\\ \section*{FUNCTIONS\\ \section*{FUNCTIONS EXAMQUESTIONS} EXAMQUESTIONS}

Created by T. Madas

Question 1 (**)
The function f is given by

$$
f: x \mapsto \frac{x}{x+3}, x \in \mathbb{R}, x \neq-3
$$

a) Find an expression for $f^{-1}(x)$.

The function g is defined as

Created by T. Madas

Question 2 (**)

O2

The figure above shows the graph of the function $f(x)$, defined for $-1 \leq x \leq 6$.

Sketch the graph of $f^{-1}(x)$, marking clearly the end points of the graph and any points where it crosses the coordinate axes.

Created by T. Madas

Question 3 (**)
The function f is given by

$$
f(x)=\ln (4 x-2), x \in \mathbb{R}, x>\frac{1}{2}
$$

a) Find an expression for $f^{-1}(x)$, in its simplest form.
b) State the range of $f^{-1}(x)$.
c) Solve the equation

$$
f(x)=1
$$

$$
f^{-1}(x)=\frac{1}{4}\left(\mathrm{e}^{x}+2\right), f^{-1}(x)>\frac{1}{2}, x=\frac{1}{4}(\mathrm{e}+2)
$$

Question 4 (**)
The function f is given by

$$
f(x)=3-\ln x, x \in \mathbb{R}, x>0 .
$$

a) Find an expression for $f^{-1}(x)$.
b) State the range of $f^{-1}(x)$.
c) Solve the equation

Question 6 (**+)
The functions f and g are given by

$$
f(x)=x^{2}, x \in \mathbb{R}
$$

$$
g(x)=\frac{1}{x+2}, x \in \mathbb{R}, x \neq-2
$$

a) State the range of $f(x)$.
b) Solve the equation

$$
f g(x)=\frac{4}{9}
$$

c) Find, in its simplest form, an expression for $g^{-1}(x)$.

Created by T. Madas

Question 7 (**+)
The functions f and g satisfy

$$
f(x)=\ln (4-2 x), x \in \mathbb{R}, x<2 .
$$

a) Find an expression for $f^{-1}(x)$.
b) Solve the equation

$$
f g(x)=0
$$

Created by T. Madas

Question 8 (**+)
The functions f and g satisfy

$$
\begin{aligned}
& f(x)=1+\frac{1}{2} \ln (x+3), x \in \mathbb{R}, x>3 \\
& g(x)=\mathrm{e}^{2(x-1)}-3, x \in \mathbb{R} .
\end{aligned}
$$

a) Find, in its simplest form, an expression for $f g(x)$.
b) Hence, or otherwise, write down an expression for $f^{-1}(x)$.

Created by T. Madas
Question $9 \quad(* *+)$

The diagram above shows the graph of the function f, defined as

$$
f(x) \equiv \frac{1}{1-x}+4, x \in \mathbb{R}, x \geq 2
$$

a) Evaluate $f(2), f(101), f(1001)$.
b) State the range of $f(x)$.

The inverse function is denoted by $f^{-1}(x)$.
c) Determine an expression for $f^{-1}(x)$, as a simplified fraction.

$$
f(2)=3, f(101)=3.99, f(1001)=3.999, \quad 3 \leq f(x)<4, f^{-1}(x)=\frac{x-5}{x-4}
$$

Question $10 \quad\left({ }^{* *}+\right.$)
The function f is given by

$$
f(x)=4-\ln (2 x-1), x \in \mathbb{R}, x>\frac{1}{2} .
$$

a) Find an expression for $f^{-1}(x)$, in its simplest form.
b) Determine the exact value of $f f(1)$.
c) Hence, or otherwise, solve the equation

$$
f(x)=f f(1)
$$

$$
f^{-1}(x)=\frac{1}{2}\left(1+\mathrm{e}^{4-x}\right), f f(1)=4-\ln 7, x=4
$$

Question $11 \quad{ }^{(* *}{ }^{*}$)
A function f is defined by

$$
f(x)=\sqrt{x+4}, x \in \mathbb{R}, 0 \leq x<5 .
$$

a) Find an expression for $f^{-1}(x)$.
b) Determine the domain and the range of $f^{-1}(x)$.

$$
f^{-1}(x)=x^{2}-4,2 \leq x<3,0 \leq f^{-1}(x)<5
$$

Created by T. Madas

Created by T. Madas

Question 12 (**+)
The function f is defined

$$
f: x \mapsto \frac{2 x-3}{x-2}, x \in \mathbb{R}, x \neq 2
$$

a) Find an expression for $f^{-1}(x)$ in its simplest form.
b) Hence, or otherwise, find in its simplest form $f f(k+2)$.

$$
f^{-1}: x \mapsto \frac{2 x-3}{x-2}, k+2
$$

Question 13 (***)

The figure aboye shows the graph of

$$
y=\frac{1}{x}+2, x \neq 0
$$

a) State the equation of the horizontal asymptote to the curve, marked as a dotted line in the figure.

The function f is defined

$$
f(x)=\frac{1}{x}+2, x \in \mathbb{R}, x>1
$$

b) State the range of $f(x)$.
c) Obtain an expression for $f^{-1}(x)$.
d) State the domain and range of $f^{-1}(x)$.
\square ,$y=2$, $f^{-1}(x)=\frac{1}{x-2}, 2<x<3, f^{-1}(x)>1$

Created by T. Madas

Question 14 (***)
The functions f and g are given by

$$
\begin{aligned}
& f(x)=\frac{2 x+3}{2 x-3}, x \in \mathbb{R}, x \neq \frac{3}{2} . \\
& g(x)=x^{2}+2, x \in \mathbb{R} .
\end{aligned}
$$

a) State the range of $g(x)$.
b) Find an expression, as a simplified algebraic fraction, for $f g(x)$.
c) Determine an expression, as a simplified algebraic fraction, for $f^{-1}(x)$.
d) Solve the equation

$$
f^{-1}(x)=f(x)
$$

$$
\text { C, } g(x) \geq 2, f g(x)=\frac{2 x^{2}+7}{2 x^{2}+1} \text {, }
$$

$$
f^{-1}(x)=\frac{3 x+3}{2 x-2}, x=-\frac{1}{2}, 3
$$

\square

Created by T. Madas

Question 15 (***)

$$
f(x)=\mathrm{e}^{2 x}-4, x \in \mathbb{R}
$$

$$
g(x)=\frac{1}{x-11}, x \in \mathbb{R}, x \neq 11 \text {. }
$$

a) Determine the range of $f(x)$.
b) Find an expression for the inverse function $f^{-1}(x)$.
c) Solve the equation

$$
g f(x)=1 .
$$

$$
f(x)>-4, f^{-1}(x)=\frac{1}{2} \ln (x+4), x=2 \ln 2
$$

Created by T. Madas

Question 16 (***)
A function f is defined by

$$
f(x)=\frac{1}{2} \mathrm{e}^{x}+1, x \in \mathbb{R}, x \leq 0 .
$$

a) Find an expression for $f^{-1}(x)$.
b) State the domain and range of $f^{-1}(x)$.

$$
f^{-1}(x)=\ln (2 x-2), \quad 1<x \leq \frac{3}{2}, f^{-1}(x) \leq 0
$$

Created by T. Madas

Question 17 (***)
The function f is given by

$$
f(x)=(x-3)^{2}+1, x \in \mathbb{R}, x \geq 4
$$

a) Sketch the graph of $f(x)$ and hence write down its range.
b) Solve the equation

$$
f(x)=17 .
$$

c) Find an expression for $f^{-1}(x)$ in its simplest form.

$$
f(x) \geq 2, x=7, x \neq-1, f^{-1}(x)=3+\sqrt{x-1} \text {, }
$$

$$
10
$$

\square

Created by T. Madas

Question 18 (***)
The functions f and g are given by

$$
\begin{aligned}
& f(x)=\sqrt{x}, \quad x \in \mathbb{R}, x \geq 0 . \\
& g(x)=x-2, \quad x \in \mathbb{R} .
\end{aligned}
$$

a) Find an expression for the function composition $f g(x)$.

The function h, whose graph is shown below, is defined by

$$
h(x)=\sqrt{x-2}, x \in \mathbb{R}, 3 \leq x \leq 11 .
$$

b) State the range of $h(x)$.
c) Determine an expression for the inverse function $h^{-1}(x)$.
d) State the domain and range of $h^{-1}(x)$.

$f g(x)=\sqrt{x-2}$,
$1 \leq h(x) \leq 3, h^{-1}(x)=x^{2}+2$
$1 \leq x \leq 3 \& 3 \leq h^{-1}(x) \leq 11$,

Created by T. Madas

Question 19 (***)
The functions f and g are defined by

$$
f(x)=\mathrm{e}^{x}, \quad x \in \mathbb{R}, x \geq 0 .
$$

$$
g(x)=x^{2}+1, x \in \mathbb{R}
$$

a) Find an expression for $g f(x)$, in its simplest form.
b) Determine the domain and range of $g f(x)$.

$$
g f(x)=\mathrm{e}^{2 x}+1, \quad x \geq 0, \quad g f(x) \geq 2
$$

Created by T. Madas

Question 20 (***)
The functions f and g are defined by

$$
f: x \mapsto x^{2}-2 x-3, \quad x \in \mathbb{R}, 0 \leq x \leq 5 .
$$

$g: x \mapsto a x^{2}+2, \quad x \in \mathbb{R}, a$ is a real constant.
a) Find the range of f.
b) Determine the value of a, if $g f(1)=6$.
\square
$,-4 \leq f(x) \leq 12, a=\frac{1}{4}$

Created by T. Madas

Question 21 (***)
The function f is defined as
a) Show clearly that

$$
f: x \mapsto \frac{2}{x-1}, x \in \mathbb{R}, x>1 .
$$

b) Find an expression for f^{-1}, in its simplest form.

The function g is given by

$$
g: x \mapsto 2 x^{2}+4, x \in \mathbb{R}
$$

c) Solve the equation

$$
f g(x)=\frac{4}{7}
$$

Created by T. Madas

Question 22 (***)
The functions f and g are defined by

$$
f: x \mapsto x^{2}+3, \quad x \in \mathbb{R}
$$

$$
g: x \mapsto 2 x+2, \quad x \in \mathbb{R}
$$

Solve the equation

Question 23 (***)
The functions f and g are defined as

$$
\begin{aligned}
& f(x)=\frac{x+6}{x+2}, \quad x \in \mathbb{R}, \quad x \neq-2 \\
& g(x)=7-2 x^{2}, \quad x \in \mathbb{R} .
\end{aligned}
$$

a) State the range of $g(x)$.
b) Find, as a simplified fraction, an expression for $f g(x)$.
c) Find, as a simplified fraction, an expression for $f^{-1}(x)$.
d) Solve the equation

$$
f^{-1}(x)=f(x)
$$

$\checkmark \square$
$f g(x)=\frac{13-2 x^{2}}{9-2 x^{2}}$, $f^{-1}(x)=\frac{2 x-6}{1-x}, x=-3,2$
\square

Created by T. Madas

Question 24 (***)
The function f is defined as

$$
f: x \mapsto \frac{x}{x-1}, \quad x \in \mathbb{R}, x \neq 1
$$

a) Find in its simplest form the composition $f f(x)$.
b) Find an expression for $f^{-1}(x)$ in its simplest form.

$$
f f(x)=x, \quad f: x \mapsto \frac{x}{x-1}, \quad x \in \mathbb{R}, x \neq 1
$$

Question 25 (***)
The functions g and f are given by

$$
\begin{aligned}
& g: x \mapsto 4-3 x, \quad x \in \mathbb{R} \\
& f: x \mapsto x^{2}+a x+b, \quad x \in \mathbb{R}
\end{aligned}
$$

where a and b are non zero constants.

Given that $f g(2)=-5$ and $g f(2)=-29$, find the value a and the value of b.

$$
a=4, b=-1
$$

Created by T. Madas

Created by T. Madas

The figure above shows the part of the curve with equation

$$
y=f(x), \text { for } 0 \leq x \leq 2
$$

Given that the curve is odd and periodic with period 4, sketch the curve for $-6 \leq x \leq 6$.

Question 27 (***)
The function f is defined by

$$
f(x)=\ln (2 x-1)+4, x \in \mathbb{R}, x \geq 1 .
$$

a) Find $f^{-1}(x)$ in its simplest form.
b) Determine the domain of $f^{-1}(x)$.

$$
f^{-1}(x)=\frac{1}{2}\left(1+\mathrm{e}^{x-4}\right), x \in \mathbb{R}, x \geq 4
$$

Question 28 (***)
The function f is given by

$$
f: x \mapsto 1+\frac{1}{x}, x \in \mathbb{R}, x \neq 0
$$

a) Find the range of f.
b) Show clearly that

$$
f f: x \mapsto \frac{2 x+1}{x+1}
$$

$$
f(x) \in \mathbb{R}, f(x) \neq 1
$$

Created by T. Madas

Created by T. Madas

Question 29 (***)
The functions f and g are defined as

$$
f(x)=2 x-1, \quad x \in \mathbb{R}
$$

$$
g(x)=\mathrm{e}^{\frac{x}{2}}, \quad x \in \mathbb{R}
$$

a) Find an expression for $f^{-1}(x)$.
b) Find, as an exact surd, the value of $f g(\ln 2)$.
c) Solve the equation

$$
f^{-1}(x)=\frac{9}{2 f(x)}
$$

$f^{-1}(x)=\frac{x+1}{2}, f g(\ln 2)=2 \sqrt{2}-1, x=-\frac{5}{2}, 2$

Question 30 (***)
The functions f, g and h are defined as

$$
\begin{aligned}
& f(x)=x^{2}-1, \quad x \in \mathbb{R} \\
& g(x)=\mathrm{e}^{\frac{3 x}{2}}, \quad x \in \mathbb{R} \\
& h(x)=\operatorname{fg}(x), \quad x \in \mathbb{R}
\end{aligned}
$$

a) State the range of $g(x)$.
b) Find, in its simplest form, an expression for $h(x)$.
c) Solve the equation $h(x)=15$, giving the answer in terms of $\ln 2$.
d) Find an expression for $h^{-1}(x)$, the inverse of $h(x)$.
$g(x)>0, f g(x)=\mathrm{e}^{3 x}-1$,

$$
x=\frac{4}{3} \ln 2, h^{-1}(x)=\frac{1}{3} \ln (x+1)
$$

\square

Created by T. Madas

Question 31 (***)
The functions f and g are defined by

$$
\begin{aligned}
& f(x) \equiv \frac{2}{x}, x \in \mathbb{R}, x \neq 0 \\
& g(x) \equiv f(x-3)+3, \quad x \in \mathbb{R}, x \neq k
\end{aligned}
$$

a) Find an expression for $g(x)$, as a simplified fraction stating the value of the constant k.
b) Find an expression for $g^{-1}(x)$.
$g(x)=\frac{3 x-7}{x-3}, k=3, g^{-1}(x)=\frac{3 x-7}{x-3}$, self inverse

Created by T. Madas

Question 32 (***)
The functions f and g are defined by

$$
f: x \mapsto 4-x^{2}, x \in \mathbb{R}
$$

a) Evaluate $f g^{-1}(3)$.
b) Solve the equation

$$
g^{-1} f(x)=\frac{7}{5}
$$

\square
\square
$x= \pm \frac{1}{3}$
(a) $y=\frac{5 x}{z-1}$ $\Rightarrow 2 x y-y=5 x$
$\Rightarrow 2 x y-5 x=y$ $\Rightarrow x(2 y-5)=y$ $\Rightarrow x=\frac{y}{2 y-5}$ $\Rightarrow g^{-1}(x)=\frac{x}{x-5}$ (b) $g^{-1}\left(f\left(x_{1}\right)=\frac{7}{5}\right.$ $\rightarrow g^{-1}\left(4-x^{2}\right)=\frac{7}{5}$ $\Rightarrow \frac{4-x^{2}}{2\left(4-x^{2}\right)-5}=\frac{7}{5}$ $\Rightarrow 4-x^{2}=7$

Question 33 (***)
The function f is defined as

$$
f: x \mapsto \frac{1}{x+2}+\frac{2 x+11}{2 x^{2}+x-6} \quad x \in \mathbb{R}, x>\frac{3}{2}
$$

a) Show clear that

$$
f: x \mapsto \frac{4}{2 x-3}, x \in \mathbb{R}, x>\frac{3}{2}
$$

b) Find an expression for f^{-1}, in its simplest form.
c) Find the domain of f^{-1}.

The function g is given by

$$
g: x \mapsto \ln (x-1), x \in \mathbb{R}, x>1
$$

d) Show that $x=1+\sqrt{\mathrm{e}}$ is the solution of the equation

$$
f g(x)=-2
$$

\square $f^{-1}(x)=\frac{3 x+4}{2 x}, x>0$

$\text { (() } \begin{aligned} f(x) & =\frac{1}{x+2}+\frac{2 x+11}{2 x^{2}+x-6}=\frac{1}{x+2} \\ & =\frac{4+8}{(x+2)(2 x-3)}=\frac{4(x+2)}{(3+2)(2 x-3)} \end{aligned}$	$\begin{aligned} & \frac{2 x+11}{(x+2)(x-3)}=\frac{2 x-3+2 x+11}{(x+2)(2 x-3)} \\ & \frac{1}{2 x-3 / / 45} \text { ztwent } \end{aligned}$
$\text { b) } \begin{aligned} & y=\frac{4}{2-3} \\ \Rightarrow & 2 x-3 y=4 \\ \Rightarrow & 2 x y=3 y+4 \\ \Rightarrow & x=\frac{3 y+4}{2 y} \\ \therefore & f(x)=\frac{3 x+4}{2 x} \end{aligned}$ (b) (c) $\text { Range of } f(a) \text { \& } f(a)>0$ +fucte somenof $f(a)$ as	(d) $\begin{aligned} & f(g(x))=-2 \\ & f(\ln (2-1))=-2 \\ & 4 \\ & \frac{\ln (x-1)-3}{}=-2 \\ & 4=6-4 \ln (x-1) \\ & \ln (x-1)=2 \\ & \ln (x-1)=\frac{1}{2} \\ & 2-1=e^{\frac{1}{2}} \\ & x=e^{\frac{1}{2}}+1 \end{aligned}$

Created by T. Madas

Question 34 (***)

$$
f(x)=4-x^{2}, x \in \mathbb{R}, 2 \leq x \leq 4 .
$$

a) Determine the range of $f(x)$.
b) Find an expression for the inverse function $f^{-1}(x)$.
c) State the domain and range of $f^{-1}(x)$.
$-12 \leq f(x) \leq 0, f^{-1}(x)=\sqrt{4-x},-12 \leq x \leq 0,2 \leq f^{-1}(x) \leq 4$
\square
\square

Question 35 (***+)
A function is defined by

$$
f(x)=\sqrt{\mathrm{e}^{x}-1}, x \geq 0
$$

a) Find the values of ...
i. $\quad \ldots f(\ln 5)$.
ii. ... $f^{\prime}(\ln 5)$.

The inverse function of $f(x)$ is $g(x)$.
b) Determine an expression for $g(x)$.
c) State the value of $g^{\prime}(2)$.

Created by T. Madas

Created by T. Madas

Question 36 (***+)
A function f is defined by

$$
f(x)=2+\frac{1}{x+1}, \quad x \in \mathbb{R}, x \geq 0
$$

a) Find an expression for $f^{-1}(x)$, as a simplified fraction.
b) Find the domain and range of $f^{-1}(x)$.

$$
f^{-1}(x)=\frac{3-x}{x-2}, 2<x \leq 3, f^{-1}(x) \geq 0
$$

Created by T. Madas

Question 37 (***+)

$$
y=\frac{2}{x-2}-\frac{6}{(x-2)(2 x-1)}
$$

a) Show clearly that $y=\frac{4}{2 x-1}$

The figure below shows the graph of $y=\frac{4}{2 x-1}, x \neq a$.
b) State the equation of the vertical asymptote of the curve, shown dotted in the figure above.

The function f is defined

$$
f(x)=\frac{4}{2 x-1}, x>1
$$

c) State the range of $f(x)$.

[continued from overleaf]
d) Obtain an expression for the inverse of the function, $f^{-1}(x)$.
e) State the domain and range of $f^{-1}(x)$.
$\square, x=\frac{1}{2}, 0<f(x)<4, f^{-1}(x)=\frac{x+4}{2 x}, 0<x<4, f^{-1}(x)>1$

Created by T. Madas

Question 38 (***+)
The function f is defined by

$$
f(x)=\frac{6}{x+3}, x \in \mathbb{R}, x \geq 0 .
$$

a) Find the range of $f(x)$.
b) Determine an expression for $f^{-1}(x)$ in its simplest form.
c) Find the domain and range of $f^{-1}(x)$.

Created by T. Madas

Question 39 (***+)
The function $f(x)$ is defined by

$$
f(x)=\sqrt{x+1}, x \in \mathbb{R}, x \geq 0
$$

a) Find the range of $f(x)$.
b) Find an expression for $f^{-1}(x)$ in its simplest form.
c) State the domain and range of $f^{-1}(x)$.
d) Sketch in the same diagram $f(x)$ and $f^{-1}(x)$.

$$
f(x) \geq 1, f^{-1}(x)=x^{2}-1, \quad x \geq 1, f^{-1}(x) \geq 0
$$

Question 40 (***+)
The function f is given by

$$
f: x \mapsto \frac{3}{x+2}, x \in \mathbb{R}, x \geq-1
$$

a) By sketching the graph of f, or otherwise, state its range.
b) Determine an expression for $f^{-1}(x)$, the inverse of f.
c) Find the domain and range of $f^{-1}(x)$.
\square , $f(x) \in \mathbb{R}, 0<f(x) \leq 3, f^{-1}(x)=\frac{3}{x}-2=\frac{3-2 x}{x}, 0<x \leq 3, f^{-1}(x) \geq-1$,

\square

Question 41 (***+)
The function f is satisfies

$$
f(x)=\sqrt{x}-3, x \in \mathbb{R}, 0 \leq x \leq 9 .
$$

a) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the graph of $f(x)$ meets the coordinate axes.
b) State the range of $f(x)$.
c) Find an expression for $f^{-1}(x)$.
d) Sketch in the same set of axes as that of part (a) the graph of $f^{-1}(x)$.

The sketch must include the coordinates of the points where the graph of $f^{-1}(x)$ meets the coordinate axes, and how $f^{-1}(x)$ is related graphically to $f(x)$.
$,-3 \leq f(x) \leq 0, f^{-1}(x)=(x+3)^{2}$

b) woting at the reapt Asort
$y=\sqrt{x}-3$
$y+3=\sqrt{x}$
$x=(y+3)$
$x=(y+3)^{2}$
a)

Created by T. Madas

Question 42 (***+)
The function f satisfies

$$
f: x \mapsto \frac{3 x+1}{x+4}, x \in \mathbb{R}, x>-4
$$

a) Find an expression for $f^{-1}(x)$ in its simplest form.
b) Determine the domain and the range of $f^{-1}(x)$.

The function g is given by

$$
g: x \mapsto \mathrm{e}^{x}-3, \quad x \in \mathbb{R} .
$$

c) Solve the equation

$$
f g(x)=\frac{4}{5},
$$

giving exact answers in terms of $\ln 2$.
\square $f^{-1}: x \mapsto \frac{1-4 x}{x-3}, x \in \mathbb{R}, x<3, f^{-1}(x) \in \mathbb{R}, f^{-1}(x)>-4, x=2 \ln 2$

$\begin{aligned} & \Rightarrow y(x+4)=3 x+1 \\ & \Rightarrow y x+4 y=3 x+1 \end{aligned}$ $\Rightarrow y x-3 x=1-4 y$ $\Rightarrow x=\frac{1}{4-\frac{1}{3}}$ $f\left(\right.$ ti) $=\frac{1-4}{2-3}$ or $f(t)=\frac{\frac{1}{3}-1}{3-2}$
- Vreficar Asymptote: $\quad 2=-4$ (intnominator zerra) - $x=0 \Rightarrow y=\frac{1}{f}$ \qquad ,

Thos wt thite	$f(x)$	$f^{-1}(x)$
dantion	x)-4. (fuwn)	1 x $x<3$
27NOE	$(0)<3$	${ }^{4} f^{-1}(x)>-4$

C) Giestur ortan to expression Fie the confernion

- $f(g(x))=f\left(e^{2}-3\right)=\frac{3\left(e^{x}-3\right)+1}{\left(e^{2}-3\right)+4}=\frac{3 e^{x}-8}{e^{x}+1}$
- $f(g(x))=\frac{4}{5}$
$\Rightarrow \frac{3 e^{2}-8}{e^{x}+1}=\frac{4}{5}$
$\Rightarrow 15 e^{x}-40=4 e^{2}+4$
$\Rightarrow 11 e^{x}=44$
$\Rightarrow e^{x}=4$
$\Rightarrow x=\ln 4$
$\Rightarrow x=2 \ln 2$
"Hocomot By $f(g(x))$

Question 43 (***+)
The function f is defined as

$$
f: x \mapsto \frac{2 x-1}{x^{2}-x-2}-\frac{1}{x-2}, x \in \mathbb{R}, x>4
$$

a) Show clearly that

$$
f: x \mapsto \frac{1}{x+1}, x \in \mathbb{R}, x>4
$$

b) Find the range of f.
c) Determine an expression for the inverse function, $f^{-1}(x)$.
d) State the domain and range of $f^{-1}(x)$.

The function g is given by

$$
g: x \mapsto 3 x^{2}-2, \quad x \in \mathbb{R}
$$

e) Solve the equation

$$
f g(x)=\frac{1}{11}
$$

\qquad ,
(2), $0<f(x)<\frac{1}{5}, f^{-1}(x)=\frac{1-x}{x}, 0<x<\frac{1}{5}, f^{-1}(x)>4, x= \pm 2$

Question 44 (***+)
A function f is defined by

$$
f(x)=4-\frac{1}{x-1}, \quad x \in \mathbb{R}, x>1
$$

a) Determine an expression for the inverse, $f^{-1}(x)$.
b) Find the domain and range of $f^{-1}(x)$.

Created by T. Madas

Question 45 (***+)

$$
f(x)=4-x^{2}, x \in \mathbb{R}
$$

a) State the range of $f(x)$.
b) Solve the equation

$$
f(x) \leq 4, x= \pm \sqrt{2}, \pm \sqrt{6}
$$

\square

Question 46 (***+)

$$
f(x)=4(x+1)^{2}, x \in \mathbb{R}, x \leq-2 .
$$

a) State the range of $f(x)$.
b) Find an expression for the inverse function $f^{-1}(x)$.
c) State the domain and range of $f^{-1}(x)$.
d) Evaluate $f^{-1}(49)$.
e) Verify that the answer to part (d) is correct by carrying an appropriate calculation involving $f(x)$.
$f(x) \geq 4, f^{-1}(x)=-1-\frac{1}{2} \sqrt{x}, x \geq 4, f^{-1}(x) \leq-2, f^{-1}(49)=-\frac{9}{2}, f\left(-\frac{9}{2}\right)=49$

Question 47 (***+)
The function f is given by

$$
f: x \mapsto 3+\frac{2}{x-2}, x \in \mathbb{R}, x>2
$$

a) Sketch the graph of f.
b) Find an expression for $f^{-1}(x)$ as a single fraction, in its simplest form.
c) Find the domain and range of $f^{-1}(x)$.
d) Find the value of x that satisfy the equation $f(x)=f^{-1}(x)$
$\square, f^{-1}(x)=\frac{2 x-4}{x-3}, x \in \mathbb{R}, x>3, f(x) \in \mathbb{R}, f^{-1}(x)>2, x=4, x \neq 1$

Question 48 (***+)
The functions f and g are defined below

$$
\begin{aligned}
& f(x)=x^{2}+2, \quad x \in \mathbb{R}, x>0 \\
& g(x)=3 x-1, \quad x \in \mathbb{R}, \quad x>4
\end{aligned}
$$

a) Write down the range of $f(x)$ and the range of $g(x)$.
b) Explain why $g f(1)$ cannot be evaluated.
c) Solve the equation

Question 49 (***+)
The functions f and g are defined below

$$
\begin{aligned}
& f(x)=x^{2}-2, x \in \mathbb{R} \\
& g(x)=2 x+3, x \in \mathbb{R}, x>0
\end{aligned}
$$

a) Write down the range of $f(x)$.
b) Find, in its simplest form, an expression for $f g(x)$.
c) Solve the equation

$$
f g(x)=14
$$

d) Show that there is no solution for the equation

$$
f g(x)=g f(x)
$$

Question 50 (***+)
The functions f and g are defined as

$$
f(x)=4+\ln x, x \in \mathbb{R}, x>0 .
$$

$$
g(x)=\mathrm{e} x^{2}, x \in \mathbb{R}
$$

a) Find an expression for $f^{-1}(x)$.
b) State the range of $f^{-1}(x)$.
c) Show that $x=\sqrt{\mathrm{e}}$ is a solution of the equation

$$
f g(x)=6
$$

$$
f^{-1}(x)=\mathrm{e}^{x-4}, f^{-1}(x)>0
$$

Question 51 (***+)
The function f is given by

$$
f(x)=3 \mathrm{e}^{2 x}-4, x \in \mathbb{R}
$$

a) State the range of $f(x)$.
b) Find an expression for $f^{-1}(x)$.
c) Find the value of the gradient on $f^{-1}(x)$ at the point where $x=0$.

$$
f(x)>-4, f^{-1}(x)=\frac{1}{2} \ln \left(\frac{x+4}{3}\right), \frac{1}{8}
$$

Question 52 (***+)
The functions f and g are defined

$$
\begin{aligned}
& f(x)=x^{2}-10 x, x \in \mathbb{R} \\
& g(x)=\mathrm{e}^{x}+5, x \in \mathbb{R}
\end{aligned}
$$

a) Find, showing all steps in the calculation, the value of $g(3 \ln 2)$.
b) Find, in its simplest form, an expression for $f g(x)$.
c) Show clearly that

$$
g(2 x)-f g(x)=k
$$

stating the value of the constant k.
d) Solve the equation

$$
g f(x)=6
$$

$$
g(3 \ln 2)=13, f g(x)=\mathrm{e}^{2 x}-25, k=30, x=0, x=10
$$

Created by T. Madas

Question 53 (***+)

$$
f(x)=\mathrm{e}^{x}, x \in \mathbb{R}, x>0
$$

$$
g(x)=2 x^{3}+11, x \in \mathbb{R}
$$

a) Find and simplify an expression for the composite function $g f(x)$.
b) State the domain and range of $g f(x)$.
c) Solve the equation

$$
g f(x)=27
$$

The equation $g f(x)=k$, where k is a constant, has solutions.
d) State the range of the possible values of k.

Question 54 (***+)
An even function f, of period 2 is defined by

$$
f(x) \equiv\left\{\begin{array}{cc}
4 x^{2} & 0 \leq x \leq \frac{1}{2} \\
1 & \frac{1}{2} \leq x \leq 1
\end{array}\right.
$$

Sketch the graph of $f(x)$ for $-3 \leq x \leq 3$.

Created by T. Madas

Question 55 (***+)
$+)$

\square $-$

$$
y=\frac{1}{x^{2}-1}, x \neq \pm 1
$$

a) State the equations of the vertical asymptotes of the curve, marked with dotted lines in the diagram.

The function f is defined as

$$
f(x)=\frac{1}{x^{2}-1}, x \in \mathbb{R}, x>1
$$

b) Write down the range of $f(x)$.
c) Find an expression for $f^{-1}(x)$.
[continued from overleaf]

The function g is defined as

$$
g(x)=\frac{4}{x+1}, x \in \mathbb{R}, x \neq-1 .
$$

d) Show no value of x satisfies the equation

$$
g f(x)=-12 .
$$

$$
x_{x= \pm 1}, f(x) \in \mathbb{R}, f(x)>0, f^{-1}(x)=\sqrt{1+\frac{1}{x}}=\sqrt{\frac{x+1}{x}}, x= \pm \frac{1}{2}
$$

Created by T. Madas

Question 56 (***+)
The functions f and g are defined by

$$
\begin{gathered}
f(x)=x-\frac{1}{x}, x \in \mathbb{R}, x \geq 1 \\
g(x)=3 x^{2}+2, x \in \mathbb{R}, x \geq 0
\end{gathered}
$$

a) By showing that $f(x)$ is an increasing function, find its range.
b) Solve the equation

$$
g f(x)=\frac{3}{x^{2}}+23
$$

$$
f(x) \geq 0, \quad x=3
$$

Created by T. Madas

Question 57 (***+)
The functions f and g are given by

$$
f(x)=3 x+\ln 2, x \in \mathbb{R}
$$

$$
g(x)=\mathrm{e}^{2 x}, x \in \mathbb{R}
$$

a) Show clearly that

$$
g f(x)=4 \mathrm{e}^{6 x}
$$

b) Show further that $x=\ln (2 \mathrm{e})$ is the solution of the equation

Created by T. Madas

Question $58 \quad(* * *+)$
The piecewise continuous function f is odd with domain all real numbers.

It is defined by

$$
f(x) \equiv\left\{\begin{array}{cr}
-x & 0 \leq x \leq 1 \\
x-2 & x>1
\end{array}\right.
$$

a) Sketch the graph of f for all values of x.
b) Solve the equation

$$
f(x)=\frac{1}{2}
$$

\square $x=-\frac{3}{2},-\frac{1}{2}, \frac{5}{2}$

Question 59 (***+)
The functions f and g are given by

$$
f(x)=x^{2}+2 k x+4, x \in \mathbb{R}
$$

$$
g(x)=3-k x, x \in \mathbb{R}
$$

where k is a non zero constant.
a) Find, in terms of k, the range of f.
b) Given further that $f g(2)=4$, determine the value of k.
$\square, f(x) \geq 4-k^{2}, k=\frac{3}{2}$

Created by T. Madas

Question 60 (****)
The function f is defined by

$$
f(x)=2+\sqrt{x}, x \in \mathbb{R}, x \geq 0 .
$$

a) Evaluate $f f(49)$.
b) Find an expression for the inverse function, $f^{-1}(x)$.
c) Sketch in the same set of axes the graph of $f(x)$ and the graph of $f^{-1}(x)$, clearly marking the line of reflection between the two graphs.
d) Show that $x=4$ is the only solution of the equation $f(x)=f^{-1}(x)$.

Question 61 (****)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=x^{2}, x \in \mathbb{R}, x \geq 1 \\
& g(x)=x-6, x \in \mathbb{R}, x \leq 10
\end{aligned}
$$

a) Find the domain and range of $f g(x)$.
b) Show the following equation has no solutions

$$
f g(x)=g^{-1}(x)
$$

\square , $7 \leq x \leq 10,1 \leq f g(x) \leq 16$

a)	

The figure above shows the graph of the function

$$
f(x) \equiv \sqrt{1-(2 x-1)^{2}}, x \in \mathbb{R}, 0 \leq x \leq a
$$

a) Find the value of the constant a.
b) State the range of $f(x)$.

The function g is suitably defined by

$$
g(x)=2 f\left(\frac{1}{2} x\right)-2
$$

c) Sketch the graph of $g(x)$.
d) State the domain and range of $g(x)$.

Created by T. Madas

Question 63 (****)
The function f is defined by

$$
f(x)=1+\sqrt{x}, x \in \mathbb{R}, x \geq 0 .
$$

a) Evaluate $\mathrm{ff}(9)$.
b) Find an expression for the inverse function, $f^{-1}(x)$.
c) Sketch in the same diagram the graph of $f(x)$ and the graph of $f^{-1}(x)$, clearly marking the line of reflection between the two graphs.
d) Show that $x=\frac{3+\sqrt{5}}{2}$ is the only solution of the equation $f(x)=f^{-1}(x)$.

Question 64 (****)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=x^{2}-4, x \in \mathbb{R}, x>8 \\
& g(x)=2 x-2, x \in \mathbb{R}, x>3
\end{aligned}
$$

a) State the range of $f(x)$ and the range of $g(x)$.
b) Find a simplified expression for $f g(x)$.
c) Determine the domain and range of $f g(x)$.
$\square, f(x)>60, g(x)>4, f g(x)=4 x^{2}-8 x, x>5, f g(x)>60$

Created by T. Madas

Question 65 (****)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=3 \ln 2 x, x \in \mathbb{R}, x>0 \\
& g(x)=2 x^{2}+1, x \in \mathbb{R} .
\end{aligned}
$$

Show that the value of the gradient on the curve $y=g f(x)$ at the point where $x=\mathrm{e}$ is
\square , proof

Created by T. Madas

Question 66 (****)

$$
f(x)=3 x^{2}-18 x+21, x \in \mathbb{R}, x>4 .
$$

a) Express $f(x)$ in the form $A(x+B)^{2}+C$, where A, B and C are integers ans hence find the range of $f(x)$.
b) Find a simplified expression for $f^{-1}(x)$, the inverse of $f(x)$.
c) Determine the domain and range of $f^{-1}(x)$.
$, A=3, B=-3, C=-6, f(x)>-3, f^{-1}(x)=3+\sqrt{\frac{x+6}{3}}$,

$$
x>-3, f^{-1}(x)>4
$$

Created by T. Madas

Question 67 (****)
The piecewise continuous function f is even with domain $x \in \mathbb{R}$.

It is defined by

$$
f(x) \equiv\left\{\begin{array}{cr}
x^{2}-2 x & 0 \leq x \leq 3 \\
6-x & x>3
\end{array}\right.
$$

a) Sketch the graph of f for all values of x.
b) Solve the equation

$$
f(x)=\frac{5}{4}
$$

\square $x= \pm \frac{5}{2}, \pm \frac{19}{4}$

(a)		
(b) fa) $=\frac{5}{4}$		$\begin{gathered} 6-2=\frac{1}{2} \\ -2=\frac{1}{2} \\ 2=\frac{1}{7} \end{gathered}$

Question 68
(****)

$$
f(x)=x^{2}-4 x-5, x \in \mathbb{R}, x \geqslant 2 .
$$

a) Find the range of $f(x)$.
b) State the domain and range of $f^{-1}(x)$.
c) Sketch the graph of $f^{-1}(x)$, marking clearly the coordinates of any points where the graph meets the coordinate axes.

The function g is given

$$
g(x)=|x-2|, x \in \mathbb{R} .
$$

d) Find, in exact form where appropriate, the solutions of the equation

$$
g f(x)=5
$$

Coses)

$$
f(x) \geq-9, \quad x \geq-9, \quad f^{-1}(x) \geq 2, x=2+\sqrt{6}, x=6
$$

Created by T. Madas

Question 68 (****)
The function f is given by

$$
f(x)=\frac{1}{2} \sqrt{x-4}, x \in \mathbb{R}, x \geq 5
$$

a) Determine an expression for $f^{-1}(x)$, in its simplest form.
b) Find the domain and range of $f^{-1}(x)$.
c) Sketch in the same diagram the graph of $f(x)$ and the graph of $f^{-1}(x)$.

$$
f^{-1}(x)=4\left(x^{2}+1\right), x \in \mathbb{R}, x \geq \frac{1}{2}, f^{-1}(x) \in \mathbb{R}, f^{-1}(x) \geq 5
$$

Question 70 (****)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=\sqrt{x+4}, x \in \mathbb{R}, x \geq-3 \\
& g(x)=2 x^{2}-3, x \in \mathbb{R}, x \leq 47
\end{aligned}
$$

a) Find a simplified expression for $g f(x)$.
b) Determine the domain and range of $g f(x)$.
c) Solve the equation

$$
f g(x)=17
$$

, $g f(x)=2 x+5,-3 \leq x \leq 5,-1 \leq g f(x) \leq 15, \quad x=-12$

\square

Question 71 (****)
The function $f(x)$ is given by

$$
f(x)=2 x^{2}+3, x \in \mathbb{R}, x \leq 0
$$

a) Sketch the graph of $f(x)$.
b) Find $f^{-1}(x)$ in its simplest form.
c) Find the domain and range of $f^{-1}(x)$.
d) Solve the equation

$$
f^{-1}(x)=-3 .
$$

$f^{-1}(x)=-\sqrt{\frac{x-3}{2}}, \quad x \in \mathbb{R}, x \geq 3, f(x) \in \mathbb{R}, f(x) \leq 0, x=21$

Created by T. Madas

Question 72 (****)
The function f is defined by

$$
f(x)=\left\{\begin{array}{ll}
4-x, & x \in \mathbb{R}, \\
2 \leq 2 \\
2(x-1)^{2}, & x \in \mathbb{R},
\end{array}, x \geq 2\right.
$$

a) Sketch the graph of $f(x)$.
b) State the range of $f(x)$.
c) Solve the equation

$$
f(x)=18
$$

\square

$$
\text { , } f(x) \geq 2, x=-14,4
$$

(b) $f(a) \geqslant 2$

CMmmaly y vant)

Created by T. Madas

Question 73 (****)

figure 1

figure 2

Figure 1 and figure 2 above, show the graphs of two piecewise continuous functions $f(x)$ and $g(x)$, respectively.

Each graph consists of two straight line segments joining the points with the coordinates shown in each figure.
a) Sketch on the same set of axes the graphs of $f(x)$ and its inverse $f^{-1}(x)$, stating the domain and range of $f^{-1}(x)$.
b) Evaluate ...
i. $\ldots f g\left(\frac{1}{2}\right)$.
ii. $\quad . \quad f g f^{-1}(1)$.
\square
\square $f g\left(\frac{1}{2}\right)=2, f g f^{-1}(1)=3$

Created by T. Madas

Question 74 (****)
a) Sketch the graph of $f(x)$.
b) State the range of $f(x)$.
c) Find as a simplified fraction, an expression for $f f(x)$.
d) Hence, show that

$$
\operatorname{fff}(x)=\frac{4 x-3}{3 x-2}
$$

$f(x) \in \mathbb{R}, f(x) \neq 2, f f(x)=\frac{3 x-2}{2 x-1}$

Created by T. Madas

Question 75 (****)
The functions f and g satisfy

$$
f(x)=2 \mathrm{e}^{\frac{1}{2} x}, x \in \mathbb{R}
$$

$$
g(x)=\ln 4 x \quad x \in \mathbb{R}, x>\frac{1}{4}
$$

a) Find $f g(x)$ in its simplest form.
b) Find the domain and range of $f g(x)$.
c) Solve the equation

$$
f g(x)=3 x+1
$$

\square $, f g(x)=4 \sqrt{x}, x \in \mathbb{R}, x>\frac{1}{4}, f g(x) \in \mathbb{R}, f(x)>2, x=1, x \neq \frac{1}{9}$

Created by T. Madas

Question 76 (****)
The function $f(x)$ is given by

$$
f(x)=\frac{4}{x-2}, x \in \mathbb{R}, x \neq 2
$$

a) Find an expression for $f^{-1}(x)$, in its simplest form.
b) State the domain of $f^{-1}(x)$.

The function g is defined as

$$
g(x)=x^{2}-8 x+10, x \in \mathbb{R}, x \geq k
$$

c) Given that $g^{-1}(x)$ exists, find the least value of k.
$f^{-1}(x)=\frac{2 x+4}{x}, x \in \mathbb{R}, x \neq 0, k=4$

Question 77 (****)
The functions f and g are given below

$$
f(x)=\frac{1}{2-2 x}, x \in \mathbb{R}
$$

$$
g(x)=f f(x)
$$

a) Find a simplified expression for $g(x)$.
b) Hence show clearly that

$$
f \int f f(x)=x
$$

c) Find an expression for the inverse function $g^{-1}(x)$.

$$
g(x)=\frac{1-x}{1-2 x}, \quad g^{-1}(x)=\frac{1-x}{1-2 x}
$$

Created by T. Madas

Question 78
(****)

$$
f(x)=x^{2}-6 x, x \in \mathbb{R}, x \leq 3 .
$$

a) Find the range of $f(x)$.
b) Solve the equation

$$
f(x)=16 .
$$

c) Find an expression for the inverse function $f^{-1}(x)$.

Question 79 (****)
The following functions are defined as follows

$$
\begin{aligned}
& f(x)=3-x^{2}, x \in \mathbb{R} \\
& g(x)=\frac{2}{x+1}, x \in \mathbb{R}, x \neq-1
\end{aligned}
$$

a) Find the range of $f(x)$.
b) Find $g^{-1}(x)$ in its simplest form, further stating its range.
c) Determine the composite function $g f(x)$.
d) Find the domain of $g f(x)$.
e) Solve the equation

$$
g f(x)=\frac{8}{15} .
$$

$f(x) \leq 3, \quad g^{-1}(x)=\frac{2}{x}-1=\frac{2-x}{x}$,
$g^{-1}(x) \neq-1, g f(x)=\frac{2}{4-x^{2}}$ $x \in \mathbb{R}, x \neq \pm 2$,

$$
x= \pm \frac{1}{2}
$$

Question 80 (****)
The function f is given by

$$
f: x \mapsto \frac{3-x}{1+x}, x \in \mathbb{R}, x \leq-2
$$

a) Show that for some constants a and b

$$
\frac{3-x}{1+x} \equiv a+\frac{b}{1+x} .
$$

b) Sketch the graph of f and hence state its range.
c) Show that $f f(x)=x$, for all $x \leq-2$.
d) Without finding $f^{-1}(x)$ explain how part (c) can be used to deduce $f^{-1}(x)$.

$$
a=-1, \quad b=4, \quad-5 \leq f(x)<-1
$$

Created by T. Madas

Question 81 (****)
The function $f(x)$ is defined by

$$
f(x)=(x-2)^{2}-1, x \in \mathbb{R}, x \leq 2 .
$$

a) Find the range of $f(x)$.
b) Find $f^{-1}(x)$ in its simplest form.
c) Determine the domain and range of $f^{-1}(x)$.
d) Sketch in the same diagram $f(x)$ and $f^{-1}(x)$.

Question 82 (****)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=\mathrm{e}^{x}, x \in \mathbb{R} \\
& g(x)=\ln \left(x^{2}-4\right), x \in \mathbb{R}, x>2 .
\end{aligned}
$$

a) Find the domain and range of $g f(x)$.
b) Find the domain of $f g(x)$.
c) Solve the equation

$$
f g(x)=5
$$

$$
x>\ln 2, g f(x) \in \mathbb{R}, x>2, x=3
$$

Question 83 (****)
The functions f and g are defined by

$$
f(x)=\mathrm{e}^{x}-3, x \in \mathbb{R}
$$

$$
g(x)=x+1, x \in \mathbb{R}
$$

a) Find an expression for $f^{-1}(x)$, the inverse of $f(x)$.
b) State the domain and range of $f^{-1}(x)$.
c) Solve the equation

$$
g f g(x)=2(\mathrm{e}-1)
$$

giving the final answer in terms of logarithms in its simplest form.
d) Find an exact solution of the equation

$$
f g f(x)=\mathrm{e} .
$$

$f^{-1}(x)=\ln (x+3), x \in \mathbb{R}, x>-3, f^{-1}(x) \in \mathbb{R}, x=\ln 2, x=\ln [2+\ln (3+\mathrm{e})]$

Created by T. Madas

Question 84 (****)
The functions f and g are defined by

$$
f(x)=x^{2}+3 x-7, x \in \mathbb{R}
$$

$$
g(x)=a x+b, x \in \mathbb{R},
$$

where a and b are positive constants.

When the composition $f g(x)$ is divided by $(x+2)$ the remainder is 21 , while $(x-1)$ is a factor of the composition $g f(x)$.

Determine the value of a and the value of b.

Created by T. Madas

Question 85 (****)
The function f is defined as

$$
f(x)=\frac{1}{1+\tan x}, 0 \leq x<\frac{\pi}{2} .
$$

a) Use differentiation to show that f is a one to one function.
b) Find a simplified expression for the inverse of f.
c) Determine the range of f.

Created by T. Madas

Question 86 (****)
The function f is defined by

$$
f(x)=\left\{\begin{array}{cc}
x+1, & x \in \mathbb{R}, \\
(x-2)^{2}+3, & x \in \mathbb{R}, \\
(x>2
\end{array}\right.
$$

a) Sketch the graph of $f(x)$.
b) Find an expression for $f^{-1}(x)$, fully specifying its domain.

Question 87 (****)
The function $f(x)$ is defined by

$$
f(x)=\ln (3 x-2)+3, x \in \mathbb{R}, x \geq 1 .
$$

a) Find the range of $f(x)$.
b) Find $f^{-1}(x)$ in its simplest form.
c) Find the domain and range of $f^{-1}(x)$.
d) Sketch in the same diagram $f(x)$ and $f^{-1}(x)$.

$$
f(x) \geq 3, f^{-1}(x)=\frac{1}{3}\left(2+\mathrm{e}^{x-3}\right), \quad x \geq 3, f^{-1}(x) \geq 1
$$

Question 88 (****)
The functions $f(x)$ and $g(x)$ are defined by

$$
\begin{aligned}
& f(x)=\ln x, x \in \mathbb{R}, x>0 \\
& g(x)=\mathrm{e}^{3 x}, x \in \mathbb{R}, x>1 .
\end{aligned}
$$

a) Find, in its simplest form, the function compositions
i. $\quad f g(x)$.
ii. $g f(x)$.
b) Find the domain and range of $f g(x)$.
c) Find the domain and range of $g f(x)$.
$f g(x)=3 x, \quad g f(x)=x^{3}, x>1, f g(x)>3, x>\mathrm{e}, g f(x)>\mathrm{e}^{3}$

Created by T. Madas

Question 89 (****)

The figure below shows the graph of the curve with equation $y=\frac{2 x+3}{x-2}$.

a) Write down the equation of the horizontal asymptote to the curve.

The function f is defined as

$$
f(x)=\frac{2 x+3}{x-2}, x \in \mathbb{R}, x \geq 0, x \neq 2
$$

b) Find the range of $f(x)$.
c) Find $f^{-1}(x)$ in its simplest form.
d) State the range of $f^{-1}(x)$.

$$
y=2, f(x) \leq-\frac{3}{2} \text { or } f(x)>2, f^{-1}(x)=\frac{2 x+3}{x-2}, f^{-1}(x) \geq 0, f^{-1}(x) \neq 2
$$

Question 90 (****)
The function $f(x)$ is defined by

$$
f(x)=\frac{1}{\sqrt{x-2}}, x \in \mathbb{R}, x>2 .
$$

a) Find the range of $f(x)$.
b) Determine a simplified expression for $f^{-1}(x)$, further stating the domain and range of $f^{-1}(x)$.
c) Show that the equation $f^{-1}(x)=-\frac{3}{x}$ has no real solutions.
$\square, f(x)>0, f^{-1}(x)=\frac{1}{x^{2}}+2, x>0, f^{-1}(x)>2$

Question 91 (****)
The functions $f(x)$ and $g(x)$ are defined by

$$
f(x)=2 \mathrm{e}^{x}, x \in \mathbb{R}
$$

$$
g(x)=3 \ln x, x \in \mathbb{R}, x \geq 2
$$

a) Find, in its simplest form, the function composition $f g(x)$.
b) Find the domain and range of $f g(x)$.
c) Show that $g f(-2)$ does not exist.

Created by T. Madas

Question 92 (****)

$$
\begin{aligned}
& f(x)=2 \cos 2 x, \quad x \in \mathbb{R}, \quad 0 \leq x \leq \frac{\pi}{2} \\
& g(x)=|x|, \quad x \in \mathbb{R} .
\end{aligned}
$$

a) Sketch the graph of $f(x)$.

The sketch must include the coordinates of any points where the curve crosses the coordinate axes.
b) State the range of $f(x)$.
c) Find an expression for $f^{-1}(x)$.
d) Solve the equation

$$
g f(x)=1
$$

$\left(\frac{\pi}{4}, 0\right),(0,2),-2 \leq f(x) \leq 2$, \square

$$
x=\frac{\pi}{6}, \frac{\pi}{3}
$$

Created by T. Madas

Question 93 (****)
The functions f and g are defined as

$$
f(x)=3\left(2^{-x}\right)-1, \quad x \in \mathbb{R}, x \geq 0
$$

$$
g(x)=\log _{2} x, x \in \mathbb{R}, \quad x \geq 1
$$

a) Sketch the graph of f.

- Mark clearly the exact coordinates of any points where the curve meets the coordinate axes. Give the answers, where appropriate, in exact form in terms of logarithms base 2 .
- Mark and label the equation of the asymptote to the curve.
b) State the range of f.
c) Find $f(g(x))$ in its simplest form.

b)

LOCLING AT THE ABOA GeAPH $-1<f(x) \leqslant 2$
a) $f(f(x))=f\left[\log _{2} x\right]=3\left(2^{-\log x}\right)-1$ $=3\left(2^{\log _{2} x^{-1}}\right)-1$
$=3\left(2^{\log _{2}(t)}\right)-1$
$=3\left(\frac{1}{x}\right)-1$
$=\frac{3}{x}-1$

Created by T. Madas

Question 94
(****)

$$
f(x)=\mathrm{e}^{-2 x}+\frac{\ln 2}{x}, x \in \mathbb{R}, x>\ln 4 .
$$

a) Show that $f(x)$ in a decreasing function.
b) Find the range of $f(x)$ in its simplest form.
(23), $f(x) \in \mathbb{R}, f(x)<\frac{9}{16}$
\square
$f(a)=-2 e^{-2 x}-(\ln 2) x^{-2}=-\left[2 e^{-2 x}+\frac{\ln 2}{x^{2}}\right]$
$\left.\begin{array}{l}e^{-2 x}>0 \Rightarrow 2 e^{-x}>0 \\ \frac{1}{x^{2}}>0 \Rightarrow \frac{\ln 2}{x^{2}}>0\end{array}\right\} \Rightarrow f^{\prime}(x)<0$
\therefore Ths is + Decersanang function

Question 95 (****)
The function $f(x)$ satisfies

$$
f(x)=\frac{2 x+1}{x-1}, x \in \mathbb{R}, x \geq 2
$$

a) Show that

$$
f(x)=A+\frac{B}{x-1},
$$

where A and B are positive constants to be found.
b) Show that $f(x)$ is s decreasing function.
c) Sketch the graph of $f(x)$ and hence find its range.
d) Find $f^{-1}(x)$, in its simplest form.

$$
A=2, B=3, f(x) \in \mathbb{R}, 2<f(x) \leq 5, \quad f^{-1}(x)=\frac{x+1}{x-2}
$$

\square

Created by T. Madas

Question 96 (****)

The figure below shows the graph of the curve C with equation $y=\frac{25}{3 x-2}$

a) State the equation of the vertical asymptote of the curve, marked with a dotted line in the diagram.

The function f is defined as

$$
f(x)=\frac{25}{3 x-2}, \quad x \in \mathbb{R}, \quad 1<x \leq 9 .
$$

b) Write down the range of $f(x)$.
c) Find an expression for $f^{-1}(x)$.
d) State the domain and range of $f^{-1}(x)$.
e) Solve the equation $f\left(x^{2}\right)=\frac{2}{x-1}$.

$$
x=\frac{2}{3}, 1 \leq f(x)<25, f^{-1}(x)=\frac{2 x+25}{3 x}, 1 \leq x<25,1<f^{-1}(x) \leq 9, x=\frac{7}{6}, 3
$$

Question 97 (****)
The functions $f(x)$ and $g(x)$ are defined as

$$
f(x)=\frac{2 x^{2}-50}{x+5}, x \in \mathbb{R}, x \neq-6 .
$$

$$
g(x)=x^{2}+1, x \in \mathbb{R} .
$$

Show that ...
a) $\ldots f g(x)=k(x+k)(x-k)$,
stating the value of the constant k.
b) $\ldots g f(x)=4 x^{2}-40 x+101$.

Question 98 (****)
The functions f and g are defined as

$$
f(x)=x^{2}-16, x \in \mathbb{R}, x<0
$$

$$
g(x)=12-\frac{1}{2} x, x \in \mathbb{R}, x>8
$$

a) Find, in any order, ...
i. ... the range of $f(x)$ and the range of $g(x)$.
ii. ... the domain and range of $f g(x)$.
b) Solve the equation

$$
f g(x)=g(2 x-22)
$$

\square $, f(x)>-16, g(x)<8, x>24, f g(x)>-16$, \square
\square
\square $x=30$
Coses)
λ

a) II)

$$
\{\xrightarrow{x>8}[g \xrightarrow{g(x)} \quad \xrightarrow{x[5}[f]
$$

- $\underline{f(g(x))}=f\left(12-\frac{1}{2} x\right)=\left(12-\frac{1}{2} x\right)^{2}-16$ $=\frac{1}{4}(x-24)^{2}-16$
- THe Downen must stissfy $x>8$ two $g(a)<0$

12. $-\frac{1}{2} x<0$

- THe Rance un be found by

c) Solund tite gouation $\Rightarrow f(g(x))=f(2 x-2)$ $\Rightarrow \frac{1}{4}(x-24)^{2}-16=\left[2-\frac{1}{2}(2 x-22)\right.$ $\rightarrow(x-24)^{2}-64=48-2(2 x-22)$ $\Rightarrow x^{2}-48 x+566-64=48-4 x+44$ $\Rightarrow x^{2}-44 x+420=0$ By THf qunbeatic Rrawla or faccurzation $\Rightarrow(x-30)(x-14)=0$ $\Rightarrow x=<-3 \ll 30 / f x$

Question 99 (****)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=2 x+3, x \in \mathbb{R}, x \leq 8 \\
& g(x)=x^{2}-1, x \in \mathbb{R}, x \geq 0
\end{aligned}
$$

Find the domain and range of $f g(x)$.

Created by T. Madas

Question 100 (****)
The functions f and g are given by

$$
f: x \mapsto x^{2}, x \in \mathbb{R}
$$

$$
g: x \mapsto 2 x+1, x \in \mathbb{R}
$$

a) Solve the equation

$$
f g(x)=g f(x)
$$

b) Find the inverse function of g.

The function h is defined on a suitable domain such so that

$$
\operatorname{ghf}(x)=3-2 x^{2}, \quad x \in \mathbb{R} .
$$

c) Determine an equation of h.
\square
\square $g^{-1}(x)=\frac{x-1}{2}, h(x)=1-x$
 Created by T. Madas

Created by T. Madas

Question 101 (****)
The piecewise continuous function f is even with domain $x \in \mathbb{R},-6 \leq x \leq 6$.

It is defined by

$$
f(x)=\left\{\begin{array}{cc}
x & 0 \leq x \leq 2 \\
3-\frac{1}{2} x & 2 \leq x \leq 6
\end{array}\right.
$$

a) Sketch the graph of f for $-6 \leq x \leq 6$.
b) Hence, solve the equation

$$
x=4+5 f(x)
$$

\square

$$
x=-\frac{2}{3} \cup x=1 \cup x=\frac{22}{7}
$$

Created by T. Madas

Question 102 (****)
The graph below shows the graph of a function $f(x)$.

The function f is defined by

$$
f(x)= \begin{cases}a x^{2}+x, & x \in \mathbb{R}, x \leq 1 \\ b x^{3}+2, & x \in \mathbb{R},\end{cases}
$$

The function is continuous and smooth.

Find the value of a and the value of b.
\square , $a=4, b=3$

Created by T. Madas

The figure above shows the graph of a function $f(x)$, defined by

$$
f(x)= \begin{cases}a x^{3}+2, & x \in \mathbb{R}, \\ b \leq 2 \\ b x^{2}-2, & x \in \mathbb{R},\end{cases}
$$

The function is continuous and smooth.

Find the value of a and the value of b.
\square $, a=1, b=3$

Question 104 (****)
The function $f(x)$ is defined by

$$
f(x) \equiv 3-2 x^{2}, x \in \mathbb{R}, x \leq 0 .
$$

a) State the range of $f(x)$.
b) Show that $f f(x)=-8 x^{4}+24 x^{2}-15$ and hence solve the equation $f f(x)=-47$.
c) Find an expression for the inverse function, $f^{-1}(x)$.
d) Solve the equation

Created by T. Madas

Question 105 (****)

The figure above shows the graph of the function

$$
f(x)=a+\cos b x, 0 \leq x \leq 2 \pi,
$$

where a and b are non zero constants.

The stationary points $(0,4)$ and $(2 \pi, 2)$ are the endpoints of the graph.
a) State the range of $f(x)$ and hence find the value of a and the value of b.
b) Find an expression for $f^{-1}(x)$, the inverse function of $f(x)$.
c) State the domain and range of $f^{-1}(x)$.
d) Find the gradient at the point on $f(x)$ with coordinates $\left(\frac{4 \pi}{3}, \frac{5}{2}\right)$.
e) State the gradient at the point on $f^{-1}(x)$ with coordinates $\left(\frac{5}{2}, \frac{4 \pi}{3}\right)$.
\square $, 2 \leq f(x) \leq 4, a=3, b=\frac{1}{2}, f^{-1}(x)=2 \arccos (x-3), \quad 2 \leq x \leq 4$,

$$
0 \leq f^{-1}(x) \leq 2 \pi,-\frac{\sqrt{3}}{4},-\frac{4}{\sqrt{3}}
$$

Created by T. Madas

Question 106 (****)
The function f is defined in a suitable domain of real numbers and satisfies

$$
f(x)=\ln \left(\frac{\mathrm{e}-x}{\mathrm{e}+x}\right)
$$

a) Show that f is odd.
b) Determine the largest possible domain of f.
c) Solve the equation

$$
f(x)+f(x+1)=0
$$

\square $, x \in \mathbb{R}, \quad-\mathrm{e}<x<\mathrm{e}, \quad x=-\frac{1}{2}$

Tintuy Sowna The gruation
$\Rightarrow f(x)+f(x+1)=0$
$\Rightarrow \ln \left(\frac{e-x}{e+x}\right)+\ln \left[\frac{e-(x+1)}{e+(x+1)}\right]=0$
$\Rightarrow \ln \left(\frac{e-x}{e+x}\right)+\ln \left(\frac{e-x-1}{e+x+1}\right)=0$
$\Longrightarrow \ln \left[\frac{e-x}{e+2} \times \frac{e-x-1}{e+x+1}\right]=0$
$\Rightarrow \frac{(e-x)(e-x-1)}{(e+x)(e+x+1)}-1$
$\Rightarrow(e+x)(e+x+1)$
$\Rightarrow(e-x)[(e-x)-1]=(e+x)[(e+x)+1]$
$\Rightarrow(e-x)^{2}-(e-x)=(e+x)^{2}+(e+x)$
$\Rightarrow x^{2}-2 e x+2 x^{\prime \prime}-e+$ III $=x^{2}+2 e x+x^{2}+e+\not I I \prime$
$\Rightarrow-2 e=4 e x$
$\Rightarrow x=-\frac{1}{2}$

Question 107 (****)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=2 x+3, x \in \mathbb{R}, x \leq 4 \\
& g(x)=x^{2}-4, x \in \mathbb{R}, x \geq 1
\end{aligned}
$$

Find the domain and range of $g f(x)$.
\square $,-1 \leq x \leq 4,-3 \leq g f(x) \leq 117$

Created by T. Madas

Created by T. Madas

Question 108 (****)
The function f satisfies

$$
f(x)=x^{2}-4 x+1, x \in \mathbb{R}, x>4
$$

a) Find an expression for $f^{-1}(x)$.
b) Determine the domain and range of $f^{-1}(x)$.

$$
f(x)=f^{-1}(x)
$$

c) Solve the equation

$$
\begin{array}{r}
\square \\
f^{-1}(x)=2+\sqrt{x+3} \\
x \in \mathbb{R}, x>1, \\
f^{-1}(x) \in \mathbb{R}, f^{-1}(x)>4 \\
x=\frac{5+\sqrt{21}}{2} \\
\hline
\end{array}
$$

Question 109 (****)
The functions $f(x)$ and $g(x)$ are given by

$$
f(x)=3 x-k, x \in \mathbb{R}, x \geq 1, k \in \mathbb{R}
$$

$$
g(x)=2 x^{2}+4, x \in \mathbb{R}, x \geq 0
$$

a) State the range of $f(x)$.
b) Find an expression for $g f(x)$ in terms of k.
c) Find the range of values of k which allows $g f(x)$ to be formed.
d) Find the value of k, given that $g f(3)=102$.

$$
f(x) \in \mathbb{R}, f(x) \geq 3-k, f(x) \in \mathbb{R}, 2(3 x-k)^{2}+4, k \leq 3, k=2, k \neq 16
$$

Question 110 (****)
The function $f(x)$ has domain $x \in \mathbb{R},-1 \leq x \leq 5$.

It is further given that $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$

Find a possible equation of $f(x)$, which does not contain exponentials.
\square , $f(x)=\frac{1}{x+2}$
0

Finda \square

Question 111 (****+)
The function f is defined by

$$
f(x)=\left\{\begin{aligned}
-x^{2}+8 x-5, & x \in \mathbb{R}, \\
x^{2}-2 x+8, & x \in \mathbb{R},
\end{aligned}\right.
$$

a) Show that $f \ldots$
i. ... is not continuous.
ii. ... is an increasing function.

Let the set A be defined

$$
A=\{x \in \mathbb{R}: 1 \leq x \leq 3\}
$$

b) Determine the range of $f(A)$.
c) Find an expression for $f^{-1}(x)$, indicating clearly its domain.

$$
\text { , } f(A) \in[2,7] \cup(8,11], f^{-1}(x)= \begin{cases}4-\sqrt{11-x} & x \leq 7 \\ 1+\sqrt{1+x} & x>8\end{cases}
$$

Question 112 (****+)
The function $f(x)$ is defined

$$
f(x)=x^{2}(x+2), x \in \mathbb{R}, x>0 .
$$

a) Show that $f(x)$ is invertible.
b) Solve the equation

$$
x, x=-1+\sqrt{2}
$$

$$
f(x)=f^{-1}(x)
$$

Question 113 (****+)
The function f is defined as

$$
f: x \mapsto 6-\ln (x+3), x \in \mathbb{R}, x \geq-2
$$

Consider the following sequence of transformations T_{1}, T_{2} and T_{3}.

$$
\ln x \xrightarrow{T_{1}} \ln (x+3) \xrightarrow{T_{2}}-\ln (x+3) \xrightarrow{T_{3}}-\ln (x+3)+6 .
$$

a) Describe geometrically T_{1}, T_{2} and T_{3}, and hence sketch the graph of $f(x)$. Indicate clearly any intersections with the axes and the graph's starting point.
b) Find, in its simplest form, an expression for $f^{-1}(x)$, stating further the domain and range of $f^{-1}(x)$.

The function g satisfies

$$
g: x \rightarrow \mathrm{e}^{x^{2}}-3, \quad x \in \mathbb{R}
$$

c) Find, in its simplest form, an expression for the composition $f g(x)$.
\square , $T_{1}=$ translation, "left", 3 units,$T_{2}=$ reflection about x-axis
$T_{3}=$ translation, "up", 6 units, $(0,6-\ln 3),\left(-3+\mathrm{e}^{6}, 0\right),(-2,6)$, $f^{-1}: x \mapsto-3+\mathrm{e}^{6-x}, \quad x \leq 6, \quad f^{-1}(x) \geq-2, \quad f g: x \mapsto 6-x^{2}$

c) finmer Tit Guresman 2
$f(g(x))=f\left(e^{x^{2}}-3\right)$
$\begin{aligned} & =6-\ln \left[\left(x^{2} x\right)+3\right] \\ & =6-\ln \left(e^{x^{2}}\right)\end{aligned}$
$=6-\ln \left(e^{2}\right.$
$=6-x^{2}$

Created by T. Madas

Question 114 (****+)
The functions $f(x)$ and $g(x)$ are defined by

$$
\begin{aligned}
& f(x)=\frac{4}{x+3}, x \in \mathbb{R}, x>0 \\
& g(x)=9-2 x^{2}, \quad x \in \mathbb{R}, x \geq 2
\end{aligned}
$$

a) Find, in its simplest form, the function $f g(x)$.
b) Find the domain of $f g(x)$.
c) Find in exact form where appropriate the solutions of the equation

$$
|f g(x)|=1
$$

d) Solve the equation

$$
f(x)=f^{-1}(x)
$$

$$
f g(x)=\frac{2}{6-x^{2}}, \quad 2 \leq x<\frac{3 \sqrt{2}}{2}, x=2, x \neq \pm 2 \sqrt{2}, x \neq-2, x=1, x \neq-4
$$

Question 115 ($* * * *+$)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=2 x+1, \quad x \in \mathbb{R}, \quad x \leq 5 \\
& g(x)=\sqrt{x-1}, \quad x \in \mathbb{R}, \quad x \geq 10
\end{aligned}
$$

a) Find an expression for the composite function $f g(x)$, further stating its domain and range.

The domain of $g(x)$ is next changed to $x>a$.
b) Given that now $g f(x)$ cannot be formed, determine the smallest possible value of the constant a.

$\square,$| $f g(x)=1+2 \sqrt{x-1}$ | |
| ---: | ---: |
| $a \in \mathbb{R}, 10 \leq x \leq 26$ | $\boxed{f g}(x) \in \mathbb{R}$, |
| $a=26$ | |

Question 116 (****+)
The function f satisfies

$$
f(x)=4-\frac{3}{x^{2}+2}, x \in \mathbb{R}, x \geq 1
$$

a) By considering the horizontal asymptote of $f(x)$ and showing further it is an increasing function, find its range.
b) Find $f^{-1}(x)$, in its simplest form.
c) Find the domain and range of $f^{-1}(x)$.

Question 117 (****+)
The function f is given by

$$
f(x)=1+\sqrt{x+1}, x \in \mathbb{R}, x \geq 0 .
$$

a) Find an expression for the inverse function $f^{-1}(x)$.
b) Determine the domain and range of $f^{-1}(x)$.
c) Solve the equation

$$
f(x)=f^{-1}(x)
$$

$$
f^{-1}(x)=x^{2}-2 x, x \in \mathbb{R}, x \geq 0, f^{-1}(x) \in \mathbb{R}, f^{-1}(x) \geq 0, x=3
$$

\square

Created by T. Madas

The above figure shows the graph of the function $f(x)$, consisting of two straight line segments starting at $A(-4,-4)$ and $B(6,8)$ meeting at the point $C(4,0)$.
a) State the range of $f(x)$.
b) Evaluate $f f(4)$.
c) Hence find $f f f$ (5).
[continued from overleaf]

The inverse of $f(x)$ is $f^{-1}(x)$.
d) Sketch the graph of $f^{-1}(x)$.
e) State the value of $f^{-1}(x)$.
f) Solve the equation $f(x)=f^{-1}(x)$.
$-4 \leq f(x) \leq 6, f f(4)=-2, \quad f f f(5)=-2, f^{-1}(0)=4, x=-4, \frac{16}{3}$
\square

Question 119 (*****) $\left.^{(}\right)$
The functions f and g are given by

$$
f(x)=5 \mathrm{e}^{-x}+1, x \in \mathbb{R}, x \geq 0
$$

$$
g(x)=2 x+1, x \in \mathbb{R}
$$

a) Find ...
i. ... an expression for $g f(x)$.
ii. ... the range of $g f(x)$.
iii. ... the domain of $f g(x)$.
b) Show that the only solution of the equation $f g(x)=5 \mathrm{e}^{2 x+1}-9$ can be written as

$$
x=\frac{1}{2}[-1+\ln (1+\sqrt{2})] .
$$

$$
g f(x)=10 \mathrm{e}^{-x}+3, \quad 3<g f(x) \leq 13, \quad x \geq-\frac{1}{2}
$$

\square

The figure above shows the graph of the function with equation

$$
f(x)=\mathrm{e}^{n x}+k \mathrm{e}^{-n x}, x \in \mathbb{R}, k>1, n>0 .
$$

Find the range of $f(x)$ in exact form.
\square $f(x) \geq 2 \sqrt{k}$

Created by T. Madas

Question 121 (****+)

The graph of $y=\sqrt{3} \cos x-\sin x$ for $0 \leq x \leq 2 \pi$ is shown in the figure above.
a) Express $\sqrt{3} \cos x-\sin x$ in the form $R \cos (x+\alpha), R>0,0<\alpha<\frac{\pi}{2}$.

The function f is defined as

$$
f(x)=\sqrt{3} \cos x-\sin x, x \in \mathbb{R}, 0 \leq x \leq 2 \pi
$$

b) State the range of $f(x)$.
c) Explain why $f(x)$ does not have an inverse.
[continued from overleaf]

The function $g(x)$ is defined as

$$
g(x)=\sqrt{3} \cos x-\sin x, x \in \mathbb{R}, 0<x_{1} \leq x \leq x_{2}<2 \pi .
$$

The ranges of $f(x)$ and $g(x)$ are the same and the inverse function $g^{-1}(x)$ exists.
d) Find ...
i. ...the value of x_{1} and the value of x_{2}.
ii. \ldots an expression for $g^{-1}(x)$. $g^{-1}(x)=-\frac{\pi}{6}+\arccos \left(\frac{1}{2}\right)$
$\sqrt{3} \cos x-\sin x$
$x_{1}=\frac{5 \pi}{6}$, $x_{2}=\frac{11 \pi}{6}$,
$\arccos \left(\frac{1}{2}\right)$
\square $\sqrt{3} \cos x-\sin x=2 \cos \left(x+\frac{\pi}{6}\right), 2 \leq f(x) \leq 2$, Coses \square

Created by T. Madas

Question 122 (****+)
The function f is defined as

$$
f(x)=\ln \left(\frac{1+x}{1-x}\right),|x|<1
$$

a) Show that $f(x)$ is an odd function.
b) Find an expression for $f^{\prime}(x)$ as a single simplified fraction, showing further that $f^{\prime}(x)$ is an even function.
c) Determine an expression for $f^{-1}(x)$.
d) Use the substitution $u=\mathrm{e}^{x}+1$ to find the exact value of

The figure below shows part of the graph of $f(x)$.
e) Find an exact value for the area of the shaded region, bounded by $f(x)$, the coordinate axes and the straight line with equation $x=\frac{1}{2}$.
\square $f^{\prime}(x)=\frac{2}{1-x^{2}}$,
$f^{\prime}(x)=\frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}$,
$\ln \left(\frac{4}{3}\right)$, area $=\frac{3}{2} \ln 3-2 \ln 2 \approx 0.262$

Created by T. Madas
\square
d) $\int_{0}^{\ln 3} f^{-1}(x) d x=\int_{0}^{\ln 3} \frac{e^{x}-1}{e^{x}+1} d x$

Question 123 (****+)
The piecewise continuous function f is defined by

$$
f(x) \equiv\left\{\begin{array}{lll}
\frac{5}{2}-x, & x \in \mathbb{R}, & -10<x<2 \\
\frac{2}{x^{2}}, & x \in \mathbb{R}, & 2 \leq x \leq 4
\end{array}\right.
$$

Determine an expression, similar to the one above, for the inverse of f.

You must also give the range of the inverse of f.
$f^{-1}(x) \equiv\left\{\begin{array}{ll}\sqrt{\frac{2}{x}}, & x \in \mathbb{R}, \\ \frac{1}{8} \leq x \leq \frac{1}{2} \\ \frac{5}{2}-x, & x \in \mathbb{R}, \\ \frac{1}{2}<x<\frac{25}{2}\end{array},-10<f^{-1}(x) \leq 4\right.$

Created by T. Madas

Question 124 (****+)

$$
f(x)=\ln (4 x-8), x \in \mathbb{R}, x>2 .
$$

a) Find an expression for the inverse function, $f^{-1}(x)$.
b) Find the domain and range of $f^{-1}(x)$.

The function g is defined as

$$
g(x)=|x|, x \in \mathbb{R}
$$

c) Sketch the graph of $f g(x)$, indicating clearly the equations of any asymptotes and the coordinates of the points where the graph meets the coordinate axes.
d) Hence solve the equation

$$
f g(x)=1
$$

$$
f^{-1}(x)=2+\frac{1}{4} \mathrm{e}^{x}, x \in \mathbb{R}, f^{-1}(x)>2,\left(\frac{9}{4}, 0\right),\left(-\frac{9}{4}, 0\right), x= \pm 2, x= \pm \frac{1}{2}(\mathrm{e}+8)
$$

1

Question 125 (****+)
Information about the functions f, g and h are given by

$$
\begin{aligned}
& f(x) \equiv 1-\frac{1}{x} \\
& g(x) \equiv f f(x) \\
& f h(x)=\frac{x-3}{x-4}
\end{aligned}
$$

All the above functions are defined for all real numbers except for values of x for which the functions are undefined.

Find simplified expressions for ...
a) $\ldots g(x)$.
b) $\ldots f g(x)$.
c) $\ldots f^{-1}(x)$.
d) $\ldots h(x)$.
$g(x)=\frac{1}{1-x}, f g(x)=x, f^{-1}(x)=\frac{1}{1-x}, h(x)=4-x$

Created by T. Madas

Question 126 (****+)
The functions f and g are defined by

$$
\begin{aligned}
& f(x) \equiv \sin x, x \in \mathbb{R},-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
& g(x) \equiv x-\frac{\pi}{2}, x \in \mathbb{R}, x \geq 0
\end{aligned}
$$

Determine, showing a clear method, the domain and range of the compositions
a) $f g(x)$.
b) $g f(x)$.

Question 127 (****+)
A function f is defined by

$$
f(x)=x^{2}-12 x+27, x \in \mathbb{R}, x<4
$$

a) Find an expression for $f^{-1}(x)$.
b) State the domain and range of $f^{-1}(x)$.

$$
f^{-1}(x)=6-\sqrt{x+9}, x \geq-5, f^{-1}(x)<4
$$

Question 128 (****+)
The functions f and g are defined by

$$
\begin{aligned}
& f(x) \equiv 3 x^{2}+6 x, x \in \mathbb{R} \\
& g(x) \equiv a x+b, x \in \mathbb{R}
\end{aligned}
$$

a) Given that $g(x)$ is a self inverse function show that $a=-1$.
b) Given that $g f(x)<10$ for all values of x, determine the range of values of b.

Created by T. Madas

Question 129 ($* * * *+$)
A function f is defined in a restricted real domain and has equation

$$
f(x) \equiv x^{2}-6 x+13
$$

It is further given that the equations $f(x)=8, f(x)=13$ and $f(x)=20$ have 2 distinct solutions, 1 solution and no solutions, respectively.

Determine the possible domain of f.
\square

$$
0<x<7 \quad \text { or } \quad-1<x<6
$$

$f(x)=\overbrace{x^{2}-6 x+13 \text {, DOMA in to Bt DETRUMNES }}^{3}$

- $f(x)=8,2$ soutions
- $f(x)=13,1$ soution
- $f(x)=20$, No soution

COMPlETE THE SPUAGE TO LOCATE THE MINIWUM
$f(x)=(x-3)^{2}-3^{2}+13$
$f(x)=(x-3)^{2}+4$

Question 130 (****+)

The graph of the function $f(x)$ consists of two straight line segments joining the point $(0,10)$ to $(4,0)$ and the point $(12,4)$ to $(4,0)$, as shown in the figure above.
a) Find the value of $f f(2)$.

The function g is defined as

$$
g(x) \equiv \frac{2 x+1}{x-1}, x \in \mathbb{R}, x \neq 1
$$

b) Determine the solutions of the equation $g f(x)=3$.
\square , $f f(2)=\frac{1}{2}, x=\frac{12}{5}, 12$

Created by T. Madas

Question 131 (****+)
The function f is defined as

$$
f(x)=3-\ln 4 x, x \in \mathbb{R}, x>0
$$

a) Determine, in exact form, the coordinates of the point where the graph of f crosses the x axis.

Consider the following sequence of transformations T_{1}, T_{2} and T_{3}.

$$
\ln x \xrightarrow{T_{1}} \ln 4 x \xrightarrow{T_{2}}-\ln 4 x \xrightarrow{T_{3}} 3-\ln 4 x
$$

b) Describe geometrically each of the transformations T_{1}, T_{2} and T_{3}, and hence sketch the graph of $f(x)$.
Indicate clearly any intersections with the coordinate axes.
The function g is defined by

$$
g(x)=\mathrm{e}^{5-x}, x \in \mathbb{R}
$$

c) Show that

$$
f g(x)=x-k-k \ln k,
$$

where k is a positive integer.
, $\left(\frac{1}{4} \mathrm{e}^{3}, 0\right), T_{1}=$ stretch in x, scale factor $\frac{1}{4}, T_{2}=$ reflection in the x-axis ,

$$
T_{3}=\text { translation, "up", } 4 \text { units, } k=2
$$

Created by T. Madas

Question 132 (****+)
The function f is defined as

$$
f(x)=\ln (4-2 x), x \in \mathbb{R}, x<2 .
$$

a) Find in exact form the coordinates of the points where the graph of $f(x)$ crosses the coordinate axes.

Consider the following sequence of transformations T_{1}, T_{2} and T_{3}.

$$
\ln x \xrightarrow{T_{1}} \ln (x+4) \xrightarrow{T_{2}} \ln (2 x+4) \xrightarrow{T_{3}} \ln (-2 x+4)
$$

b) Describe geometrically the transformations T_{1}, T_{2} and T_{3}, and hence sketch the graph of $f(x)$.

Indicate clearly any asymptotes and coordinates of intersections with the axes.
c) Find, an expression for $f^{-1}(x)$, the inverse function of $f(x)$.
d) State the domain and range of $f^{-1}(x)$.

$$
\square,\left(\frac{3}{2}, 0\right),(0, \ln 4), T_{1}=\text { translation, "left", } 4 \text { units } \text {, }
$$

$T_{2}=$ stretch in x, scale factor $\frac{1}{2}, T_{3}=$ reflection in the y-axis, asymptote $x=2$,

$$
f^{-1}(x)=2-\frac{1}{2} \mathrm{e}^{x}, x \in \mathbb{R}, f^{-1}(x)<2
$$

The function f is defined by

$$
f(x)=\sqrt{1-\frac{4}{x^{2}}}, x \in \mathbb{R}, x \geq 2
$$

a) Find an expression for $f^{-1}(x)$, in its simplest form.
b) Determine the domain and range of $f^{-1}(x)$.
$f^{-1}(x)=\frac{2}{\sqrt{1-x^{2}}}, x \in \mathbb{R}, 0 \leq x<1, f^{-1}(x) \in \mathbb{R}, f^{-1}(x) \geq 2$

Created by T. Madas

Question 134 (****+)
The function f is defined on a suitable domain, so that the functions g and h satisfy the following relationships.

$$
\begin{aligned}
& g(x)=\frac{1}{2} f(x)+\frac{1}{2} f(-x) \\
& h(x)=\frac{1}{2} f(x)-\frac{1}{2} f(-x)
\end{aligned}
$$

a) Show clearly that g is an even function and h is an odd function.

It is now given that

$$
f(x)=\frac{x+1}{x-1}, x \in \mathbb{R}, x \neq \pm 1
$$

b) Express $f(x)$ as the sum of an even and an odd function.

$$
f(x)=\frac{x^{2}+1}{x^{2}-1}+\frac{2 x}{x^{2}-1}
$$

Question 135 (****+)
The functions f and g are defined by

$$
\begin{aligned}
& f(x) \equiv 3 \sin x, x \in \mathbb{R},-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\
& g(x) \equiv 6-3 x^{2}, x \in \mathbb{R} .
\end{aligned}
$$

a) Find an expression for $f^{-1} g(x)$.
b) Determine the domain of $f^{-1} g(x)$.

Question $136 \quad(* * * *+)$
A function f is defined as

$$
y=3 x^{4}-8 x^{3}-6 x^{2}+24 x-8, x \in \mathbb{R},-2 \leq x \leq 3 .
$$

Sketch the graph of f, and hence state its range.

The sketch must include the coordinates of any stationary points and any intersections with the coordinate axes.
\square

$$
-27 \leq f(x) \leq 37
$$

Question 137 (****+)
The function f is defined as

$$
f(x) \equiv \frac{x+1}{2 x-1}, \quad x \in \mathbb{R}, \quad x \neq \frac{1}{2} .
$$

The function g is suitably defined so that

$$
f(g(x)) \equiv \frac{3 x+2}{3 x-5}, \quad x \in \mathbb{R}, \quad x \neq \frac{5}{3} .
$$

a) Determine an expression for $g(x)$.

The function h is suitably defined so that

$$
h(f(x)) \equiv \frac{2 x-7}{x-2}, \quad x \in \mathbb{R}, \quad x \neq 2
$$

b) Determine an expression for $h(x)$.

Created by T. Madas

Show clearly that ...
Question 138
(*****)

$$
f(x)=\ln \left[\left(x^{2}+1\right)^{\frac{1}{2}}+x\right], x \in \mathbb{R}
$$

a) $\ldots f^{\prime}(x)=\frac{1}{\sqrt{x^{2}+1}}$
b) $\ldots f(x)$ is an odd function.

Created by T. Madas

$$
f(x)=\frac{4 x^{2}-10 x+7}{x^{2}-3 x+2}, x \in \mathbb{R}, x \neq 1, x \neq 2
$$

Determine the range of $f(x)$.

Created by T. Madas

Question 140 (******)
The function f satisfies

$$
2 f(x)+3 f\left(\frac{2 x+3}{x-2}\right)=3 x+1, x \in \mathbb{R}
$$

Find the value of $f(9)$.

Created by T. Madas

[continued from overleaf]

The function g is defined by as
b) Find an expression for $g^{-1}(x)$.
c) State the domain and range of $g^{-1}(x)$.

$$
g^{-1}(x)=\frac{4 x-3-\sqrt{4 x^{2}-4 x+9}}{2 x}, x \in \mathbb{R}, \quad x \geq \frac{5}{3}, \quad g^{-1}(x) \in \mathbb{R}, \quad 0 \leq g^{-1}(x) \leq 1
$$

Question 142 (*****)
The function f is defined below.

$$
f(x) \equiv \ln \left[\sin x+\sqrt{2-\cos ^{2} x}\right], x \in \mathbb{R} .
$$

Prove that f is odd.

Created by T. Madas

Question 143 (******)
The function f is defined below.

$$
f(x) \equiv \frac{\mathrm{e}^{\sin x \cos x}+1}{\mathrm{e}^{\sin x \cos x}-1}, x \in \mathbb{R}
$$

Prove that f is odd.

Created by T. Madas

Question 144
(*****)

$$
f(x)=\frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}, x \in \mathbb{R}
$$

a) Show clearly that ...
i. $\ldots f(-x)=-f(x)$.
ii. $\ldots f^{\prime}(x)=\frac{2 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}$.
b) Explain how the results of part (a) show that $f^{-1}(x)$ exists.
c) Find an expression for $f^{-1}(x)$.

The function $g(x)$ is defined in a suitable domain, so that

$$
f g(x)=\frac{x^{2}+6 x+8}{x^{2}+6 x+10}
$$

d) Determine the equation of $g(x)$, in its simplest form.

$$
f^{-1}(x)=\ln \left(\frac{1+x}{1-x}\right), g(x)=2 \ln (x+3)
$$

Created by T. Madas

Question 145 (******)
The function f satisfies the following three relationships
i. $\quad f(3 n-2) \equiv f(3 n)-2, n \in \mathbb{N}$.
ii. $\quad f(3 n) \equiv f(n), n \in \mathbb{N}$.
iii. $\quad f(1)=25$.

Determine the value of $f(25)$.

Question 146 ($* * * * *$)
The function f is defined as

$$
f(x)=-4+\sqrt{m x+12}, x \in \mathbb{R}, x \geq-\frac{m}{12},
$$

where m is a positive constant.

It is given that the graph of $f(x)$ and the graph of $f^{-1}(x)$ touch each other.

Solve the equation

$$
f(x)=f^{-1}(x)
$$

Question 147 (******)
The functions f and g are defined by

$$
\begin{aligned}
& f(x) \equiv \cos x, x \in \mathbb{R}, 0 \leq x \leq \pi \\
& g(x) \equiv 1-x^{2}, x \in \mathbb{R}
\end{aligned}
$$

a) Solve the equation

$$
f g(x)=\frac{1}{2}
$$

b) Determine the values of x for which $f^{-1} g(x)$ is not defined.

$$
, x= \pm \sqrt{1-\frac{\pi}{6}}, x<-\sqrt{2} \text { or } x>\sqrt{2}
$$

\square $\begin{array}{ll}\text { Firstuy If } & f(x)=\cos x \\ \text { Tifing } & f^{-1}(x)=\end{array}$ [Wt Do not Rently Neti) to work orl $\left.f^{-1}(g(x))\right]$ 20, - Lom (to
$\begin{aligned}=\left(1-\frac{\pi}{6}\right) \pm 2 n \pi \operatorname{conts} A \text { Asurtan if } n=0, x^{2} & =1-\frac{\pi}{6} \\ x & = \pm \sqrt{1-\frac{T}{8}}\end{aligned}$
 $\therefore x= \pm \sqrt{1-\frac{\pi}{6}}$

Question 148 (*****)
The function f is defined

$$
f(x)=\sqrt{4-x}, x \in \mathbb{R}, x \leq 4 .
$$

It is further given that

$$
\begin{aligned}
& f g(x)=\sqrt{4+2 x}, x \in \mathbb{R}, x \geq-2, \\
& h f(x)=x-4, x \in \mathbb{R}, x \leq 4 .
\end{aligned}
$$

for some functions $g(x), x \in \mathbb{R}$ and $h(x), x \in \mathbb{R}$.

Find simplified expressions for ...
a) $\ldots g(x)$.
b) $\ldots h(x)$.

Question 149 (******)
The functions f and g are defined by

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cl}
x^{2}, & x \in \mathbb{R}, 0<x \leq 1 \\
2-x, & x \in \mathbb{R}, 1<x \leq 2
\end{array}\right. \\
& g(x)=\frac{1}{x}, \quad x \in \mathbb{R}, \quad x \neq 0 .
\end{aligned}
$$

a) Find expressions for the function compositions $f g(x)$ and $g f(x)$, giving full descriptions of their domains.
b) Sketch the graphs of the function compositions $f g(x)$ and $g f(x)$, and hence state the ranges of $f g(x)$ and $g f(x)$.

$$
f g(x)=\left\{\begin{array}{ll}
\frac{1}{x^{2}}, & x \in \mathbb{R}, \frac{1}{2} \leq x<1 \\
\frac{1}{x^{2}}, & x \in \mathbb{R}, \\
\operatorname{fr} & x \geq 1
\end{array}, \frac{g f(x)= \begin{cases}\frac{1}{x^{2}}, & x \in \mathbb{R}, \\
\frac{1}{2-x}, & x \in \mathbb{R}, \\
1<x<2\end{cases} }{\begin{array}{ll}
f g(x) \in \mathbb{R}, & 0 \leq f g(x) \leq 1 \\
g f(x) \in \mathbb{R}, & g f(x) \geq 1
\end{array}}\right.
$$

Created by T. Madas

$$
f(x)=x \ln \left[\left(x^{2}+1\right)^{\frac{1}{2}}+x\right]-\left(x^{2}+1\right)^{\frac{1}{2}}, x \in \mathbb{R}
$$

Show clearly that ...
a) $\ldots f^{\prime}(x)=\ln \left[\left(x^{2}+1\right)^{\frac{1}{2}}+x\right]$.
b) $\ldots f^{\prime}(x)$ is an odd function.

Question 151 ($* * * * *)$
The piecewise continuous function f is given below.

$$
f(x) \equiv\left\{\begin{array}{cc}
2 x-2 & x \leq 5 \\
x+3 & x>5
\end{array}\right.
$$

a) Determine an expression, in similar form to that of $f(x)$ above, for the inverse function, $f^{-1}(x)$.
b) Sketch a detailed graph for the composition $f f(x)$.
\square

$$
f^{-1}(x) \equiv\left\{\begin{array}{cc}
\frac{1}{2} x+1 & x \leq 8 \\
x-3 & x>8
\end{array}\right.
$$

Question 152 (*****)
The function f is defined as

$$
f(x) \equiv 4 x^{3}-12 x^{2}+8 x, \quad x \in \mathbb{R}, \quad 0 \leq x \leq 3 .
$$

Find the range of f, and hence sketch its graph, showing clearly the coordinates of any relevant points.

Question 153 (*****)

$$
f(x) \equiv \frac{x-k}{x^{2}-4 x-k}, \quad x \in \mathbb{R}
$$

$$
x^{2}-4 x-k \neq 0
$$

where k is a constant.

Given that the range of the function is all the real numbers determine the range of possible values of k.

Created by T. Madas

Question 154
(*****)

$$
f(x) \equiv \frac{1}{x^{100}+100^{100}} \sum_{r=1}^{100}(x+r)^{100}, x \in \mathbb{R}, x \geq 0
$$

Use a formal method to find the equations of any asymptotes of $f(x)$.
\square

$$
y=100
$$

\square

$f(x)=\frac{(x+1)^{100}+(x+2)^{100}+(x+3)^{100}+\cdots+(x+100)^{100}}{x^{100}+100^{100}}$
$f(x)=\frac{x^{100}\left(1+\frac{1}{x}\right)^{100}+x^{100}\left(1+\frac{2}{x}\right)^{100}+x^{100}\left(1+\frac{3}{x}\right)^{100}+\cdots+x^{100}\left(1+\frac{10 \infty}{x}\right)^{100}}{x^{100}\left[1+\frac{100^{100}}{x^{100}}\right]}$
$f(x)=\frac{\left(1+\frac{1}{x}\right)^{100}+\left(1+\frac{2}{x}\right)^{100}+\left(1+\frac{3}{x}\right)^{100}+\cdots+\left(1+\frac{100}{x}\right)^{100}}{1+100}$

- $x+\frac{x^{100}}{}$
 No vertcr Asupetotes
- It $x \rightarrow \infty \quad \frac{A}{x} \rightarrow 0$ be but A
$\Rightarrow f(x) \rightarrow \frac{1+1+1+\cdots+1}{1}=100$
\therefore Iprizantar Axuptut at $y=100$

Question 155 (*****)
The functions f and g are defined in the largest possible real domain and their equations are given in terms of a constant k by

$$
f(x)=\frac{\left(3 k^{2}+1\right) x-k+1}{x-k+3} \quad \text { and } \quad g(x)=\frac{7 x+4 k}{4 x+10}
$$

Given that f and g are identical, determine the possible value or values of k.

\square

Question 156 (*****)
The function f is defined by

$$
f(x)=2-\frac{1}{x}, x \in \mathbb{R}, x \neq 0
$$

a) Prove that

$$
f^{n}(x)=\frac{(n+1) x-n}{n x-(n-1)}, n \geq 1,
$$

where $f^{n}(x)$ denotes the $n^{\text {th }}$ composition of $f(x)$ by itself.
b) State an expression for the domain of $f^{n}(x)$.
\square

$$
x \in \mathbb{R}, x \neq \frac{n-1}{n}
$$

\square
\square
(a) $\cdot f^{\prime}(x)=\frac{(1+1) x-1}{1 x-(1-1)}=\frac{2 x-1}{x}=2-\frac{1}{x}=f(x)$

- $f^{2}(x)=f(f(x))=f\left(2-\frac{1}{x}\right)=2-\frac{1}{2-\frac{1}{x}}=2-\frac{x}{2 x-1}=\frac{4 x-2-x}{2 x-1}$ $=\frac{3 x-2}{2 x-1}$
\qquad Suppose The revur huos see $n-k \in \mathbb{N} J$
- $f^{k}(x)=\frac{(k+1) x-k}{k-(x-1)}$
- $f(x)=f\left[\frac{(k+1) x-k}{k-(k-1)}\right]=2-\frac{1}{\frac{(k+1) x-k}{k-(x-1)}}=2-\frac{k x-(k-1)}{(k+1) x-k}$
$=\frac{2 k+1) x-2 k-k x+(k-1)}{(k+1) x-k}=\frac{(k+2) x-k-1}{(k+1) x-k}=\frac{(k+1+1) x-(k+1)}{(5+1) x-(k+1-1)}$
 (b) Restection in Downts of $f(x)$ is nationes $n x-(n-1) \neq 0$
$x \neq \frac{n}{h-1}$

Question 157 (*****)
The real functions f and g have a common domain $0 \leq x \leq 4$, and defined as

$$
f(x) \equiv(x-1)(x-2)(x-3) \quad \text { and } \quad g(x) \equiv \int_{0}^{x} f(t) d t
$$

Use a detailed algebraic method to determine the range of g.

$$
\square,-\frac{9}{4} \leq g(x) \leq 0
$$

\square

- NEXT wok for smtionary puins $g^{\prime}(x)=f(x) \quad \therefore$ SATtion ary at $x=<_{3}^{1}$? $g(1)=\left[\frac{1}{4} t^{4}-2 t^{3}+\frac{11}{2} t^{2}-6 t\right]_{0}^{1}$ $=\left(\frac{1}{4}-2+\frac{11}{2}-6\right)-0=\frac{1-8+22-24}{4}=-\frac{1}{4}$
 $\begin{aligned} & =(4-16+22-12)-0 \\ g(3) & =\left[\frac{1}{4} t^{4}-2 t^{3}+\frac{11}{2} t^{2}-6 t\right]_{0}^{3}\end{aligned}$
- As gGi is cominuous rite vame of y Art suffacitr to if Detreminc the Pmoe $\therefore-\frac{9}{4} \leqslant g(x) \leqslant 0$
 $g^{\prime \prime}(x)=f^{\prime}(x)=(x-2)(x-3)+(x-1)(x-3)+(x-1)(x-2)$ $g^{\prime \prime}(1)=[-1)(-2)=2>0 \Rightarrow \underline{L}$ $g(2)=(x-1)=-1<0 \rightarrow$
$g^{\prime \prime}(3)=2 \times 1=1>0 \Longrightarrow$

Question 158 (*****)
The functions f and g are each defined in the largest possible real number domain and given by

$$
f(x)=\sqrt{x-\sqrt{x^{2}-x-2}} \quad \text { and } \quad g(x)=\sqrt{x-\sqrt{x+6}}
$$

By considering the domains of f and g, show that $f g(x)$ cannot be formed.
\square , proof

- ateacinas tite $2=-1 \quad \sqrt{-1-\sqrt{0}}$
- aheoring The $\alpha=2$ Nor turn Prssiblet
$\therefore \sqrt{x-\sqrt{x^{2}-x-2}} \geqslant 3$ CANNO $3+$ SATSFITD
$\therefore f(g(x))$ ondior es fremta

Created by T. Madas

Question 159 (*****)
The function f, defined for all real numbers, satisfies the following relationship

$$
f(x)+4 f(-x) \equiv 1+x^{2} \int_{-1}^{1} f(u) d u
$$

Determine as an exact fraction the value of

Question 160
(******)
The function $y=f(t)$ is defined by the integral

Created by T. Madas

Question 161 ($* * * * * *)$
The function $y=f(x), x \in \mathbb{R}$ satisfies

$$
f(x)+2 f(2-x)=x^{2}, \quad t \in \mathbb{R}, \quad t \geq 0
$$

Determine a simplified expression for $y=f(x)$.

Created by T. Madas

The figure above shows the graph of the function $f(x)$, consisting entirely of straight line sections. The coordinates of the joints of these straight line sections which make up the graph of $f(x)$ are also marked in the figure.

Given further that

$$
\int_{-2}^{2} k+f\left(x^{2}-4\right) d x=0
$$

determine as an exact fraction the value of the constant k.

Question 163
(*****)

$$
f(x) \equiv \frac{1}{k}\left(x^{2}-1\right)\left(x^{2}-9\right), x \in \mathbb{R}, k \in \mathbb{N} .
$$

Determine the solution interval $(n, k), n \in \mathbb{N}$, so that the equation

$$
|f(x)|=n
$$

has exactly n distinct real roots.
$\square,(n, k)=(8,1)=(6,2)=(4,4)=(5,2)=(6,2)=(7,2)$

Created by T. Madas

