IMPLICIT

 EQUATIONS EXAM QUESTIONSCreated by T. Madas

Question 1 (**)
A circle has equation

$$
x^{2}+y^{2}=25
$$

Use implicit differentiation to find an equation of the normal to the circle at the point with coordinates $(3,4)$.

Question 3 (**)
A curve is given implicitly by the equation

$$
y^{2}+3 x y+x^{2}=20 .
$$

Find an equation for the tangent to the curve at the point $P(2,2)$.
\square , $x+y=4$

Question $4 \quad(* *)$
A curve C has equation

$$
x^{3}-2 x y+y^{2}-13=0
$$

Find an equation for the normal to C at the point $P(-2,3)$.

Question 5 (**)
A curve is given implicitly by the equation

$$
3 y^{2}+6 x y+4 x^{2}-2 y=5
$$

Find an equation for the tangent to the curve at the point $P(-2,1)$.

$$
4 y+5 x+6=0
$$

A curve has implicit equation

$$
9 x^{2}+2 y^{2}+y=1
$$

$$
\begin{aligned}
& \text { a) Show clearly that } \frac{d y}{d x}=-\frac{18 x}{4 y+1} .
\end{aligned}
$$

b) Hence find the coordinates of the points on the curve where $\frac{d y}{d x}=0$.

Question $7 \quad(* *+)$
A curve is given by

$$
2 \cos x+\tan y=2 \sqrt{3}
$$

a) Show clearly that

$$
\frac{d y}{d x}=2 \sin x \cos ^{2} y
$$

b) Find an equation of the normal to the curve at the point $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$, giving the answer in the form $a x+b y=\pi$, where a and b are integers.

Question $8 \quad\left({ }^{* *}+\right.$)
A curve is described by the implicit relationship

$$
y^{3}+x y=2 y+4 x-10
$$

Find an equation of the normal to the curve at the point where $y=1$.

Created by T. Madas

Question $9 \quad(* *+$)
A curve C has implicit equation

$$
x^{3}+2 x y=\mathrm{e}^{y}
$$

Show clearly that

$$
\frac{d y}{d x}=\frac{x^{3}+2 y}{x^{3}+2 x y-2 x}
$$

\square , proof
\square
Diforost x

$$
4 \cos y=3-2 \sin x, x \in \mathbb{R}, y \in \mathbb{R}
$$

Show that the straight line with equation

$$
4 y-2 x=\pi
$$

Created by T. Madas

Question 11 (***)
A curve has implicit equation

$$
y^{2}+3 x y-2 x^{2}+17=0
$$

Find an equation of the tangent to the curve at the point $(-2,3)$.

Created by T. Madas

Question 12 (***)
The curve C has equation

$$
y x(2 x-y)+1=0
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{y^{2}-4 x y}{2 x^{2}-2 x y}
$$

The point $P(k, 2)$ lies on C.
b) Find the value of k.
c) Show that P is a stationary point of C.
d) Hence, state an equation of the tangent to C at P
\square $, k=\frac{1}{2}, y=2$

Created by T. Madas

Question 13 (***)
The curve C has equation

$$
2 \cos 3 x \sin y=1,0 \leq x, y \leq \pi
$$

The point $P\left(\frac{\pi}{12}, \frac{\pi}{4}\right)$ lies on C.

Show that an equation of the tangent to C at P is

Created by T. Madas

Question 14 (***)
A curve has equation

$$
3 x^{2}-x y+y^{2}+2 x-4 y=1
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{2+6 x-y}{4-2 y+x}
$$

b) Hence show further that the value of x at the stationary points of the curve satisfies the equation

$$
x^{2}=\frac{5}{33}
$$

proof
\qquad

Created by T. Madas

Question 15 (***)
A curve has equation
a) Show clearly that

$$
2 x^{2}+x y+y^{2}=14
$$

$$
\frac{d y}{d x}=-\frac{4 x+y}{x+2 y}
$$

b) Hence, find the coordinates of the stationary points of the curve.

Created by T. Madas

Question 17 (***)
The equation of a curve is given by

$$
4 x^{2}+4 y^{2}-5 x y=10
$$

a) Find the y coordinates of the points on the curve where $x=2$.
b) Find the gradient at these points.

Created by T. Madas

Question 18 (***)
A curve C has implicit equation

$$
x^{2}-4 x y+y^{2}=13
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{x-2 y}{2 x-y}
$$

The points A and B are the two points on C whose x coordinate is 2 .
b) Find the y coordinates of A and B.

The tangents to C at A and B, meet at the point P.
c) Find the exact coordinates of P.
$\square, A(2,9), B(2,-1), P\left(-\frac{13}{6},-\frac{13}{3}\right)$

Question 19 (***)
A curve C is defined implicitly by the equation

$$
(2 x-y)^{3}=37+3 x^{2}
$$

Find the value of the gradient at the point on C with coordinates $(3,2)$.

$$
4 x^{3}-6 x y+3^{y}=23
$$

Show that the gradient of the curve at P is
where k is a positive integer to be found.

\square , $k=10$

Created by T. Madas

Created by T. Madas

Question 21 (***+)
A curve C is defined implicitly by

$$
(x+y)^{3}=27 x, \quad x, y \in \mathbb{R} .
$$

Verify that the point on C where $x=1$ is a stationary point.
\square , proof

Question 22 (***+)
A curve C is defined implicitly by

$$
y^{2}-3 x y+4 x^{2}=28, \quad x \in \mathbb{R}, y \in \mathbb{R}
$$

a) Find, in terms of x and y, a simplified expression for $\frac{d y}{d x}$.
b) Determine the coordinates of the stationary points of C.
\square $, \frac{d y}{d x}=\frac{3 y-8 x}{2 y-3 x},(-3,-8),(3,8)$

Question 23 (***+)
A curve has equation

Created by T. Madas

Question 24 (***+)
A curve C is given implicitly by

$$
x^{2}-x y+y^{2}=x .
$$

Find the coordinates of the points on C at which the gradient is zero.

$$
(1,1) \&\left(\frac{1}{3},-\frac{1}{3}\right)
$$

Question 25 (***+)

The equation of a curve is given implicitly by

$$
2 \ln y=x \ln x, \quad x, y \in \mathbb{R} \quad x, y>0 .
$$

Find the exact value of the gradient at the point on the curye where $x=4$.

Created by T. Madas

Question 26 (***+)
A curve C is given implicitly by the equation

$$
4 x^{2}+3 x y+y^{2}=2, \quad x \in \mathbb{R}, \quad y \in \mathbb{R} .
$$

a) Find, in terms of x and y, an expression for $\frac{d y}{d x}$.
b) Find the coordinates of the points on C, where the gradient is 2 .

$$
\frac{d y}{d x}=-\frac{8 x+3 y}{3 x+2 y},(-1,2),(1,-2)
$$

Created by T. Madas

Question 27 ($* * *+$)
A curve C has implicit equation

$$
x^{2}+4 x y+2 y^{2}=7
$$

a) Show clearly that ...
i. $\quad \ldots \frac{d y}{d x}=-\frac{x+2 y}{2 x+2 y}$.
ii. ... the equation of the tangent to the curve at $P(1,1)$ is

$$
3 x+4 y=7
$$

The tangent to the curve at the point Q is parallel to the tangent to the curve at P.
b) Find the coordinates of Q.

Created by T. Madas

Question 28 (***+)
A curve C is defined implicitly by

$$
2 y^{2}-x y+4 x+x^{2}=7, \quad x, y \in \mathbb{R} .
$$

a) Find an expression for $\frac{d y}{d x}$, in terms of x and y.
b) Show that $(-1,2)$ is one of the stationary points of C and determine the exact coordinates of the other stationary point.
\square $, \frac{d y}{d x}=\frac{y-2 x-4}{4 y-x},\left(-\frac{25}{7},-\frac{22}{7}\right)$

(a) $2 y^{2}-x y+4 a+x^{2}=7$ till ourta 4y $y^{\frac{d}{d}}-y-x \frac{d y}{d x}+4+2 x=0$ $(4 y-x) \frac{d y}{d x}=y-2 x-4$ $\frac{d y}{d x}=\frac{y-2 x-4}{4 y-x}$ (b) For tre $\frac{d y}{d x}=0$ $\begin{aligned} & y-2 x-4=0 \\ & y=2 x+4 \end{aligned}$	

Question 29 (***+)
A curve C is defined implicitly by

$$
4 x y-(x+2)^{2}=y^{2}-5
$$

a) Find a simplified expression for $\frac{d y}{d x}$, in terms of x and y.
b) Hence determine the coordinates of the two stationary points of C.
\square

$$
\frac{d y}{d x}=\frac{x-2 y+2}{2 x-y},(0,1),\left(\frac{4}{3}, \frac{5}{3}\right)
$$

a) Diffirenliatt wat Respect To \therefore
$\Rightarrow \frac{d}{d x}(4 x y)-\frac{d}{d x}\left((x+2)^{2}\right)=\frac{d}{d \lambda}\left(y^{2}\right)-\frac{d}{d \lambda}(s)$ $\Rightarrow 4 y+4 x \frac{d y}{d x}-2(x+2)=2 y \frac{d y}{d x}-0$ $\Rightarrow(4 x-2 y) \frac{d y}{d x}=2(x+2)-4 y$ $\Rightarrow \frac{d y}{d x}=\frac{2 x-c y+4}{4 x-2 y}$
$\Rightarrow \frac{d y}{d x}=\frac{x-2 y+2}{2 x-y}$
b) $\frac{\text { STATIONARY" } \Rightarrow \frac{d y}{d x}=0}{2-2 y+2=0}$ $x-2 y+2=0$
$x=2 y-2$
 $\Rightarrow 4 y(2 y-2)-(2 y-2+2)^{2}$
$\Rightarrow 8 y^{2}-8 y-4 y^{2}=y^{2}-5$
$\Rightarrow 3 y^{2}-8 y+5=0$ $\Rightarrow 3 y^{2}-8 y+5=0$
$\Rightarrow(3 y-5)(y-1)=0$ $\Rightarrow(3 y-5)(y-1)=0$
$y=<_{1}^{5 / 3} \quad x=<_{20}^{2 x / 5-2=\frac{4}{2}} \begin{aligned} & 20)=0\end{aligned}$
$\therefore\left(\frac{4}{3}, \frac{5}{3}\right) q(0,1)$

Question 30 (***+)
A curve C is defined implicitly by

$$
6^{x}+6 x y+y^{2}=9
$$

a) Show clearly that

$$
\frac{d y}{d x}=-\frac{6 y+6^{x} \ln 6}{6 x+2 y}
$$

b) Find the gradient at each of the two points on C, where $x=2$.

Give the answers in the form $a+b \ln 6$, where a and b are integers.

$$
\square,\left.\frac{d y}{d x}\right|_{(2,-3)}=3-6 \ln 6
$$

$$
\left|\frac{d y}{d x}\right|_{(2,-9)}=-9+6 \ln 6
$$

\square

Question 31 (***+)
A curve C has implicit equation

$$
2 x y=2^{x}+y^{2}
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{y-2^{x-1} \ln 2}{y-x}
$$

The point P lies on C, where $x=2$.
b) Find an equation of the tangent to C at P.

Question 32 (${ }^{* * *+\text {) }}$
A curve C has implicit equation

$$
\sin 3 x+\sin 2 y=\sqrt{2}, \quad 0 \leq x, y \leq \frac{\pi}{3} .
$$

The point P lies on C and its x coordinate is $\frac{\pi}{12}$.
a) Find the y coordinate of P.
b) Show that the gradient at P is $-\frac{3}{2}$.
c) Show further that the equation of the tangent to C at P is

$$
4 y+6 x=\pi
$$

$$
P\left(\frac{\pi}{12}, \frac{\pi}{8}\right)
$$

Created by T. Madas

Question 33 (***+)
A curve has implicit equation

$$
\frac{3 x^{2}}{y}-5 y=2(x+8), \quad x \in \mathbb{R}, y \in \mathbb{R}, y \neq 0
$$

Find the coordinates of the stationary point of the curve.
\square

$\Rightarrow \frac{3 x^{2}}{y}-5 y=2(x+8)$
$\Rightarrow 3 x^{2}-5 y^{2}=2 g(x+\theta)$
$\Rightarrow 3 x^{2}-5 y^{2}=2 x y+16 y$
Differihuratc with resitet to x
$\left.\Rightarrow \frac{d}{d(3 x}\right)-\frac{d}{d x}\left(5 y^{2}\right)=\frac{d}{d x}(2 x y)+\frac{d}{d x}(6 g)$ $\Rightarrow 6 x-\log \frac{d y}{d x}=\left[2 y+2 x \frac{d y}{d x}\right]+16 \frac{d y}{d x}$ For STATIONARY POWTS $\frac{d y}{d t}=0$
$\Rightarrow 6 x=2 y$ $\Rightarrow y=3 x$

Created by T. Madas

Question 34 (***+)
A curve C has implicit equation

$$
x y(x-y)+16=0, \quad x \neq y, \quad x, y \neq 0 .
$$

Find the coordinates of the stationary point of C.

Created by T. Madas

Question 35 (***+)
A curve C has implicit equation

$$
a x^{2}+x y-2 y^{2}+b=0
$$

where a and b are constants.

The normal to the curve at the point $P(1,4)$ has equation

$$
2 y+3 x=11 .
$$

Determine the value of a and the value of b.

Created by T. Madas

Question 36 (***+)
The equation of a curve is given by

$$
\mathrm{e}^{y}=\frac{x^{2}+3}{x-1}
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{(x-3)(x+1)}{\left(x^{2}+3\right)(x-1)}
$$

b) Find the exact coordinates of the turning point of the curve.

Created by T. Madas

Question 37 (***+)
The curve C is given implicitly by

$$
a x(2 x-y)=b-3 y^{2}
$$

where a and b are non zero constants.

The point $(2,2)$ lies on C and the gradient at that point is $-\frac{3}{2}$.

Find the value of a and the value of b.

Created by T. Madas

The figure above shows a curve known as "the folium of Descartes", with equation

$$
x^{3}+y^{3}=8 x y .
$$

The point $A(k, k)$, where k is a non zero constant, lies on the curve.
a) Find the value of k.
b) Show that the gradient at A is -1 .

Question 39 (****)
A curve C has implicit equation

$$
a x^{3}-3 x y+b y^{2}=224,
$$

where a and b are non zero constants.

The normal to the curve at the point $P(-2,6)$ has equation

$$
15 x-13 y+108=0 .
$$

Determine the value of a and the value of b.
\square , $a=8, b=7$

Created by T. Madas

Question 40 (****)
The equation of a curve is given implicitly by

$$
4 y+y^{2} \mathrm{e}^{3 x}=x^{3}+C
$$

where C is a non zero constant.
a) Find a simplified expression for $\frac{d y}{d x}$.

The point $P(1, k)$, where $k>0$, is a stationary point of the curve.
b) Find an exact value for C.

Created by T. Madas

Question 41 (****)

A curve C has implicit equation

$$
y=\frac{2 x+1}{x y+3} .
$$

a) Find an expression for $\frac{d y}{d x}$, in terms of x and y.
b) Show that there is no point on C, where the tangent is parallel to the y axis.

Created by T. Madas

Question 42 (****)
A curve has implicit equation

$$
8 x^{4}+32 x y^{3}+16 y^{4}=1
$$

Find the coordinates of any points on the curve whose gradient is $\frac{1}{2}$.

Differssiatt Mructo writ fespegt to 2
$\Rightarrow 8 x^{4}+32 x y^{3}+66 y^{4}=1$
$\left.\Rightarrow \frac{d}{d x}\left(8 x^{4}\right)+\frac{d}{d x}\left(32 y^{3} y^{3}\right)+\frac{d}{d x}\left(\operatorname{lag}^{y}\right)\right)=\frac{d}{d x^{2}}(t)$
$\Rightarrow 32 x^{3}+32 y^{3}+96 x y^{2} \frac{d y}{d x}+64 y^{3} \frac{d y}{d x}=0$
$\Rightarrow x^{3}+y^{3}+3 y^{2} \frac{y}{d x}+2 y^{3} \frac{\partial y}{d x}=0$
Now Geaderar of $\frac{1}{2}$
$\Rightarrow x^{3}+y^{3}+\frac{1}{2}\left(x y^{2}\right)+y^{2}=0$
$\Rightarrow 2 x^{3}+3 x y^{2}=0$
$\Rightarrow x\left(2 x^{2}+3 y^{2}\right)=0$
THE TRumpe soutiow $x=y=0$, DCES not \leq ATISF Thf Weut

Rctranwa-To THic cquation wity $x-2$
$\Rightarrow 16 y^{4}-1=0$
$\Rightarrow y^{4}=\frac{1}{16}$
$\Rightarrow y-+\frac{1}{2}$
$\therefore\left(9-\frac{1}{2}\right) \&\left(0, \frac{1}{2}\right)$

Created by T. Madas

Question 43 (****)
A curve C has implicit equation

$$
(x y-2)(y+5)=10 .
$$

The curve crosses the y axis at the point A.

The straight line L is the tangent to C at A.
a) State the coordinates of A.
b) Find an equation for L.
c) Determine the coordinates of the point where L meets C again.

Created by T. Madas

Question 44 (****)
A curve C has implicit equation

$$
4^{x}+2 x y+y^{2}=13
$$

a) Show clearly that

$$
\frac{d y}{d x}=-\frac{y+4^{x} \ln 2}{x+y}
$$

There are two points on C whose x coordinate is 2 .
b) Find the gradient at each of these two points.

Give the answers in the form $a+b \ln 2$, where a and b are integers.

$$
\left|\frac{d y}{d x}\right|_{(2,-1)}=1-16 \ln 2,\left.\quad \frac{d y}{d x}\right|_{(2,-3)}=-3+16 \ln 2
$$

Created by T. Madas

Question 45 (****)
A circle has equation

$$
(x+3)^{2}+(y-1)^{2}=289 .
$$

a) Find an equation for the normal to the curve at the point $P(12,9)$.
b) Find the coordinates of the point Q, where the normal to the circle at P intersects the circle again.

$$
8 x-15 y+39=0, Q(-18,-7)
$$

Created by T. Madas

Question 46 (****)
The point $P(4,2)$ lies on the curve with equation

$$
2^{x} y+2^{y} x=6 x y .
$$

Show that the gradient of the curve at P is

$$
\frac{1-a \ln 2}{b \ln 2-1},
$$

where a and b are positive integers to be found.

$$
\text { CAb, } a=4, b=2
$$

Question 47 (****)
A curve C is defined implicitly by

$$
\sin 2 x \cot y=1, \quad x \in \mathbb{R}, \quad y \in \mathbb{R}, \quad 0<x<\frac{\pi}{2}, \quad 0<y<\frac{\pi}{2}
$$

a) Show clearly that

$$
\frac{d y}{d x}=\cot 2 x \sin 2 y
$$

The point $A\left(\frac{\pi}{4}, \frac{\pi}{12}\right)$ is a turning point of C.
b) Use $\frac{d^{2} y}{d x^{2}}$ to show that A is a local maximum.

Created by T. Madas

Question 48 (****)
A curve has equation

$$
\sin x+\cos y=\frac{1}{2}, 0 \leq x<2 \pi, 0 \leq y<2 \pi
$$

Find the coordinates of the points on the curve, where the tangent to the curve is parallel to the y axis.

Question 49 (****)
The equation of a curve is given by

$$
x^{2}-2 y^{2}-x y-x+5 y+34=0
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{2 x-y-1}{x+4 y-5}
$$

b) Find the exact value of gradient at the point on the curve with coordinates

$$
(1+4 \sqrt{2},-5-\sqrt{2})
$$

c) Determine the coordinates of the turning points of the curve.

Created by T. Madas

The figure above shows the curve with equation

$$
\text { a) Show that } \frac{d y}{d x}=\frac{x}{4(1-y)} \text {. }
$$

The curve fits perfectly inside a rectangle whose sides are parallel to the coordinate axes, so they are tangents to the curve.
b) Show further that the area of the rectangle is 8 square units.

Created by T. Madas

Question 51 (****)
The equation of a curve is given implicitly by

$$
y^{2}-x^{2}=1, \quad|y| \geq 1
$$

Show clearly that

Created by T. Madas

Question 52 (****)

The diagram above shows a curve known as "the folium of Descartes", with equation

$$
x^{3}+y^{3}=6 x y
$$

The curve is stationary at the origin O and at the point A.

Find the exact coordinates of A in the form $\left(2^{n}, 2^{m}\right)$, where n and m are fractions to be found.

Created by T. Madas

Question 53 (****)

The figure above shows the curve C with the equation

$$
4 y-2 x y+6=y^{2}+3 x^{2} .
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{y+3 x}{2-x-y}
$$

The straight lines L_{1} and L_{2} are parallel to each other and are both tangents to C. The equation of L_{1} is

$$
y=x-2
$$

b) Find an equation of L_{2}

Question 54 (****)
A curve C is given implicitly by

$$
x^{2}+4 y^{2}-8 x-16 y+28=0
$$

a) Find the coordinates of the turning points of C.
b) Show clearly that

$$
1+4\left(\frac{d y}{d x}\right)^{2}+4(y-2) \frac{d^{2} y}{d x^{2}}=0
$$

c) Hence determine the nature of these turning points.

\square max at $(4,3) \& \min$ at $(4,1)$

Created by T. Madas

Question 55 (****)
A curve C has equation

$$
y=2^{\sin 2 x}, x \in \mathbb{R}
$$

a) By taking logarithms on both sides of this equation, or otherwise, find an expression for $\frac{d y}{d x}$ in terms of x.
b) Find an equation of the tangent to the curve at the point where $x=\frac{\pi}{4}$.
$\frac{d y}{d x}=2^{\sin 2 x} \times 2 \ln 2 \times \cos 2 x=2^{1+\sin 2 x} \times \ln 2 \times \cos 2 x, y=2$

Question 56 (****)
The equation of a curve is given by the implicit relationship

$$
\frac{x}{x+1}+\frac{y}{y+1}=x^{2}
$$

Show that at the point on the curve with coordinates $(1,1)$, the gradient is 7 .
\square , proof

Buctrey Theovad dNiD TIDY $\rightarrow \frac{x}{x+1}+\frac{y}{y+1}=x^{2}$ $\Rightarrow x(y+1)+y(x+1)=x^{2}(x+1)(y+1)$ $\Rightarrow x y+x+2 y+y=x^{2}(x y+x+y+1)$ $\Rightarrow 2 x y+2+y=x^{2} y+x^{2}+x^{2} y+x^{2}$ $\begin{aligned} & \Rightarrow \frac{d}{d x}(2 x y)+\frac{d}{d x}(x)+\frac{d}{d x}(y)=\frac{d}{d x}\left(x^{3} y\right)+\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d(}\left(x^{2}\right)+\frac{d}{x}\left(x^{2}\right) \\ & \Rightarrow 2 y+2 x \frac{d y}{d x}+1+\frac{d y}{d x}=3 x^{2} y+x^{3} \frac{d x}{d x}+3 x^{2}+2 x y+\frac{x^{2} d y}{d x}+2 x \\ & \frac{d x}{} x=1 a y=1 \\ & \Rightarrow 2+2 \frac{d y}{d x}+1+\frac{d y}{d x}=3+\frac{d y}{d x}+3+2+\frac{d y}{d x}+2 \\ & \Rightarrow 3+3 \frac{d y}{d x}=2 \frac{d y}{d x}+10 \\ & \Rightarrow \frac{d y}{d x}=1 \end{aligned}$ A(trenfitu) wandor any intiat tioy up $\begin{aligned} & \Rightarrow \frac{d}{d x}\left[\frac{x}{x+1}\right]+\frac{d}{d x}\left[\frac{y}{y+1}\right]=\frac{d}{d}\left[x^{2}\right] \\ & \Rightarrow \frac{d}{d}\left[\frac{(x+1)-1}{(x+1)}\right]+\frac{d}{d x}\left[\frac{(y+1)-1}{(y+1)}\right]=2 x \\ & \Rightarrow \frac{d}{d x}\left[1-\frac{1}{x+1}\right]+\frac{d}{d x}\left[1-\frac{1}{y+1}\right]=2 x \end{aligned}$

\square TIDY Tilf quation fiest
$\Rightarrow \frac{x}{x+1}+\frac{y}{y+1}=x^{2}$
$\Rightarrow x(y+1)+y(x+1)=x^{2}(x+1)(y+1)$ \qquad
$\Rightarrow x y+x+x y+y=x^{2}(x y+x+y+1$
$\Rightarrow 2 x y+x+y=x^{3} y+x^{3}+x^{2} y+x^{2}$
$\Rightarrow 2 x y+y-x^{3} y-x^{2} y=x^{3}+x^{2}-x$
$\Rightarrow y\left(2 x+1-x^{3}-x^{2}\right)=x^{3}+x^{2}-x$
DIFFFENTIATt- WITH RHPPET TO x
$\frac{d y}{d x}\left(x+1-x^{3}-x^{2}\right)+y\left(2+0-3 x^{2}-2 x\right)=3 x^{2}+2 x-1$
AT $(4,1)$ bot osth N
$\left.\frac{d y}{d d}\right|_{(1,1)}(2+1-y-x)+1(2-3-2)=3+2-1$
$\left.\frac{d y}{d \lambda}\right|_{(1,1)}+(-3)=4$
$\left.\frac{d y}{d \lambda}\right|_{(0,1)}=7 /+$ equens

$$
\underbrace{\frac{(x+1)^{2}}{(x+1)^{2}}+\frac{d y}{d x}\left(\frac{1}{(y+1)^{2}}\right)^{(y+1)^{2}}=2 x \quad f \pi}\}
$$

Question 57 (****)
A curve C has implicit equation
a) Show clearly that

$$
\frac{(x+2 y)^{2}}{4 x-y}+y=3 x+2
$$

$$
\frac{d y}{d x}=\frac{2 k x-k y+8}{6 y+k x+2}
$$

where k is a constant to be found.
b) Find the gradient at each of the points on C, where $x=2$.
\square
\square gradient $=-\frac{9}{2}, \frac{5}{6}$

Finnuy we the
$\left.\frac{d y}{d x}\right|_{(2,2)}=\frac{22 \times 2-11 \times 2+8}{6 \times 2+11 \times 2+2}=\frac{44-22+8}{12+22+2}=\frac{30}{36}=\frac{5}{6}$
$\left.\frac{d y}{d x}\right|_{(2,-10)}=\frac{22 \times 2-11(-10)+8}{6(-0)+1 \times 2+2}=\frac{44+110+8}{-60+22+2}=\frac{162}{-36}=-\frac{9}{2} /$

Question 58 (****)
A curve C is given by the implicit equation

$$
x y+y^{2}=x^{2}+5
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{2 x-y}{x+2 y}
$$

b) Find the coordinates of the turning points of C.
c) Show further that

$$
2 \frac{d y}{d x}+2\left(\frac{d y}{d x}\right)^{2}+(x+2 y) \frac{d^{2} y}{d x^{2}}=2
$$

d) Hence determine the nature of these turning points.

$$
(1,2) \&(-1,-2), \quad \max \text { at }(-1,-2) \& \min \text { at }(1,2)
$$

Created by T．Madas

Question 59 （＊＊＊＊）

$$
y=\arcsin x, \quad-1 \leq y \leq 1
$$

a）Show clearly that

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

The point $P\left(\frac{1}{6}, k\right)$ ，where k is a constant，lies on the curve with equation

$$
\arcsin 3 x+2 \arcsin y=\frac{\pi}{2},|x| \leq \frac{1}{3},|y| \leq 1
$$

b）Find the value of the gradient at P ．
\square
$-\frac{3}{2}$

9）chaxthex		
为samersax		
\rightarrow 者 $=$ eex		
\rightarrow 数㐫		
$\bigcirc \mathrm{mosem}$		
14 lat		

Now differavifuina．THe quation mpucriy
\Rightarrow arcon $3 z+2 \operatorname{arcany}=\frac{\pi}{2}$
$\Rightarrow \frac{d}{\alpha}(\arcsin 3 a), \frac{d}{d}($ zurauy $y)=\frac{d}{d x}\left(\frac{\pi}{2}\right)$
$\Rightarrow \frac{1}{\sqrt{1-\left.(3)\right|^{2}}} \times 3+\frac{2}{\sqrt{1-y^{2}}} \frac{d y}{d x}=0$
$\Rightarrow \frac{3}{\sqrt{1-9 x^{2}}}+\frac{2}{\sqrt{1-y^{2}}} \frac{d y}{d x}=0$ ＊$\left(\frac{1}{6}, \frac{1}{2}\right)$
$\Rightarrow \frac{3}{\sqrt{1-9(t))^{3}}}+\frac{2}{\sqrt{1-\left(\frac{1}{2}\right)^{2}}} \frac{d y}{d x}=0$
$\rightarrow \frac{3}{\sqrt{\frac{3}{4}}}+\frac{2}{\sqrt{\frac{3}{4}}} \frac{d y}{d x}=0$
$\Rightarrow 3+2 \frac{d y}{d x}=0$
$\Rightarrow \quad \frac{d y}{d x}=-\frac{3}{2} /$

Question 60 (****)
A curve C is given implicitly by

$$
x^{2}+3 x y-2 y^{2}+17=0
$$

a) Find the coordinates of the turning points of C.
b) Show further that

$$
2+6 \frac{d y}{d x}-4\left(\frac{d y}{d x}\right)^{2}+(3 x-4 y) \frac{d^{2} y}{d x^{2}}=0
$$

c) Hence determine the nature of these turning points.

$$
(3,-2) \&(-3,2), \max \text { at }(3,-2) \& \min \text { at }(-3,2)
$$

Question 61 (****)
The curve C has equation

$$
y=\frac{\ln y}{x-y}, y>0
$$

Show that the equation of the tangent to C at the point where $y=\mathrm{e}$ can be written as

$$
\mathrm{e}(x-y)=1
$$

\square , proof

METHPD A - WITHUOT IMPMAT DIFFERONIIATIaN

- STARET By ReArrtivaing The gquation of the wave bor x $\Rightarrow y=\frac{\ln y}{x-y}$ $\Longrightarrow x y-y^{2}=\ln y$
$\Rightarrow x y=y^{2}+m y$
- witho $y=e$
$\Rightarrow x=e+\frac{\ln e}{e}=e+\frac{1}{e}$
$\therefore P\left(e+\frac{1}{e}, e\right)$
- Diffretwiant with pesfect to y
$\Rightarrow \frac{d x}{d y}=1+\frac{y \times \frac{1}{y}-\ln y \times 1}{y^{2}}$
$\rightarrow \frac{d x}{d y}=1+\frac{1-\ln y}{y^{2}}$
$\left.\Rightarrow \frac{d x}{d y}\right|_{y=e}=1+\frac{1-\ln e}{e^{2}}=1+\frac{1-x}{e^{2}}=1$
$\Rightarrow \frac{d y}{d x}=1$
- gquation of tavgañ at P(e+ele)
$\Rightarrow y-e=x>e-\frac{1}{e}$
$\Rightarrow \frac{1}{e}=x-y$

Created by T. Madas

- Friesty witho $y=e$
$\Rightarrow y=\frac{\ln y}{x-y}$
$\Rightarrow e=\frac{\ln e}{2-e}$
$\Rightarrow e=\frac{1}{x-e}$
\Rightarrow l-e $=\frac{t}{e}$
$\Rightarrow x=e+\frac{t}{e}$
$\therefore P\left(e+\frac{1}{c}, e\right)$

$\Rightarrow y x-y^{2}=\ln y$
$\Rightarrow \frac{d}{d x}\left(y x-y^{2}\right)=\frac{d}{d x}(\ln y)$
$\Rightarrow x \frac{d y}{d x}+y-2 y \frac{d y}{d x}=\frac{1}{y} \frac{d y}{d x}$
- Grawntt Thte ABout expretsion at P(e+ $\frac{1}{\left.\frac{1}{2}, e\right)}$
$\left.\rightarrow\left(e+\frac{1}{e}\right) \frac{d y}{d x}\right|_{p}+e-\left.2 e \frac{d y}{d x}\right|_{p}=\left.\frac{1}{e} \frac{d y}{d x}\right|_{p}$
$\Rightarrow e=\left.\left(\frac{1}{e}+2 e-e-\frac{1}{e}\right) \frac{d y}{d z}\right|_{p}$ $\left.\Rightarrow e=e \frac{d y}{d x} \right\rvert\, p$
$\left.\Rightarrow \frac{d y}{d x}\right|_{t}=1$
ando tite quatian of the thatiol onn se found as batsee

Question 62 (****)
A curve C is given by the implicit equation

$$
x^{2}+2 x y-3 y^{2}=4 x+4 y-20 .
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{x+y-2}{3 y-x+2}
$$

b) Find the coordinates of the turning points of C.
c) Show further that

$$
(x-3 y-2) \frac{d^{2} y}{d x^{2}}-3\left(\frac{d y}{d x}\right)^{2}+2 \frac{d y}{d x}+1=0
$$

d) Hence determine the nature of these turning points.

4, (0,2) \& (4,-2), max at $(4,-2) \&$ min at $(0,2)$

c) stheranc with
$\left.2 x+2 y-4=(6 y-2 x+4) \frac{d y}{d x}\right) \div 2$
$x+y-2=(3 y-x+2) d y$ $x+y-2=(3 y-x+2) \underbrace{\frac{d y}{d x}}$ A-PDDDXT RULE
Differemviat AGAN W.R. x $1+\frac{d y}{d x}-0=\left(3 \frac{d y}{d x}-1+0\right) \frac{d y}{d x}+(3 y-2+2) \frac{d^{2} y}{d x^{2}}$ $1+\frac{d y}{d x}=3\left(\frac{d y}{d x}\right)^{2}-\frac{d y}{d x}+(3 y-x+2) \frac{d^{2} y}{d x^{2}}$ $(x-3 y-2) \frac{x^{2} y}{d x^{2}}-3 \frac{(x y)^{2}}{d)^{2}}+2 \frac{d y}{d x}+1=0 /$ As eipoies
d) Recting $(0,2)$ a Norr $\frac{d y}{d 2}=0$ ar $(0,2)$ $[0-6-2) \frac{d^{2}}{d \lambda^{2}}+1=0$
$\frac{d^{2} y}{d x^{2}}=\frac{1}{8}>0$ \qquad

$$
\text { afexina }\left(4_{1}-2\right) \& \frac{d y}{d x}=0 \text { Ar }(4,-2)
$$

$(4+6-2) \frac{d y}{d x^{2}}+1=0$

Created by T. Madas

Question 63 (****)
A curve C is given by the implicit equation

$$
x^{2}+4 x y+2 y^{2}+18=0
$$

a) Show clearly that

$$
\frac{d y}{d x}=-\frac{x+2 y}{2 x+2 y}
$$

b) Find the coordinates of the turning points of C.
c) Show further that

$$
1+4 \frac{d y}{d x}+2\left(\frac{d y}{d x}\right)^{2}+2(x+y) \frac{d^{2} y}{d x^{2}}=0
$$

d) Hence determine the nature of these turning points.

$$
\square,(-6,3) \&(6,-3), \text { max at }(6,-3) \& \text { min at }(-6,3)
$$

a) Differavilat the griet peoation wit respet iox b) $\frac{\text { sownan } \frac{d y}{d x}=0}{x+2 y=0}$ $x=-2 y$ Substinutr ing the equatlas of the coent $\begin{aligned} & \Rightarrow x^{2}+4 y+2 y^{2}+18=0 \\ & \Rightarrow(-2)^{2}+4(-2 y)+2 y^{2}+18=0 \\ & \Rightarrow 4 y^{2}-8 y^{2}+2 y^{2}+18=0 \\ & \Rightarrow 18=2 y^{2} \\ & \Rightarrow y^{2}=9 \\ & \Rightarrow y=<_{-3}^{3} \quad x=<_{6}^{-6} \quad \therefore(-6,3) 4(6-3) \end{aligned}$

Created by T. Madas

Question 64 (****)
It is given that

$$
\frac{d}{d u}(\arcsin u)=\frac{1}{\sqrt{1-u^{2}}}, \quad|u| \leq 1
$$

Hence show that if $y=\sin \left(\frac{1}{2} \arcsin 2 x\right)$, then ...
a) $\ldots\left(1-4 x^{2}\right)\left(\frac{d y}{d x}\right)^{2}=1-y^{2}$.
b) $\ldots\left(1-4 x^{2}\right) \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+y=0$.

Created by T. Madas

Question 65 (****)
A curve C has implicit equation

$$
y \mathrm{e}^{y}=x^{x}, x>0
$$

Show clearly that

$$
\frac{d y}{d x}=\frac{y(1+\ln x)}{1+y}
$$

\square proof
\square

Question 66 (****+)
A curve C is given implicitly by

$$
4 y^{2}+3 x y-2 x^{2}=2 x-2 y-12
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{2+4 x-3 y}{8 y+3 y+2}
$$

The tangent to C at two distinct points has gradient -2 .
b) Find the coordinates of these two points.

Question 67 (****+)
A curve C is given implicitly by

$$
2 x^{2}+x y-y^{2}-4 x-y+20=0
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{4 x+y-4}{2 y-x+1}
$$

b) Find the coordinates of the stationary points of C.
c) Show further that

$$
4+2 \frac{d y}{d x}-2\left(\frac{d y}{d x}\right)^{2}+(x-2 y-1) \frac{d^{2} y}{d x^{2}}=0
$$

d) Hence determine the nature of the stationary points of part (b).
$\square,(2,-4) \&(0,4), m$ max at $(2,-4) \& \min \operatorname{at}(0,4)$

Question 68 (****+)
A curve C has implicit equation

$$
x^{2}-2 y^{2}+4 x y-4 x-6 y+4=0
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{2 y+x+a}{2 y-2 x+b}
$$

where a and b are integers to be found.

The straight line l_{1} with equation $y=2 x-3$ is a tangent to C at the point P.

The straight line l_{2} is parallel to l_{1} and is also a tangent to C at a different point Q.
b) Find an equation of l_{2}.
\square , $a=-2, b=3, y=2 x-\frac{10}{3}$

Created by T. Madas

Question 69 ($* * * *+$)
A curve has implicit equation

$$
2 x \sin y+2 \cos 2 y=1, \quad 0 \leq y \leq 2 \pi
$$

Determine the equations of the two straight lines, which are parallel to the y axis, and are tangents to the above curve.

Created by T. Madas

The figure above shows part of the curve C with equation

$$
x^{2}+2 x+y^{3}=63+x y
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{y-2 x-2}{3 y^{2}-x}
$$

b) Show further that C has only one stationary point at $(1,4)$.

Created by T. Madas

Question $71 \quad(* * * *+$)
If $\tan 3 y=3 \tan x$ show clearly that

$$
\frac{d y}{d x}=\frac{1}{1+8 \sin ^{2} x}
$$

$\Rightarrow \frac{d}{d x}(\tan 3 y)=\frac{d}{d x}(3 \tan x)$
$\Rightarrow Z s_{s i}{ }^{2} 3 y \frac{d y}{d x}=3 \sec ^{2} x$
$\Rightarrow \frac{d y}{d x}=\frac{\sec ^{2} x}{\sec ^{2} 3 y}$

Created by T. Madas

Question $72 \quad(* * * *+)$

The figure above shows the curve with equation

$$
y^{3}+x^{2}=a x y
$$

where a is a positive constant.
The point Y lies on the y axis so that the straight line segment $Y Z$ is a tangent to the curve parallel to the x axis. Similarly the point X lies on the x axis so that the straight line segment $X Z$ is a tangent to the curve parallel to the y axis.

The area of the rectangle $O Y Z X$, where O is the origin, is 288 square units.
Determine the value of a.

Created by T. Madas

Question 73 (*****)
The curve C has implicit equation

$$
x y+x^{3} y+a y=1
$$

where a is a positive constant.

Use implicit differentiation to show that the gradient at every point on C is negative.

Created by T. Madas

Question 74 (****+)
A curve has equation

$$
y=2^{3 \mathrm{e}^{2 x}}, \quad x \in \mathbb{R}
$$

Express $\frac{d y}{d x}$ in terms of y.

$$
\frac{d y}{d x}=2 y \ln y
$$

\square
 $y=2^{3 e^{2 x}} \Rightarrow \frac{d y}{d x}=2^{3 e^{2 x}} \times \ln 2 \times 6 e^{2 x}$
$\Rightarrow \frac{d y}{d x}=y \underline{\ln 2} \times 2 \times\left(3 e^{2 x}\right)$
$\frac{\text { Now We Note Tint }}{\ln y}=\ln 2^{32} e^{3 x}$
$\ln y=\left(3 e^{2 x}\right)(\operatorname{m2} 2)$
$\Rightarrow \frac{d y}{d x}=2 y \ln y$
 $\Rightarrow y=2^{3 e^{2 x}}$ $\Rightarrow \ln y=\ln 2^{3 e}$ $\Rightarrow \ln y=(\ln 2)\left(3 e^{2 x}\right)$ Differniatt with etipher to x
$\Rightarrow \frac{1}{4} \frac{d y}{d y}=(\ln 2) \times 6 e^{2 x}$
$\Rightarrow \frac{d y}{d x}=y \times(\ln 2) \times 6 e^{2 x}$
$\Rightarrow \frac{d y}{d x}=2 y \times(\ln 2)\left(3 e^{2 y}\right)$
$\Rightarrow \frac{d u}{d x}=2 y \ln y$

Created by T. Madas

Question 75 (*****)
The curve C has implicit equation

$$
y=x \mathrm{e}^{y}, x \neq 0, y \neq 1, y \neq 2
$$

Show clearly that

Created by T. Madas

Question 76 (*****)
It is given that

$$
x=t^{\frac{1}{2}}, t>0 .
$$

Given further that y is a function of x, show clearly that

Created by T. Madas

Question 77 (*****)

$$
y^{2}-x^{2}=4,|y| \geq 2 .
$$

Use differentiation to show that

Created by T. Madas

Question 78 (*****)
A curve is defined implicitly as

$$
y^{3}-x^{2}+x(3 y+2)-3 y=2
$$

The y axis is a tangent to the curve at the point A and the point B is another intercept of the curve with the y axis.

The tangent to the curve at the point B meets the curve again at the point C.
Determine the exact coordinate of C.

Question 79 (*****)
The curve C has equation

$$
y=\ln (1+\cos x), x \in \mathbb{R},-\pi<x<\pi
$$

Show clearly that

$$
\frac{d^{4} y}{d x^{4}}+\mathrm{e}^{-y}\left(\frac{d y}{d x}\right)^{2}+2 \mathrm{e}^{-2 y}=0
$$

\square proof

Created by T. Madas

Question 80 (*****)
A curve is defined implicitly by the equation.

$$
\sqrt{x+y}-\sqrt{x-y}=\sqrt{k}
$$

where k is a positive constant.
a) Use implicit differentiation, directly onto the above equation, to show that

$$
\frac{d y}{d x}=\frac{k}{2 y} .
$$

Question 81 ($* * * * *$)
The point T lies on the curve with equation

$$
x^{2}+y^{2}-5 x y=15
$$

The tangent to the curve at T passes through the point with coordinates $(2,6)$.

Determine the two possible sets of coordinates for T.
\square
T, $T(-1,2) \cup T(-2,11)$

START BY OBRANWG. THE GRAOLTNT - INCTION OF THF WEUT
$\Rightarrow x^{2}+y^{2}-5 x y=15$
$\Rightarrow \frac{d}{d x}\left(x^{2}+y^{2}-5 x y\right)=\frac{d}{d x}(15)$
$\Rightarrow 2 x+2 y \frac{d u}{d x}-5 y-5 x \frac{d y}{d x}=0$
$\Rightarrow(2 y-5 x) \frac{d y}{d x}=5 y-2 x$
$\Rightarrow \frac{d y}{d x}=\frac{5 y-2 x}{2 y-5 a}$
If THE Co.creinatis of THe Repures Poinl are $T(a, b)$, THth
The efuation of tite tinnear is
yb-$y b-2 a$ $2 b-5 a$ $2-n)$
This TANGENT PASSES THROUGH THE FOINT $P(2,6)$
$\Rightarrow \quad 6-b=\frac{5 b-2 a}{2 b-5 a}(2-a)$
$\Rightarrow b-6=\frac{5 b-2 a}{2 b-5 a}(a-2)$
$\Rightarrow(b-6)(2 b-5 a)=(a-2)(5 b-2 a)$
$\Rightarrow 2 b^{2}-5 a b-12 b+30 a=5 a b-2 a^{2}-10 b+4 a$
$\Rightarrow 2 a^{2}+2 b^{2}-10 a b+26 a-2 b=0$
$\Rightarrow a^{2}+b^{2}-5 a b+13 a-b=0$

BTT The PawI T(a,b) Mast satisfy The epoatton of THE cusut, so
$a^{2}+b^{2}-5 a b=15$
$\frac{\text { HIMNCE WE HAVE }}{a^{2}+b^{2}-5 a b}$
$\left.\begin{array}{l}a^{2}+b^{2}-5 a b=15 \\ a^{2}+b^{2}-5 a b+13 a-b=0\end{array}\right\} \Rightarrow 15+13 a-b=0$
$\Rightarrow b=15+13 a$.
$\Rightarrow a^{2}+(15+13 a)^{2}-5 a(15+13 a)=15$
$\Rightarrow b=15+13 a$.
$\Rightarrow a^{2}+225+390 a+169 a^{2}-75 a-65 a^{2}=15$
$\Rightarrow 105 a^{2}+315 a+210=0$
$\Rightarrow a^{2}+3 a+2=0$
$\Rightarrow(a+1)(a+2)=0$
$\Rightarrow a=\ll_{-2}^{-1} \quad b=<_{-11}^{2}$
$\therefore T(-1,2)$ or $(-2,-11)$

Created by T. Madas

Question 82 (******)
A curve has the following implicit equation

$$
x^{2}+3 x y-y^{2}+4 x=1
$$

Two tangents to the curve, at some points on the curve, both pass through the point with coordinates $(6,-4)$.

Determine the equations of these two tangents.

Question 83 (*****)
A curve is defined implicitly by the equation

$$
x^{m} y^{n}=(x+y)^{m+n},
$$

where m and n are rational constants, and $x \neq 0, y \neq 0, x+y \neq 0, m y-n x \neq 0$.

Show that
\square , proof

Created by T. Madas

Question 84 (*****)

curve with equation

$$
2 x^{2}+2 x y+y^{2}=50
$$

Determine the area of the finite region bounded by the x axis and the part of the curve for which $y \geq 0$.
\square

