IMPLICIT DIFFERENTIATION

BASIC DIFFERENTIATION

Question 1

For each of the following implicit relationships, find an expression for $\frac{dy}{dx}$, in terms of x and y.

- **a**) $x^2 + 2xy + 3y^2 = 12$
- **b**) $y^3 + xy x^2 = 0$
- c) $2x^3 + 5xy^2 2y^4 = 10$
- $d) \quad x^2y + 4xy^2 = 2y$

$\frac{dy}{dx} = -\frac{x+y}{x+3y},$	$\frac{dy}{dx} = \frac{2x - y}{3y^2 + x},$	$\frac{dy}{dx} = \frac{6x^2 + 5y^2}{8y^3 - 10xy},$	$\boxed{\frac{dy}{dx} = \frac{2y(x+2y)}{2-x^2-8xy}}$
--------------------------------------	--	--	--

(a) $x^2 + 2xy + 3y^2 = 12$	(b) y3+ay-2=0
●Diff w.r.t. a	• Diff wat a
$\Rightarrow 2a + [2 \times y + 2a \times \frac{dy}{dz}] + 6y \times \frac{dy}{dz}$	$\frac{d_{2}}{dx}=0$ ==3y^{2}\frac{dy}{dx}+[1xy+ax\frac{dy}{db}]-\lambda=0
$= 2x + 3h + 5x \frac{dx}{dt} + 6h \frac{dt}{dt} = 0$	$= 3y^2 \frac{dy}{dt} + y + 2\frac{dy}{dt} - 2x = 0$
$\Rightarrow (2x+6y) \frac{dy}{dx} = -2x - 2y$	$\Rightarrow (3y^2+3) \frac{dy}{d1} = 23-y$
$\Rightarrow \frac{dy}{dy} = \frac{2x + 6y}{-2x - 2y}$	$\Rightarrow \frac{dy}{dx} = \frac{2x-y}{3q^2+x}$
$\Rightarrow \frac{du}{dx} = -\frac{x+y}{x+3y}$	(1) -2 - 1 - 2
	(a) 29 + 424 = 24
(c) $3a_{1}^{3}say^{2}-2y^{4}=10$	@ Diff out a
• Diff w.r.t 2	$ = \left[2xxy + 3^{2}x\frac{by}{dx}\right] + \left[4xy^{2} + 3xx\frac{by}{dx}\frac{dy}{dx}\right] = 2\frac{dy}{dx}$
$\Rightarrow 6a^2 + [5xy^2 + 5ax^2y\frac{dy}{dx}] - 8y^3\frac{dy}{dx} = 0$	\Rightarrow $2\pi y + 2\frac{dy}{dx} + 4y^2 + 8xy\frac{dy}{dx} = 2\frac{dy}{dx}$
=> 62 + 5y2 + 102y 2 - 8y3 2 = 0	=> 214 +442= (2-22-824) dy
=) $G_{2}^{2} + Sy^{2} = (8y^{3} - 10xy)\frac{dy}{dt}$	$\Rightarrow \frac{dq}{dx} = \frac{2xy+4y^2}{2-x^2-Bxy}$
$\Rightarrow \frac{dy}{dx} = \frac{6a^2 + 5y^2}{8a^3 - 1024}$	$\Rightarrow \frac{dy}{d\lambda} = \frac{2y(x+2y)}{2-x^2-8xy}$

Question 2

For each of the following implicit relationships, find an expression for $\frac{dy}{dx}$, in terms of x and y.

- **a**) $y^3 x^2 y^2 = x^2 + 3x + 1$
- **b**) $8y^2 + x^2y^3 = 10 x^5$
- c) (3x-y)(2x+3y)=8
- **d**) $y(x^3 + y^3) = (x+1)(x+4)$

$\frac{dy}{dx} = \frac{2xy^2 + 2x + 3}{3y^2 - 2yx^2},$	$\frac{dy}{dx} = -\frac{2xy^3 + 5x^4}{16y + 3x^2y^2} ,$	$\frac{dy}{dx} = \frac{12x + 7y}{6y - 7x},$	$\frac{dy}{dx} = \frac{2x + 5 - 3yx^2}{4y^3 + x^3}$
--	---	---	---

$\begin{array}{l} (\mathbf{e}) & \sum_{j=1}^{N} \sum_{j=1}^{N-1} $	(c) $(2a-3)(2a+3y)=8$ $\Rightarrow 6a^2+2ay-2ay-3y^2-8$ $\Rightarrow 6a^2+2ay-2ay-3y^2-8$ $\Rightarrow 6a^2+2ay-2ay-3y^2-8$ $\Rightarrow 5a^2+2ay-4ay-6y^2-6y^2-6y^2-2y^2-6y^2-6y^2-2y^2-2y^$
(b) $\theta_y^2 + z_y^2 y^3 = 10 - x^5$ • Diff w.t.2	$\frac{\partial q}{\partial x} = \frac{\partial (x + i)}{\partial (q - i)}$ (d) $q(x^3 + q^3) = (x + i)(x + i)$
> 164 th + 224 + 23 3 th = -24 - 52 +	⇒ y23+y4 = 22+52+4 • Diffwrt2
$ \Rightarrow \left(\frac{b_{ij}}{b_{ij}} + 3\tilde{\lambda}_{ij}^2 \right) \frac{dy}{dx} = -2iy^3 - 5i^4 + \frac{2}{3} \frac{dy}{dx} = -\frac{5i^4 + 2iy^3}{2} $	→ ô문23+1/32)+14/3분 = 22+5 → 응문2 + 44/3분 = 22+5 -33
16y + 3ry2	$\Rightarrow \frac{dy}{dx} = \frac{2x+5-3x_{y}^{2}}{2x^{2}+4y^{2}}$

Question 3

For each of the following implicit relationships, find an expression for $\frac{dy}{dx}$, in terms of x and y.

- **a**) $y^3 + 3y = x^3$
- **b**) $9(y+2)^2 = 5+4(x-2)^2$
- $e^{2x} + e^{2y} = xy$
- **d**) $y^2(x+2) = x^2$

dy	<i>x</i> ²		dy	4(x-2)		dy_	$y-2e^{2x}$		dy _	$2x-y^2$
dx	$\frac{1}{y^2+1}$,	dx	$\overline{9(y+2)}$,	dx	$2e^{2y}-x$,	$\frac{dx}{dx}$	$\overline{2xy+4y}$

(a) $y^2 + 3y = x^3$	(c) e+ e = 24
$\Rightarrow \frac{d}{dt}(y^2) + \frac{d}{dt}(y_2) = \frac{d}{dt}(y^2)$	$\Rightarrow \frac{\partial u}{\partial t}(e^{2t}) + \frac{\partial u}{\partial t}(e^{2t}) = \frac{\partial u}{\partial t}(2t)$
$\Rightarrow 3y^2 \frac{dy}{dx} + 3\frac{dy}{dx} = 3x^2$	$\Rightarrow 2e^{23} + 2e^{23} \frac{dy}{d\lambda} = 1xy + 2\frac{dy}{d\lambda}$
$\Rightarrow (3q^2+3) \frac{dq}{d\lambda} = 3x^2$	= 2e2 + 2e24 dy = y + 2 dy
$\implies \frac{du_1}{\partial \lambda} = \frac{-3\lambda^2}{-3u^2+3}$	$\Rightarrow (2e^{2y}-x)\frac{dy}{dx} = y - 2e^{2x}$
$\Rightarrow \frac{dy}{dt} = \frac{x^2}{y^2 + 1}$	$ \Rightarrow \frac{dy}{dt} = \frac{y - 2e^{2x}}{2e^{2y} - x} $
(a) $9(9+2)^2 = 5+4(2-2)^2$	(d) $4^{2}(x+2) = 2^{2}$
$\Rightarrow \underline{Gr}\left[\delta(\overline{h},ts)\right] = \underline{Gr}\left[2\right] + \underline{Gr}\left[\delta(x,t)\right]$	$\Rightarrow \frac{d}{dz} \left(y^2(x+z) \right) = \frac{d}{dz} \left(x^2 \right)$
$\Rightarrow 18(4+2)\frac{d4}{d1} = 0 + 8(2-2)$	$\Rightarrow 2y \frac{dy}{dt}(x_{1+2}) + y^{2} \times 1 = 2y$
$\Rightarrow \frac{d_4}{dL} = \frac{8(3-2)}{18(9+2)}$	=) 2y(2+2) dy = 22-42
$ \frac{dy}{d\lambda} = \frac{4(2-2)}{9(9+2)} $	$ = \frac{du_1}{d\Omega} = \frac{2u - y^2}{2g(x+z)} $

Question 4

For each of the following implicit relationships, find an expression for $\frac{dy}{dx}$, in terms of x and y.

- **a**) $x^2 + y^2 = y$
- **b**) $x^2 + 2x^2y y^4 = 4$
- $\mathbf{c}) \quad y \mathbf{e}^x = x \mathbf{e}^y$
- $d) \quad \frac{x^2}{x+2y} = 3y^2$

$\frac{dy}{dx} = \frac{2x}{1-2y},$	$\frac{dy}{dx} = \frac{x + 2xy}{2y^3 - x^2},$	$\frac{dy}{dx} = \frac{e^y - y e^x}{e^x - x e^y},$	$\frac{dy}{dx} = \frac{2x - 3y^2}{6y(x + 3y)}$
------------------------------------	---	--	--

(a) $a^2 + y^2 = y$	(c) yet = ae
$\rightarrow \frac{d}{da}(a^2) + \frac{d}{da}(y^2) = \frac{d}{da}(y)$	$\Rightarrow \frac{d}{dt}(ge^{2}) = \frac{d}{dt}(xe^{2})$
\Rightarrow 22 + 2y $\frac{dy}{dx} = 1 \times \frac{dy}{dx}$	=> 1 dy xe + gre = 1xe + 2xe dy
$\Rightarrow 2z = (1-2y)\frac{dy}{dx}$	> dye+ ye = e + ze de
= di = 1-2y	$= (e^2 - \pi e^9) dy = e^3 - qe^3$
(b) $a_1^2 + 2a_2^2y - y^4 = 4$	> dy = eyer
=> \${(\$\$)-\$;{(\$\$)}-\$;{(\$)}-\$	(d) a ² - a ²
$\Rightarrow \Im_{2} + [42 \times y + 22^{2} \times 10^{4}] - 4y^{2} dx = 0$	$\nabla I = 30^{2}$
= ~ + + + 21 gg - + y' gg = 0	$\Rightarrow d = 3ay' + 6y^s$ $\Rightarrow d(r^2) - d(r^2) + d(r^2)$
⇒ = = (4y3-222);	- au - at (21) + at (3)
$\Rightarrow \frac{du}{d\lambda} = \frac{2\chi + 4\chi y}{4y^3 - 2\chi^2}$	~ ~ ~ = [34] + 32 · 3182 + 180 82
$\Rightarrow \frac{dy}{dx} = \frac{x+2xy}{x+2xy}$	$= 21 + 624 \frac{64}{60} + 164^{2} \frac{64}{60}$
sh- as	- du 2-342
	7 55

Question 5

For each of the following implicit relationships, find an expression for $\frac{dy}{dx}$, in terms of x and y.

a)
$$\frac{(x+2y)^2}{4x-y} + y = x$$

b) $\sqrt{xy} - x + y^2 = 0$

$\frac{dy}{dx} = \frac{2x - 3y}{2y + 3x},$	$\frac{dy}{dx} = \frac{2x - 2y^2 - y}{x + 4xy - 4y^3}$
--	--

(a) $\frac{(a+2y)}{4x-y}^2 + y = a$	(b) √ay - x+y² = 0
$\Rightarrow \frac{(x+2y)^2}{4x-y} = x-y$	$\Rightarrow \sqrt{\alpha y'} = \alpha - y^2$ $\Rightarrow \alpha y = (\alpha - y^2)^2$
$\Rightarrow (2+2g)^2 = (2-y)(4z-y)$	$\rightarrow 3y = 3^2 - 2ay^2 + y^4$
$\Rightarrow \mathfrak{A}^2 + 4\mathfrak{a}\mathfrak{g} + 4\mathfrak{g}^2 = 4\mathfrak{a}^2 - \mathfrak{a}\mathfrak{g} - 4\mathfrak{a}\mathfrak{g} + \mathfrak{g}^2$	Diff wrt a
$\Rightarrow 3y^2 - 3a^2 + 9ay = 0$	$\Rightarrow 9 + x \frac{dy}{dt} = 2x - 2y^2 - 2x(2y \frac{dy}{dt}) + \frac{y^3}{dt}$
DIFF WET 2	\Rightarrow y + 2 dy = 221-2y ² -42y dy + 4g dy
-> 2yd - 2x + 3y + 32 -0	⇒ x dy + budy - Wide = 2x -32-y
$\Rightarrow (2y + 3x)\frac{dy}{dx} = 2x - 3y$	⇒ (a+11211 -113) # = 2x-2y-y
$\Rightarrow \frac{dy}{dx} = \frac{2x - 3y}{3y + 3y}$	$\frac{dy}{dt} = \frac{2x - 2y^2 - y}{x + 4xy - 4y^3}$

TANGENTS AND NORMALS

Question 1

A curve C has equation

 $x^3 - 2xy + y^2 - 13 = 0.$

Find an equation for the normal to C at the point P(-2,3).

5x - 3y + 19 = 0

$3^{3} - 2xy + y^{2} - 13 = 0$	S © NORLIME GRADING? IS SE
Diff 6.r.+ x 322-24-22 44+2464=0	$\begin{cases} y_{-}y_{u} = a_{0}(x_{-}x_{u}) \\ y_{-}s = \frac{5}{5}(x_{+}z_{-}) \end{cases}$
$3x^2 - 2y = (2x - 2y) \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{3x^2 - 2y}{2x - 2y}$	3y-9 = 5x + 10 0 = 5x - 3y + 19
$\frac{dy}{dx} = \frac{12 - 4}{-4 - 6} = \frac{6}{-6} = -\frac{3}{5}$	{

Question 2 A curve is given implicitly by the equation

 $3y^2 + 6xy + 4x^2 - 2y = 5.$

Find an equation for the tangent to the curve at the point P(-2,1).

4y + 5x + 6 = 0

34 + 624 + 4x2 - 2	y = 5
Diff wrt a	
6y dy + Gry + Gard	분 + 82 -2 분분 =0
Ατ (-2,1)	
6 ct + 6 - 12 ct - 16 -	2 du =0
-10= 8 dy	
dy S	· y - y= n(x-x0)
a +	y-1=-≨(2+2)
	44-4=-52-10
	49+52+6=0

Question 3

A curve has implicit equation

 $4y^2 - 2xy - x^2 + 11 = 0.$

Find an equation of the normal to the curve at the point P(-3,-1).

4v +	x +	7	=	0
T y T	~ 1	'		v

$\begin{array}{c} 4y^{2}-2xy-x^{2}+(1=0)\\ \exists i \left[\int_{-\infty}^{\infty} dy^{2}-2y-x^{2} dy^{2}-2x=0\\ \mbox{whm} \ x^{2}-3y-y^{2}-4y^{2}-2x=0\\ \mbox{whm} \ x^{2}-3y-y^{2}-4z=0\\ \mbox{whm} \ x^{2}-3y+y^{2}-4z=0\\ \mbox{whm} \ x^{2}-3y+y^{2}-3z=0\\ \mbox{whm} \ x^{2}-3z=0\\ \mbox{whm} \ x^{2}-3z=$	$\begin{array}{l} \text{locuse flavort} = -\frac{1}{4} + P(-s_{-1}) \\ \Rightarrow (3-s_{1}) = -s_{1}(s_{1}-s_{1}) \\ \Rightarrow (3+s) = -\frac{1}{4}(s_{1}+s) \\ \Rightarrow (3+s+s_{1}-s_{1}) \\ \Rightarrow (3+s+s_{2}-s_{1}) \\ \Rightarrow (3+s+s_{2}-s_{1}) \end{array}$
⇒ 8 = 2 dt	
= = + 1	

Question 4 A curve is given implicitly by the equation

$$3y^2 - 2x^2 - 3x + 2y + 5 = 0.$$

Find an equation for the tangent to the curve at the point P(1,0).

2y = 7x - 7

$3j^{2}-2x^{2}-3y+2y+5=0$ Dill u+1-2 $2^{1}5j^{2}\frac{1}{20}-4y-3+2\frac{1}{20}=0$ 7 + P(1,0) $9 -4-3+2\frac{1}{20}=0$ $9 -2\frac{1}{20}=7$ $9 \frac{1}{20}=\frac{7}{2}$	Therefore for $\mathcal{P}(I_{10})$ $\Rightarrow \mathcal{D} - \mathcal{G}_{0} = \operatorname{dec}(\Sigma_{0}, \Sigma_{0})$ $\Rightarrow \mathcal{G} - \mathcal{G} = \overline{\mathcal{G}}(\Sigma_{0} - 1)$ $\Rightarrow \mathcal{G} = \mathcal{G} - \overline{\mathcal{G}}$
aa	

Question 5

A curve has implicit equation

 $x^3 + y^3 + 3y^2 + 3y - 6x = 50 + 2xy.$

Find an equation of the normal to the curve at the point P(4,2).

x = 2y

$x^{3} + y^{3} + 3y^{2} + 3y - 6z = 50 + 3xy$
Diffwerz
=>302+393+69+69+30+-6=20+22.04
$= 3a^2 - 6 - 2y = (2a - 3y^2 - 6y - 3)\frac{dy}{dt}$
$\Rightarrow \frac{dy}{dt} = \frac{3t^2 - 6 - 2y}{2x - 3y^2 - 6y - 3}$
$\frac{d_{31}}{d_{31}} = \frac{48-6-4}{8-2-12-3} = \frac{38}{-15} = -2.$
NORMAL GRADUST IS 1 P(4,2)
= y-y = m(2-20)
=> y-z= = 2 (a-4)
$\Rightarrow y \neq z = \frac{1}{2} \neq z$

Question 6

A curve is described by the implicit relationship

 $4x^2 + 3xy - y^2 = 21.$

Find an equation of the tangent to the curve at the point (2,1).

4y + 19x = 42

1 N N	
$4a_{1}^{2} + 3ay - y_{1}^{2} = 21$	6 6904970N OF TRAVEOUST
The wet	<=====================================
o og write	
6x + 3y + 3x + 3x + -2y = 0	
# (21) => 16+3 + cdu -du	2 2+3 - += -192 +58
- iden an - 202 -0	$\Rightarrow 4y + 19a = 42$
	1 //
⇒ ⁴ / ₂ = − ¹ / ₂	
UK A	1

Question 7

A curve is described by the implicit relationship

 $y^3 + xy = 2y + 4x - 10.$

Find an equation of the normal to the curve at the point where y = 1.

$\begin{array}{l} y_{1}^{3} + \underline{x} \underline{y}_{1} = \underline{y}_{2} + 4\underline{x}_{-1} \\ \mathbf{e}_{y=1} \\ 1 + \underline{x}_{1} = \underline{z}_{1} + 4\underline{x}_{-1} \\ q = \underline{z}_{2} \\ \underline{x} = \underline{y} \\ \vdots \\ $	$\begin{cases} D \begin{bmatrix} U_{1} & U_{1} \cap I_{1} \rightarrow \chi \\ 3J_{2}^{2} \frac{\delta_{1}}{\delta_{1}} + g + \chi \frac{\delta_{1}}{\delta_{1}} = 2 \frac{\delta_{1}}{\delta_{2}} + I_{1} \\ 4\Gamma(3,1) \\ 3\frac{\delta_{1}}{\delta_{1}} + I + 3\frac{\delta_{2}}{\delta_{1}} = 2 \frac{\delta_{1}}{\delta_{1}} + I_{1} \\ -\frac{\delta_{1}}{\delta_{2}} = 3 \\ -\frac{\delta_{1}}{\delta_{1}} = \frac{3}{4} + V \frac{\partial \partial M \delta_{1}}{\partial M \delta_{1}} - \frac{4}{3} \end{cases}$
	$ \begin{array}{c} (\iota \epsilon \cdot \varsigma) & m = e \xi - \xi \\ (\epsilon \cdot \varsigma) & \pi = e \xi - \xi \\ \varsigma + \varphi + \varepsilon & \epsilon - \xi \\ \varsigma + \varphi + \xi \\ \varsigma + \varphi \\ \varsigma + \xi \\ \varsigma + \xi \\ \varsigma + \xi \\ \varsigma \\ \varsigma + \xi \\ \varsigma \\$

3y + 4x = 15

Question 8 A curve has equation

 $4\cos y = 3 - 2\sin x, x \in \mathbb{R}, y \in \mathbb{R}.$

Show clearly that

 $4y - 2x = \pi$

is the equation of the tangent to the curve at the point with coordinates $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$.

$ \begin{array}{l} (4 \cos g = 3 - 75 M \lambda \\ \bullet D \ H \ \omega \ (+ \alpha \\ - 4 \sin g \ dg = -2 \cos \alpha \\ \frac{dg}{dx} = -\frac{2 \cos \alpha}{-4 \sin g} = \frac{2 \cos \alpha}{2 \sin g} \\ \frac{dg}{dx} = \frac{2 \cos \alpha}{-4 \sin g} = \frac{2 \cos \alpha}{2 \sin g} \\ \frac{dg}{dx} = \frac{2 \cos \pi g}{2 \sin g} = \frac{2 \cos \pi g}{2 \sin g} \\ \end{array} $	$\begin{cases} \text{Purtial as } (\mathbf{x} - \text{TMARA}) \\ (J - J)_{*} = m(\lambda - \lambda_{d}) \\ (J - J)_{*} = m(\lambda - \lambda_{d}) \\ (J - \frac{1}{2})_{*} = \frac{1}{2}(\lambda - \frac{1}{2}) \\ (J - \frac{1}{2})_{*} = \frac{1}{2}\lambda - \frac{1}{2} \\ (M - \frac{1}{2})_{*} = \frac{1}{2}\lambda - \frac{1}{2}\lambda - \frac{1}{2} \\ (M - \frac{1}{2})_{*} = \frac{1}{2}\lambda - \frac{1}{$
-1x=E 251173 2×14/2 2 3=E	4y-22 = TT AS KLWMD

Question 9

A curve has implicit equation

 $y^2 + 3xy - 2x^2 + 17 = 0.$

Find an equation of the tangent to the curve at the point (-2,3).

y²+ 3ay -2c² +17=0 Di& w.rt a	$\left.\frac{d_{q}}{db_{i}}\right _{\begin{pmatrix} q_{i} \\ q_{i} \end{pmatrix}} = -\frac{-g - q}{6 - 6} = -\frac{1/7}{O} = \infty$
$2g \frac{dy}{dx} + 3g + 3x \frac{dy}{dx} - 4x = 0$ $(2g + 3x) \frac{dy}{dx} = 4x - 3g$ $\frac{dy}{dx} = \frac{4x - 3g}{2}$	(C= NATIONT + GUADAT → VERTIGAL UNX
0), 2y+3a	: a=-2

x = -2

x = 2

Question 10

A curve is described by the implicit relationship

 $y^2 - 2y + 6x + x^2 = 15.$

Find an equation for the tangent to the curve at the point P(2,1).

y -2y+&+22=15	
$\frac{d}{d\lambda}(y^2) - \frac{d}{d\lambda}(2y) + \frac{d}{d\lambda}(d\lambda) + \frac{d}{d\lambda}(\chi^2) = \frac{d}{d\lambda}(15)$	
24 dy - 2 dy + 6 +22 =0	
$(2y-2)\frac{dy}{d\lambda} = -2\lambda - 6$	
$\frac{dy}{d\lambda} = -\frac{2x+4}{2y-2} = -\frac{x+3}{y-1}$	
dy a 5 = 00 < NEWTE UNE THEOREM (2 (2,1) . VIETOR UNE THEOREM (2	(1) i. 2=2/

TURNING POINTS

Question 1

A curve has implicit equation

$$9x^2 + 2y^2 + y = 1.$$

a) Show clearly that

 $\frac{dy}{dx} = -\frac{18x}{4y+1}$

b) Hence find the coordinates of the points on the curve where $\frac{dy}{dx} = 0$.

	$(0,-1), \left(0,\frac{1}{2}\right)$
$dx_{1}^{2} + 2x_{2}^{2} + y = 1$ $dx_{1}^{2} + \frac{1}{9}dx_{1}^{2} + \frac{1}{9}dx_{2}^{2} + \frac{1}{9}dx_{2}^{2} + \frac{1}{9}dx_{2}^{2} = 0$ $(49+1)dx_{2} - 18x$ $(49+1)dx_{2} = -18x$	$ \begin{pmatrix} \mathbf{\hat{b}} & \underline{\hat{a}}_{1} \\ \vdots & \underline{\hat{a}}_{2} \\ \vdots & \underline{\hat{a}}_{1} \\ \vdots & \underline{\hat{a}}_{1} \\ \vdots \\ $

 $:= (O_1^{-1}) \hat{q} \quad (O_1^{-1}) \hat{z}$

Question 2

A curve has equation

$$3x^2 - xy + y^2 + 2x - 4y = 1.$$

a) Show that

 $\frac{dy}{dx} = \frac{2+6x-y}{4-2y+x}$

b) Hence show that at the turning points of the curve, $x^2 = \frac{5}{33}$.

	proc	of

Created	by	T.	Madas
---------	----	----	-------

Question 3

A curve has equation

$$2x^2 + xy + y^2 = 14$$
.

a) Show clearly that

 $\frac{dy}{dx} = -\frac{4x+y}{x+2y}.$

b) Hence, find the coordinates of the turning points of the curve.

	(1,-4),(-1,4)
(a) $2\lambda_1^{-1} 2\eta_2 + y^3 = 14.$ $\Rightarrow \frac{1}{24} \left[(x_1^{-1}) + \frac{1}{24} + y^3 + \frac{1}{24} + \frac{1}{2$	$\left\{\begin{array}{c} \underset{(l_1, -4)}{\overset{(l_1, -4)}{\overset{(l_2, -4)}{\overset{(l_1, -4)}{\overset{(l_2, -4}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4)}{\overset{(l_2, -4}{\overset{(l_2, -4)}{\overset{(l_2, -4}{\overset{(l_2, -4)}{\overset{(l_2, -4}{\overset{(l_2, -4)}{\overset$

Question 4

A curve C is defined implicitly by

 $y^2 - 3xy + 4x^2 = 28$, $x, y \in \mathbb{R}$.

a) Find an expression for $\frac{dy}{dx}$, in terms of x and y.

b) Determine the coordinates of the turning points of C.

$\frac{dy}{dx} = \frac{3y - 8x}{2y - 3x}, \boxed{(-3, -8), (3, 3)}$	3)
--	----

(a) $4y^2 - 3xy + 4x^2 = 28$	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} u_{1}(y_{1}(y_{1},\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau,\tau$	s) -8 -8
$\left(\frac{2}{6}\lambda\right) - 9x\left(\frac{2}{6}\lambda\right) + \theta_{1}r^{2} = 38$	

Question 5

The equation of a curve is given by

$$e^y = \frac{x^2 + 3}{x - 1}, x > 1.$$

a) Show clearly that

$$\frac{dy}{dx} = \frac{(x-3)(x+1)}{(x^2+3)(x-1)}.$$

b) Find the exact coordinates of the turning point of the curve.

٩	$e^{3} = \frac{3^{2}+3}{3-1}$ $Di \oint_{e^{3}} \omega_{e^{1}} + 2$ $e^{3} \frac{du}{dx} = \frac{(2-1)(23) - (21+3)u}{(2-1)^{2}}$	$\left\{\begin{array}{c} \left(\mathbf{b} \right) & \frac{du}{du} = 0 \\ (\bar{u} - 3) (\bar{u} u_{1}) = 0 \\ & u = \sum_{i=1}^{-1} \frac{1}{2} + \frac{u}{2} +$
	$dt = \frac{(x-y)^2}{(x-y)^2} \times \frac{dt}{z}$	$\begin{cases} \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array}$
	$\begin{array}{l} \displaystyle \frac{\partial \mathcal{L}}{\partial t} = \frac{(2^{-2})(2^{+1})}{(2^{-1})^2} \times \frac{2^{-1}}{2^{+2}} \\ \displaystyle \frac{\partial \mathcal{L}}{\partial t} = \frac{(2^{-2})(2^{+1})}{(2^{-1})^2} \times \frac{2^{+1}}{2^{+2}} \\ \displaystyle \frac{\partial \mathcal{L}}{\partial t} = \frac{(2^{-2})(2^{+1})}{(2^{-1})^2} \times \frac{2^{+1}}{2^{+2}} \end{array}$	

(3, ln 6)

Question 6

The equation of a curve is given by

$$x^2 - 2y^2 - xy - x + 5y + 34 = 0.$$

a) Show clearly that

 $\frac{dy}{dx} = \frac{2x - y - 1}{x + 4y - 5}$

b) Find the exact value of gradient at the point on the curve with coordinates

$$(1+4\sqrt{2},-5-\sqrt{2})$$

c) Determine the coordinates of the turning point of the curve.

 $-\frac{1}{8}(2+3\sqrt{2})$, (3,5),(-1,-3)2a-4y dt - 1xy -204 -1+504 ⇒ 2x-y-1 = (4y+x-5) da 22-4-1 4y+2-5 \$\$ Espuis $\frac{8\sqrt{2}^{2}+5+\sqrt{2}^{2}-1}{5-5\sqrt{2}^{2}+1+9\sqrt{2}^{2}-5} = \frac{6+9\sqrt{2}}{-24}$ $\frac{2+3\sqrt{z}}{-\theta} = -\frac{1}{\theta} \left(2+3\sqrt{z}\right)$ x+1)-22+25-25+102-5+34= en 2 Fh -2 -22 +102 -5 +34 $k^2 + 18k + 27 = 0$ (-1,-3) a (3,5)