FUNCTION PRACTICE PRACTICE

FUNCTION INTRODUCTION

Question 1

Find the range for each of the following functions.

a)
$$f(x) = x^2 + 1, x \in \mathbb{R}$$
.

b)
$$g(x) = x^2 + 1, x \in \mathbb{R}, 1 < x \le 3$$

- c) $h(x) = x^2 + 1, x \in \mathbb{R}, x \le -1.$
 - $f(x) \in \mathbb{R}, f(x) \ge 1, \quad g(x) \in \mathbb{R}, 2 < g(x) \le 10, \quad h(x) \in \mathbb{R}, h(x) \ge 2$

Question 2

Find the range for each of the following functions.

a) $f(x) = (x-4)^2 + 1, x \in \mathbb{R}, x > 4.$

b)
$$g(x) = (x+3)^2 - 1, x \in \mathbb{R}, x \ge -4$$
.

c)
$$h(x) = (x-5)^2 + 2, x \in \mathbb{R}, 0 < x < 6$$

$$f(x) \in \mathbb{R}, f(x) > 1, \quad g(x) \in \mathbb{R}, g(x) \ge -1, \quad h(x) \in \mathbb{R}, \ 2 \le h(x) < 27$$

Question 3

F.G.B.

I.C.B.

Find the range for each of the following functions.

a)
$$f(x) = x^2 + 1, x \in \mathbb{R}, x > 0$$

- **b**) $g(x) = x^2 8x + 13, x \in \mathbb{R}, x \ge 0$.
- c) $h(x) = x^2 + 2x + 2, x \in \mathbb{R}, -5 \le x < -2$.
 - $f(x) \in \mathbb{R}, f(x) > 1, \quad g(x) \in \mathbb{R}, g(x) \ge -3, \quad h(x) \in \mathbb{R}, \quad 2 < h(x) \le 17$

C.B.

う

. FGB

1+

202.8m

Mada

Question 4

I.C.B.

I.C.p

27

Find the range for each of the following functions.

a)
$$f(x) = x^2 - 6x + 6, x \in \mathbb{R}$$

b)
$$g(x) = x^2 + 8x + 12, x \in \mathbb{R}, -3 \le x \le 0.$$

h(x) =
$$x^2 - 10x + 26$$
, $x \in \mathbb{R}$, $x \ge 0$.

 $f(x) \in \mathbb{R}, f(x) \ge -3, \quad g(x) \in \mathbb{R}, \quad -3 \le g(x) \le 12, \quad h(x) \in \mathbb{R}, \quad h(x) \ge 1$

C.p

12.81

27

21/18

I.F.C.B

nn,

E.

21/2.Sm

IN202ST

Created by T. Madas

D

Question 5

Find the range for each of the following functions.

a)
$$f(x) = \sqrt{x+1}, x \in \mathbb{R}, x \ge 0$$
.

b)
$$g(x) = \sqrt{x-2}, x \in \mathbb{R}, 6 \le x < 1$$

c) $h(x) = 2 - \sqrt{x}, x \in \mathbb{R}, x \ge 4$.

$$f(x) \in \mathbb{R}, f(x) \ge 1$$
, $g(x) \in \mathbb{R}, 2 \le g(x) < 3$, $h(x) \in \mathbb{R}, h(x) \le 0$

è

Question 6

. C.H.

Find the range for each of the following functions.

a)
$$f(x) = \frac{1}{x-2}, x \in \mathbb{R}, x > 2.$$

b)
$$g(x) = \frac{2}{x+3}, x \in \mathbb{R}, x \ge 1.$$

c)
$$h(x) = \frac{1}{x-1} + 2, x \in \mathbb{R}, x > 2.$$

$$f(x) \in \mathbb{R}, f(x) > 0$$
, $g(x) \in \mathbb{R}, 0 < g(x) \le \frac{1}{2}$, $h(x) \in \mathbb{R}, 2 < h(x) < 3$

Question 7

I.C.B.

I.F.G.p

Find the range for each of the following functions.

a)
$$f(x) = 15 - (x-2)^2$$
, $x \in \mathbb{R}, 0 \le x \le 4$

b)
$$g(x) = 8 - x^3, x \in \mathbb{R}, 0 \le x \le 2$$

c) $h(x) = \frac{1}{x+3}, x \in \mathbb{R}, x \ge 0.$

 $f(x) \in \mathbb{R}, 11 \le f(x) \le 15$, $g(x) \in \mathbb{R}, 0 \le g(x) \le 8$, $h(x) \in \mathbb{R}, 0 < h(x) \le \frac{1}{3}$

ŀG.B.

27

I.F.C.P.

20

12

2

1+

adasm.

Madası

Question 8

0

2SM2/JS-COM

K.C.B. Madasm

Smarns Com I.K.C.B.

I.F.G.B

Find the range for each of the following functions.

COM

a)
$$f(x) = x^2 - 4x + 3, x \in \mathbb{R}, x > 2$$

b)
$$g(x) = x^2 + 4x + 2, x \in \mathbb{R}, x \ge 0$$

b)
$$g(x) = x^2 + 4x + 2, x \in \mathbb{R}, x \in \mathbb{R}, x \in \mathbb{R}, x \neq 2$$
.
c) $h(x) = \frac{1}{x-2}, x \in \mathbb{R}, x \neq 2$.
 $f(x) \in \mathbb{R}, f(x)$

Madasmans.com

.Y.G.B.

ths.com

18.CU

4.60

6

11202SI1121

Question 9

1. Y. G. J.

I.C.B.

I.C.p

20

Find the range for each of the following functions.

a)
$$f(x) = \sqrt{x+2}, x \in \mathbb{R}, x \ge -1$$

b)
$$g(x) = 2 - e^x, x \in \mathbb{R}, x \le 0$$

c)
$$h(x) = \frac{1}{x+2}, x \in \mathbb{R}, x \ge 0.$$

12.81

27

me,

I.F.C.B.

COM

21/2.Sm

Madasn

Created by T. Madas

Madasma

Question 10

I.V.G.p

Find the range for each of the following functions.

a)
$$f(x) = 4 - \sqrt{x}, x \in \mathbb{R}, x \ge 0$$
.

- **b**) $g(x) = 2 + e^{-x}$, $x \in \mathbb{R}, x \leq 0.$
- $-2, \ x \in \mathbb{R}, \ x \ge 0 \, .$ $\mathbf{c}) \quad h(x) = \frac{1}{x+2}$
 - $\boxed{f(x) \in \mathbb{R}, f(x) \le 4}, \ \boxed{g(x) \in \mathbb{R}, g(x) \ge 3}, \ \boxed{h(x) \in \mathbb{R}, -2 < h(x) \le -2}$ 32

2011

1720/2817

2017

[nn

100

nadasm.

COM

21/18

Created by T. Madas

Question 11

I.F.G.B.

I.C.p

20

Find the range for each of the following functions.

a)
$$f(x) = \frac{1}{4-x}, x \in \mathbb{R}, x \ge 5$$
.

b)
$$g(x) = 25 - (x - 4)^2, x \in \mathbb{R}, x \ge 0.$$

c)
$$h(x) = x^3 - 2, x \in \mathbb{R}, x < 2.$$

 $f(x) \in \mathbb{R}, -1 \le f(x) < 0 , \quad g(x) \in \mathbb{R}, \quad g(x) \le 25 , \quad h(x) \in \mathbb{R}, \quad h(x) < 6$

21/18

I.F.C.P.

Madasn

20

nn

Created by T. Madas

11202

Question 12

I.G.B.

I.C.P.

Find the range for each of the following functions.

a)
$$f(x) = e^x + 2, x \in \mathbb{R}$$
.

de.

b)
$$g(x) = 4 - e^{-x}, x \in \mathbb{R}, x \ge 0$$

c) $h(x) = 3 - e^{x+1}, x \in \mathbb{R}, x \ge -1$

)
$$h(x) = 3 - e^{x+1}, x \in \mathbb{R}, x \ge -1.$$

20

F.G.B.

ha

27

'nash

I.C.B

1.5

nadasm.

Inadas n

Question 13

I.V.G.B. May

I.F.G.B.

20

Find the range for each of the following functions.

a)
$$f(x) = \sqrt{4-x}, x \in \mathbb{R}, x < 0.$$

b)
$$g(x) = \sqrt{2x+1}, x \in \mathbb{R}, -\frac{1}{2} \le x \le 0$$

)
$$h(x) = \ln(12 - 4x), x \in \mathbb{R}, x < 2$$

I.C.P.

200

12

0

 $f(x) \in \mathbb{R}, f(x) > 2$, $g(x) \in \mathbb{R}, 0 \le g(x) \le 1$, $h(x) \in \mathbb{R}, h(x) > \ln 4$

ne,

mada

I.F.G.B.

27

1

FUNCTION FUNCTION COMPOSITION FRANK CLASINGUESCOM EXCEPTION INCOM EXCEPTION OF THE PRODUCT OF THE PROD

Question 1

Find fg(x) and gf(x) if

$$f(x) = 2x + 1, \ x \in \mathbb{R}$$

$$g(x) = x^2 - 1, \ x \in \mathbb{R}$$

Simplify the answers as much as possible.

Question 2

Find fg(x) and gf(x) if

$$f(x) = 4 - 3x, \ x \in \mathbb{R}$$

 $g(x) = \sqrt{x}, \quad x \in \mathbb{R}, \ x \ge 0.$

Simplify the answers as much as possible.

$$fg(x) = 4 - 3\sqrt{x}, \quad gf(x) = \sqrt{4 - 3x}$$

 $\begin{array}{l} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) = \begin{array}{c} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) = \begin{array}{c} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) = \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right) = \begin{array}{c} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) = \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right) = \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right) = \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}$

Question 3

Find fg(x) and gf(x) if

$$f(x) = 3x - 8, x \in \mathbb{R}$$

$$g(x) = \frac{1}{x}, \quad x \in \mathbb{R}, \ x \neq 0.$$

Simplify the answers as much as possible.

• $\beta \stackrel{\circ}{+} \left(\gamma = \vartheta \left(f(\sigma) \right) = \vartheta \left(\frac{\sigma}{\sigma} \cdot \sigma \right) = \frac{2\sigma - \delta}{\sigma}$

Question 4

Find fg(x) and gf(x) if

$$f(x) = 4x - 1, \ x \in \mathbb{R}$$

 $g(x) = \frac{x}{x+1}, \quad x \in \mathbb{R}, \ x \neq -1$

Simplify the answers as much as possible.

$$fg(x) = \frac{3x-1}{x+1}$$
, $gf(x) = \frac{4x-1}{4x}$

• $\left\{ \begin{array}{ll} \underline{a}(s) &= \underline{A}(\underline{b}(s)) = \overline{A}(\frac{\infty}{(\lambda+1)}) = -\underline{A}(\frac{\infty}{(\lambda+1)}) - | &= -\frac{4\alpha}{(\lambda+1)} - | \\ &= -\frac{4\alpha}{(\lambda+1)} = -\frac{3\alpha}{(\lambda+1)} \\ \bullet & \underline{g}(\underline{b}) = -\underline{g}(\underline{b}(\underline{a})) = -\underline{g}(\underline{b}(\lambda-1)) = -\frac{4\alpha}{(d_{\lambda}-1)+1} = -\frac{4\alpha}{(d_{\lambda}-1)+1} \\ \end{array} \right\}$

Question 5

Find fg(x) and gf(x) if

$$f(x) = 2x^2 + 1, \ x \in \mathbb{R}$$

$$g(x) = \sqrt{x}, \quad x \in \mathbb{R}, \ x \ge 0.$$

Simplify the answers as much as possible.

• $f(g(x)) = f(f(x)) = f(\sqrt{x^2} + 1) = \sqrt{x^2 + 1}$

Question 6

Find fg(x) and gf(x) if

$$f(x) = (x+3)^2, \ x \in \mathbb{I}$$

 $g(x) = 2x, \quad x \in \mathbb{R}.$

Simplify the answers as much as possible.

 $fg(x) = (2x+3)^2$ $gf(x) = 2(x+3)^2$

Question 7

Find fg(x) and gf(x) if

$$f(x) = 2x - 1, x \in \mathbb{R}$$

 $g(x) = \sqrt{x+3}, \quad x \in \mathbb{R}, \ x \ge -3.$

Simplify the answers as much as possible.

$$fg(x) = 2\sqrt{x+3} - 1$$
, $gf(x) = \sqrt{2x+2}$

f(x) = g(f(x))

 $A(2x-1) = \sqrt{(2x-1)t_3} = \sqrt{2x+2^2}$

Question 8

Find fg(x) and gf(x) if

$$f(x) = \sqrt{x}, \quad x \in \mathbb{R}, \quad x \ge 0$$

$$g(x) = \frac{2x^2}{x^2 - 1}, \quad x \in \mathbb{R}, \ x \neq \pm 1.$$

Simplify the answers as much as possible.

$$fg(x) = \sqrt{\frac{2x^2}{x^2 - 1}}, \quad gf(x) = \frac{2x}{x - 1}$$

Question 9

Find fg(x) and gf(x) if

 $f(x) = 2x - 3, \ x \in \mathbb{R}$

 $g(x) = x - \frac{1}{x}, \quad x \in \mathbb{R}, \ x \neq 0.$

Simplify the answer as much as possible.

 $fg(x) = \frac{2x^2 - 3x - 2}{x}, \quad gf(x) = \frac{4x^2 - 12x + 8}{2x - 3}$

(a) $f_{\frac{1}{2}}(x) = f_{\frac{1}{2}}(x) = f_{\frac{1}{2}}(x) = 2(x-\frac{1}{2}) - 3 = 2x - \frac{2}{2} - 3$ (b) $g_{\frac{1}{2}}(x) = g_{\frac{1}{2}}(x) = g_{\frac{1}{2}}(x-3) = (2x-3) - \frac{1}{2x-3}$ $= \frac{(2x-3)^{2}-1}{2x-3} = \frac{4x^{2}-12x+8}{2x-3}$

Question 10

Find fg(x) and gf(x) if

$$f(x) = x^3 - 1, \ x \in \mathbb{R}$$

$$g(x) = \frac{1}{\sqrt{x}}, \quad x \in \mathbb{R}, \ x > 0$$

Simplify the answers as much as possible.

 $\frac{fg(x) = \frac{1}{x\sqrt{x}} - 1}{x\sqrt{x}}, \quad gf(x) = \frac{1}{x\sqrt{x}}$

• $f_{\mathfrak{B}}(s) = f_{\mathfrak{B}}(u) = f_{\mathfrak{C}}(\frac{1}{\sqrt{n}}) = \left(\frac{1}{\sqrt{n}}\right)^3 - 1 = \frac{1}{2\sqrt{n}} - 1$ • $g_{\mathfrak{B}}(u) = g_{\mathfrak{C}}(u) = g_{\mathfrak{C}}(u) - 1 = \frac{1}{\sqrt{n}}$

 $x^{3} - 1$

Question 11

COM

COM

I.C.p

2

Find fg(x) and gf(x) if

$$f(x) = 6 - x^2, \ x \in \mathbb{R}$$

 $g(x) = \frac{x+1}{x}$ $x \in \mathbb{R}, \ x \neq 0.$

Com

I.C.B.

madasmaths,

COM

Simplify the answers as much as possible.

Y.G.B.

1.Y.G.J

$$fg(x) = \frac{5x^2 - 2x - 1}{x^2}, \quad gf(x) = \frac{7 - x^2}{6 - x^2}$$

 $f_{\mathfrak{g}}(\mathfrak{z}) = f(\mathfrak{g}(\mathfrak{z})) = f(\frac{\mathfrak{z}+1}{\mathfrak{z}}) = 6 - (\frac{\mathfrak{z}+1}{\mathfrak{z}})^2 = 6 - \frac{\mathfrak{z}+\mathfrak{z}+1}{\mathfrak{z}^2}$ $\frac{(2^2 - (\chi^2 + 2\chi + i))}{\chi^2} = \frac{(2^2 - \chi^2 - 2\chi - i)}{\chi^2} = \frac{5\chi^2 + 2\chi - i}{\chi^2}$ $\mathfrak{G} \overset{\text{p}}{\to} \overset{p}}{\to} \overset{p}{\to} \overset{p}{\to} \overset{p}}{\to} \overset{p}}{\to} \overset{p}{\to} \overset{p}}{\to$

I.C.S.

Madasmaths.com

I.F.C.P.

(n)

I.C.B.

hs.com

1.G.D.

6

madasma

madasn

Question 12

The following functions are defined by

$$f(x) = 2x+3, x \in \mathbb{R}.$$
$$g(x) = 1-x^2, x \in \mathbb{R}.$$
$$h(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

÷.

Find all six possible two-fold compositions for the above functions, simplifying the final answers as much as possible.

Q.

$$fg(x) = 5 - 2x^{2} \\ gf(x) = -4x^{2} - 12x - 8 \\ hf(x) = \frac{1}{2x + 3} \\ hg(x) = \frac{1}{1 - x^{2}} \\ hg(x) = \frac{1}{1 - x^{2$$

-f(g(u))=f(0-x)= 2(-x)+3=2-2x2	
$(\theta, \theta) = g(2x+3) = 1 - (2x+3)^2 - 1 - (4x^2-12x+9) = -4x^2 + 12x - 8$,
$f(h(a)) = f(x) = 2(x) + 3 = \frac{2}{3} + 3$	
$h(f(\alpha)) = h(2\alpha+3) = \frac{1}{22+3}$	
$g(h(a)) = g(\frac{1}{a}) = 1 - \frac{1}{2^{2}} = \frac{2^{2}-1}{2^{2}}$	
$h(g(x)) = h(1-x^2) = \frac{1}{1-x^2}$	
1.7.4	

29

Question 13

The following functions are defined by

$$f(x) = 2x+1, x \in \mathbb{R}.$$
$$g(x) = e^{x}, x \in \mathbb{R}.$$
$$h(x) = \sin x, x \in \mathbb{R}.$$

12.

Find all six possible two-fold compositions for the above functions simplifying the final answers as much as possible.

$$\begin{array}{c} fg(x) = 2e^{x} + 1\\ gf(x) = e^{2x+1} \end{array}, \quad \begin{array}{c} fh(x) = 2\sin x + 1\\ hf(x) = \sin(2x+1) \end{array}, \quad \begin{array}{c} gh(x) = e^{\sin x}\\ hg(x) = \sin(e^{x}) \end{array} \end{array}$$

fg(2)= f(g(2))= f(1) = 1 - (-1) $gf(q) = g(f(q)) = g(r-q) = g(z) = 3^{-}_{z} z = q$ (6) $f(h(q)) = f(h(q)) = -f(\sqrt{q^{-1}}) =$ -f(3) = 0 (d) $h f(-15) = h(f(-15)) = h(1+15) = h(16) = \sqrt{16} = 4$ $\frac{1}{2}h(q) = g(h(q)) = g(nq) = g(2) = 2^2 - 5 = -1$ (e) $h(q(3) = h(q(3)) = h(3^2 - 5) = h(4) = \sqrt{4^2} = 2$

Question 14

The following functions are defined by

$$f(x) = 1 - 2x, x \in \mathbb{R} .$$
$$g(x) = e^{x}, x \in \mathbb{R} .$$
$$h(x) = \sqrt{x}, x \in \mathbb{R}, x \ge 0.$$

2.

Find all six possible two-fold compositions for the above functions simplifying the final answers as much as possible.

$$\begin{bmatrix}
fg(x) = 1 - 2e^{x} \\
gf(x) = e^{1 - 2x}
\end{bmatrix}, \quad
\begin{bmatrix}
fh(x) = 1 - 2\sqrt{x} \\
hf(x) = \sqrt{1 - 2x}
\end{bmatrix}, \quad
\begin{bmatrix}
gh(x) = e^{\sqrt{x}} \\
hg(x) = e^{\frac{1}{2}x}
\end{bmatrix}$$

$f_g(x) = f(g(x)) = f(e^x) = 1 - 2e^x$	
$g(f_{a}) = g(f_{a}) = g(1-2x) = e^{1-2x}$	
$f(y) = f(y) = f(y) = f(y) = 1 - 2y^{-1}$	
$\int_{\Omega} f(x) = \int_{\Omega} \left(\frac{f(x)}{f(x)} \right) = \int_{\Omega} \left(\frac{1-2x}{x} \right) = \sqrt{1-2x^{2}}$	
$g_{\lambda}h(x) = g(h(x)) = g(\sqrt{x^{2}}) = e^{\sqrt{x^{2}}}$	
101/01/01/07/01/2 12	
NO(N = NO(N) = N(G) = NG. = (G) = G.	

Question 15

The following functions are defined by

$$f(x) = 1 - x, x \in \mathbb{R}$$
.
 $g(x) = x^2 - 5, x \in \mathbb{R}$

$$h(x) = \sqrt{x}, x \in \mathbb{R}, x \ge 0.$$

Evaluate the following function compositions.

- a) fg(2)
- **b**) gf(4)
- c) fh(9)
- **d**) hf(-15)
- e) gh(4)
- **f**) hg(3)

fg(2) = 2, gf(4) = 4, fh(9) = -2, hf(-15) = 4, gh(4) = -1, hg(3) = 2

(a) $\frac{1}{2}g(x) = \frac{1}{2}(g(x)) - \frac{1}{2}(z^2x) - \frac{1}{2}(y^{-1}) - \frac{1}{2}(-(-)) = 2$ (b) $\frac{1}{2}g(x) - \frac{1}{2}(g(x)) - \frac{1}{2}(z^2x) - \frac{1}{2}(y^{-1}) - \frac{1}{2}(y^{-1})$

Question 16

The following functions are defined by

$$f(x) = 2x + 5, x \in \mathbb{R}$$

$$g(x) = \frac{4}{x}, \quad x \in \mathbb{R}, \ x \neq 0$$

$$h(x) = \sqrt{x+2}, \quad x \in \mathbb{R}, \ x \ge -2$$

Evaluate the following function compositions.

- **a**) $fg\left(\frac{1}{2}\right)$ **b**) gf(-2)
- c) hf(1)
- d) fh(2)
- e) $hg\left(\frac{2}{7}\right)$

- **f**) $gh\left(-\frac{7}{4}\right)$
- g) gfh(-1)
- **h**) fgf(-2)

i) $fff\left(\frac{1}{4}\right)$

- $fg\left(\frac{1}{2}\right) = 21, gf\left(-2\right) = 4, hf\left(1\right) = 3, fh(2) = 9, hg\left(\frac{2}{7}\right) = 4, gh\left(-\frac{7}{4}\right) = 8, gfh(1) = \frac{4}{7}, fgf\left(-2\right) = 13, fff\left(\frac{1}{4}\right) = 37$
 - $\begin{array}{l} \textbf{(a)} \quad & \int_{1}^{1} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(b)} \quad & \frac{1}{2} = \frac{1}{1} \frac{1}{2} = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} = \frac{1}{1} \frac{1}{2} = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \right) \\ \textbf{(c)} \quad & \frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ \textbf{(c)} \quad & \frac{1}{2} \left(\frac{1}{2} \right) \\ \textbf{(c)} \quad$

Question 17

The following functions are defined by

$$f(x) = x - 2, x \in \mathbb{R}$$
$$g(x) = \ln x, x \in \mathbb{R}, x > 0$$
$$h(x) = e^{2x}, x \in \mathbb{R}.$$

Find simplified expressions the following function compositions, stating in each case the domain and range.

Question 17

The following functions are defined by

$$f(x) = 2x - 1, x \in \mathbb{R}, x \le 18$$
$$g(x) = x^2 + 2, x \in \mathbb{R}, x \ge 1$$
$$h(x) = \sqrt{x}, x \in \mathbb{R}, x \ge 0.$$

Find simplified expressions for each of the following function compositions, stating in each case the domain and range.

FUNCTION TREES FUNCTIC INVERSES INVE

Question 1

>

For each of the following functions find an expression for its inverse.

a)
$$f(x) = 4x - 1, x \in \mathbb{R}$$
.

adasmanan Inanan Inan Inan Inan Inan Inan

1131/3 SM

I.F.G.B.

a)
$$f(x) = 4x - 1, x \in \mathbb{R}$$
.
b) $g(x) = 1 + \sqrt{x}, x \in \mathbb{R}, x \ge 0$
c) $h(x) = 1 - \sqrt{x - 5}, x \in \mathbb{R}, x \ge 1$
 $f^{-1}(x)$

a)
$$f(x) = 4x - 1, x \in \mathbb{R}$$
.
b) $g(x) = 1 + \sqrt{x}, x \in \mathbb{R}, x \ge 0$.
c) $h(x) = 1 - \sqrt{x - 5}, x \in \mathbb{R}, x \ge 5$.

$$\boxed{f^{-1}(x) = \frac{x + 1}{4}}, \boxed{g^{-1}(x) = 0}$$

C)	$h(x) = 1 - \sqrt{x-5}, x \in \mathbb{R}, x \ge 5.$	48	0		
1	$f^{-1}(x) = \frac{x}{2}$	$\frac{+1}{4}, g^{-1}(x) = (x)$	$[-1)^2$, $h^{-1}(x) = 5 + 1$	$\frac{(1-x)^2}{(1-x)^2}$	2
Co	Sinaths .	naths	$\begin{array}{c} (\mathbf{a}) - \{\theta_1\} = \{b_{n-1}, x_n \} \\ = g_1 = [b_{n-1}] \\ \Rightarrow g_2 = [b_{n-1}] \\ \Rightarrow g_2 = [b_{n-1}] \\ \Rightarrow g_2 = [b_n] \\ \Rightarrow g_1 = [b_n] \\ \Rightarrow g_2 = $	$ \begin{aligned} & \begin{pmatrix} (s) = (-\sqrt{k-s}^{-1}) \\ & g_{2,1} = \sqrt{k+s}^{-1} \\ & g_{2,1} = \sqrt{k+s}^{-1} \\ & g_{2,2} = (-g) \\ & g_{2,3} = (-g)^{-2} \\ & g_{3,2} = (-g)^{-2} \\ & g_{3,3} = (-g)^{-2} \\$	4
		l r.	71.1.		
2	n. 1120	·Gp	``G ps	3.172	
		SIN217	¹³ 03 13 100		
Q		*0.Q		ns.com	
Э,	· · · · · · · · · · · ·	1.Vo	·	2	-

-1) ² , <i>k</i>	$t^{-1}(x) = 5$	$5 + (1 - x)^2$	1.1.6.1
(a) f(1)=42-1, xtR => y= b2-1	(b) g(2) = (+12, 2≥0 ⇒ y=1+12	(c) $h(x) = (-\sqrt{x-x^{-1}})$ $= 3 - 1 - \sqrt{x-x^{-1}}$	1211
$\Rightarrow y_{+1} = 4x$ $\Rightarrow x_{=} \ddagger (y_{+1})$ $\therefore \nexists (y_{1}) = \frac{1}{4} (x_{+1})$	$ \begin{array}{c} \Longrightarrow y_{-1} = \sqrt{x} \\ \Longrightarrow (y_{-1})^2 = x \\ \therefore \overline{g}(y_{-1}) = (x_{-1})^2 \end{array} $		~~~,

Smains.co

ths.com

I.Y.C.B. Madasmalls.Com I.Y.C.B. Madasm

I.F.G.B.

Question 2

For each of the following functions find an expression for its inverse.

a)
$$f(x) = 5 - 2x, x \in \mathbb{R}$$
.

b)
$$g(x) = \frac{3}{x} - 2, \quad x \in \mathbb{R}, x \neq 0$$

a)
$$f(x) = 5 - 2x, x \in \mathbb{R}$$
.
b) $g(x) = \frac{3}{x} - 2, x \in \mathbb{R}, x \neq 0$.
c) $h(x) = \sqrt{\frac{x}{2} - 1}, x \in \mathbb{R}, x \ge 2$.
 $f^{-1}(x) = \frac{1}{2}$

I.V.C.B. Madasmanna Madasmanns.Com

Madas,

I.V.G.B.

$$f^{-1}(x) = \frac{5-x}{2}, \quad g^{-1}(x) = \frac{3}{x+2}, \quad h^{-1}(x) = 2x^2 + 2$$

asiliatilis.com

The Com

Question 3

N.G.B. Madasm

Smarns Com I. K. C. S.

I.V.G.B

2

For each of the following functions find an expression for its inverse.

a)
$$f(x) = \frac{x+2}{x}, \quad x \in \mathbb{R}, x \neq 0.$$

a)
$$f(x) = \frac{x+2}{x}, \quad x \in \mathbb{R}, x \neq 0.$$

b) $g(x) = \frac{2x-3}{x+4}, \quad x \in \mathbb{R}, x \neq -4.$
c) $h(x) = \frac{x-2}{2x-1}, \quad x \in \mathbb{R}, x \neq \frac{1}{2}.$

c)
$$h(x) = \frac{x-2}{2x-1}, \quad x \in \mathbb{R}, x \neq \frac{1}{2}.$$

 $f^{-1}(x) = \frac{2}{x-1}$ $g^{-1}(x) = \frac{4x+3}{2-x}, h^{-1}(x) = \frac{x-2}{2x-1}$

Allo Also	(a) $\int_{0} \int_{-\frac{1}{2}} \frac{1}{24} g_{240}$ (b) $g_{30} = \frac{2x-3}{2x+4} + g_{14}$ (c) $(g_{30}) = \frac{2x-2}{2x-1}$ $= \int_{0}^{1} g_{2} = \frac{2x+3}{2x} = 2 \int_{0}^{1} g_{1} = \frac{2x-3}{2x+4}$ $= \int_{0}^{1} g_{1-2x+2} = 2 \int_{0}^{1} g_{1+2} g_{2+2} = 2 \int_{0}^{1} g_{2+2} g_{2+2} = 2 \int_{0$
Con	$\begin{array}{cccc} \Rightarrow \mathbf{X}(y_{1}-y_{2}) = -\lambda - \frac{1}{2y_{1}} & \Rightarrow \mathbf{X}(y_{2}-y_{1}) = -\lambda - \frac{1}{2y_{1}} & \Rightarrow \mathbf{X}(y_{2}-y_{1}) = \frac{1}{2y_{2}} \\ \Rightarrow \mathbf{X} = \frac{\pi}{y_{1}-1} & \Rightarrow \mathbf{X} = -\frac{1-y_{2}}{y_{2}-1} & \frac{1}{2y_{2}} & \Rightarrow \mathbf{X} = \frac{4y_{2}-1}{y_{2}-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \uparrow (y_{1}) = \frac{\pi}{y_{2}-1} & & & & & \\ \vdots & & & & & & \\ \vdots & & & & &$
Sp. 4 pr	1. V.
CB KO	·Gp '4
112 5	
da dasa	ad ada
Shan Math	asing nar
IS S.C.	on "ally "
No. I.V.	No. In
4.8 ×.C	
η_2 η_{2d}	10. 120
Created by T. Madas	ada asm
The Second Se	

I.G.B.

2017

N.G.

Question 4

COM

I.V.C.B. Madasn

COM

I.Y.G.B.

20

Smaths.

For each of the following functions find an expression for its inverse.

:0₁₁

F.G.B.

2017

a)
$$f(x) = 3 - 4x, x \in \mathbb{R}$$
.

b)
$$g(x) = \frac{1}{x} + 2, \quad x \in \mathbb{R}, \ x \neq 0.$$

c) $h(x) = \sqrt{x+5}, \quad x \in \mathbb{R}, \ x \ge -5$

)
$$h(x) = \sqrt{x+5}, x \in \mathbb{R}, x \ge -5$$

I.G.B.

I.Y.G.B.

nadasmaths.com

40

1.4

112d2s112

Created by T. Madas

madasmarns,

Question 5

For each of the following functions find an expression for its inverse.

a)
$$f(x) = 20 - 4x, x \in \mathbb{R}$$
.

b)
$$g(x) = 5 - \frac{2}{x}, \quad x \in \mathbb{R}, \ x \neq 0.$$

b)
$$h(x) = \sqrt{x-2}, x \in \mathbb{R}, x \ge 0$$
.

For each of the following functions find an expression for its inverse.
a)
$$f(x) = 20 - 4x$$
, $x \in \mathbb{R}$.
b) $g(x) = 5 - \frac{2}{x}$, $x \in \mathbb{R}$, $x \neq 0$.
c) $h(x) = \sqrt{x} - 2$, $x \in \mathbb{R}$, $x \neq 0$.

$$\int \frac{1}{y^{-1}(x) = 5 - \frac{1}{4}x}, \quad \int \frac{1}{y^{-1}(x) = (x - 2)^{2}} h(x^{-1}(x) - (x - 2)^{2})$$

$$\int \frac{1}{y^{-1}(x) - \frac{1}{2}x^{-1}} h(x^{-1}(x) - (x - 2)^{2}) h(x^{-1}(x) - (x - 2)^{2})$$

$$\int \frac{1}{y^{-1}(x) - \frac{1}{2}x^{-1}} h(x^{-1}(x) - (x - 2)^{2}) h(x^{-1}(x) - (x - 2)^{2})$$

$$\int \frac{1}{y^{-1}(x) - \frac{1}{2}x^{-1}} h(x^{-1}(x) - (x - 2)^{2}) h(x^{-1}(x) - (x - 2)^{$$

for its inverse.	"COL	
×	- 10	
- / r.	. ×	*
		1.
10		1
		100
	· ·	5
	m.	
m.	- 12	1
$1(1)$ 2 1^{-1}	$(u) (u + 2)^2$	2
$(x) = \frac{1}{5-x}, \underline{n}$	(x) = (x+2)	Sh.
100		100.
		- 912
9=20-42 9= 5-2 9= 5-2	$y = \sqrt{2} - 2$	
$f_{2} = 20 - 4$ $\frac{2}{3} = 2 - 4$ $x = 5 - 44$ $\frac{2}{3} = \frac{1}{5 - 4}$	$(\underline{y}+2) = \sqrt{\chi}$	
$x = \frac{x}{2}$	$(1 + 1)^{-1} (1 + 2)^{-2}$	
	ci) city	

Smains.co

The Com

Question 6

>

For each of the following functions find an expression for its inverse.

a)
$$f(x) = \frac{4}{x+1}, x \in \mathbb{R}, x \neq -1.$$

a)
$$f(x) = \frac{4}{x+1}$$
, $x \in \mathbb{R}, x \neq -1$.
b) $g(x) = \frac{2x}{x+1}$, $x \in \mathbb{R}, x \neq -1$.
c) $h(x) = \frac{x+2}{x-4}$, $x \in \mathbb{R}, x \neq 4$.

c)
$$h(x) = \frac{x+2}{x-4}, x \in \mathbb{R}, x \neq 4.$$

I.Y.C.B. Madasmanna

Madas,

adasmanan Manan Man Marken Mar

I.L.G.B.

$$f^{-1}(x) = \frac{4}{x} - 1, \quad g^{-1}(x) = \frac{x}{2 - x}, \quad h^{-1}(x) = \frac{4x + 2}{x - 1}$$
(9) $\frac{\sqrt{3}}{2} = \frac{4}{2x+1}, \quad x \in \mathbb{R}, x + 1, \quad (k) = \frac{4}{3} = \frac{4}{3x+1}, \quad x \in \mathbb{R}, x \neq -1$
(9) $\frac{\sqrt{3}}{2} = \frac{4}{2x+1}, \quad x \in \mathbb{R}, x \neq -1$
(9) $\frac{\sqrt{3}}{2} = \frac{4}{3x+1}, \quad x \in \mathbb{R}, x \neq -1$

asiliatilis.com

The Com

Question 7

ISMATHS.COM

COM

I.F.G.p.

6

For each of the following functions find an expression for its inverse.

a)
$$f(x) = \frac{x}{x-1}, x \in \mathbb{R}, x \neq 1$$

- $x \in \mathbb{R}$. b) g(x) =
- c) $h(x) = \ln(5-x), x \in \mathbb{R}, x > 5.$

2
= ln(5-x),
$$x \in \mathbb{R}, x > 5$$
.
$$\int f^{-1}(x) = \frac{x}{x-1}, \quad g^{-1}(x) = \frac{1}{2} \ln 2x, \quad h^{-1}(x) = 5 - e^{x}$$
$$\begin{cases} 0 & \frac{1}{2} 0 - \frac{2}{2\pi}, & x \in \mathbb{R} \\ 0 & \frac{2}{3\pi}, & 0 & \frac{1}{2} e^{x}, & x \in \mathbb{R} \\ 0 & \frac{2}{3\pi}, & 0 & \frac{1}{2} e^{x}, & x \in \mathbb{R} \\ 0 & \frac{2}{3\pi}, & 0 & \frac{1}{2} e^{x}, & x \in \mathbb{R} \\ 0 & \frac{2}{3\pi}, & 0 & \frac{1}{2} e^{x}, & x \in \mathbb{R} \\ 0 & \frac{2}{3\pi}, & 0 & \frac{1}{2} e^{x}, & x \in \mathbb{R} \\ 0 & \frac{2}{3\pi}, & 0 & \frac{1}{2} e^{x}, & x \in \mathbb{R} \\ 0 & \frac{2}{3\pi}, & 0 & \frac{1}{3} e^{x}, & \frac{1}$$

U.S.	10.		2
1211	Th.	(a) $f(x) = \frac{x}{x-1}$, $x \in \mathbb{R}^{1}$, $x \notin 1$ • $f(x) = \frac{x}{x-1}$ • $f(x) = x$	(b) $g(\lambda) = \frac{1}{2} e^{2\lambda}$, $x \in \mathbb{R}$ • $g = \frac{1}{2} e^{2\lambda}$
18	· · C	$y_{2,-2} = y$ $x(y_{-1}) = x$ $z = \frac{y_{-1}}{y_{-1}}$	$l_{n}(2g) = 2\lambda$ $\lambda = \frac{1}{2} l_{n}(2g)$ • $g^{2}(2) = \frac{1}{2} l_{n}(2\lambda)$
. "0)	2	• $f(a) = \frac{1}{2a-1}$ (c) $h(a) = h_1(s-a), x \in \mathbb{R}_1 \rightarrow 5^{-1}$	
1. 1. "	·	• $q = (p (2 - 3))$ • $q = (p (2 - 3))$	
·Gp	·		Gp.
· 11	2.2	<u>h</u>	1
15.	9.8 ×	900	
Spar.	12/2	35	3
"Ins	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	the.
<u>``</u> Q	m d	1	- 6
1.1.	4 J.		4

madasmaths.com

ŀ.G.p.

18.CU

4.6.0

1+

11303ST131

nn

Question 8

For each of the following functions find an expression for its inverse.

a)
$$f(x) = 1 + 2e^{-x}, x \in \mathbb{R}$$

b)
$$g(x) = 2 - \ln(x+1), x \in \mathbb{R}, x > -1.$$

)
$$h(x) = \sqrt{e^x - 2}, \quad x \in \mathbb{R}, \ x \ge \ln 2.$$

(a) $f(x) = 1 + 2e^{-x}$	(b) g(x) = 2-m(x+1)
$\implies 0 = 1 + 3e_x$	\Rightarrow $y = 2 - \ln(\alpha + 1)$
⇒9-l= ve ^x	\Rightarrow $\ln(\alpha_{H}) = 2-y$
$\Rightarrow \frac{1}{2}(y_{-1}) = e^{-2}$	= 2+1 = e ^{2-y}
$\implies -\pi = \mu\left(\frac{\pi}{\beta-1}\right)$	-) a= -1+p
$\implies \alpha = -\ln\left(\frac{y-1}{2}\right)$	
*: X(x) = - ly(2-1)	$i g(x) = -(+e^{2-x})$
	<i>F</i>
(G) h(x)= ve-2	
=> y = Ne-2	
$\Rightarrow y^2 = e^2 - 2$	
$\Rightarrow y^2 + 2 = -e^{\lambda}$	[12] h(-2.2) //
$\implies \ln(y^2+2) = \lambda$	$\cdots \eta(q) \equiv \eta(q+2)$

Question 9

For each of the following functions find an expression for its inverse.

a)
$$f(x) = \ln(x-2) + 3, x \in \mathbb{R}, x > 2$$

b)
$$g(x) = \frac{1}{2}(e^{x-4}+3), x \in \mathbb{R}$$
.

$f^{-1}(x) = e^{x-3}+2$, $g^{-1}(x) = 4 + \ln(2x-3)$

- The second sec	
a) -f(a) = ln(x-2)+3	(b) $g(a) = \frac{1}{2} \left(e^{a-4} + 3 \right)$
3= m(x-2)+3	$\mathcal{Y} = \neq (e^{2} + 3)$
y-3 = m(2-2)	2y= e+3
e ⁹⁻³ = x - 2	$2y - 3 = e^{x - 4}$
$5 + 6_{3-3} = \mathcal{I}$	ln(2y-3) = 2-4
: f(a) = e +2	$4 + \ln(2y-3) = 3$
	: g(a) = 4 + ln(21-3)

Question 10

A function f is defined by

$$(x) = x^2 - 9, x \in \mathbb{R}, x \ge 0.$$

- **a**) Find an expression for $f^{-1}(x)$
- **b**) Find the domain and range of $f^{-1}(x)$.

Question 11

A function f is defined by

 $f(x) = (x-1)^2, x \in \mathbb{R}, x \ge 1.$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Find the domain and range of $f^{-1}(x)$.

 $f^{-1}(x) \ge 1$ $|x| = 1 + \sqrt{x}$, $x \ge 0$,

Con las on the set		,
(a) +(a) = (2-1) 1 221	(6)	-L
$= 4 = (\alpha - 1)^2$	(90)	
-> ±1/4=2-1	(91)	
7+19=2-1	y=x + +'.	
- 7-12 Ju	D 221 220	Spanen: 200
E. Oll	R (0)>0 +0)>1	RANGE: AGN >1

Question 12

A function f is defined by

 $f(x) = \sqrt{x+4}, \ x \in \mathbb{R}, \ 0 \le x < 5.$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Find the domain and range of $f^{-1}(x)$.

19.0	<u>.</u>	
(a) f(a)=1/2+4, 05x<5	4 (AS) .	
$\Rightarrow y_{e} \sqrt{x_{e+4}}$ $\Rightarrow y_{e}^{2} = x_{e+4}$ $\Rightarrow \sqrt{y_{e-4}} = x$	600 / 2+1 22+0 22+1	
$\therefore \chi_{(0)}^{p-1} = \chi_{-+}^{2}$	D pears 2523 R 26/10/3 06/60/55	" Darmin: 262<3 Range of A(1) 5

Question 13

A function f is defined by

$$f(x) = e^{2x} - 1, \ x \in \mathbb{R}.$$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Find the domain and range of $f^{-1}(x)$.

fa)= e-1, xel	4 y / fee)
$\Rightarrow y = e^{2\lambda}$	
$\Rightarrow g + i = 2\lambda$	
$\Longrightarrow \alpha = \frac{1}{2} \ln(y + i)$	$D = \frac{1}{2 \in \mathbb{R}} \frac{1}{\alpha > 1}$
$\therefore f(x) = \pm ln(x+1)$	R(40)>-1(0)+R(
	Domain: 2>-1 Range : fg)ER

Question 14

A function f is defined by

$$f(x) = \frac{1}{2}e^{x} + 1, x \in \mathbb{R}, x \le 0.$$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Find the domain and range of $f^{-1}(x)$.

fals

Question 15

A function f is defined by

$$f(x) = x^2 + 1, \ x \in \mathbb{R}, \ x \ge 0.$$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Find the domain and range of $f^{-1}(x)$

$f^{-1}(x) = \sqrt{x-1}$, $x \ge 1$, $f^{-1}(x) \ge 0$

$\begin{array}{cccc} f(0) = \alpha^2 + 1 &, \lambda \geqslant 0 &, y_A \\ \hline & & y_G = \alpha^2 + 1 &, \lambda \geqslant 0 &, y_A \\ \hline & & & y_G = 1 = \alpha^2 &, y_G = 1 &, \lambda \geqslant 0 &, y_A \\ \hline & & & & & y_G = 1 &, \lambda \geqslant 0 &, y_A \\ \hline & & & & & & & & & & & \\ \hline & & & & &$			
$ \begin{array}{c} \vdots \\ f(x) = \sqrt{2\pi}^{-1} \\ R \\ f(x) = 1 \\ \hline \\ R \\ f(x) \geq 1 \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{l} f(t) = x^{2} + 1 \ , \ x \geqslant 0 \\ \hline \begin{array}{l} \hline \end{array} \\ \hline \begin{array}{l} \hline \end{array} \\ \hline \begin{array}{l} \hline \end{array} \\ \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \hline \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \hline \end{array} \end{array} \\ \end{array} \\ \begin{array}{l} \hline \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \hline \end{array} \end{array} \\ \begin{array}{l} \hline \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	4 10 10 10 10 10 10 10 10 10 10	
Douthus : 2≥1 RASCE : £67≥9/		Donatin): 2≥1 RANCE: \$G7>9	/

Question 16

.G.B.

i C.B.

A function f is defined by

$$f(x) = (x+2)^2, x \in \mathbb{R}, x \ge -2.$$

 $^{-1}(x) = -2 + \sqrt{x}$

- **a**) Find an expression for $f^{-1}(x)$
- **b**) Sketch in the same diagram the graphs of f(x) and $f^{-1}(x)$.
- c) Find the domain and range of $f^{-1}(x)$.

 $-1(x) \ge -2$

E.B.

Mada

 $x \ge 0$,

200

Question 17

.G.B.

I.C.B.

A function f is defined by

 $f(x) = 1 + \sqrt{x-2}, \ x \in \mathbb{R}, x \ge 6.$

a) Find an expression for $f^{-1}(x)$.

b) Sketch in the same diagram the graphs of f(x) and $f^{-1}(x)$.

c) Find the domain and range of $f^{-1}(x)$.

 $f^{-1}(x) = 2 + (x-1)^2$, $x \ge 3$, $f^{-1}(x) \ge 0$

20

F.C.B.

Mada

è

Question 18

Ĉ.Ŗ

P.C.B.

A function f is defined by

$$f(x) = 2 + \frac{1}{x+1}, x \in \mathbb{R}, x \ge 0$$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Sketch in the same diagram the graphs of f(x) and $f^{-1}(x)$.
- c) Find the domain and range of $f^{-1}(x)$.

Ĉ.Ŗ

 $f^{-1}(x) = \frac{3-x}{x-2}, \ 2 < x \le 3, \ f^{-1}(x) \ge 0$

Question 19

.Y.C.B. 11121/281

I.C.p

A function f is defined by

$$f(x) = 4 - \frac{1}{x - 1}, x \in \mathbb{R}, x > 1$$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Find the domain and range of $f^{-1}(x)$.

nn

F.G.B.

Madasmaths.com

I.C.B.

x < 4,

.Y.G.B.

hs.com

6

nadasm.

Madası

Created by T. Madas

madasman Malhs

Question 20

ĊĿ,

A function f is defined by

$$f(x) = 2\ln(1-x), x < 1.$$

 $f^{-1}(x) = 1 - e^{\frac{1}{2}x}$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Sketch in the same diagram the graphs of f(x) and $f^{-1}(x)$.
- c) Find the domain and range of $f^{-1}(x)$.

$ \begin{array}{l} (\mathbf{\hat{a}}) \frac{1}{2} (\mathbf{\hat{a}}) = 2 \mathbf{\hat{a}} _{1}(-\mathbf{x})_{1} _{2} < 1 (\mathbf{\hat{b}}) \\ \Rightarrow \mathbf{\hat{b}} = 2 \mathbf{\hat{b}}(1-\mathbf{x}) \\ \Rightarrow \mathbf{\hat{b}} = 2 \mathbf{\hat{b}}(1-\mathbf{x}) \\ \Rightarrow \mathbf{\hat{c}} = 1 - \mathbf{x} \\ \Rightarrow \mathbf{x} = 1 - \mathbf{e}^{\frac{N}{2}} \\ \Rightarrow \mathbf{\hat{c}}^{\frac{N}{2}} = 1 - \mathbf{x} \\ \Rightarrow \mathbf{\hat{c}}^{\frac{N}{2}} = 1 - \mathbf{\hat{c}} \\ \end{array} $	$\begin{array}{c} \ln \alpha_{\star} & \begin{array}{c} & & \\ \downarrow & \\ h_{(2x1)} & & \\ \downarrow & \\ h_{(-x1)} & \\ \end{pmatrix} & \begin{array}{c} & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} & \begin{array}{c} & & \\ & \\ & $
$\begin{array}{c} (C) \begin{array}{c} \downarrow & \downarrow^{-1} \\ \hline D 2 < (2 \in \mathbb{R} \\ \hline \mathbb{R} 10 \in \mathbb{R} 10 < 1 \\ \hline D 10 \text{ MM} \text{ i} 2 \in \mathbb{R} \\ \hline \text{Rhote:} 10 < 1 \end{array}$	10 5 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, $x \in \mathbb{R}$

 $f^{-1}(x) < 1$

F.G.B.

1+

Question 21

ŀ.G.B.

I.C.B.

A function f is defined by

$$f(x) = 2 - 3\sin x, \quad -\frac{\pi}{2} \le x < \frac{\pi}{2}.$$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Find the domain and range of $f^{-1}(x)$.

F.G.B.

(a) {(a)=2-30M2	(b)	f	$\mathcal{Q}^{\rightarrow}$
⇒ y = 2-35142 ⇒ 35142 = 7-4	D	$-\frac{1}{2}\leq\lambda\leq\frac{1}{2}$	-1=3=2
\Rightarrow SIND = $\frac{2-y}{3}$	R	$-1 \leq f(\sigma) \leq 2$	- <u>7</u> EA(6) E #
$\Rightarrow f_{(2)}^{(2)} = \arg(M(\frac{2-3}{3}))$		No Do Muhol : -1 RANCE - <u>∏</u>	$\leq \lambda \leq S$
			<i>.</i>

madasn.

200

K.G.B.

nn,

1+

nadasm.

Madası

20,

F.G.B.

Question 22

F.G.B.

I.C.B.

A function f is defined by

$$f(x) = 2x^2 + 5, x \in \mathbb{R}, x \ge 0.$$

a) Find an expression for $f^{-1}(x)$

b) Sketch in the same diagram the graphs of f(x) and $f^{-1}(x)$.

c) Find the domain and range of $f^{-1}(x)$.

$(a) f(a) = 3t_{a} + 2^{1} x \ge 0$	(b) y 100, ~,
$\Rightarrow y = 3a^2 + s$ $\Rightarrow y - s = 3a^2$	(a)
$\Rightarrow \mathcal{I}_{z} = \mp \sqrt{\frac{\pi}{2}(\beta - 2)}$	r (5(0))
$\Rightarrow x = \pm \sqrt{\frac{y-1}{2}}$	(c) 0 0-1
=> +(1) = V ==	D 20 2 ass
	R +(3)>5 +(3)>0 Douted: 2>5
	RANG: (a) >0

 $x \ge 5, \quad f^{-1}(x) \ge 0$

I.C.P.

 $\frac{x-\overline{5}}{2}$

200

 $f^{-1}(x) = \sqrt{1}$

1+

21/2.51

mada

Question 23

Ĉ.B.

A function f is defined by

 $f(x) = x^2 - 4x - 1, x \in \mathbb{R}, x < 0.$

a) By completing the square, or otherwise, find an expression for $f^{-1}(x)$.

b) Sketch in the same diagram the graphs of f(x) and $f^{-1}(x)$.

c) Find the domain and range of $f^{-1}(x)$.

$f^{-1}(x) = 2 - \sqrt{x+5}$, x > -1, $f^{-1}(x) < 0$

200

i.G.B.

na

