrt{k}-1)^{2}$
$\begin{aligned} & \Rightarrow(\sqrt{k}-1)^{2} \geqslant 0 \\ & \Rightarrow(\sqrt{k})^{2}-2 \times 1 \times \sqrt{k}+1^{2} \geqslant 0 \\ & \Rightarrow k-2 \sqrt{k}+1 \geqslant 0 \\ & \Rightarrow k+1 \geqslant 2 \sqrt{k} \end{aligned}$ Af $\sqrt{k}>0$ WE MAYY DUIDE IT
$\Rightarrow \frac{k+1}{\sqrt{k}} \geqslant 2$ *s Repureno ALTORNATWE BY DIFPRERTIATION
Firemy lit is note titir as k gats lneger, The wipt Point wuer At An ABsolett miniuum $\operatorname{tg} \lim _{k \rightarrow \infty}\left(\frac{k+1}{\sqrt{k}}\right)=\lim _{k \rightarrow \infty}\left(\sqrt{k}+\frac{1}{\sqrt{k}}\right)$
$\begin{aligned} & y=\frac{k+1}{\sqrt{k}}=\frac{k}{k t}+\frac{1}{k^{2}}=k^{\frac{1}{2}}+k^{-\frac{1}{2}} \\ & \frac{d y}{d k}=\frac{1}{2} k^{-\frac{1}{2}}-\frac{1}{2} k^{-\frac{3}{2}} \end{aligned}$ Sowing for zano, to cook gr miniluth $0=\frac{1}{2} t^{-\frac{1}{2}}-\frac{1}{2} t^{-\frac{3}{2}}$

Created by T. Madas

Question 6 (****+)
Show clearly, without approximating and without using any calculating aid that
a) $\sqrt{6+2 \sqrt{6}}>\sqrt{3}+\sqrt{2}$.
b) $\sqrt[3]{3}>\sqrt{2}$.
c) $\sqrt{2}-1>\sqrt{3}-\sqrt{2}$.

Created by T. Madas

Question 7 (****+)
Show clearly that for all real numbers α, β and γ

$$
\alpha^{2}+\beta^{2}+\gamma^{2} \geq \alpha \beta+\beta \gamma+\gamma \alpha
$$

\square proof

