Created by T. Madas

IMPLICIT
 DIFFERENTIATION

Created by T. Madas

BASIC DIFFERENTIATION

Created by T. Madas

Question 1
For each of the following implicit relationships, find an expression for $\frac{d y}{d x}$, in terms of x and y.
a) $x^{2}+2 x y+3 y^{2}=12$
b) $y^{3}+x y-x^{2}=0$
c) $2 x^{3}+5 x y^{2}-2 y^{4}=10$
d) $x^{2} y+4 x y^{2}=2 y$

$$
\frac{d y}{d x}=-\frac{x+y}{x+3 y}, \frac{d y}{d x}=\frac{2 x-y}{3 y^{2}+x}, \frac{d y}{d x}=\frac{6 x^{2}+5 y^{2}}{8 y^{3}-10 x y}, \frac{d y}{d x}=\frac{2 y(x+2 y)}{2-x^{2}-8 x y}
$$

Created by T. Madas

Question 2
For each of the following implicit relationships, find an expression for $\frac{d y}{d x}$, in terms of x and y.
a) $y^{3}-x^{2} y^{2}=x^{2}+3 x+1$
b) $8 y^{2}+x^{2} y^{3}=10-x^{5}$
c) $(3 x-y)(2 x+3 y)=8$
d) $y\left(x^{3}+y^{3}\right)=(x+1)(x+4)$
$\frac{d y}{d x}=\frac{2 x y^{2}+2 x+3}{3 y^{2}-2 y x^{2}}, \frac{d y}{d x}=-\frac{2 x y^{3}+5 x^{4}}{16 y+3 x^{2} y^{2}}, \frac{d y}{d x}=\frac{12 x+7 y}{6 y-7 x}, \frac{d y}{d x}=\frac{2 x+5-3 y x^{2}}{4 y^{3}+x^{3}}$

Created by T. Madas

Question 3
For each of the following implicit relationships, find an expression for $\frac{d y}{d x}$, in terms of x and y.
a) $y^{3}+3 y=x^{3}$
b) $9(y+2)^{2}=5+4(x-2)^{2}$
c) $\mathrm{e}^{2 x}+\mathrm{e}^{2 y}=x y$
d) $y^{2}(x+2)=x^{2}$

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, \frac{d y}{d x}=\frac{4(x-2)}{9(y+2)}, \frac{d y}{d x}=\frac{y-2 \mathrm{e}^{2 x}}{2 \mathrm{e}^{2 y}-x}, \frac{d y}{d x}=\frac{2 x-y^{2}}{2 x y+4 y}
$$

Created by T. Madas

Question 4
For each of the following implicit relationships, find an expression for $\frac{d y}{d x}$, in terms of x and y.
a) $x^{2}+y^{2}=y$
b) $x^{2}+2 x^{2} y-y^{4}=4$
c) $y \mathrm{e}^{x}=x \mathrm{e}^{y}$
d) $\frac{x^{2}}{x+2 y}=3 y^{2}$

$$
\frac{d y}{d x}=\frac{2 x}{1-2 y}, \frac{d y}{d x}=\frac{x+2 x y}{2 y^{3}-x^{2}}, \frac{d y}{d x}=\frac{\mathrm{e}^{y}-y \mathrm{e}^{x}}{\mathrm{e}^{x}-x \mathrm{e}^{y}}, \frac{d y}{d x}=\frac{2 x-3 y^{2}}{6 y(x+3 y)}
$$

c) $y \mathrm{e}^{x}=x \mathrm{e}^{y}$
d) $\frac{x^{2}}{x+2 y}=3 y^{2}$

Created by T. Madas

Question 5
For each of the following implicit relationships, find an expression for $\frac{d y}{d x}$, in terms of x and y.
a) $\frac{(x+2 y)^{2}}{4 x-y}+y=x$

$$
\frac{d y}{d x}=\frac{2 x-3 y}{2 y+3 x}, \frac{d y}{d x}=\frac{2 x-2 y^{2}-y}{x+4 x y-4 y^{3}}
$$

Created by T. Madas

TANGENTS

AND

NORMALS

Question 1
A curve C has equation

$$
x^{3}-2 x y+y^{2}-13=0
$$

Find an equation for the normal to C at the point $P(-2,3)$.

$$
5 x-3 y+19=0
$$

Question 2
A curve is given implicitly by the equation

$$
3 y^{2}+6 x y+4 x^{2}-2 y=5
$$

Find an equation for the tangent to the curve at the point $P(-2,1)$.

$$
4 y+5 x+6=0
$$

Created by T. Madas

Question 3
A curve has implicit equation

$$
4 y^{2}-2 x y-x^{2}+11=0
$$

Find an equation of the normal to the curve at the point $P(-3,-1)$.

Question 4
A curve is given implicitly by the equation

$$
3 y^{2}-2 x^{2}-3 x+2 y+5=0
$$

Find an equation for the tangent to the curve at the point $P(1,0)$.

Created by T. Madas

Question 5
A curve has implicit equation

$$
x^{3}+y^{3}+3 y^{2}+3 y-6 x=50+2 x y .
$$

Find an equation of the normal to the curve at the point $P(4,2)$.

Created by T. Madas

Question 7

A curve is described by the implicit relationship

$$
y^{3}+x y=2 y+4 x-10
$$

$$
4 \cos y=3-2 \sin x, x \in \mathbb{R}, y \in \mathbb{R} .
$$

Show clearly that

$$
4 y-2 x=\pi
$$

is the equation of the tangent to the curve at the point with coordinates $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$.

Question 9
A curve has implicit equation

$$
y^{2}+3 x y-2 x^{2}+17=0
$$

Find an equation of the tangent to the curve at the point $(-2,3)$.

Question 10
A curve is described by the implicit relationship

$$
y^{2}-2 y+6 x+x^{2}=15
$$

Find an equation for the tangent to the curve at the point $P(2,1)$.

$$
x=2
$$

$y^{2}-2 y+\sqrt{x}+x^{2}=15$
$\frac{d}{d x}\left(y^{2}\right)-\frac{d}{d x}(2 y)+\frac{d}{d x}(a)+\frac{d}{d t}(x)=\frac{d}{d x}(15)$
$2 y \frac{d y}{d x}-2 \frac{d y}{d x}+6+2 x=0$
$(2 y-2) \frac{d y}{d x}=-2 x-6$
$\frac{d y}{d x}=-\frac{2 x+6}{2 y-2}=-\frac{x+3}{y-1}$

Created by T. Madas

Created by T. Madas

Question 1
A curve has implicit equation
a) Show clearly that

Created by T. Madas

$$
9 x^{2}+2 y^{2}+y=1 .
$$

$$
\frac{d y}{d x}=-\frac{18 x}{4 y+1} .
$$

b) Hence find the coordinates of the points on the curve where $\frac{d y}{d x}=0$.

Created by T. Madas

Question 2
A curve has equation
a) Show that

$$
\frac{d y}{d x}=\frac{2+6 x-y}{4-2 y+x} .
$$

b) Hence show that at the turning points of the curve, $x^{2}=\frac{5}{33}$.

(a) $3 x^{2}-x y+y^{2}+2 x-4 y=1$

Diff wert. x $\Rightarrow G_{2}-1 x y-x \times \frac{d x}{d x}+2 y \frac{d y}{d x}+2-4 \frac{d y}{d=}=0$
$\Rightarrow 6 x-y+z=x \frac{d y}{d y}-2 y \frac{d y}{a d}+1 \frac{d y}{4}=0$ $\Rightarrow 6 x+2-y=(2-2 y+4) \frac{d y}{\frac{d}{2}}$ $\Rightarrow \frac{d y}{x}=\frac{6 x+2-y}{x+4-2 y}$ Hs Elpuever (b) T.P. $\Rightarrow \frac{d y}{d x}=0$

Scoung sinumptansiy $\left\{\begin{array}{l}\Rightarrow 32^{2}-x(6 x+2)+(63+2)^{2}+2 x-4(0+2)=1 \\ \left.\left.\Rightarrow 3 x^{2}-6 x^{2}-x+3 x^{2}+2\right)^{2}+4 x\right)\end{array}\right.$ $\Rightarrow y=6 x+2 \quad \begin{aligned} & \Rightarrow x^{2}-6 x^{2}-2 x+36 x^{2}+2 x^{2}+4+2 x-z x-8=1 \\ & \Rightarrow 33 a^{2}=5\end{aligned}$ $\Rightarrow x^{2}=\frac{5}{33}$

Question 3
A curve has equation
a) Show clearly that

$$
2 x^{2}+x y+y^{2}=14
$$

$$
\frac{d y}{d x}=-\frac{4 x+y}{x+2 y} .
$$

b) Hence, find the coordinates of the turning points of the curve.

Created by T. Madas

Question 4
A curve C is defined implicitly by

$$
y^{2}-3 x y+4 x^{2}=28, \quad x, y \in \mathbb{R} .
$$

a) Find an expression for $\frac{d y}{d x}$, in terms of x and y.
b) Determine the coordinates of the turning points of C.

$$
\frac{d y}{d x}=\frac{3 y-8 x}{2 y-3 x},(-3,-8),(3,8)
$$

Created by T. Madas

Created by T. Madas

Question 5
The equation of a curve is given by

$$
\mathrm{e}^{y}=\frac{x^{2}+3}{x-1}, x>1
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{(x-3)(x+1)}{\left(x^{2}+3\right)(x-1)}
$$

b) Find the exact coordinates of the turning point of the curve.

Created by T. Madas

Question 6
The equation of a curve is given by
a) Show clearly that

$$
\frac{d y}{d x}=\frac{2 x-y-1}{x+4 y-5}
$$

b) Find the exact value of gradient at the point on the curve with coordinates

$$
(1+4 \sqrt{2},-5-\sqrt{2})
$$

c) Determine the coordinates of the turning point of the curve.

$$
-\frac{1}{8}(2+3 \sqrt{2}),(3,5),(-1,-3)
$$

