THE SECTIONS SECTIONS RESERVED F.Y.C.B. MARSHARSON F.Y.C.B. MARAN

Question 1 (**)

The function f is given by

$$f: x \mapsto \frac{x}{x+3}, x \in \mathbb{R}, x \neq -3.$$

a) Find an expression for $f^{-1}(x)$.

The function g is defined as

2

$$g: x \mapsto \frac{2}{x}, x \in \mathbb{R}, x \neq 0.$$

20

b) Evaluate $fg\left(\frac{2}{3}\right)$.

madasm,

00

ŀ.G.B.

I.G.B.

n.	12
z≠0.	ۍ د
	21/2
$f^{-1}: x \mapsto \frac{3}{1-x}$	$\frac{x}{fg\left(\frac{2}{3}\right) = \frac{1}{2}}$, $fg\left(\frac{2}{3}\right) = \frac{1}{2}$

Iasm,

F.G.B.

2017

I.C.B.

(a) fa= x	(b) $f(\mathfrak{z}(\frac{2}{3})) = f(\frac{2}{3^{2}})$
$\Rightarrow y = \frac{x}{x+3}$	= - f(3)
$\Rightarrow y \propto + 3y = 2$	$=\frac{3}{3+3}$
=) 3y = 2 - yz	= 1/2
$\Rightarrow 3y = \alpha(1-y)$	1
$\Rightarrow x = 34$	
: fai = 32	

2

COM

madasm.

12.00

Manası,

Created by T. Madas

0

Question 2 (**)

The figure above shows the graph of the function f(x), defined for $-1 \le x \le 6$.

Sketch the graph of $f^{-1}(x)$, marking clearly the end points of the graph and any points where it crosses the coordinate axes.

, graph

Question 3 (**)

The function f is given by

 $f(x) = \ln(4x-2), x \in \mathbb{R}, x > \frac{1}{2}.$

- **a**) Find an expression for $f^{-1}(x)$, in its simplest form.
- **b**) State the range of $f^{-1}(x)$.

Y.G.B.

c) Solve the equation

ろ

I.C.B.

f(x)=1.

ŀ.G.p.

$f^{-1}(x) = \frac{1}{4}(e^{x}+2)$, $f^{-1}(x) > \frac{1}{2}$, $x = \frac{1}{4}(e+2)$

3

(a) $f_{G} = (n(42-2))$ = $y = (n(42-2))$	(b) + + + (d)
$\Rightarrow e^{\theta} = 4\alpha - 2$ $\Rightarrow e^{\theta} + 2 = 4\alpha$	2 1002 ** fa>12
$\Rightarrow a = \frac{1}{4} (e^{3} + 2)$ $\Rightarrow \vec{l}(a) = 1 (a^{2} - 1) (a^{2} - 1)$	$f(x)=1 \implies h(4x-2)=1$ $4x-2=e'$
7 11es) - \$(e+2)	$4a = e+2$ $1 = \frac{1}{4}(e+2)$

F.G.B.

F.G.B.

COM

1120/201

Question 4 (**)

The function f is given by

 $f(x) = 3 - \ln x, x \in \mathbb{R}, x > 0.$

f(x) = 4.

a) Find an expression for $f^{-1}(x)$.

b) State the range of $f^{-1}(x)$.

c) Solve the equation

 $f^{-1}(x) = e^{3-x}$, $f^{-1}(x) > 0$, $x = \frac{1}{e}$

(a) $y=3-\ln x$ $\Rightarrow \ln x=3-y$ $\Rightarrow x=e^{3-y}$ $\Rightarrow f_{(x)}^{-1}=e^{3-y}$	(b)	<u>D</u> 9	1 + 2>0 1(1)>0	:.fa>o
(c) $3 - \ln a = 4$ $-1 = \ln a$ $e^{1} = a$	a:te	1		

Question 5 (**+)

A function f is defined by

 $f(x) = x^2 + 1, x \in \mathbb{R}, x \ge 0.$

a) Find an expression for $f^{-1}(x)$.

b) State the domain and range of $f^{-1}(x)$.

 $f^{-1}(x) = \sqrt{x-1}$ $f^{-1}(x) \ge 0$ $x \ge 1$,

(a) $\frac{1}{1}(x) = x^{2} + 1$	(b) : +9 /2(4)
$\Rightarrow \underline{y} = \underline{x} + 1$ $\Rightarrow \underline{y} - 1 = \underline{x}^2$	(0) 2 2
⇒ x = ±x5-1	- t (t-)
	2 42/ 46/20
	∴Dawain 2≥1 Rauge f(2)≥0

Question 6 (**+)

The functions f and g are given by

$$f(x) = x^2, \ x \in \mathbb{R}.$$

$$g(x) = \frac{1}{x+2}, x \in \mathbb{R}, x \neq -2.$$

a) State the range of f(x).

b) Solve the equation

I.C.B.

i.C.B.

 $fg(x) = \frac{4}{9}.$

c) Find, in its simplest form, an expression for $g^{-1}(x)$.

 $f(x) \ge 0$, $x = -\frac{1}{2}, -\frac{7}{2}$, $g^{-1}(x) = \frac{1}{x} - 2 = \frac{1 - 2x}{x}$

(a) 54 fai=2	$\begin{array}{c c} \Rightarrow a_{+2,n} < \frac{N_{1}}{N_{2}} \\ \Rightarrow a_{2,n} < \frac{N_{1}}{N_{2}} \end{array}$
$(b) = \frac{4}{2}$	$ \begin{array}{c} \bigcirc y = \frac{1}{2+2} \\ \Rightarrow y = +2y = 1 \\ \Rightarrow y = 1 - 2y \end{array} $
$\Rightarrow \frac{1}{2+2} = \frac{\pi}{9}$ $\Rightarrow \frac{1}{2+2} = \pm \frac{2}{3}$ $\Rightarrow x+2 = \pm \frac{3}{2}$	$\Rightarrow 2 = \frac{1-2y}{3}$ $\Rightarrow 3(x) = \frac{1-2y}{2}$

F.G.B.

nn

madasn,

I.G.B.

Question 7 (**+)

The functions f and g satisfy

 $f(x) = \ln(4-2x), x \in \mathbb{R}, x < 2.$

 $g(x)=e^{3x}, x\in\mathbb{R}.$

a) Find an expression for $f^{-1}(x)$.

b) Solve the equation

3

I.C.B.

fg(x)=0.

F.G.B.

2017

 $\overline{x} = 2$ $\frac{1}{3}\ln\left(\frac{3}{2}\right)$

21/2.81

I.C.P.

20

4-2a) (b)	0= ((de))=0	
(A-2a) =	$f(e^{2}) = 0$	
-21 =	$\ln(4-2e^{3\lambda}) = 0$	
-e" =	$4 - 2e^{2t} = e^{0}$	
4-e ²) ⇒	$4 - 2e^{2i} = 1$	
(4-e ^t) ⇒	3 = 2e ^{2λ}	: x= 443
1 7	$2\lambda = \ln \frac{3}{2}$	
	(4-2a) $(4)(-2a)$ $(4)(-2a)$ $(4)(-e^2) (4)$	$ \begin{array}{c} (1-2x) \\ (4-2x) \\ -2x \\ -e^2 \end{array} \qquad \begin{array}{c} \Rightarrow \int (e^3) = 0 \\ (e^3) = 0 \\ -e^2 \\ -e^2 \\ -e^2 \end{array} \qquad \begin{array}{c} \Rightarrow \int (e^3) e^3 \\ -4-2e^3 \\ -e^2 \\ $

F.G.B.

2017

11202.81

6

nadası,

Question 8 (**+) The functions f and g satisfy

20

$$f(x) = 1 + \frac{1}{2} \ln(x+3), x \in \mathbb{R}, x > 3.$$

$$f(x) = e^{2(x-1)} - 3, x \in \mathbb{R}.$$

m, an expression for $fg(x)$.

I.F.G.B.

madasmaths.com

 $g(x) = e^{2(x-1)} - 3, x \in \mathbb{R}$.

- **a**) Find, in its **simplest** form, an expression for fg(x).
- **b**) Hence, or otherwise, write down an expression for $f^{-1}(x)$.

COM

I.V.G.B.

Ismaths.com

I.V.G.B

(x).
for
$$f^{-1}(x)$$
.
 $fg(x) = x$, $f^{-1}(x) = e^{2(x-1)} - 3$

madasmaths,

I.F.C.B.

The COM

nains.co

R

6

madasmal

madasm

COM

Question 9 (**+)

The diagram above shows the graph of the function f, defined as

 $f(x) \equiv \frac{1}{1-x} + 4, x \in \mathbb{R}, x \ge 2.$

a) Evaluate f(2), f(101), f(1001).

b) State the range of f(x).

The inverse function is denoted by $f^{-1}(x)$.

c) Determine an expression for $f^{-1}(x)$, as a simplified fraction.

 $f(2) = 3, f(101) = 3.99, f(1001) = 3.999, 3 \le f(x) < 4, f^{-1}(x) = \frac{x-5}{x-4}$

(a) $f(\theta) = \frac{1-x}{1-x} + \frac{1}{1-x}$	(c) y= 1/+++
f(z) = 3 f((b)) = 3.99	$\frac{-y}{y-4} = \frac{1}{1-x}$ $\frac{-y}{y-4} = \frac{1}{1-x}$
(b) $3 \le f(x) < 4$	$\Rightarrow x = 1 - \frac{1}{9 - 4}$ $\Rightarrow x = \frac{9 - 4}{9 - 4} = \frac{9 - 5}{9 - 4}$
7	$\therefore \sqrt[n]{(x)} = \frac{x-5}{2-4}$

i G.B.

Question 10 (**+)

The function f is given by

 $f(x) = 4 - \ln(2x - 1), x \in \mathbb{R}, x > \frac{1}{2}.$

a) Find an expression for $f^{-1}(x)$, in its simplest form.

b) Determine the exact value of ff(1).

c) Hence, or otherwise, solve the equation

f(x) = ff(1).

 $f^{-1}(x) = \frac{1}{2}(1 + e^{4-x}), \quad ff(1) = 4 - \ln 7, \quad x = 4$

(a) . y= 4- 14(22-1)	(b) f(f())= f(4-1/1)
$\Rightarrow h_{(2,-1)} = 4 - y$ $\Rightarrow 2a - 1 = e^{4 - y}$	= \$(4) = 4-147
$= 2x = 1 + e^{4-y}$ $= x = \frac{1}{2}(1 + e^{4-y})$	(c) A-lu(a-1) = A-147
$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{4}{2} \frac{4}{2} \frac{1}{2} \frac{1}$	$\ln(2n-1) = \ln 7$ 2n-1 = 7
/	J= t

Question 11 (**+) A function *f* is defined by

$$f(x) = \sqrt{x+4}, x \in \mathbb{R}, 0 \le x < 5.$$

a) Find an expression for $f^{-1}(x)$.

b) Determine the domain and the range of $f^{-1}(x)$.

Question 12 (**+)

Y.C.B.

i C.B.

The function f is defined

$$f: x \mapsto \frac{2x-3}{x-2}, x \in \mathbb{R}, x \neq 2$$

- a) Find an expression for $f^{-1}(x)$ in its simplest form.
- **b**) Hence, or otherwise, find in its simplest form ff(k+2).

- Cha
(A) FORDING THE COUPL METERICADEY
$\implies -(0) = \frac{2n-3}{2n-2}$
$\Rightarrow y = \frac{2x-3}{x-2}$
$\implies Q(x-2) = 2x-3$
⇒ y2-2y = 2x-3
$\Rightarrow \mathfrak{a}(\mathfrak{g},\mathfrak{c}) = \mathfrak{a}\mathfrak{g},\mathfrak{c}$ $\Rightarrow \mathfrak{a} = \frac{\mathfrak{a}\mathfrak{g},\mathfrak{c}}{\mathfrak{g},\mathfrak{c}}$ $\therefore (\mathfrak{a}) = \frac{\mathfrak{a}\mathfrak{g},\mathfrak{c}}{\mathfrak{g},\mathfrak{c}}$
b) the work with the fact of the second and the second and the definition of the def
$\rightarrow ((f_{a})) = \alpha$
$\longrightarrow + ((\mathfrak{g})) = \mathfrak{g}$
$\rightarrow -\left(\left\{f(k+3)\right\} = k+2$

20

Ĉ.ŀ.

 $x \mapsto \frac{2x-3}{x-2}$

2017

k+2

102.01

Question 13 (***)

The figure above shows the graph of

a) State the equation of the horizontal asymptote to the curve, marked as a dotted line in the figure.

 $y = \frac{1}{x} + 2, \ x \neq 0.$

The function f is defined

$$f(x) = \frac{1}{x} + 2, x \in \mathbb{R}, x > 1.$$

- **b**) State the range of f(x).
- c) Obtain an expression for $f^{-1}(x)$.
- **d**) State the domain and range of $f^{-1}(x)$.

Question 14 (***)

The functions f and g are given by

$$f(x) = \frac{2x+3}{2x-3}, x \in \mathbb{R}, x \neq \frac{3}{2}.$$

$$g(x) = x^2 + 2, \ x \in \mathbb{R}.$$

- a) State the range of g(x).
- **b**) Find an expression, as a simplified algebraic fraction, for fg(x).
- c) Determine an expression, as a simplified algebraic fraction, for $f^{-1}(x)$.

 $^{-1}(x) = f(x)$

d) Solve the equation

K.C.

$$[g(x) \ge 2], \quad fg(x) = \frac{2x^2 + 7}{2x^2 + 1}, \quad f^{-1}(x) = \frac{3x + 3}{2x - 2}, \quad x = -\frac{1}{2}, 3$$

(A) (A) (A)	(c) $y = \frac{2x+3}{2x-3}$
(ra)	$\Rightarrow 2y - 3y = 2t + 3$ $\Rightarrow 2y - 2x = 3y + 3$
9(4)≥2	$\Rightarrow x_{(2y-2)} = \frac{3y+3}{2y-2}$
(b) $f(g(s)) = f(s^{2}+2)$ = $2(s^{2}+2)+3$	$f'(x) = \frac{3a+3}{2x-2}$
20 ² +2)-3 = <u>30²+7</u>	(d) the ta + + + + + + + + + + + + + + + + + +
213+1	$=\frac{21+3}{21-3}=2$
	$\Rightarrow 2i+3=2i-3$ $\Rightarrow 0=23^2-2i-3$ $\Rightarrow 0=23^2-2i-3$ $(3d_{2}THH)$ $\Rightarrow 0=23^2-2i-3$ $(3d_{2}THH)$
	=> 3 = <3 (Reports)

i.G.B.

.C.B.

Question 15 (***)

 $f(x) = e^{2x} - 4, \ x \in \mathbb{R}.$

$$g(x) = \frac{1}{x - 11}, \ x \in \mathbb{R}, \ x \neq 11$$

a) Determine the range of f(x).

- **b**) Find an expression for the inverse function $f^{-1}(x)$.
- c) Solve the equation

I.C.B.

E.p.

gf(x)=1.

f(x) > -4, $f^{-1}(x) = \frac{1}{2}\ln(x+4)$, $x = 2\ln 2$

2

(9)	44	(c)	g(\$6))=1
_	(t.1)	⇒.	$\frac{1}{2}\left(e_{-q}^{2\lambda}\right) = 1$
	3=-4	9	$\frac{1}{e^{2\lambda}_{-4,-11}} = 1$
+(i)	>+	⇒	$\frac{l}{r^{2\lambda}} = l$
(b) y=	e ² 4	\Rightarrow	1 = -15
-7 Y+9	= e ¹²⁴	ヺ	16 = e29
-7,2=	h(y+4)		20x = 1/16
🦈 2 =	zh(944)	7	22 = 4 hz
i. f	(a)= ±lh(2+4)	7	2 = 2/12
	/		

F.C.B.

Mana.

2017

Madasn.

e)

I.G.B.

Question 16 (***)

I.C.B.

A function f is defined by

$$f(x) = \frac{1}{2}e^x + 1, \ x \in \mathbb{R}, x \le 0.$$

2017

a) Find an expression for $f^{-1}(x)$.

Ģ

COM

ŀG.p.

b) State the domain and range of $f^{-1}(x)$.

21/2.51

F.G.B.

2017

14

 $f^{-1}(x) = \ln(2x-2)$, $1 < x \le \frac{3}{2}$

F.C.B.

COM

 $f^{-1}(x) \le 0$

2

Madasma,

Madas,

Question 17 (***)

The function f is given by

 $f(x) = (x-3)^2 + 1, x \in \mathbb{R}, x \ge 4.$

- a) Sketch the graph of f(x) and hence write down its range.
- **b**) Solve the equation

I.G.B.

i C.B.

f(x) = 17.

c) Find an expression for $f^{-1}(x)$ in its simplest form.

 $f(x) \ge 2$ $^{-1}(x) = 3 + \sqrt{x-1}$, $x = 7, x \neq -1$

3

I.C.P.

COM

11.21/2.SI

Question 18 (***) The functions f and g are given by

$$f(x) = \sqrt{x}, x \in \mathbb{R}, x \ge 0.$$

 $g(x) = x - 2, \ x \in \mathbb{R}.$

a) Find an expression for the function composition fg(x).

The function h, whose graph is shown below, is defined by

$$h(x) = \sqrt{x-2}, x \in \mathbb{R}, 3 \le x \le 11$$

h(x)

b) State the range of h(x).

0

c) Determine an expression for the inverse function $h^{-1}(x)$.

d) State the domain and range of $h^{-1}(x)$.

 $1 \le x \le 3$ & $3 \le h^{-1}(x) \le 11$

 $h^{-1}(x) = x^2 + 2$

> *x*

 $1 \le h(x) \le 3$

Created by T. Madas

 $fg(x) = \sqrt{x-2}$

Question 19 (***) The functions *f* and *g* are defined by

ŀ.G.p.

$$f(x) = e^x, \ x \in \mathbb{R}, \ x \ge 0.$$

 $g(x) = x^2 + 1, x \in \mathbb{R}.$

a) Find an expression for gf(x), in its simplest form.

20

b) Determine the domain and range of gf(x).

 $x \ge 0$, $gf(x) \ge 2$

C.4.

 $gf(x) = e^{2x} + 1$

·GB

Ż

202.51

Question 20 (***) The functions *f* and *g* are defined by

 $f: x \mapsto x^2 - 2x - 3, \quad x \in \mathbb{R}, \ 0 \le x \le 5.$

 $g: x \mapsto ax^2 + 2$, $x \in \mathbb{R}$, *a* is a real constant.

a) Find the range of f.

I.C.B. Madasm

COM

I.C.p

b) Determine the value of a, if gf(1) = 6.

COM

1

a)	LOCATE THE MINUMUM OF THE QUADRATIC BY COMPLETING THE SQUARE
	$-(\alpha) = \alpha^2 - \alpha - 3$, $o \leq \alpha \leq 5$
	$+(u) = (2-i)^2 - i - 3$
	$f(s_1) = (x_{-1})^2 - 4$
	SKETCH THE FUNCTION of
	** Remos is : (1,+)
	$f(\alpha) \in \mathbb{R}$, $-4 \leq f(\alpha) \leq 12$
6)	Et(1)= 2-22-3, 05 253
	(d)= ai+2) a \in R
	3((C)) = C
	$g(1^2 - 2x(1-3)) = 6$
	§(-4) = 6
	$0(-4)^2 + 2 = 6$
	l6a + 2 = 6
	16a = 4
	a = 1

I.C.B.

mana.

2011

Created by T. Madas

nadasmath

Question 21 (***)

The function f is defined as

$$f: x \mapsto \frac{2}{x-3} - \frac{4}{x^2 - 4x + 3}, \ x \in \mathbb{R}, \ x > 1.$$

a) Show clearly that

$$f: x \mapsto \frac{2}{x-1}, x \in \mathbb{R}, x > 1.$$

b) Find an expression for f^{-1} , in its simplest form.

The function g is given by

$$g: x \mapsto 2x^2 + 4 , \ x \in \mathbb{R}$$

c) Solve the equation

Ģ

I.C.B.

ŀG.B.

$$fg(x) = \frac{4}{7}$$

$$f^{-1}(x) = \frac{x+2}{x} = 1 + \frac{2}{x}, \quad x = \pm \frac{1}{2}$$

(a) $\frac{2}{2-3} - \frac{4}{(2-3)(3-1)}$	$\begin{cases} \Rightarrow a = \frac{y+z}{y} \end{cases}$
$= \frac{2(n-1)-4}{(n-3)(n-1)}$	=====================================
$= \frac{2a-2-4}{(2-5)(2-1)} = \frac{2a-6}{(2-5)(2-1)}$	$\Rightarrow f(2i^2r_4) = \frac{4}{3}$
$=\frac{2(3+3)}{(2+3)(2-1)}=\frac{2}{2-1}$	> 244+ 7 = 2++3 = 4
AS LANGLES	≥ ≈ 8i ⁺ +12 = 14
(b) $y = \frac{2}{2\pi}$ $\Rightarrow 2y - y = 2$ $\Rightarrow 2y - y + 2$	$ \Rightarrow \forall 1^{-} = 2 \Rightarrow 1^{2} = \frac{1}{4} \Rightarrow 1 = \pm \frac{1}{2} $

i G.B.

Madası

COM

hs.com

madasm.

6

F.G.B.

Question 22 (***) The functions f and g are defined by

I.V.G.B.

Smarnscom i Kog

I.V.G.B

 $f: x \mapsto x^2 + 3$, $x \in \mathbb{R}$.

 $g: x \mapsto 2x + 2$, $x \in \mathbb{R}$.

Solve the equation

adasmaths.com

fg(x) = 2gf(x) + 15.1202STATASCOM

The Com

Mains.co

R

6

17202s1

aut2) = (22+2)2+3 = 422+82+4+3 = $(x_1) = g(x_1^2+3) = 2(x_1^2+3)+2 = 2x_1^2+8$ f(361)= 2g(fa)+1

I.C.B.

I.F.C.P.

L.C.B. Madasmarks.Com

I.C.B.

Created by T. Madas

COM

madasmans.com

I.C.B.

Question 23 (***)

The functions f and g are defined as

$$f(x) = \frac{x+6}{x+2}, \quad x \in \mathbb{R}, \ x \neq -2$$

 $g(x) = 7 - 2x^2, \quad x \in \mathbb{R}.$

State the range of
$$g(x)$$
.

- **b**) Find, as a simplified fraction, an expression for fg(x).
- c) Find, as a simplified fraction, an expression for $f^{-1}(x)$.
- **d**) Solve the equation

K.C.

$$f(x) = f(x).$$

$$g(x) \le 7$$
, $fg(x) = \frac{13 - 2x^2}{9 - 2x^2}$, $f^{-1}(x) = \frac{2x - 6}{1 - x}$, $x = -3, 2$

(a) 4(97)	(c) $y = \frac{24C}{2+2} \implies yz + z_3 = 2+6$ $\implies yz - z = 6-2q$
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	$(f) \begin{array}{c} \rightarrow & f_{1,2} \leq i \leq n \\ \rightarrow & f_{2,2} \leq i \leq n \\ f$

i C.B.

200

11.21/2.SI

F.G.B.

Question 24 (***)

The function f is defined as

$$f: x \mapsto \frac{x}{x-1}, \ x \in \mathbb{R}, x \neq 1$$

- **a**) Find in its simplest form the composition ff(x).
- **b**) Find an expression for $f^{-1}(x)$ in its simplest form.

$$ff(x) = x, \quad f: x \mapsto \frac{x}{x-1}, \quad x \in \mathbb{R}, \ x \neq 1$$

(a) $f(\overline{\psi}(a) = \frac{f(\frac{x}{x+1})}{\frac{x}{x+1}} = \frac{\frac{x}{x+1}}{\frac{x}{x+1}} = \dots$ such if $\psi_{0} \in \mathbb{A}$ bothow by (x-1) $= \frac{x}{x+(x-1)} = \frac{x}{x+x+1} = \frac{x}{1} = x$ (b) $f(\overline{\psi}(b)) = f(\overline{\psi}(b) = x$ for all x is $f(\overline{\psi}) = \frac{x}{x+1}$

Question 25 (***) The functions g and f are given by

 $g: x \mapsto 4-3x, \quad x \in \mathbb{R}$

 $f: x \mapsto x^2 + ax + b, \ x \in \mathbb{R},$

where a and b are non zero constants.

Given that fg(2) = -5 and gf(2) = -29, find the value *a* and the value of *b*.

a = 4, b = -1

f(9(a) = -5 $f(-2) = -5$ $4 - 2a + b = -5$ $-2a + b = -9$ $(2a - b = q)$	$\begin{array}{c} g(k(a)) = -2q \\ g(\frac{1}{2}+2a+b) = -2q \\ 4-3(\frac{1}{2}+2a+b) = -2q \\ 4-3(\frac{1}{2}+2a+b) = -2q \\ 4-3(\frac{1}{2}-4a-3b) = -2q \\ -(2a-2b) = -21 \\ 6a+3b = -21 \\ \hline 2a+b = -7 \\ \end{array}$	$ \begin{array}{cccc} & & & \\ $
-2a+b=-9 2a-b=q	$\begin{array}{c} 4 - 12 - 6a - 3b = -2q \\ -6a - 3b = -21 \\ 6a + 3b = 21 \\ \hline 2a + b = 7 \\ \hline \end{array}$	

Question 26 (***)

K.C.

The figure above shows the **part** of the curve with equation

$$y = f(x)$$
, for $0 \le x \le 2$.

Given that the curve is odd and periodic with period 4, sketch the curve for $-6 \le x \le 6$.

graph

11.20/2ST

C.5.

Question 27 (***)

The function f is defined by

 $f(x) = \ln(2x-1) + 4, x \in \mathbb{R}, x \ge 1.$

- **a**) Find $f^{-1}(x)$ in its simplest form.
- **b**) Determine the domain of $f^{-1}(x)$.

Question 28 (***)

The function f is given by

 $f: x \mapsto 1 + \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$

- **a**) Find the range of f.
- **b**) Show clearly that

 $\frac{2x+1}{x+1}$

 $f(x) \in \mathbb{R}, f(x) \neq 1$

11202.51

•)	1	(b) $-\frac{1}{2}\left(\frac{1}{2}(0)\right) = \frac{1}{2}\left(1+\frac{1}{2}\right) = 1 + \frac{1}{1+\frac{1}{2}}$
		MUCTIAY TOP/ROTTON OF DOUBLE-READED BY 2
	N	$z + \frac{x}{x+1} = \frac{(x+1)+x}{x+1} = \frac{y(+1)}{x+1}$
	$f_{(0)} \in \mathbb{R}^{-}_{1} = f_{(0)} \neq 1$	1
		Eerien

Question 29 (***)

The functions f and g are defined as

$$f(x) = 2x - 1, \quad x \in \mathbb{R}$$

 $x \in \mathbb{R}$.

 $g(x) = e^{\overline{2}}$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Find, as an exact surd, the value of $fg(\ln 2)$.
- c) Solve the equation

K.C.

$$f^{-1}(x) = \frac{9}{2f(x)}.$$

$$f^{-1}(x) = \frac{9}{2f(x)},$$

$$f^{-1}(x) = \frac{x+1}{2}, \quad fg(\ln 2) = 2\sqrt{2}-1, \quad x = -\frac{5}{2}, 2$$

 \hat{D}

(a) $f(x) = 2x - 1$ $\Rightarrow y = 2x - 1$	(c) $f_{(3)}^{-1} = \frac{a}{2 f_{(3)}}$
$\Rightarrow \underbrace{y+1}_{2} = 2i$ $\Rightarrow a = \underbrace{\frac{1}{2}}(y+i)$	$ \Rightarrow \frac{1}{2}(2H) = \frac{q}{2(2H)} $ $ \Rightarrow \frac{1}{2}(2H) \times \frac{1}{2(2H)} = q $
$(x) = \frac{1}{2}(x+1)$	=) 2x2+x-1=9
(a) f(g(1n21)= f(e ^{th2})	-> 222+2-10=0
$= f(e^{\ln 2^{\frac{1}{2}}}) = f(2^{\frac{1}{2}}) = f(12^{\frac{1}{2}})$	$o=(s-\kappa)(z+\kappa) \Leftrightarrow ($
= 212-1	=) 2= <2 -5 2

E.B.

29

m

madasm

F.G.B.

Question 30 (***)

The functions f, g and h are defined as

$$f(x) = x^2 - 1, \quad x \in \mathbb{R}$$

 $h(x) = fg(x), \quad x \in \mathbb{R}.$

 $g(x) = e^{\frac{3x}{2}}, x \in \mathbb{R}$

- a) State the range of g(x).
- **b**) Find, in its simplest form, an expression for h(x).
- c) Solve the equation h(x) = 15, giving the answer in terms of $\ln 2$.

d) Find an expression for $h^{-1}(x)$, the inverse of h(x).

g(x) > 0, $fg(x) = e^{3x} - 1$, $x = \frac{4}{3} \ln 2$, $h^{-1}(x) = \frac{1}{3} \ln(x+1)$

	100		
@)	5 1 / 2(2)	(c) $h(x) = 15$	(d) y= e ^{3x} -1
-		-> e=1=15	$y + 1 = e^{3\lambda}$
4.2	Jun Maria	=> 32 = 111/6 -> 32 = 11124	a= Zh(yn)
(P)	$= f(e_{2\sigma})$ $= f(e_{2\sigma})$	=> 32 = 4/m2_ => 2= \$/m2/	$i = \int_{1}^{-1} (x) = \frac{1}{2} p_1(x+1)$
	$= (e^{\frac{3}{2}\lambda})^2 $	3/	
	- 6-1		

121125

```
Question 31 (***)
```

K.C.

The functions f and g are defined by

$$f(x) \equiv \frac{2}{x}, x \in \mathbb{R}, x \neq 0$$

$$g(x) \equiv f(x-3)+3, x \in \mathbb{R}, x \neq k.$$

a) Find an expression for g(x), as a simplified fraction stating the value of the constant k.

b) Find an expression for $g^{-1}(x)$.

$ \begin{cases} g(x) = \frac{1}{2}(x-y) + 3 = \frac{2}{x-y} + 3 = \frac{2+3y-9}{x-y} = \\ \end{cases} $	$\frac{3n-7}{n-3}$ (9 k=2)
(b) $\frac{1}{2}(\alpha) = \frac{3\lambda^{-7}}{\lambda^{-3}}$ (c) is scale invited	Jan yer
· TRANSLATT	3 y y=2
HAVE THE REAUTING GRAPH WW ALSO BE A REFERRICY IN THE UNITY=22	- W
: 440 A Stir MUNIC	

nn

Created by T. Madas The COM Ins.co Question 32 (***) The functions f and g are defined by $f: x \mapsto 4 - x^2, x \in \mathbb{R}$ 1.G. $g: x \mapsto \frac{5x}{2x-1}, x \in \mathbb{R}, x \neq \frac{1}{2}.$ **a**) Evaluate $fg^{-1}(3)$. 2 asmaths.com **b**) Solve the equation $g^{-1}f(x)=\frac{7}{5}.$ $fg^{-1}(3) = -5$ ins.com $x = \pm \frac{1}{3}$ I. C.B. I.V.C.B. Madasm Madasmana Malasmans Com Smarns.com i K.C.B. Smaths.com COM I.F.C.B. I.V.G.B I.C.P.

6

Madası

Question 33 (***)

The function f is defined as

$$f: x \mapsto \frac{1}{x+2} + \frac{2x+11}{2x^2 + x - 6} \quad x \in \mathbb{R}, \ x > \frac{3}{2}.$$

a) Show clear that

$$f: x \mapsto \frac{4}{2x-3}, x \in \mathbb{R}, x > \frac{3}{2}.$$

b) Find an expression for f^{-1} , in its simplest form.

c) Find the domain of f^{-1} .

The function g is given by

$$g: x \mapsto \ln(x-1), x \in \mathbb{R}, x > 1.$$

d) Show that $x = 1 + \sqrt{e}$ is the solution of the equation

$$fg(x) = -2$$
.

],	$f^{-1}(x) = \frac{3x+4}{2x}$, x > 0

2012.Sn

$(\textbf{G}) \frac{1}{2} (\textbf{J}) = \frac{1}{2\pi^2} + \frac{2z_{\pm}}{2z_{\pm}^2 + 2z_{\pm}^2 - z_{\pm}} = \frac{1}{2\pi^2} + \frac{1}{2z_{\pm}^2} = \frac{1}{2\pi^2} = \frac{1}{2\pi^2} = \frac{1}{2\pi^2} + \frac{1}{2\pi^2} + \frac{1}{2\pi^2} = \frac{1}{2\pi^2} + \frac{1}{2\pi^2}$	$\frac{2\chi_{4,1}}{(2i+2)(2i-3)} = \frac{2i-3+2i_1+11}{(2i+2)(2i-3)}$ $= \frac{4}{2i-3} / 4i_1 + \chi_{4} + \chi_{4}$
(b) $y = \frac{4}{2\sqrt{3}}$ $\Rightarrow 2xy - 3y = 4$ $\Rightarrow 2xy - 3y = 4$ $\Rightarrow 2xy - 3y = 4$ $\Rightarrow x = \frac{3y + 4}{2x}$ $\therefore = \frac{3y + 4}{2x}$ $\therefore = \frac{3y + 4}{2x}$ (c) $\frac{3y + 4}{2x}$ $x = \frac{3y + 4}{2x}$ x = 3y + 4	$ \begin{array}{c} (4) f_{1}(q_{0}) _{2} - 2 \\ f_{1}(q_{0}) _{2} - 2 \\ -2 \\ \frac{4}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} - 2 \\ -2 \\ -2 \\ \frac{4}{2} \frac{1}{2} \frac{1}{2} - 2 \\ +2 \\ -2 \\ \frac{4}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ -2 \\ \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ -2 \\ \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ -2 \\ \frac{1}{2} \frac{1}{2$

Question 34 (***)

Smaths.com I.V.C.B

I.C.B

- $f(x) = 4 x^2, x \in \mathbb{R}, 2 \le x \le 4.$
- a) Determine the range of f(x).
- **b**) Find an expression for the inverse function $f^{-1}(x)$.

COM

2017

c) State the domain and range of $f^{-1}(x)$.

 $-12 \le f(x) \le 0$, $f^{-1}(x) = \sqrt{4-x}$, $-12 \le x \le 0$ $2 \le f^{-1}(x) \le 4$

madasmaths,

COM

·G.B

ths.com

the CO

110

Inadasma,

COM

Question 35 (***+)

A function is defined by

$$f(x) = \sqrt{e^x - 1}, \ x \ge 0.$$

- **a**) Find the values of ...
 - i. ... $f(\ln 5)$.
 - **ii.** ... $f'(\ln 5)$.

The inverse function of f(x) is g(x).

- **b**) Determine an expression for g(x).
- c) State the value of g'(2).
 - $f(\ln 5) = 2, \quad f'(\ln 5) = \frac{5}{4}, \quad g(x) = \ln(x^2 + 1), \quad g'(2) = \frac{4}{5}$

21/2.51

Question 36 (***+)

I.C.B.

ŀ.G.B.

A function f is defined by

$$f(x) = 2 + \frac{1}{x+1}, x \in \mathbb{R}, x \ge 0.$$

- **a**) Find an expression for $f^{-1}(x)$, as a simplified fraction.
- **b**) Find the domain and range of $f^{-1}(x)$.

I.C.P.

Mana.

15.COM

2

Question 37 (***+)

$$=\frac{2}{x-2}-\frac{6}{(x-2)(2x-1)}.$$

a) Show clearly that $y = \frac{4}{2x-1}$

The figure below shows the graph of $y = \frac{4}{2x-1}$, $x \neq a$.

0

b) State the equation of the vertical asymptote of the curve, shown dotted in the figure above.

2x - 1

 $\overline{>} x$

The function f is defined

$$f(x) = \frac{4}{2x-1}, x > 1$$

c) State the range of f(x).

[continues overleaf]

21/20

[continued from overleaf]

20

- $^{-1}(x)$. d) Obtain an expression for the inverse of the function, f
- State the domain and range of $f^{-1}(x)$. e)

Smains.co

1.G.

Mrs.com

Question 38 (***+)

F.G.B.

i C.P.

The function f is defined by

$$f(x) = \frac{6}{x+3}, x \in \mathbb{R}, x \ge 0.$$

 $f^{-1}(x) = \frac{6-3x}{x}$

ろ

a) Find the range of f(x).

b) Determine an expression for $f^{-1}(x)$ in its simplest form.

 $0 < f(x) \le 2 \ ,$

c) Find the domain and range of $f^{-1}(x)$.

F.C.P.

 $0 < x \le 2, f^{-1}(x) \ge 0$

F.G.B.

2017

2.00

200
Question 39 (***+)

1.0

The function f(x) is defined by

$$f(x) = \sqrt{x+1}, \ x \in \mathbb{R}, \ x \ge 0.$$

- **a**) Find the range of f(x).
- **b**) Find an expression for $f^{-1}(x)$ in its simplest form.
- c) State the domain and range of $f^{-1}(x)$.
- **d**) Sketch in the same diagram f(x) and $f^{-1}(x)$.

Ĉ.

F.G.B.

m

11.21/2.SI

Question 40 (***+)

I.C.B.

The function f is given by

$$f: x \mapsto \frac{3}{x+2}, x \in \mathbb{R}, x \ge -1$$

- a) By sketching the graph of f, or otherwise, state its range.
- **b**) Determine an expression for $f^{-1}(x)$, the inverse of f.
- c) Find the domain and range of $f^{-1}(x)$.

 $], f(x) \in \mathbb{R}, \ 0 < f(x) \le 3 \ , \ f^{-1}(x) = \frac{3}{x} - 2 = \frac{3 - 2x}{x} \ , \ 0 < x \le 3, \ f^{-1}(x) \ge -1 \ ,$

Y.C.P.

0

:0M

Question 41 (***+)

The function f is satisfies

 $f(x) = \sqrt{x} - 3, x \in \mathbb{R}, 0 \le x \le 9.$

a) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

- **b**) State the range of f(x).
- c) Find an expression for $f^{-1}(x)$.
- **d**) Sketch in the same set of axes as that of part (**a**) the graph of $f^{-1}(x)$.

The sketch must include the coordinates of the points where the graph of $f^{-1}(x)$ meets the coordinate axes, and how $f^{-1}(x)$ is related graphically to f(x).

Question 42 (***+)

The function f satisfies

$$f: x \mapsto \frac{3x+1}{x+4}, x \in \mathbb{R}, x > -4$$

- **a**) Find an expression for $f^{-1}(x)$ in its simplest form.
- **b**) Determine the domain and the range of $f^{-1}(x)$.

The function g is given by

 $g: x \mapsto e^x - 3, x \in \mathbb{R}$.

c) Solve the equation

 $fg(x) = \frac{4}{5}$,

giving exact answers in terms of ln 2.

1 4	/ h				
], $f^{-1}: x \mapsto \frac{1-4x}{x-3}$, $x \in \mathbb{R}$, z	$x < 3$, $f^{-1}(x) \in \mathbb{R}$,	$f^{-1}(x)$	<u>>-4</u> ,	x=21	<u>n 2</u>
$(a) = \frac{3x_{11}}{2x_{12}}, x$ $(b) = \frac{3x_{11}}{2x_{12}}, x$ $(c) = \frac{3x_{11}}{2x_{12}}, x$ $(c) = \frac{3x_{12}}{2x_{12}}, x$	$(R_1, 2) = (1)$	$\underbrace{\begin{array}{c} \underline{x}_{OH} = \underline{x}_{O} \underbrace{x}_{OH} \underbrace{x}_{$	$\frac{f(x)}{(x) - 4 (6w_1)},$ $\frac{f(x)}{(x) - 4 (6w$	$\frac{1}{100}$ $\frac{2 < 3}{100 > 4}$ $\frac{1}{100 > 4}$	
b) FRITH CATTON THE DANGE • VIENCE HOMMATCH: 2. • HARDANE HOMMATCH: 2. • HARDANE HOMMATCH: 2. • Jaco - 3.3= ‡ • Howe arrist Jaco - 4. • Howe arrist Jaco - 4. • Howe arrist	$\frac{cr}{4(\Delta)} \forall m \land q_{DACE} \text{ setect}_{H}$ $= -4 (2m_{DADCE} \text{ setec}_{H})$ $\frac{q_{-2}}{2} \left[\begin{array}{c} 1_{\Delta = m_{D}} \\ \Delta = m_{D} \end{array} \right]^{-1} \Rightarrow 3 \end{array}$ $\frac{p_{DADE}}{4(\Delta)} \text{ set}_{H} \left[\begin{array}{c} \alpha \\ \alpha \\ \beta \\ \alpha \end{array} \right]$	$\Rightarrow 16e - 40 = 0$ $\Rightarrow 11e^{2} = 44$ $\Rightarrow e^{2} = 4$ $\Rightarrow 1 = 1n4$ $\Rightarrow 2 = 2h2$	-,cano, st	£(56)	

Question 43 (***+)

The function f is defined as

$$f: x \mapsto \frac{2x-1}{x^2 - x - 2} - \frac{1}{x - 2}, x \in \mathbb{R}, x > 4$$

a) Show clearly that

$$f: x \mapsto \frac{1}{x+1}, x \in \mathbb{R}, x > 4.$$

- **b**) Find the range of f.
- c) Determine an expression for the inverse function, $f^{-1}(x)$.
- **d**) State the domain and range of $f^{-1}(x)$.

The function g is given by

$$g: x \mapsto 3x^2 - 2, \ x \in \mathbb{R}$$
.

e) Solve the equation

 $fg(x) = \frac{1}{11}.$

$[], \ 0 < f(x) < \frac{1}{5}, \ f^{-1}(x) = \frac{1-x}{x}, \ 0 < x < \frac{1}{5}, \ f^{-1}(x) > 4, \ x = \pm 2$

Question 44 (***+)

A function f is defined by

$$f(x) = 4 - \frac{1}{x-1}, x \in \mathbb{R}, x > 1.$$

a) Determine an expression for the inverse, $f^{-1}(x)$.

?017

b) Find the domain and range of $f^{-1}(x)$.

I.C.B.

I.C.B.

I.F.G.B

COM

 $f^{-1}(x) = 1 - \frac{1}{x-4} = \frac{x-5}{x-4}, \quad x < 4, \quad f^{-1}(x) > 1$

20

I.C.B.

M2(12)

Y.C.

COM

Question 46 (***+)

 $f(x) = 4(x+1)^2, x \in \mathbb{R}, x \le -2.$

- **a**) State the range of f(x).
- **b**) Find an expression for the inverse function $f^{-1}(x)$.
- c) State the domain and range of $f^{-1}(x)$.
- **d**) Evaluate $f^{-1}(49)$.
- e) Verify that the answer to part (d) is correct by carrying an appropriate calculation involving f(x).

 $f(x) \ge 4, \quad f^{-1}(x) = -1 - \frac{1}{2}\sqrt{x}, \quad x \ge 4, \quad f^{-1}(x) \le -2, \quad f^{-1}(49) = -\frac{9}{2}, \quad f\left(-\frac{9}{2}\right) = 49$

Question 47 (***+)

The function f is given by

$$f: x \mapsto 3 + \frac{2}{x-2}, x \in \mathbb{R}, x > 2$$

a) Sketch the graph of f.

b) Find an expression for $f^{-1}(x)$ as a single fraction, in its simplest form.

c) Find the domain and range of $f^{-1}(x)$.

d) Find the value of x that satisfy the equation $f(x) = f^{-1}(x)$

 $[f^{-1}(x) = \frac{2x - 4}{x - 3}, x \in \mathbb{R}, x > 3], f(x) \in \mathbb{R}, f^{-1}(x) > 2], x = 4, x \neq 1$

a) Zhorithusofiximet HEODAHT JUNISOU
$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$
thrace we that
b) APPLYING THE SAUAC METIOD
$y = 3 + \frac{2}{\lambda - 2}$ y(x-2) = 3(x-2) + 2
92-2y= 32-642
$\begin{array}{c} \underbrace{(\lambda_{1},\lambda_{2})}_{\lambda_{1}} = \underbrace{(\lambda_{1},\lambda_{2})}_{\lambda_{2}} = \underbrace{(\lambda_{2},\lambda_{2})}_{\lambda_{2}} = \underbrace{(\lambda_{2},\lambda_{2}$
$a = \frac{2a-4}{3-3}$
C) LEING 4 "TWO WAY TABLE"
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(1
trought

No.	1
f(x) = f(x) is equivalent to $f(x) = x$ or $f(x) = x$	_
$\rightarrow f(x) > x$	
$\xrightarrow{2x-4} = x$	
\implies $2\lambda - \psi = \lambda^2 - 3x$	
\implies $O = \chi^2 - S\chi + \downarrow$	0
$\implies (x-1)(x-4) = 0$	
$\Rightarrow x_{\pm} < x_{\pm}$	
THE DOMANNY OF fail or fail Das	
NOT flow IT	
	0

Question 48 (***+)

The functions f and g are defined below

$$f(x) = x^2 + 2, x \in \mathbb{R}, x > 0$$

 $g(x) = 3x - 1, x \in \mathbb{R}, x > 4.$

- **a)** Write down the range of f(x) and the range of g(x).
- **b**) Explain why gf(1) cannot be evaluated.
- c) Solve the equation

$$fg(x) = 8x^2 + 10.$$

$f(x) \in \mathbb{R}, f(x) > 2, g(x) \in \mathbb{R}, g(x) > 11 \quad x = 7, x \neq 1$

12112.8m

Question 49 (***+)

The functions f and g are defined below

$$f(x) = x^2 - 2, \ x \in \mathbb{R}$$

$$g(x) = 2x+3, x \in \mathbb{R}, x > 0.$$

- a) Write down the range of f(x).
- **b**) Find, in its simplest form, an expression for fg(x).
- c) Solve the equation

fg(x) = 14.

d) Show that there is no solution for the equation

fg(x) = gf(x).

 $f(x) \in \mathbb{R}, f(x) \ge -2$, $fg(x) = 4x^2 + 12x + 7$, $x = \frac{1}{2}, x \neq -\frac{7}{2}$

_		The second se
(0)	-2 × 2	$\begin{array}{c} = 4y_{5} + i57 + 4 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{2} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 - 5 \\ \hline \theta_{1} + i57 + 6 \\ \hline \theta_{1} + $
C)	$f(y_0))=u_0^{-1}$ $4x^2+b_{2x}-7=u_1^{-1}$ $4x^2+b_{2x}-7=0$ (2x+7)(2x-1)=0 $2=\sqrt{k}$	$\begin{split} & -\hat{x} = (z, \bar{z}^{2}) = (z, \bar{z}^{2}) = (z, \bar{z}^{2}) = (\bar{z}^{2}) \\ & (\bar{y}) = (\bar{y}) = (\bar{y}) \\ & (\bar{y}) = (\bar{y}) = (\bar{y}) \\ & (\bar{y}) = (\bar{y}) = (\bar{y}) \\ & (\bar{y}) = (\bar{y}) \\ & (\bar{y}) = (\bar{y}) \\ & (\bar{z}) = (\bar{z}) \\ & (\bar$
		-3-5° <0 100 fg (b)

202.51

Question 50 (***+)

I.G.B.

The functions f and g are defined as

 $f(x) = 4 + \ln x, x \in \mathbb{R}, x > 0.$

 $g(x) = e^{2}, x \in \mathbb{R}.$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) State the range of $f^{-1}(x)$.
- c) Show that $x = \sqrt{e}$ is a solution of the equation

fg(x) = 6.

 $^{-1}(x) > 0$ $^{-1}(x) = e^{x-4}$

200

F.G.B.

(ھ)	y= 4+lna	(g(x))=6
	y-4= hx e = x	$\Rightarrow f(ex^{2}) = 6$ $\Rightarrow 4 + \ln(ex^{2}) = 6$
	: f(a)= e^{x-4}	⇒ 4+ hne + hn22=6
6)	+ +'	\Rightarrow 4 + 1 +2ma = 6 \Rightarrow 2ma = 1
B	D 2>0 R faixo	$\Rightarrow \ln_2 = \frac{1}{2}$ $\Rightarrow x = e^{\frac{1}{2}}$
	: 201 >0 /	1 15 CAPOTICAD

I.C.p

COM

nadasm.

Question 51 (***+)

F.G.B.

The function f is given by

 $f(x) = 3e^{2x} - 4, x \in \mathbb{R}.$

- **a**) State the range of f(x).
- **b**) Find an expression for $f^{-1}(x)$.
- c) Find the value of the gradient on $f^{-1}(x)$ at the point where x = 0.

'G'A

(0)	34 3e ²²	د 	€ 	
(b) 	9= 3==-4 9+4 = 3== 9+4 = e	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\frac{4r}{2} = \frac{1}{2} \ln \left(\frac{3r+4}{3}\right)$ $\frac{4r}{3} = \frac{1}{2} \ln \left(\frac{4}{3}x + \frac{1}{3}\right)$ $\frac{dw}{dt} = \frac{1}{2} \times \frac{1}{2}$	
ヺ	$\mathcal{D}_{c} = \ln\left(\frac{y_{c}+y_{c}}{S}\right)$ $\mathcal{D}_{c} = \frac{1}{2}\ln\left(\frac{y_{c}+y_{c}}{S}\right)$		$\frac{du}{dt} = \frac{1}{t} \times \frac{1}{3t}$	\$ 13. a
Ţ	$f(x) = \frac{1}{2} \ln \left(\frac{34}{3} \frac{4}{3} \right)$	Ļ		

F.G.B.

Question 52 (***+)

The functions f and g are defined

$$f(x) = x^2 - 10x, x \in \mathbb{R}$$

 $g(x) = e^x + 5, x \in \mathbb{R}.$

- a) Find, showing all steps in the calculation, the value of $g(3\ln 2)$.
- **b**) Find, in its simplest form, an expression for fg(x).
- c) Show clearly that

$$g(2x) - fg(x) = k$$

stating the value of the constant k.

d) Solve the equation

$$gf(x) = 6$$

$$g(3\ln 2) = 13$$
, $fg(x) = e^{2x} - 25$, $k = 30$, $x = 0, x = 10$

Question 53 (***+)

 $f(x) = e^x, x \in \mathbb{R}, x > 0.$

 $g(x) = 2x^3 + 11, x \in \mathbb{R}.$

- **a**) Find and simplify an expression for the composite function gf(x).
- **b**) State the domain and range of gf(x).
- c) Solve the equation

gf(x) = 27.

The equation gf(x) = k, where k is a constant, has solutions.

d) State the range of the possible values of k.

 $gf(x) = 2e^{3x} + 11, \ x > 0, \ gf(x) > 13, \ x = \ln 2, \ k > 13$

6)	$g(f(u)) = g(e^x) = 2(e^x)^{\frac{3}{4}}$	$1 = 2e^{3t} + 11$
6	. f	8 6,0
	210 200 210 2>0 26R	Zever 2
	∴ Dourni : a>o Rhise : g(f(i))>	8
61	9(£6))= .27	(d) Rion GUARH Alsour
	20 = 1 = 27	$g(f_{C0}) = F$
	20 = 16	WWW HANT SOUTIONS, IF K> 13
	e~ = 8	
	33. E 100	
	SI = SML	
	u = 142	

Question 54 (***+) An even function f, of period 2 is defined by

$$(x) \equiv \begin{cases} 4x^2 & 0 \le x \le \frac{1}{2} \\ 1 & \frac{1}{2} \le x \le 1 \end{cases}$$

nadasmati

Sketch the graph of f(x) for $-3 \le x \le 3$.

Madasmaths.com

Smarns Com I. K. C. B.

n_{aq}

I.V.G.B.

adasmaths.com

ろう

.

Ths.com

Smains.co

il.

6

Madasmal

Created by T. Madas

I.V.G.B.

Question 55 (***+)

The figure above shows the graph of the curve C with equation

 $y = \frac{1}{x^2 - 1}$, $x \neq \pm 1$.

a) State the equations of the vertical asymptotes of the curve, marked with dotted lines in the diagram.

The function f is defined as

$$f(x) = \frac{1}{x^2 - 1}, x \in \mathbb{R}, x > 1$$

- **b**) Write down the range of f(x).
- c) Find an expression for $f^{-1}(x)$.

[continues overleaf]

[continued from overleaf]

The function g is defined as

2

asmaths.com

$$g(x) = \frac{4}{x+1}, x \in \mathbb{R}, x \neq -1.$$

d) Show no value of x satisfies the equation

I.C.B.

Smaths.com

I.V.C.B

$$gf(x) = -12.$$

Show no value of x satisfies the equation

$$gf(x) = -12.$$

$$x = \pm 1, \quad f(x) \in \mathbb{R}, \quad f(x) > 0, \quad f^{-1}(x) = \sqrt{1 + \frac{1}{x}} = \sqrt{\frac{x+1}{x}}, \quad x = \pm \frac{1}{2}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ -\frac{1}{x} & 0 & 0 \\ -\frac{1}{x$$

dasmaths.com

I.F.C.B.

nadasn

2017

Smains.co

e j

The Com

I.G.B.

Created by T. Madas

Com

Ths.com Created by T. Madas **Question 56** (***+) The functions f and g are defined by I.C.B. $f(x) = x - \frac{1}{x}, x \in \mathbb{R}, x \ge 1$ $g(x) = 3x^2 + 2, x \in \mathbb{R}, x \ge 0.$ ASMAINS COM I.V.C.P. Madasmains.Com a) By showing that f(x) is an increasing function, find its range. $f(x) \ge 0$ Smaths.com

20

I.F.G.B.

the Co

Y.G.

Madasm.

x = 3

Created by T. Madas

I.V.G.P.

Question 57 (***+) The functions f and g are given by

$$f(x) = 3x + \ln 2, \ x \in \mathbb{R}$$

$$g(x) = e^{2x}, x \in \mathbb{R}.$$

a) Show clearly that

Y.C.B.

I.C.B.

I.C.P.

 $gf(x) = 4e^{6x}.$

b) Show further that $x = \ln(2e)$ is the solution of the equation

 $\frac{d}{dx} \left[\frac{1}{2} gf(x-1) \right] = 768.$

(۵)	3(f(x))= g (3x+h2) =	$e^{2(3\chi+1_{M2})} = e^{G\chi+2M2} = e^{G\chi} e^{2M2}$
0.1	= e ^Q x e ^{by} =	4e ^{CA}
(b) =	$\frac{d}{dx} \left[\frac{1}{2} \frac{3}{3} \frac{4}{(x-1)} \right] = 768$	$\Rightarrow e^{-1} = 64$ $\Rightarrow e^{-1} = 164$
7	dr[2 dr[2e ⁶²⁻⁶]=768	$\Rightarrow \alpha = i + \frac{1}{6}h_{0}\ell_{1}$ $\Rightarrow \alpha = i + \frac{1}{6}h_{0}\ell_{1}$
-	2.9 2.9 × 6 = 766) = 2= 1+ h2
7	12e ⁶¹⁻⁶ = 768	$ \Rightarrow x = he + h2 \Rightarrow 2 = h(2e) $

I.C.B.

2

ŀ.C.p

COM

madasn.

proof

Question 58 (***+)

The piecewise continuous function f is **odd** with domain all real numbers.

It is defined by

Ke,

i C.B.

 $0 \le x \le 1$ $f(x) \equiv \langle$ x - 2

a) Sketch the graph of f for all values of x.

b) Solve the equation

 $f(x) = \frac{1}{2}.$

21/20

C.B.

Question 59 (***+) The functions f and g are given by

$$f(x) = x^2 + 2kx + 4, \ x \in \mathbb{R}$$

 $g(x) = 3 - kx, \ x \in \mathbb{R}.$

where k is a non zero constant.

Y.G.B.

- **a**) Find, in terms of k, the range of f.
- **b**) Given further that fg(2) = 4, determine the value of k.

20

 $f(x) \ge 4 - k^2, \quad k = \frac{3}{2}$

I.G.B.

2017

112/20

a)	COMPLETING THE SQUARE
	$f(x) = x^2 + 2kx + 4, x \in \mathbb{R}$
	(a) HAS A MINAWUM NATUR OF 4-K2 (-K 4-12)
	$f(a) \ge 4 - l^2$
b)	f(q(z)) = 4
	=9 f(3-k×2) = 4
	$\Rightarrow f(3-2k) = 4$
	$=3(3-2k)^2+2k(3-2k)+1k=1k$
	$= 9 - 12k + 4k^{2} + 6k - 4k^{2} = 0$
	=)] = NK
	- K =

I.C.B.

 \hat{D}

Question 60 (****)

The function f is defined by

$$f(x) = 2 + \sqrt{x}, x \in \mathbb{R}, x \ge 0$$

- a) Evaluate ff(49).
- **b**) Find an expression for the inverse function, $f^{-1}(x)$.
- c) Sketch in the same set of axes the graph of f(x) and the graph of $f^{-1}(x)$ clearly marking the line of reflection between the two graphs.
- **d**) Show that x = 4 is the only solution of the equation $f(x) = f^{-1}(x)$.

Question 61	(****)
Question of	(

K.C.

i C.B.

The functions f and g are defined by

 $f(x) = x^2, x \in \mathbb{R}, x \ge 1$

 $g(x) = x - 6, x \in \mathbb{R}, x \le 10.$

a) Find the domain and range of fg(x).

b) Show the following equation has no solutions

 $fg(x) = g^{-1}(x).$

	28	
a)	we sitter with the downly of f(g(s))	
	$ \begin{array}{c} IN \\ \xrightarrow{IN} g(x) \\ \xrightarrow{OUT} \\ \xrightarrow{IN} f(x) \\ \xrightarrow{OUT} \\ \xrightarrow{OUT} \end{array} $	
	THE DOUGN WAT SATURY $- \omega = 0 $	
	$\frac{(0.0.8.0.0)(0.00 + C.23.7.0.0)}{7 \leq Q} \leq 10$	
	TO FIND THE RANGE	
	sectorfule watter that souther for the sector	
1	a°_{\bullet} (\leq +($g(y)$) \leq 16	
6)	$= f(g(x)) = g'(x) \qquad \qquad$	
	$\Rightarrow (\lambda_{-6})^{2} = 0.16 \qquad \begin{cases} y_{16} = x \\ y_{01} = x_{16} \\ y_{01} $	

(x - 10)	a, 130 - 0
	(x-3) = 0
) x= <	- 3 - 10
KING AT T	THE DOMAN OF - f(g(2))
o looknic. 4-	(ga) 1/ 115 114464 [ga) 1/ 115 114464
D	gai gai
DOMMEN	1510 3-54
RANCE	86)≤4 3(2)≤10
s. Don	$n \rightarrow of \tilde{g}(x) \leq 4$
	a≠10
4	
4 4	NO Southand

E.

 $, \overline{1 \le x \le 10}, \overline{1 \le fg(x) \le 16}$

2012

The figure above shows the graph of the function

$$f(x) \equiv \sqrt{1 - (2x - 1)^2}, x \in \mathbb{R}, 0 \le x \le a$$

- a) Find the value of the constant *a*.
- **b**) State the range of f(x).

The function g is suitably defined by

$$g(x) = 2f\left(\frac{1}{2}x\right) - 2$$

- c) Sketch the graph of g(x).
- **d**) State the domain and range of g(x).

m

21/2.51

Question 63 (****)

KR

The function f is defined by

 $f(x) = 1 + \sqrt{x}, x \in \mathbb{R}, x \ge 0.$

- **a**) Evaluate ff(9).
- **b**) Find an expression for the inverse function, $f^{-1}(x)$.
- c) Sketch in the same diagram the graph of f(x) and the graph of $f^{-1}(x)$, clearly marking the line of reflection between the two graphs.

d) Show that $x = \frac{3 + \sqrt{5}}{2}$ is the only solution of the equation $f(x) = f^{-1}(x)$.

], <i>ff</i> (9	p)=3, f	$^{-1}(x) =$	$(x-1)^2$
(२) (७)	f(f(i)) = f(i) = 3 g = 1 + 4x	(°)	tà arx
(0)	$y-1 = \sqrt{x^2}$ $(y-1)^2 = x$ $(y-1)^2 = (x-1)^2$	(m) (m) (m)	

0

, F.G.B.

R

:0M

Question 64 (****)

K.C.

The functions f and g are defined by

$$f(x) = x^2 - 4, \ x \in \mathbb{R}, \ x > 8$$

 $g(x) = 2x - 2, x \in \mathbb{R}, x > 3.$

a) State the range of f(x) and the range of g(x).

b) Find a simplified expression for fg(x).

c) Determine the domain and range of fg(x).

$$f(x) > 60$$
, $g(x) > 4$, $fg(x) = 4x^2 - 8x$, $x > 5$, $fg(x) > 60$

.C.P.

2017

madasm.

(****) Question 65

20

The functions f and g are defined by

$$f(x) = 3\ln 2x, \ x \in \mathbb{R}, \ x > 0$$

The Com

2

 $g(x) = 2x^2 + 1, \ x \in \mathbb{R}$

Show that the value of the gradient on the curve y = gf(x) at the point where x = e is

Question 66 (****)

Kei

 $f(x) = 3x^2 - 18x + 21, x \in \mathbb{R}, x > 4.$

a) Express f(x) in the form $A(x+B)^2 + C$, where A, B and C are integers ans hence find the range of f(x).

b) Find a simplified expression for $f^{-1}(x)$, the inverse of f(x).

c) Determine the domain and range of $f^{-1}(x)$.

, A = 3, B = -3, C = -6, f(x) > -3, $f^{-1}(x) = 3 + \sqrt{2}$

F.G.B.

x+6

 $x > -3, f^{-1}(x) > 4$

Question 67 (****)

The piecewise continuous function f is **even** with domain $x \in \mathbb{R}$.

It is defined by

I.G.B.

. G.B.

$$f(x) = \begin{cases} x^2 - 2x & 0 \le x \le 3\\ 6 - x & x > 3 \end{cases}$$

a) Sketch the graph of f for all values of x.

b) Solve the equation

F.G.B.

Madasn.

F.C.B.

12

Question 68 (****)

 $f(x) = x^2 - 4x - 5, x \in \mathbb{R}, x \ge 2.$

- **a**) Find the range of f(x).
- **b**) State the domain and range of $f^{-1}(x)$.
- c) Sketch the graph of $f^{-1}(x)$, marking clearly the coordinates of any points where the graph meets the coordinate axes.

The function g is given

 $g(x) = |x-2|, x \in \mathbb{R}.$

d) Find, in exact form where appropriate, the solutions of the equation

gf(x) = 5.

Question 68 (****)

I.G.B.

The function f is given by

 $f(x) = \frac{1}{2}\sqrt{x-4}, x \in \mathbb{R}, x \ge 5.$

- a) Determine an expression for $f^{-1}(x)$, in its simplest form.
- **b**) Find the domain and range of $f^{-1}(x)$.

c) Sketch in the same diagram the graph of f(x) and the graph of $f^{-1}(x)$.

$f^{-1}(x) = 4(x^2 + 1), \quad x \in \mathbb{R}, \ x \ge \frac{1}{2}, \quad f^{-1}(x) \in \mathbb{R}, \ f^{-1}(x) \ge 5$

20

(a) $f(x) = \frac{1}{2} \sqrt{2-4^2}$	(b)	5		fa	0
y = 1/2-4 24 = N2-4		÷	4 5		→a
4y2 = 2-4 . 4y2+4 =2		D	4 235	Q ⁻¹ a≥ ±	
$(1, f_{Q}^{-1}) = 4(a^{2}+1)$		R (우(x)≥눈 └≥ 눈	\$60≥s	
 © × , €		RHNGE: ,	lia≥s/		
9-	a	hai			
(F2)			/		
	⇒a	/			

I.C.B.

COM

Question 70 (****)

The functions f and g are defined by

 $f(x) = \sqrt{x+4}, x \in \mathbb{R}, x \ge -3$

 $g(x) = 2x^2 - 3, x \in \mathbb{R}, x \le 47$.

- **a**) Find a simplified expression for gf(x).
- **b**) Determine the domain and range of gf(x).
- c) Solve the equation

K.C.

fg(x) = 17.

 $[gf(x) = 2x + 5], \quad [-3 \le x \le 5],$ $-1 \le gf(x) \le 15$ x = -12÷

nadasn.

Question 71 (****)

The function f(x) is given by

$$f(x) = 2x^2 + 3, x \in \mathbb{R}, x \le 0.$$

- **a**) Sketch the graph of f(x).
- **b**) Find $f^{-1}(x)$ in its simplest form.
- c) Find the domain and range of $f^{-1}(x)$.
- **d**) Solve the equation

S.

 $f^{-1}(x) = -3.$

m

nadasn.

G.B.

Question 72 (****)

The function f is defined by

$$f(x) = \begin{cases} 4-x, & x \in \mathbb{R}, \ x \le 2\\ 2(x-1)^2, \ x \in \mathbb{R}, \ x \ge 2 \end{cases}$$

- **a**) Sketch the graph of f(x).
- **b**) State the range of f(x).
- c) Solve the equation

I.G.B.

. G.B.

2

f(x) = 18.

F.G.B.

2

COM

nadasm.

F.G.B.

11202.st

Figure 1 and figure 2 above, show the graphs of two piecewise continuous functions f(x) and g(x), respectively.

Each graph consists of two straight line segments joining the points with the coordinates shown in each figure.

a) Sketch on the same set of axes the graphs of f(x) and its inverse $f^{-1}(x)$, stating the domain and range of $f^{-1}(x)$.

b) Evaluate ...

i. ... $fg\left(\frac{1}{2}\right)$.

ii. ... $fgf^{-1}(1)$.

$$fg(\frac{1}{2}) = 2$$
, $fgf^{-1}(1) = 3$

Question 74 (****)

 $f(x) = 2 - \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$

- **a**) Sketch the graph of f(x).
- **b**) State the range of f(x).
- c) Find as a simplified fraction, an expression for ff(x)
- d) Hence, show that

F.G.B.

L.C.B.

 $fff(x) = \frac{4x-3}{3x-2}$

 $f(x) \in \mathbb{R}, f(x) \neq 2$

 $\frac{2\chi-l}{3\chi-2}$

C.B.

mana.

ff(x) =

COM

madasn.

i G.B.

Question 75 (****)

The functions f and g satisfy

$$f(x) = 2e^{\frac{1}{2}x}, x \in \mathbb{R}$$

$$g(x) = \ln 4x \ x \in \mathbb{R}, \ x > \frac{1}{4}$$

- **a**) Find fg(x) in its simplest form.
- **b**) Find the domain and range of fg(x).
- c) Solve the equation

KR,

fg(x) = 3x + 1.

$ \begin{array}{l} \widehat{(\mathbf{s})} & \widehat{f}(\underline{b}(\mathbf{s})) = & \widehat{f}(\mathbf{s}, b_{\mathbf{x}}) = & 2\mathbf{e}^{\frac{1}{2}\mathbf{b}_{\mathbf{s}}(\mathbf{s}_{\mathbf{s}})} = & 2\mathbf{e}^{\frac{1}{2}\mathbf{b}_{\mathbf{s}}(\mathbf{s}_{\mathbf{s}})^{\frac{1}{2}}} = & 2\mathbf{b}_{\mathbf{s}}\overline{\mathbf{s}}\mathbf{b}^{\mathbf{s}} \\ & = & 4\mathbf{b}\overline{\mathbf{s}}^{\mathbf{s}} \end{array} $
(b) Bauton $2r_{4}^{\perp}$ $(r_{1}, r_{2}, r_{3}, r_{4}, r_{$
2 $(g(y)) \rightarrow 2$ $(g(y)) \rightarrow 2$ $(g(y)) \rightarrow 2$
(c) 41x = 3x+1 02 44x = 3x+1
$\Rightarrow (4\sqrt{2})^2 = (32+1)^2$ $\Rightarrow 0 = 32 - 44\sqrt{2} + 1$
$\Rightarrow 16\alpha = 4\alpha^{2} + 6\alpha + 1$ $\Rightarrow 0 = 3(10)^{2} - 1410^{2} + 1$
$\implies 0 = 9\chi^2 - 10\chi + 1$ $\implies 0 = (3\chi^2 - 1)(\chi^2 - 1)$
$\implies 0 = (t_{2} - t)(2 - t)$ $\implies N\overline{x}^{2} = \sum_{i=1}^{t}$
⇒ 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

Сŀ,

nadasn.

Question 76 (****)

The function f(x) is given by

$$f(x) = \frac{4}{x-2}, x \in \mathbb{R}, x \neq 2$$

- **a**) Find an expression for $f^{-1}(x)$, in its simplest form.
- **b**) State the domain of $f^{-1}(x)$.

The function g is defined as

$$g(x) = x^2 - 8x + 10, x \in \mathbb{R}, x \ge k$$

c) Given that $g^{-1}(x)$ exists, find the least value of k.

$f^{-1}(x) = \frac{2x+4}{x}$,	$x \in \mathbb{R}, x \neq 0 ,$	k=4

(a)	$y = \frac{4}{3 \times 2}$ $y_{3} = 4$ $y_{2} = 4 + 2y$ $y_{2} = 4 + 2y$ $y_{3} = \frac{4 + 2y}{3}$ $y_{4} = \frac{1}{3}$ $y_{4} = \frac{1}{3}$	(b) At JOURNY is fail in withereased, (242 minute antenased), The while added is the is the instatic which capes is the internet instatic which capes is the course mean entry.
(2)	$ \begin{array}{l} \widehat{q}(y) = x_{5}^{2} - px + 10 \\ = (x - \eta)_{5}^{2} - \zeta \end{array} $	Ę

inn,

nadasn.

Question 77 (****)

I.C.B.

I.F.G.B.

The functions f and g are given below

$$f(x) = \frac{1}{2 - 2x}, x \in \mathbb{R}, x \neq 0, x \neq \frac{1}{2}, x \neq 1$$

g(x) = ff(x).

a) Find a simplified expression for g(x).

b) Hence show clearly that

$$ffff(x) = x.$$

c) Find an expression for the inverse function $g^{-1}(x)$.

$$g(x) = \frac{1-x}{1-2x}$$
, $g^{-1}(x) = \frac{1-x}{1-2x}$

ŀG.B.

2017

nadasm

Z

I.C.B.

1201

ろ

Question 78 (****)

 $f(x) = x^2 - 6x, x \in \mathbb{R}, x \le 3.$

- **a**) Find the range of f(x).
- **b**) Solve the equation

madasn

I.C.B.

131/15.COM

I.C.p

f(x) = 16

 $f(x) \ge -9, \quad x = -2,$

c) Find an expression for the inverse function fasmaths, $^{-1}(x)$.

:0₁

lasm,

I.G.p.

nn

 $f^{-1}(x) = 3 - \sqrt{x+9}$

ŀ.C.B.

ths.com

ths.co

2013STD 21

1121/251

Created by T. Madas

Madasmaths,

(****) Question 79

The following functions are defined as follows

$$f(x) = 3 - x^2, \ x \in \mathbb{R}$$

$$g(x) = \frac{2}{x+1}, x \in \mathbb{R}, x \neq -1.$$

- **a**) Find the range of f(x).
- **b**) Find $g^{-1}(x)$ in its simplest form, further stating its range.
- c) Determine the composite function gf(x).
- **d**) Find the domain of gf(x).
- e) Solve the equation

$$gf(x) = \frac{8}{15}$$

$$g_{f}(x) = \frac{1}{15}.$$

$$f(x) \le 3, \quad g^{-1}(x) = \frac{2}{x} - 1 = \frac{2 - x}{x}, \quad g^{-1}(x) \ne -1, \quad g_{f}(x) = \frac{2}{4 - x^{2}}, \quad x \in \mathbb{R}, x \ne \pm 2,$$

$$x = \pm \frac{1}{2}$$

 $x = \pm$

21120

Question 80 (****)

The function f is given by

$$f: x \mapsto \frac{3-x}{1+x}, x \in \mathbb{R}, x \le -2$$

a) Show that for some constants *a* and *b*

$$\frac{3-x}{1+x} \equiv a + \frac{b}{1+x}.$$

b) Sketch the graph of f and hence state its range.

- c) Show that ff(x) = x, for all $x \le -2$.
- **d**) Without finding $f^{-1}(x)$ explain how part (c) can be used to deduce $f^{-1}(x)$.

 $-5 \leq f(x) < -$

a = -1, b = 4

Question 81 (****)

ŀ.G.p.

The function f(x) is defined by

 $f(x) = (x-2)^2 - 1, x \in \mathbb{R}, x \le 2.$

 $f^{-1}(x) = 2 - \sqrt{x+1}$

- **a**) Find the range of f(x).
- **b**) Find $f^{-1}(x)$ in its simplest form.
- c) Determine the domain and range of $f^{-1}(x)$.
- **d**) Sketch in the same diagram f(x) and $f^{-1}(x)$.

 $f(x) \ge -1$

 $x \ge -1, f^{-1}(x) \le 2$

Y.C.P.

F.G.B.

:0M

112/201

Question 82 (****) The functions *f* and *g* are defined by

 $f(x) = e^x, x \in \mathbb{R}$

 $g(x) = \ln(x^2 - 4), x \in \mathbb{R}, x > 2.$

 $x > \ln 2, gf(x) \in \mathbb{R}$,

a) Find the domain and range of gf(x).

- **b**) Find the domain of fg(x).
- c) Solve the equation

1.0

fg(x) = 5.

(a) $\int G_1 = e^{\lambda} + \infty \in \mathbb{R}$
g(x) = h(x-4) + x>2
$\vartheta(tol) = \vartheta(e_s) = \mu(e_s^- t)$
fa) > z
$e^2 > Z$ $\propto > \eta_2 $
: DOWING OF ALGO) PANOE: A(f(a)) & R
2> hrz This is equively to the
(Brachi of y= lift, t>0)
Az frani
asz (N) acr
(c) $f(\partial \theta) = 2$
$\Rightarrow e^{h(z_i - q)} = z$
⇒ x-4=5
\Rightarrow $x^2 = 9$ (3)2)
>

x > 2, x = 3

2012.51

Question 83 (****) The functions *f* and *g* are defined by

$$f(x) = e^x - 3, \ x \in \mathbb{R}$$

 $g(x) = x+1, x \in \mathbb{R}.$

- **a**) Find an expression for $f^{-1}(x)$, the inverse of f(x).
- **b**) State the domain and range of $f^{-1}(x)$.
- c) Solve the equation

gfg(x) = 2(e-1),

giving the final answer in terms of logarithms in its simplest form.

d) Find an exact solution of the equation

fgf(x) = e.

 $f^{-1}(x) = \ln(x+3), \quad x \in \mathbb{R}, \quad x > -3, \quad f^{-1}(x) \in \mathbb{R}, \quad x = \ln 2, \quad x = \ln \left[2 + \ln(3+e)\right]$

(a) $ \begin{array}{l} \bigcup_{i=1}^{n} e^{i\lambda_{i-1}} \\ & \bigcup_{i=1}^{n} e^{i\lambda_{i-1}} \\ & \lambda = b_{i}(y_{i+3}) \\ & \int_{i}^{n} \int_{i}^{n} e^{i\lambda_{i-1}} dx_{i-1} \\ & \int_{i}$	L days there n days there n days there n days there n days there n days there
(c) $g(f(\underline{a}_{1})) = 2(e_{-1})$ $g(f(\underline{a}_{1})) = 2(e_{-1})$ $g(f(\underline{a}_{1})) = 2(e_{-1})$ $g[e^{a_{1}} - 3_{-1}] = 2(e_{-1})$ $e^{a_{1}} - 2 = 2e_{-2}$ $e^{a_{1}} - 2 = 2e_{-2}$ $e^{a_{1}} = 2e_{-2}$	h(2a) $h_2 + h_2$ $h_2 + h_2$ $h_2 + h_2$
$\begin{array}{c} \textcircled{()} & f(g(f(i))) \in e \\ \Rightarrow & f(g(e^{-}_{-3})) \circ e \\ \Rightarrow & f((e^{-}_{-3})) \circ e \\ \Rightarrow & f((e^{-}_{-3})) \circ e \\ \Rightarrow & f(e^{-}_{-2}) \circ e \\ \Rightarrow & e^{e^{i}_{-}e^{-}_{-}} = e \\ \Rightarrow & e^{e^{i}_{-}e^{-}_{-}} = e + 3 \end{array}$	$ \begin{array}{c} \rightarrow e^{*}-2 = h(e_{13}) \\ \Rightarrow e^{*} = h(e_{13}) + 2 \\ \Rightarrow 2 = h(e_{13}) + 2 \end{array} $

Question 84 (****)

The functions f and g are defined by

$$f(x) = x^2 + 3x - 7, \ x \in \mathbb{R}$$

 $g(x) = ax + b, \ x \in \mathbb{R},$

where a and b are positive constants.

When the composition fg(x) is divided by (x+2) the remainder is 21, while (x-1) is a factor of the composition gf(x).

Determine the value of a and the value of b.

• $f(g_{(x)}) = f(a_{x+b})$ $= (a_{x+b})^{T} \mathfrak{z}(a_{x+b}) - 7$ $= a_{x+b}^{T} \mathfrak{z}a_{bx+b}^{T} \mathfrak{z}(a_{x+b}) - 7$ $= a_{x}^{T} \mathfrak{z}(a_{b}b + \mathfrak{z}a_{bx}) \mathfrak{z}(b_{b}b + \mathfrak{z}b_{b})$	• $\Im(\widehat{\mathcal{L}}(\alpha)) = \Im(\alpha^2 + \Im\alpha - 7\alpha + b)$ = $\alpha(\alpha^2 + \Im\alpha - 7\alpha + b)$ = $\alpha(\alpha^2 + \Im\alpha - 7\alpha + b)$
• $f(q(-z)) = 21$ $4a^{2} - 2(2ab + 3a) + b^{2} + 3b - 7 = 21$ $4a^{2} - 4ab - 6a + b^{2} + 3b - 28 = 0$	• g(f(1))=0 a+3a-7a+b=0 [b=3a]
$ \begin{array}{c} $	4 $6a + (3a)^2 + 3(3a) - 28 = 0$ $a + 9a^2 + 9a - 28 = 0$ 3 = 0 (7) = 0
a= 4	b= 12 / 12

a = 4, b = 12

Question 85 (****)

K.C.

C.B.

The function f is defined as

$$f(x) = \frac{1}{1 + \tan x}, \ 0 \le x < \frac{\pi}{2}.$$

- **a**) Use differentiation to show that f is a one to one function.
- **b**) Find a simplified expression for the inverse of f.
- c) Determine the range of f

(1-x) $f^{-1}(x) = \arctan$ $0 < f(x) \le 1$

@)	AD= 1 = (1+tang)	(b) y= 1+tan
	$f(x) = -(1 + \tan^{-2} x \operatorname{Steller})$	1+ Eura = 1
	$f(x) = -\frac{3k^2x}{(1+bux)^2}$	$\tan = \frac{1}{2} - 1$
	SINCE \$(G) <0 FOR THE	2 = arday(1-y)
	IS DECEASING, SO THE	$\therefore f(x) = \arctan\left(\frac{1-x}{x}\right)$
	HAUTION IS OUT TO ONT	(c) The DEXCE tama >0
		0 < 1 < 1
		: RANGE O < for <1

C.B.

nn,

Question 86 (****)

2

I.C.P.

Com

C.p.

The function f is defined by

$$f(x) = \begin{cases} x+1, & x \in \mathbb{R}, \ x \le 2\\ (x-2)^2 + 3, \ x \in \mathbb{R}, \ x > 2 \end{cases}$$

a) Sketch the graph of f(x).

b) Find an expression for $f^{-1}(x)$, fully specifying its domain.

K.C.

18.COM

2

Ż

I.C.p

121231

200

Question 87 (****)

KQ.

The function f(x) is defined by

 $f(x) = \ln(3x-2)+3, x \in \mathbb{R}, x \ge 1.$

- **a**) Find the range of f(x).
- **b**) Find $f^{-1}(x)$ in its simplest form.
- c) Find the domain and range of $f^{-1}(x)$.
- **d**) Sketch in the same diagram f(x) and $f^{-1}(x)$.

$f(x) \ge 3$, $f^{-1}(x) = \frac{1}{3}(2 + e^{x-3})$, $x \ge 3$, $f^{-1}(x) \ge 1$

C.J.

2017

manas

Question 88 (****)

The functions f(x) and g(x) are defined by

$$f(x) = \ln x, \ x \in \mathbb{R}, \ x > 0$$

 $g(x) = e^{3x}, x \in \mathbb{R}, x > 1.$

- a) Find, in its simplest form, the function compositions
 - **i.** fg(x).
 - ii. gf(x).
- **b**) Find the domain and range of fg(x).
- c) Find the domain and range of gf(x).
 - fg(x) = 3x, $gf(x) = x^3$, x > 1, fg(x) > 3, x > e, $gf(x) > e^3$

$ \begin{array}{l} (\mathfrak{g})(\mathfrak{g}) = (\mathfrak{g}_{(\mathfrak{g})}) = \mathfrak{g}_{(\mathfrak{g})} = \mathfrak{g}_$
(b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
\$ tout u of f(901) u as 1 1 1 1000
RANSE OF F(g(a)) 13 - f(g(a))>3 - ((1.5))
-there faisi
lina_>1
$a > e$ $y = g(ky) = a^3$
· Down of g((G)) is 2>e
Phulie of g(f(a)) is g(f(a))>e3

20/201

Question 89 (****)

The figure below shows the graph of the curve with equation $y = \frac{2x+3}{x-2}$.

a) Write down the equation of the horizontal asymptote to the curve.

The function f is defined as

$$f(x) = \frac{2x+3}{x-2}, x \in \mathbb{R}, x \ge 0, x \ne 2$$

b) Find the range of f(x).

c) Find $f^{-1}(x)$ in its simplest form.

d) State the range of $f^{-1}(x)$.

y=2, $f(x) \le -\frac{3}{2}$ or f(x) > 2, $f^{-1}(x) = \frac{2x+3}{x-2}$, $f^{-1}(x) \ge 0$, $f^{-1}(x) \ne 2$

(a) $y = \frac{2x+3}{x-2} = \frac{2(x-2)}{x-2}$	$\frac{+7}{2} = 2 + \frac{7}{2}$
42→00 g→	2 .: \$28206742 ASHMPHOTE & Y=2
(b) 3 A 4(0) 	$\operatorname{phase:} \ \ \ \ \ \ \ \ \ \ \ \ \ $
(c) y=2+ 7/2-2	(d) * *
$\Rightarrow \frac{y-2}{2} = \frac{7}{2-2}$ $\Rightarrow 2-2 = \frac{7}{3-2}$	$\frac{D}{R} = \frac{1}{2} $
$\Rightarrow \chi = 2 + \frac{7}{9-2}$ $\Rightarrow \chi = \frac{2q-q+7}{9-2}$.: f(a)≥0, f(a)+2_
$\Rightarrow \forall 0 = \frac{2\lambda+3}{\lambda-2}$	

Question 90 (****)

10

The function f(x) is defined by

$$f(x) = \frac{1}{\sqrt{x-2}}, x \in \mathbb{R}, x > 2$$

COM

- **a**) Find the range of f(x).
- **b**) Determine a simplified expression for $f^{-1}(x)$, further stating the domain and range of $f^{-1}(x)$.

 $\left|f\left(x\right)>0\right|,$

c) Show that the equation $f^{-1}(x) = -\frac{3}{x}$ has no real solutions.

 $f^{-1}(x) = \frac{1}{x^2} + 2$, $x > 0, f^{-1}(x) > 2$

Question 91 (****)

The functions f(x) and g(x) are defined by

 $f(x) = 2e^x, x \in \mathbb{R}$

 $g(x) = 3\ln x, \ x \in \mathbb{R}, \ x \ge 2.$

- **a**) Find, in its simplest form, the function composition fg(x).
- **b**) Find the domain and range of fg(x).
- c) Show that gf(-2) does not exist.

E.

 $fg(x) = 2x^3$

 $x \ge 2, fg(x) \ge 16$

E.B.

m

21120

Question 92 (****)

 $f(x) = 2\cos 2x, \quad x \in \mathbb{R}, \quad 0 \le x \le \frac{\pi}{2}$

 $g(x) = |x|, x \in \mathbb{R}.$

a) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the curve crosses the coordinate axes.

- **b**) State the range of f(x).
- c) Find an expression for $f^{-1}(x)$.
- **d**) Solve the equation

gf(x)=1.

 $\boxed{\left(\frac{\pi}{4},0\right),\left(0,2\right)}, \ \boxed{-2 \le f(x) \le 2}, \ \boxed{f^{-1}(x) = \frac{1}{2}\arccos\left(\frac{x}{2}\right)}, \ \boxed{x = \frac{\pi}{6}, \frac{\pi}{3}}$

à)	<u>م</u> و	(b) 00
×.	(92)	-23 TU SZ
	-2 (7) 2	(d) g(f(u)) = 1 g(20032) = 1
1	y = 26052x	-26052a = 1
	<u>y</u> = (offa.	$\left\lfloor \frac{1}{2} - \frac{1}{2} \right\rfloor$
	-2 $-3x = -91cccos \frac{4}{2}$	$\omega_{SD} = \langle \frac{1}{2} \\ -\frac{1}{2} \rangle$
	$\Omega_{\rm c} \simeq \frac{1}{2} \operatorname{arccos}(\frac{k_{\rm c}}{2})$	$\frac{1}{2\lambda} = \frac{1}{2} \pm 2m$
	$\therefore \vec{f}(y) = \frac{1}{2} \operatorname{ances}(\frac{x}{2})$	(22 = St + 2017 +=9443.
		$ \begin{pmatrix} 2x = \frac{2\pi}{3} \pm 2nr \\ 2x = \frac{4\pi}{3} \pm 2nr \end{pmatrix} $
		(J=李土 m (J=亚土m) (N=亚土m)
		(2= 35± MT
		: x-五王 //

Question 93 (****)

The functions f and g are defined as

$$f(x) = 3(2^{-x}) - 1, x \in \mathbb{R}, x \ge 0$$

$$g(x) = \log_2 x, x \in \mathbb{R}, x \ge 1.$$

- **a**) Sketch the graph of f.
 - Mark clearly the exact coordinates of any points where the curve meets the coordinate axes. Give the answers, where appropriate, in exact form in terms of logarithms base 2.
 - Mark and label the equation of the asymptote to the curve.
- **b**) State the range of f.
- c) Find f(g(x)) in its simplest form.
 - (0,2), $(10g_23,0)$, y=-1, $-1 < f(x) \le 2$, $f(g(x)) = \frac{3}{x} 1$

The CI

ths.com

 $f(x) \in \mathbb{R}, \ f(x) < \frac{9}{16}$

. C.B.

I.Y.C.B.

nadasma

COM

M202

(m4, 🂫)

Madasma,

2017

Question 94 (****)

adasm

2

asmaths.com

1. C.B. 1113/331

00

I.G.p

 $f(x) = e^{-2x} + \frac{\ln 2}{x}, x \in \mathbb{R}, x > \ln 4.$

nadasm.

2011

, F.G.B.

I.G.B.

I.C.B.

- a) Show that f(x) in a decreasing function.
- **b**) Find the range of f(x) in its simplest form.

0

Question 95 (****)

The function f(x) satisfies

$$f(x) = \frac{2x+1}{x-1}, x \in \mathbb{R}, x \ge 2$$

a) Show that

$$f(x) = A + \frac{B}{x-1},$$

where A and B are positive constants to be found.

- **b**) Show that f(x) is s decreasing function.
- c) Sketch the graph of f(x) and hence find its range.

d) Find $f^{-1}(x)$, in its simplest form.

21120

Question 96 (****)

The figure below shows the graph of the curve C with equation $y = \frac{25}{3x-2}$

a) State the equation of the vertical asymptote of the curve, marked with a dotted line in the diagram.

The function f is defined as

$$f(x) = \frac{25}{3x-2}, x \in \mathbb{R}, 1 < x \le 9$$

- **b**) Write down the range of f(x).
- c) Find an expression for $f^{-1}(x)$.
- **d**) State the domain and range of $f^{-1}(x)$.
- e) Solve the equation $f(x^2) = \frac{2}{x-1}$.

$$x = \frac{2}{3}, \ \boxed{1 \le f(x) < 25}, \ \boxed{f^{-1}(x) = \frac{2x + 25}{3x}}, \ \boxed{1 \le x < 25}, \ \boxed{1 < f^{-1}(x) \le 9}, \ \boxed{x = \frac{7}{6}, x}$$

	<u> </u>	(c)	$y = \frac{2S}{3a-2}$	(e)	$-\left(\mathcal{J}_{q}\right) = \frac{3-1}{5}$
(d)	D (<259 (252 <25 R (16 fb) <2 (250 <9		3ay -2y = 25 3ay = 25 +2y 2= <u>25 +2y</u> 3y		$\frac{25}{33^2-2} = \frac{2}{2-1}$ $252-25 = 63^2$ $0 = 63^2 - 253$
(0) < 25	$\mathcal{O}_{AMD}(N): \leq \alpha < \mathcal{S}_{1}$ $\mathcal{O}_{AMD}(N): \leq \alpha < \mathcal{S}_{1}$		$f(t) = \frac{2x + 25}{3x}$		(62 -7)(2-3) 2= - 3/2

Question 97 (****) The functions f(x) and g(x) are defined as

$$f(x) = \frac{2x^2 - 50}{x + 5}, x \in \mathbb{R}, x \neq -6.$$

 $g(x) = x^2 + 1, x \in \mathbb{R}.$

Ø

nadasn.

D

Show that ...

I.V.G.B. Mada

COM

I.C.p

2

a) ...
$$fg(x) = k(x+k)(x-k)$$
,

stating the value of the constant k.

.....

b) ... $gf(x) = 4x^2 - 40x + 101$.

(a) $f(g(x)) = f(x^{2}_{+1}) = \frac{2(x^{2}_{+1})^{2} - 50}{(x^{2}_{+1}) + 5} = \frac{2(x^{2}_{+2}x^{2}_{+1}) - 50}{x^{2}_{+6}}$ $= \frac{2a^{4}+4b^{2}-48}{2^{2}+6} = \frac{2(a^{4}+2a^{2}-24)}{a^{2}+6} = \frac{2(a^{2}+6)(a^{2}-4)}{a^{2}+6}$ $= 2(x_{-4}) = 2(x_{+2})(x_{-2})$ $(2-\zeta) = \frac{(2-\zeta)(2+\zeta)\zeta}{2+\zeta} = \frac{(2-\zeta)\zeta}{2+\zeta} = \frac{(2-\zeta)\zeta}{2+\zeta} = (\zeta)$ $f(j(u)) = f_{-}(x^{2}+1) = 2(2^{2}+1)-5) = 2(x^{2}-4) = 2(x+1)$

adasm.

2

i.G.

COM

N.C.B. Madasm

k = 2

COM

1720251

(b) $\vartheta(f(u)) = \vartheta(\frac{2x^2-5}{2x^2}) = \vartheta(u)$ $1 + \left(\frac{2(2-2\tau)}{2+2}\right) = \frac{1}{2} + \left(\frac{2(2-2\tau)}{2+2}\right)$ $[2(\alpha-5)]^{2}+1$

I.F.G.B.

2017

E.

Question 98 (****)

The functions f and g are defined as

$$f(x) = x^2 - 16, x \in \mathbb{R}, x < 0$$

$$g(x) = 12 - \frac{1}{2}x, x \in \mathbb{R}, x > 8.$$

- a) Find, in any order, ...
 - i. ... the range of f(x) and the range of g(x).
 - **ii.** ... the domain and range of fg(x).

f

b) Solve the equation

$$fg(x) = g(2x-22).$$

 $[f(x) > -16], \ g(x) < 8], \ x > 24, \ fg(x) > -16], \ x = 30$

વોગ	SCETATING THE TWO FINCTIONS	
fu	(A) SA (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	⇒ «
Į	RANCE OF (Cx) RANGE OF g ca	gQ)
	$\frac{d(x) > 16}{d(x) > 16}$	
a)म)	$\bullet \underbrace{\frac{f(\hat{g}(\hat{y}))}{f(\hat{g}(\hat{y}))} = f(\hat{v} \cdot \hat{y}x) = (\hat{v} \cdot \hat{y}x)^2 - \hat{v}_{\hat{x}}$	
	= $\frac{1}{4}(\alpha - 24)^{-1}$ is • The basis water stars of α as an α	10
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f(g(a)) ↓ x
•	$\begin{array}{c c} \hline \label{eq:constraint} \mbox{the forma by} \\ \hline \mbox{Instraint} \mbox{ or by instraint} \mbox{the forma by} \\ \hline \mbox{Instraint} \mbox{the forma by} \\ \hline \mbox{The formal by} \\ \hline th$	

2

(****) **Question 99**

The functions f and g are defined by

Find the domain and range of fg(x). adasmaths.com

Adasmaths.com

I.V.G.B.

1.1.

na,

SMaths.com

I.V.G.B

	Ch S
$f(x) = 2x+3, x \in \mathbb{R}, x \le 8$	In an
$g(x) = x^2 - 1, x \in \mathbb{R}, x \ge 0.$	Cp .Kr
fg(x).	in the second
b_2 \Box	$, 0 \le x \le 3$, $1 \le fg(x) \le 19$
140a	4 <u>2.</u> 45p
TO DO	$\begin{array}{c} f(a)=2a+a \ , \ a\in \mathbb{R} \ , \ a\neq e \\ g(a)=a^{t}-i \ , \ x\in \mathbb{R} \ , \ a\geqslant o \end{array}$
All.	To find the downw, ace at the direction below $2 \approx 0$ and 40 are the direction below $2 \approx 0$ and 40 and 40 are the direction of the transmission of the transmi
	$\Rightarrow g(O) = 0$ $\Rightarrow g(O) = 0$ $\Rightarrow g(O) = 0$
Co. 9	$\Rightarrow x^{2}-1 \leq \emptyset$ $\Rightarrow x^{2} \leq \emptyset$ $\Rightarrow x^{1} \leq x \leq 3$ $(x \geq 0)$
Son V	To FUG THE DAVIE IT HIGHT BE HEARDL TO GRADU THE COMPANING
× .	$f(\omega) = f(x^2 - 1) \qquad $
4.1	$= 2\alpha^{2} + 1$ LOCULIG AT THE DIMERAND, THE RANGE OF $-\frac{1}{4}(\alpha_{1})$ IS
· · · · · · ·	$1 \leq f(\hat{q}(0)) \leq 19$
m 55	
1211 1	n ga
20.	(20) 4Q2
- no	20. Sh
, the	10. 12
e Se	all a
6 9	m Sn
-Un	V Ch
- Y	

nadasmana Inalins Com

I.F.C.B.

ths.com

ths.co

F.G.

6

20251121

nadasn

Created by T. Madas

Question 100 (****) The functions *f* and *g* are given by

$$f: x \mapsto x^2, x \in \mathbb{R}.$$

$$g: x \mapsto 2x+1, \ x \in \mathbb{R}$$

a) Solve the equation

$$fg(x) = gf(x).$$

b) Find the inverse function of g.

The function h is defined on a suitable domain such so that

$$ghf(x) = 3 - 2x^2, \ x \in \mathbb{R}.$$

c) Determine an equation of h.

		0	-1() x -1	1() 1
20	x = -2 U	x = 0	$g^{-1}(x) = \frac{x-1}{2}$	h(x) = 1 - x
· · · · ·		, ,	8 (1) 2	
	and the second sec			and the second se

a) FORMING GANYORITIONS of some the equiption)
$ \Rightarrow \begin{array}{l} f(g(\Delta)) = g(f(\Delta)) \\ \Rightarrow f(\chi_{2k+1}) = g(\chi_{2k}) \\ \Rightarrow d_1^{-1}d_{2k+1} = \chi_{2k+1} \\ \Rightarrow d_1^{-1}d_{2k+1} = \chi_{2k}^{-1} \\ \Rightarrow \chi_{2k}^{-1}d_{2k+1} = \chi_{2k}^{-1} \\ \Rightarrow \chi_{2k}^{-1}d_{2k+1} = \chi_{2k}^{-1} \\ \Rightarrow \chi_{2k}(\chi_{2k}) = 0 \end{array} $
$b) \begin{array}{l} (y_1 = y_2) = y \\ (y_1 = 2x_1) \\ (z_1 = y_1) \\ (z_2 = y_1 - 1) \\ (z_1 = \frac{1}{2}(y_1 - 1)) \end{array}$
C) Process as $C_{i,j,j,k,k}$ $\frac{1}{2} \frac{1}{2} \frac{1}{$

20/2.07

Question 101 (****)

The piecewise continuous function f is even with domain $x \in \mathbb{R}$, $-6 \le x \le 6$.

It is defined by

F.G.B.

ic.p.

$$f(x) = \begin{cases} x & 0 \le x \le 2\\ 3 - \frac{1}{2}x & 2 \le x \le 6 \end{cases}$$

a) Sketch the graph of f for $-6 \le x \le 6$.

b) Hence, solve the equation

x = 4 + 5f(x).

nadasn.

i G.B.

202

Question 102 (****)

The graph below shows the graph of a function f(x).

 $y \wedge f(x)$

The function f is defined by

$$f(x) = \begin{cases} ax^2 + x, \ x \in \mathbb{R}, \ x \le 1\\ bx^3 + 2, \ x \in \mathbb{R}, \ x > 1 \end{cases}$$

The function is **continuous** and **smooth.**

Find the value of a and the value of b.

f(a) = $\sum_{ka^3+1}^{aa^2+1}$ e (0071) $ax^2 + a = ba^3$ $ax^{+1} = b + 2$ a - b = 1

 $a = 4, b = \overline{3}$

nadasn.

2

100

 $f(x) = \begin{cases} ax^3 + 2, \ x \in \mathbb{R}, \ x \le 2\\ bx^2 - 2, \ x \in \mathbb{R}, \ x > 2 \end{cases}$

The function is **continuous** and **smooth.**

Find the value of a and the value of b.

ŀG.B.

a=1

, |b=3|

6

Question 104 (****)

The function f(x) is defined by

$$f(x) \equiv 3 - 2x^2, \ x \in \mathbb{R}, \ x \le 0$$

- **a**) State the range of f(x).
- **b**) Show that $ff(x) = -8x^4 + 24x^2 15$ and hence solve the equation ff(x) = -47.
- c) Find an expression for the inverse function, $f^{-1}(x)$.
- d) Solve the equation

1.0.

i C.B.

 $f(x) = f^{-1}(x).$

 $f(x) \le 3$, x = -2, $f^{-1}(x) = -\sqrt{\frac{3-x}{2}}$, $x = -\frac{3}{2}$

The figure above shows the graph of the function

 $f(x) = a + \cos bx, \ 0 \le x \le 2\pi,$

where a and b are non zero constants.

The stationary points (0,4) and $(2\pi,2)$ are the endpoints of the graph.

- a) State the range of f(x) and hence find the value of a and the value of b.
- **b**) Find an expression for $f^{-1}(x)$, the inverse function of f(x).
- c) State the domain and range of $f^{-1}(x)$.
- **d**) Find the gradient at the point on f(x) with coordinates $\left(\frac{4\pi}{3}, \frac{5}{2}\right)$.
- e) State the gradient at the point on $f^{-1}(x)$ with coordinates $\left(\frac{5}{2}, \frac{4\pi}{3}\right)$.
 - $\boxed{\begin{array}{c} \begin{array}{c} \\ \end{array}, \ 2 \le f(x) \le 4 \end{array}, \ a = 3, \ b = \frac{1}{2} \end{array}, \ f^{-1}(x) = 2 \arccos(x-3), \ 2 \le x \le 4 \\ \hline 0 \le f^{-1}(x) \le 2\pi \end{array}, \ \boxed{\begin{array}{c} -\frac{\sqrt{3}}{4} \end{array}, \ \boxed{-\frac{4}{\sqrt{3}}} \end{array}},$

		- V. /
(9)	• 2448-25 ft 654 -1 5 caba 51 26 at caba 54 56 a=3	$ \begin{aligned} & \mathbf{f}(0) = 3 + c_0 b \alpha \\ & 2 = 3 + c_0 (2\pi b) \\ & -1 + c_0 (2\pi b) \\ & atreat(c_1) = 2\pi b \\ & 2\pi b = \pi \\ & 2b = 1 \\ & b = \frac{1}{2} \end{aligned} $
(L)	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \underline{\theta} = 3 + \tan \frac{1}{2} \chi & \\ \underline{\theta} - 3 = \cos \frac{1}{2} \chi & \\ \\ \\ \alpha = \cos (\omega_{1} - 3) & \\ \hline \end{array} \\ \begin{array}{l} \begin{array}{l} \underline{\theta} \\ \\ \end{array} \\ \begin{array}{l} \\ \underline{\theta} \\ \end{array} \\ \begin{array}{l} \\ \\ \end{array} \end{array} \end{array} $	$\frac{1}{D} \frac{1}{D(2\pi \leq \pi)} \frac{1}{Z \leq 2} \leq 4$ $\frac{R}{2 \leq 4} \leq 4 \leq 4$ $\frac{R}{2 \leq 4} \leq 4 \leq 6 \leq 6 \leq 6 \leq 1 \leq 2$ $\frac{1}{DMGE} \leq 0 \leq \frac{1}{2} \leq 2 \leq 4$
(4)	$\begin{cases} \langle x \rangle = 3 + \cos(\frac{1}{2}x) \\ f(x) = -\frac{1}{2} \sin(\frac{1}{2}x) \\ f(x) =$	(c) ROPLON FUND

Question 106 (****)

The function f is defined in a suitable domain of real numbers and satisfies

$$f(x) = \ln\left(\frac{e-x}{e+x}\right)$$

- **a**) Show that f is odd.
- **b**) Determine the largest possible domain of f.
- c) Solve the equation

2

C.p.

$$f(x) + f(x+1) = 0$$

-e < x < e

 $\frac{1}{2}$

 $x = \cdot$

 $x \in \mathbb{R}$,

(****) Question 107 The functions f and g are defined by

 $f(x) = 2x + 3, x \in \mathbb{R}, x \le 4$

 $g(x) = x^2 - 4, x \in \mathbb{R}, x \ge 1.$

2017

Find the domain and range of gf(x).

Y.G.B.

00

I.C.B.

2

-1:	$\leq x \leq 4 , -3 \leq gf(x) \leq 117$
	420.
	$ \begin{array}{c} f(x) = 2x+3 , \ x \in \mathbb{R}, \ x \leq 4 \\ g(x) = x^2 - \mu , \ x \in \mathbb{R}, \ x \geqslant 1 \end{array} $
	LOOKING AT THE DIAFRAM BELOW
	$\stackrel{N}{} \stackrel{T}{\underset{Z \not = H}{\overset{T}}} \stackrel{T}{\underset{Z \not = I}{\overset{T}}} \stackrel{D}{\underset{Z \not = I}{\overset{D}}} \stackrel{D}{\underset{Z \not = I}}{\overset{D}} \stackrel{D}{\underset{Z \not = I}}{\overset{D}}} \stackrel{D}{\underset{Z \not = I}}{\overset{D}} \stackrel{D}{\underset{Z \not = I}}{\overset{D}}} \stackrel{D}{\underset{Z \not = I}}{\overset{D}} \stackrel{D}{\underset{Z \not = I}} \overset{D}}{\overset{D}} \stackrel{D}}{\underset{Z \not = I}}{\overset{D}} \overset{D} \overset{D}} \overset{D}}{\overset{D}} \overset{D} \overset{D}} \overset{D}$
2	THE DOMAN WAT SATERY • $2 \le 4$ AND $2x \ge -1$
	: - <u> < x < 4</u>
X	TO FIND THE RANGE IT BEST ID AND AN GOPERSTAN FOR THE CONFOSITION
	$g(f(x)) = g(2x+3) - (2x+3)^2 + 4$
	COOKING AT THE GAAPH WITH THE Douten 4000E \$601
	$-3 \leq g(f(s_1)) \leq 117 \qquad (-\frac{1}{2}r_1)^{\lambda}$

2.8m

I.F.C.B.

2017

15.COM

20,

Mana.

Created by T. Madas

nadasmath

0

Question 108 (****) The function *f* satisfies

 $f(x) \equiv x^2 - 4x + 1, x \in \mathbb{R}, x > 4.$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) Determine the domain and range of $f^{-1}(x)$.
- c) Solve the equation

I.C.B.

ŀG.p.

 $f(x) = f^{-1}(x).$

 $f^{-1}(x) = 2 + \sqrt{x+3}, \ x \in \mathbb{R}, \ x > 1, \ f^{-1}(x) \in \mathbb{R}, \ f^{-1}(x) > 4,$

1441 = 32 + 42 + 1 + 24 - 12 = 144T	L) Sterotin	c fai
y= x-42+1		1
y ~ (2-2)2-3		fai
9+3 = (2 -2) ²		(41)
2-2 = ±√y+3		5"-7)
x-2 = + J y+3 (2)4)	4	€"
a = 2 + √ y is'	D 2>4	: a>I
	₽ =f(a) >1	(0)>4
$T(4) = 2 + \sqrt{2} + 3$		d
	·· -DOM/HIN OF	t(x): a>/
value 195 1974 1985 7 (2)= +(2) 0	TN SE JOUGO HE	fa)=z or
f(x) = x (1F T x (Franke) w - HANE = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	MN BE JOULD 45	fa)≥a oe
$\frac{1}{2} = \frac{1}{2} = \frac{1}$)= 1	fQi≥z or
$\begin{array}{c} \begin{array}{c} \text{unive set rescale} \\ f(a) \neq x & (16 \text{ if } u + sec) \\ \end{array} \\ \begin{array}{c} f(a) \neq x & (16 \text{ if } u + sec) \\ \end{array} \\ \begin{array}{c} \Rightarrow & x^2 - ux + 1 = x \\ \end{array} \\ \begin{array}{c} \Rightarrow & x^2 - x + 1 = z \\ \end{array} \\ \begin{array}{c} \Rightarrow & x^2 - x + 1 = z \\ \end{array} \\ \begin{array}{c} \Rightarrow & x^2 - x + 1 = z \\ \end{array} \\ \begin{array}{c} \Rightarrow & x^2 - x + 1 = z \\ \end{array} \end{array}$	/N <u>84</u> - <u>3</u> αυερ γ4)= λ	fa)≥a or
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	/N <u>84 Jaweo</u> #4]= 2	fQi)≥zi ce
$\begin{array}{l} \text{ where } \ \mathbf{r}_{\mathbf{r}}^{\mathbf{r}} + \mathbf{r}_{\mathbf{r}}^{\mathbf{r}} + \ \mathbf{r}_{\mathbf{r}}^{\mathbf{r}} + \mathbf{r}_{\mathbf{r}}^{\mathbf{r}} + \ \mathbf{r}_$	1m 36_30060 mt	fa)⇒z ce
$\begin{array}{c} & (1-\frac{2}{3}) = 2 \\ (1-$	1m 3€_500,60 mt	fa)≠z ce
$\begin{array}{c} (a_1, \xi_1) = 3 \begin{pmatrix} a_1 & a_2 & a_3 \\ \vdots & \vdots & \vdots \\ (a_1, \xi_1) = 3 \begin{pmatrix} a_1 & a_2 & a_3 \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ (a_1, \xi_1) = 3 \begin{pmatrix} a_2 & a_3 & a_3 \\ \vdots & \vdots \\ \vdots & \vdots \\ (a_2, \xi_1) = 3 \begin{pmatrix} a_1 & a_2 & a_3 \\ \vdots & \vdots &$	/m ≦¢_3αυ(+ο +4]= λ	fa)≥z ce
$\begin{array}{c} \max_{i} \max_{i}$	1≈ 2 May 2	<u>fa)≥z</u> ce
$\begin{array}{llllllllllllllllllllllllllllllllllll$]= <u></u>	<u>{Q})≈2</u> ce
$\begin{array}{c} \max_{i} \max_{i}$	74 34 - Souteo πt]= 2.	f(s)≈

ŀ.G.B.

COM

1120/2.81

 $5 + \sqrt{2}$

i-G.B.

Question 109 (****) The functions f(x) and g(x) are given by

 $f(x) = 3x - k, x \in \mathbb{R}, x \ge 1, k \in \mathbb{R}$

 $g(x) = 2x^2 + 4, \ x \in \mathbb{R}, \ x \ge 0$

- a) State the range of f(x).
- **b**) Find an expression for gf(x) in terms of k.
- Find the range of values of k which allows gf(x) to be formed. c)
- **d**) Find the value of k, given that gf(3) = 102.

 $f(x) \in \mathbb{R}, f(x) \ge 3-k, |f(x) \in \mathbb{R}, 2(3x-k)^2 + 4|, |k \le 3|, |k = 2, k \ne 16$

Question 110 (****)

KC,

The function f(x) has domain $x \in \mathbb{R}$, $-1 \le x \le 5$.

It is further given that f'(x) > 0 and f''(x) < 0

Find a possible equation of f(x), which *does not* contain exponentials.

12/12

NEGATIVE POWRE OF OL HAVE THE PROPERTY OF OF ELIERCING. EIGN ON DIFFRENTIATION (20 DOES THE NEGATIVE OKIDNIAL)

f(x) =

t.6. 2, -2, +2x, -6x, +24x, erc

As we when the function to have particle generation function we may struct with

2 J2 J4 BOT THIS IN NOT DIFFINED AT 2=0, SO WE MAY TRANSLATE BY 2

Will be the left in where $a = -\frac{1}{2k_{2}}$ there $f(\alpha) = -\frac{1}{2k_{2}}$ $f'(\alpha) = \frac{1}{(2k_{2}\alpha)}$ where it pointer $-1 \le 2 \le 3$

 $\begin{cases} (x) = \frac{2}{(2+2)^3} & \text{what is negative } -1 \le x \le 5 \end{cases}$

21/2.50

₽ŀ,

Question 111(****+)The function f is defined by

$$f(x) = \begin{cases} -x^2 + 8x - 5, \ x \in \mathbb{R}, \ x \le 2\\ x^2 - 2x + 8, \ x \in \mathbb{R}, \ x > 2 \end{cases}$$

- **a**) Show that $f \dots$
 - i. ... is not continuous.
 - **ii.** ... is an increasing function.

Let the set A be defined

$$A = \{x \in \mathbb{R} : 1 \le x \le 3\}$$

- **b**) Determine the range of f(A).
- c) Find an expression for $f^{-1}(x)$, indicating clearly its domain.

f(d) and take analys Between 2 d ll, Excussions the gape	3 (() () () () () () () () () () () () ()
≈ f(4) ∈ [2,7] /∪ (8,11]	
TRATING 6404 JETION JAAN $J = -\lambda^2 + 82 - 5, 2 \leq 2$ $- J = -\lambda^2 - 82 + 5$ $- J = -\lambda^2 - 82 + 5$ $- J = -2 - 8 - 10^2 - 11$ $- 3 - 10 + 10^2$	$\begin{array}{cccc} & g = \hat{x}^{-} 2i - 5, & a_{2} \\ & g = \hat{x}^{-} 2i - 5, & a_{2} \\ & \Rightarrow & (4 = (2 - i)^{2} \\ & \rightarrow & g + 6 = (2 - i)^{2} \\ & \Rightarrow & 2 - (2 + \sqrt{2} + i)^{2} \end{array}$
$\Rightarrow 2-4 = -\sqrt{1-4}$	- 331+04+1

Ċ,

Question 112 (****+)

The function f(x) is defined

 $f(x) = x^2(x+2), x \in \mathbb{R}, x > 0.$

a) Show that f(x) is invertible.

I.C.

Inadası

Com

ŀG.B.

b) Solve the equation

2

I.F.C.B.

 $f(x) = f^{-1}(x).$

hs.com

a) EASIEST IS TO SIDE THAT (IS AN INCRARING
PUNCTION IN ITS DOM/DN
$ \begin{array}{c} \rightarrow f(3) = x^{2}(x_{1}x_{2}) x > o \\ \rightarrow f(3) = x^{2} + x^{2} \\ \rightarrow f(3) = x^{2} + x^{2} \\ \rightarrow f(3) = x^{2} + x \\ \hline \\ F = x > 0, \ f(x_{1}) > o \end{array} $
· f is no independe function, a - Honce indictible
b) THE SOUTION SET OF $f(b) = f(d)$ is construct to THAT OF $f(d) = \alpha$ an indeed $f(d) = \lambda$
$\Rightarrow -\{\alpha\} = i$
\Rightarrow $\mathfrak{X}^{*}(\mathfrak{A}+2) = \mathfrak{X}$
$\Rightarrow x(x+2) = 1$ (x+0)
⇒ 2 ¹ +2c = 1
⇒ (2+1) ² -1=1
\Rightarrow $(\alpha + 1)^2 = 2$
$\Rightarrow 2 \pm 1 = \pm \sqrt{2}$
$\Rightarrow x = < -\frac{1+\sqrt{2}}{-\sqrt{2}} x > 0$

2017

ins,

Mana.

I.C.P.

Created by T. Madas

Madasn.

Question 113 (****+)

The function f is defined as

$$f: x \mapsto 6 - \ln(x+3), x \in \mathbb{R}, x \ge -2$$

Consider the following sequence of transformations T_1 , T_2 and T_3 .

$$\ln x \xrightarrow{T_1} \ln(x+3) \xrightarrow{T_2} -\ln(x+3) \xrightarrow{T_3} -\ln(x+3) + 6.$$

- a) Describe geometrically T_1 , T_2 and T_3 , and hence sketch the graph of f(x). Indicate clearly any intersections with the axes and the graph's starting point.
- **b**) Find, in its simplest form, an expression for $f^{-1}(x)$, stating further the domain and range of $f^{-1}(x)$.

The function g satisfies

 $y: x \to e^{x^2} - 3, x \in \mathbb{R}$.

c) Find, in its simplest form, an expression for the composition fg(x).

Question 114 (****+)

The functions f(x) and g(x) are defined by

$$f(x) = \frac{4}{x+3}, x \in \mathbb{R}, x > 0$$

$$g(x) = 9 - 2x^2, \quad x \in \mathbb{R}, \quad x \ge 2.$$

- **a**) Find, in its simplest form, the function fg(x).
- **b**) Find the domain of fg(x).
- c) Find in exact form where appropriate the solutions of the equation

$\left|fg(x)\right|=1$.

d) Solve the equation

$$f(x) = f^{-1}(x).$$

$$fg(x) = \frac{2}{6-x^2}, \quad 2 \le x < \frac{3\sqrt{2}}{2}, \quad x = 2, \ x \ne \pm 2\sqrt{2}, \ x \ne -2, \ x \ne -4$$

()	$-f(g(x)) = f(1-xx^2) =$	$\frac{4}{q_{-2k+3}} = \frac{4}{12-2k^2} \geq \frac{2}{6-k^2}$
(b)	14 1 → as7 2322 IN L 2329	+ on
	9-22°>0 22°-9<0 (122-3)(22+3)<0	$\mathcal{L} \ge \mathbb{Z}$ = $\frac{2}{2}$ $\mathcal{L}^{2} \subset \mathcal{L} < \frac{2}{2}$ $\mathcal{L}^{2} \int BOTH AUS^{-\eta} WORd^{0}$
	- 3 The second second	: Dautin) 24 ユ < 型記
6)	$\begin{aligned} \left \left\{ f_{i}(y_{i}) \right\} = i \\ \frac{2}{6-x^{2}} = \pm i \\ \frac{6-x^{2}}{2} = \pm i \\ 6-x^{2} = \pm 2 \\ -x^{2} = -\frac{8}{4} \\ \frac{2}{2} = -\frac{8}{4} \end{aligned}$	(b) = (c, c) = (c,
	: 2=2	

21125

Question 115 (****+)

The functions f and g are defined by

 $f(x) = 2x+1, x \in \mathbb{R}, x \le 5$

- $g(x) = \sqrt{x-1}, x \in \mathbb{R}, x \ge 10.$
- a) Find an expression for the composite function fg(x), further stating its domain and range.

The domain of g(x) is next changed to x > a.

b) Given that now gf(x) cannot be formed, determine the smallest possible value of the constant a.

 $fg(x) = 1 + 2\sqrt{x-1}, x \in \mathbb{R}, 10 \le x \le 26, fg(x) \in \mathbb{R}, 7 \le fg(x) \le 11,$

a = 26

Question 116 (****+)

The function f satisfies

$$f(x) = 4 - \frac{3}{x^2 + 2}, x \in \mathbb{R}, x \ge 1$$

- a) By considering the horizontal asymptote of f(x) and showing further it is an increasing function, find its range.
- **b**) Find $f^{-1}(x)$, in its simplest form.
- c) Find the domain and range of $f^{-1}(x)$.

$f(x) \in \mathbb{R}, \ 3 \le f(x) < 4 \ , \ f^{-1}(x) = \sqrt{\frac{2x-5}{4-x}} \ , \ x \in \mathbb{R}, \ 3 \le x < 4 \ , \ f(x) \in \mathbb{R}, \ f(x) \ge 1$

$(\hat{a}) \left\{ \begin{array}{c} 4(\hat{a}) = 4 - \frac{3}{a^{2} + 2} \\ \end{array} \right\}$	$4 \alpha \rightarrow \alpha $ $1 \frac{3}{\alpha^{2}+2} \rightarrow 0$
$f(a) = 4 - 3(a^2+2)^{-1}$	CHEROLDAL ALVANTION)
-(u)- s(u+z)×(za) =	(2 ²⁺²⁾² 45 2≥1,162>0 9 (2 ²⁺²⁾² >0 (Spaneso pu42117)
≈ f(a) >0 , ∴ f(a) is inderrenation	4.9
\therefore there $3 \leq \frac{1}{2} \otimes 1 < 3$:4 3-t
	· (1,3)
$ \begin{pmatrix} b \end{pmatrix} \qquad y = 4 - \frac{3}{3^{2}+2} $ $ \Rightarrow \frac{3}{3^{2}+2} = 4-y $	$i = \int_{-\infty}^{-1} \left(\frac{2n-3}{4-x} \right) dx$
$\Rightarrow \frac{3^2+2}{3} = \frac{1}{4-9}$ $\Rightarrow 3^2+2 = \frac{3}{2}$	t t
$\Rightarrow \lambda^2 = \frac{3}{4-y} - 2$	$\frac{2}{2} \frac{2}{3 \leq \frac{1}{2}} \frac{3 \leq 2 \leq 4}{4}$
$\Rightarrow a^2 = \frac{3 - 2(4-y)}{4-y}$ $\Rightarrow a^2 = \frac{2y-5}{2}$	Bauger: 3 < 2 <4
$\Rightarrow 2 = \pm \sqrt{\frac{2_{1-5}}{4-3}}$	

(****+) Question 117 The function f is given by

 $f(x) = 1 + \sqrt{x+1}, x \in \mathbb{R}, x \ge 0.$

a) Find an expression for the inverse function $f^{-1}(x)$.

b) Determine the domain and range of $f^{-1}(x)$.

c) Solve the equation

う

F.G.B.

I.G.B.

 $f(x) = f^{-1}(x).$

lution	120		1	10		- 4
	f(x	$)=f^{-1}(x).$		1	Ch.	
2		Do.			12	
$f^{-1}(x) =$	$=x^2-2x$, x	$\in \mathbb{R}, x \ge 0$,	$f^{-1}(z)$	$x) \in \mathbb{R},$	$f^{-1}(x) \ge$	0, $x=3$
1	0	15	0			in
- 40	con.	- C	(@)	y= 1+ (20+1)	(b) f	€-í

(a)	y= 1+ 100+1	(P) f f.	а.
	$ \underbrace{(9-1)^2 = x+1}_{2} $	D 220 222	
	$x = (y-1)^{2} + $	the two the	
	$\therefore f(a) = x^2 - 2x$	= Dautin, a≥2	
(୦)	$f(\alpha) = f(\alpha)$	Dian (2) 20	
	$\Rightarrow f(a) = a$ $\Rightarrow a^2 - 2a = a$	2. az - 3	
	$\Rightarrow x^2 - 3x = 0$ $\Rightarrow x(x - 3) = 0$		

20

2017

Madasn.

R

4

20,

The above figure shows the graph of the function f(x), consisting of two straight line segments starting at A(-4,-4) and B(6,8) meeting at the point C(4,0).

- a) State the range of f(x).
- **b**) Evaluate ff(4).
- c) Hence find fff(5).

[continues overleaf]

20120

[continued from overleaf]

The inverse of f(x) is $f^{-1}(x)$.

I.C.B.

.C.p.

- **d**) Sketch the graph of $f^{-1}(x)$.
- e) State the value of $f^{-1}(x)$.
- **f**) Solve the equation $f(x) = f^{-1}(x)$.

F.G.B.

20

18.COM

I.C.B.

128M21

madas,

Question 119 (****+)

The functions f and g are given by

 $f(x) = 5e^{-x} + 1, x \in \mathbb{R}, x \ge 0$

 $g(x) = 2x + 1, \ x \in \mathbb{R}.$

a) Find ...

i. ... an expression for gf(x).

ii. ... the range of gf(x).

iii. ... the domain of fg(x).

b) Show that the only solution of the equation $fg(x) = 5e^{2x+1} - 9$ can be written as

 $x = \frac{1}{2} \left[-1 + \ln\left(1 + \sqrt{2}\right) \right].$

$gf(x) = 10e^{-x} + 3$, $3 < gf(x) \le 13$, $x \ge -\frac{1}{2}$

$(0)(1)_{Q(1,0)} = g(se^{2}_{+1}) = 2(se^{1}_{+1}) + 1 = 10e^{2}_{+3}$
(6,3) 2,00 al (0,17)
RANGE RANGE
3 < 8(740) = 13
(III) N H3 OT 2a+1>0
$\begin{array}{c} x \geq -i \\ x \geq -\frac{1}{2} \end{array}$
(b) $f(y(a)) = Se^{2H} q$ $(\Rightarrow 1 - q^2 + 2a = 0)$
$ \Rightarrow f(2x_H) = Se^{2x_H} g \qquad \Rightarrow 0 = 0^{1} - 2a - 1 $
$\Rightarrow 5e^{-(2n+1)} = 5e^{-2} = 5e^{-2}$
$\Rightarrow = \frac{-(2iH)}{-(2iH)} + 2 = 0$ $\Rightarrow = \frac{-\sqrt{2}}{-\sqrt{2}}$
$\Rightarrow \frac{1}{e^{2k_{H}}} - \frac{e^{2k_{H}}}{e^{2k_{H}}} + 2 = 0$
$ = \frac{1}{\alpha} - \alpha + 2 co \left(\alpha c e^{\alpha t}\right) \qquad \Rightarrow e^{\alpha t} - \frac{1 + \sqrt{2}}{1 + \sqrt{2}} $
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \\ \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$

Question 120 (****+)

The figure above shows the graph of the function with equation

 $f(x) = e^{nx} + k e^{-nx}, x \in \mathbb{R}, k > 1, n > 0.$

Find the range of f(x) in exact form.

S.

21/20

	(co)	vix I -	mr			
	fa)=	nenr-n	kem			
sawe	fá)	= 0				
	hena	-nkenx	= 0			
	е ^и л	- Le"	1 ≈ O	NAC		
	enz	= k enz	- 			
-	(enz)	- k				
->	enx	= +	12	enz	> 0	
NEXT	WE CAR	AND TH	HE 14 60.0	LOINAR -	WE DON	T REFUNCE ON
		иъ	1 -12			
		j= e	+te			
	⇒.	y= e	EN2 K			
	⇒.	g= vk	+ TE			
	⇒.	y = VK	r nr			
	⇒.	4= 2.JK				

The graph of $y = \sqrt{3}\cos x - \sin x$ for $0 \le x \le 2\pi$ is shown in the figure above.

a) Express $\sqrt{3}\cos x - \sin x$ in the form $R\cos(x+\alpha)$, R > 0, $0 < \alpha < \frac{\pi}{2}$.

The function f is defined as

$$f(x) = \sqrt{3}\cos x - \sin x, \ x \in \mathbb{R}, \ 0 \le x \le 2\pi.$$

b) State the range of f(x).

c) Explain why f(x) does not have an inverse.

[continues overleaf]

202.51

[continued from overleaf]

The function g(x) is defined as

 $g(x) = \sqrt{3}\cos x - \sin x, x \in \mathbb{R}, 0 < x_1 \le x \le x_2 < 2\pi$.

The ranges of f(x) and g(x) are the same and the inverse function $g^{-1}(x)$ exists.

d) Find ...

K.C.

i. ... the value of x_1 and the value of x_2 .

ii. ... an expression for $g^{-1}(x)$.

 $\boxed{\quad}, \sqrt{3}\cos x - \sin x = 2\cos\left(x + \frac{\pi}{6}\right), \ \boxed{2 \le f(x) \le 2}, \ \boxed{x_1 = \frac{5\pi}{6}}, \ \boxed{x_2 = \frac{11\pi}{6}}$ $\boxed{g^{-1}(x) = -\frac{\pi}{6} + \arccos\left(\frac{1}{2}\right)}$

(a) $\sqrt{3}\cos\alpha$ - Sm = 2(4) = 2(a) = 2 ca	$g(\overline{z} + \overline{z})$ $g(\overline{z} + \overline{z})$ $g(\overline{z} + \overline{z})$ $g(\overline{z} + \overline{z})$
(b) $\text{BANGE}: -2 \leq \frac{1}{2}$ $\text{GAM} \leq 2$	/
(9) #30768 f6) 15 407688 (9)	to ant-truction, e.g. f(3)=0 He no anyor themer
$S = (\frac{1}{2} + E) 20 S \circ (1)(b)$	 2log(2+Tg)= -2 (ar(Tr-Tg) = -1
31+至=0 31=-平っ	$\pi = \frac{\pi}{3} + \infty$
$\Im_{L} = \frac{11 \Pi^{-1}}{4}$	
$(II) = 200 (art)$ $= \frac{1}{2} + 100 (art)$ $= \frac{1}{2} + 100 (art)$	$\therefore \frac{d}{d}(y) = -\frac{1}{2} + \cos(y) \left(\frac{y}{y}\right)$
2 - 6	

Question 122 (****+)

The function f is defined as

$$f(x) = \ln\left(\frac{1+x}{1-x}\right), \ \left|x\right| < 1$$

- a) Show that f(x) is an odd function.
- b) Find an expression for f'(x) as a single simplified fraction, showing further that f'(x) is an even function.
- c) Determine an expression for $f^{-1}(x)$.
- **d**) Use the substitution $u = e^{x} + 1$ to find the exact value of

 $\int_0^{\ln 3} f^{-1}(x) \ dx.$

The figure below shows part of the graph of f(x).

e) Find an exact value for the area of the shaded region, bounded by f(x), the coordinate axes and the straight line with equation $x = \frac{1}{2}$.

$$f'(x) = \frac{2}{1-x^2}, \quad f'(x) = \frac{e^x - 1}{e^x + 1}, \quad \ln\left(\frac{4}{3}\right), \quad \arctan\left(\frac{3}{2}\ln 3 - 2\ln 2 \approx 0.262\right)$$

[solution overleaf]

19

"U'd S

Question 123 (****+)

KC,

The piecewise continuous function f is defined by

$$f(x) = \begin{cases} \frac{5}{2} - x, & x \in \mathbb{R}, \ -10 < x < 2\\ \frac{2}{x^2}, & x \in \mathbb{R}, \ 2 \le x \le 4 \end{cases}$$

Determine an expression, similar to the one above, for the inverse of f.

You must also give the range of the inverse of f.

 $f^{-1}(x) \equiv \begin{cases} \sqrt{\frac{2}{x}}, & x \in \mathbb{R}, \quad \frac{1}{8} \le x \le \frac{1}{2} \\ \frac{5}{2} - x, & x \in \mathbb{R}, \quad \frac{1}{2} < x < \frac{25}{2} \end{cases}, \quad -10 < f^{-1}(x) \le 4$

$f(x) = \begin{cases} \frac{5}{2} - x , x \in \mathbb{R}, + cx < x \\ \frac{7}{2k} , x \in \mathbb{R} & 2 < x < x \end{cases}$	2 (+15 <u>45</u>) (4 -16	(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	
TELAT GACH SECTION SEMIENTELY			
$+_{1}(x) = \frac{s}{2} - x_{1} + 10 < x < 2$	$f^{5}(x) = \frac{3x}{2x}$	24244	
y = ≨,2 2y = S - 22 22 = S-2y	$y = \frac{2}{\lambda^2}$ $y^2 = \frac{2}{\lambda^2}$		
2a \$-y	2 - + 5	୪ ହ	
$f_{i}^{-1}(x) = \frac{2}{2} - x$. (SVE INVESE)	$f_2(\alpha) = \sqrt{1-\frac{1}{2}}$	2 2 1	
$f_i(\alpha) = f_i^{-1}(\alpha)$	(f10)	6.0	
D-bcacz 主 <a<聲< td=""><td>D 26254</td><td>\$ 4262</td></a<聲<>	D 26254	\$ 4262	
R + 140/7 +0 < 1,00 < 2	R + cfm ch	21634	

R.H.

Question 124 (****+)

 $f(x) = \ln(4x-8), x \in \mathbb{R}, x > 2.$

a) Find an expression for the inverse function, $f^{-1}(x)$.

b) Find the domain and range of $f^{-1}(x)$.

The function g is defined as

 $g(x) = |x|, x \in \mathbb{R}.$

c) Sketch the graph of fg(x), indicating clearly the equations of any asymptotes and the coordinates of the points where the graph meets the coordinate axes.

d) Hence solve the equation

fg(x) = 1.

$f^{-1}(x) = 2 + \frac{1}{4}e^x$, $x \in \mathbb{R}, f^{-1}(x) > 2$, $(\frac{9}{4}, 0), (-\frac{9}{4}, 0), x = \pm 2$, $x = \pm \frac{1}{2}(e+8)$

Question 125 (****+)

Information about the functions f, g and h are given by

$$f(x) \equiv 1 - \frac{1}{x},$$
$$g(x) \equiv ff(x),$$
$$fh(x) = \frac{x - 3}{x - 4}.$$

g(x) =

All the above functions are defined for all real numbers except for values of x for which the functions are undefined.

Find simplified expressions for ...

- **a)** ... g(x). **b)** ... fg(x).
- c) ... $f^{-1}(x)$.
- **d**) ... h(x).

 $g(\underline{x}) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$ $= \frac{2-l-2}{2-l} = \frac{-l}{2-l} = \frac{l}{2-l}$ $b + (g(y)) = f(\frac{1}{1-x}) = 1 - \frac{1}{1-x} = 1 - (1-x) = x$ (c) $f(g(u)) = x \leftarrow 0$ with f_{i_1} where f(u) = f(u) = x $\therefore f(u) = g(u)$ $\therefore f(u) = \frac{1}{1-x}$ (d) $f(h(x)) = \frac{x-3}{x-4}$ $f f(h(b)) = f(\frac{2-3}{2-4})$ $S_{0} \quad \left[b(\lambda) \right] = \frac{1}{2} \left(\frac{\alpha - 3}{\alpha - 4} \right) = \frac{1}{1 - \frac{\alpha - 3}{\alpha - 4}} = \dots \quad \underset{BY}{\text{mutry for a region of }}$ $=\frac{x-4}{x-4-(x-3)}=\frac{x-4}{-1}=4-2$ Whenatout Tole part (d) $f(h(x)) = \frac{x-3}{x-4} \quad \text{urr} \left(h(x) = y\right) \quad \text{so} \quad f(u) = \frac{x-3}{x-4}$ $1 - \frac{1}{\alpha} = \frac{\alpha - 3}{\alpha - 4}$ $1 - \frac{x-3}{x-\psi} = \frac{1}{w}$ $\frac{2-4-2+3}{2-4} = \frac{1}{4}$ h(x)= 4-2

 $f^{-1}(x) =$

fg(x) = x,

1

h(x) = 4

Question 126 (****+)

The functions f and g are defined by

I.C.B.

I.V.C.A

 $f(x) \equiv \sin x, x \in \mathbb{R}, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Determine, showing a clear method, the domain and range of the compositions

 $g(x) \equiv x - \frac{\pi}{2}, x \in \mathbb{R}, x \ge 0.$

a) fg(x).

2

b) gf(x)

I.V.G.B. May

I.C.B.

$\boxed{0 \le x \le \pi}, \ \boxed{-1 \le fg(x) \le 1}, \ \boxed{0 \le x \le \frac{\pi}{2}}, \ \boxed{-\frac{\pi}{2} \le gf(x) \le 1 - \frac{\pi}{2}}$

I.F.G.B.

maria

hs.com

Ę

(****+) Question 127 A function f is defined by

1. C.B. 1113/331

COM

I.C.p

2

 $f(x) = x^2 - 12x + 27, x \in \mathbb{R}, x < 4.$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) State the domain and range of $f^{-1}(x)$.

I.C.B.

2011

K.G.p.

nadasma,

I.C.B

2011

hs.com

6

Madasma,

Madası

Created by T. Madas

madasmath

^COM

Question 128 (****+) The functions *f* and *g* are defined by

$$f(x) \equiv 3x^2 + 6x, \ x \in \mathbb{R},$$

 $g(x) \equiv ax + b, \ x \in \mathbb{R}$

a) Given that g(x) is a self inverse function show that a = -1.

b) Given that gf(x) < 10 for all values of x, determine the range of values of b.

	- V	no.	<u> b>-/</u>
(b) (b)	$\begin{split} g(z) &= ax_{1}b\\ g_{2} &= ax_{2}b\\ y_{2} &= bx_{2}b\\ y_{2} &= bx_{2}b\\ ax_{2} &= \frac{y_{2}-b}{a}\\ \frac{y_{1}}{a}(x) &= \frac{y_{2}-b}{a}\\ g_{1}(x) &= -\frac{y_{2}}{a}\\ g_{2}(x) &= -(x)^{2}b^{2}b^{2}b^{2}b^{2}b^{2}b^{2}b^{2}b$	$\begin{array}{c} \mbox{The } \underline{a}(\underline{b}) = \underline{a}(\underline{b}) \\ \mbox{act} b = -\underline{b}(\underline{c}, -\underline{b}) \\ \hline \underline{d} \underline{a} \pm a \underline{b} = \underline{a}_{-}, \underline{b}_{-} \\ \hline \underline{d} \underline{a} \pm a \underline{c}_{-} = \underline{c}_{-} \\ \mbox{the } \underline{a} = \underline{c}_{-} \\ \mbox{the } \\ \mbox{the } \underline{a} = \underline{c}_{-} \\ the$	ab = -b a = -1 a = -1 dt BrookD dt BrookD $dt BrookDdt BrookD dt BrookDdt BrookD dt BrookDdt BrookDdt BrookD$

Question 129 (****+)

A function f is defined in a restricted real domain and has equation

$$f(x) \equiv x^2 - 6x + 13$$

It is further given that the equations f(x)=8, f(x)=13 and f(x)=20 have 2 distinct solutions, 1 solution and no solutions, respectively.

Determine the possible domain of f.

The graph of the function f(x) consists of two straight line segments joining the point (0,10) to (4,0) and the point (12,4) to (4,0), as shown in the figure above.

a) Find the value of ff(2).

The function g is defined as

$$g(x) \equiv \frac{2x+1}{x-1}, x \in \mathbb{R}, x \neq 1$$

b) Determine the solutions of the equation gf(x) = 3.

AGAIN WORLING AT & GOOD DIATPRAM, WITH SIMILAR TRANSPORT OF

ff(2)

 $x = \frac{12}{5}, 12$

Question 131 (****+)

The function f is defined as

$$(x) = 3 - \ln 4x, \ x \in \mathbb{R}, \ x > 0$$

a) Determine, in exact form, the coordinates of the point where the graph of f crosses the x axis.

Consider the following sequence of transformations T_1 , T_2 and T_3 .

 $\ln x \xrightarrow{T_1} \ln 4x \xrightarrow{T_2} -\ln 4x \xrightarrow{T_3} 3 -\ln 4x$

b) Describe geometrically each of the transformations T₁, T₂ and T₃, and hence sketch the graph of f(x).
 Indicate clearly any intersections with the coordinate axes.

The function g is defined by

c) Show that

$$fg(x) = x - k - k \ln k ,$$

 $g(x) = e^{5-x}, x \in \mathbb{R}$

where k is a positive integer.

 $\overline{\left(\frac{1}{4}e^3,0\right)}$, $\overline{T_1}$ = stretch in x, scale factor $\frac{1}{4}$, $\overline{T_2}$ = reflection in the x-axis

 $|T_3|$ = translation, "up", 4 units , |k| = 2

Question 132 (****+)

The function f is defined as

 $f(x) = \ln(4-2x), x \in \mathbb{R}, x < 2.$

a) Find in exact form the coordinates of the points where the graph of f(x) crosses the coordinate axes.

Consider the following sequence of transformations T_1 , T_2 and T_3 .

$$\ln x \xrightarrow{T_1} \ln(x+4) \xrightarrow{T_2} \ln(2x+4) \xrightarrow{T_3} \ln(-2x+4)$$

b) Describe geometrically the transformations T_1 , T_2 and T_3 , and hence sketch the graph of f(x).

Indicate clearly any asymptotes and coordinates of intersections with the axes.

c) Find, an expression for $f^{-1}(x)$, the inverse function of f(x).

d) State the domain and range of $f^{-1}(x)$.

 $\overline{\left(\frac{3}{2},0\right)}, \ (0,\ln 4), \ \overline{T_1 = \text{translation}, "left", 4 \text{ units}},$ $\overline{T_2 = \text{stretch in } x, \text{ scale factor } \frac{1}{2}, \ \overline{T_3 = \text{reflection in the } y\text{-axis}}, \text{asymptote } x = 2,$

 $f^{-1}(x) = 2 - \frac{1}{2}e^x$, $x \in \mathbb{R}$, $f^{-1}(x) < 2$

 $-(x) = \ln(4-2x)$ $\alpha = \ln(4-2x)$

: Downin of fa) :

BRANON THE DUAR OF AGITHA DISADENTE THE DUILD

f(x)=2-fe

Question 133 (****+)

KG

The function f is defined by

$$f(x) = \sqrt{1 - \frac{4}{x^2}}, x \in \mathbb{R}, x \ge 2.$$

- **a**) Find an expression for $f^{-1}(x)$, in its simplest form.
- **b**) Determine the domain and range of $f^{-1}(x)$.

(a) $y = \sqrt{1 - \frac{4}{2^2}}$	(b) f(2)= 0
$\Rightarrow g^2 = 1 - \frac{4}{2^2}$ $\Rightarrow \frac{4}{2^2} = 1 - g^2$	ts a marmore (G) marmory
$\Rightarrow \frac{a^2}{4} = \frac{1}{1 - q^2}$	43 2
$\Rightarrow x^2 = \frac{4}{1-y^2}$	9+1
$= 2z = \pm \frac{2}{\sqrt{1-y^2}}$	(2,0)
$x = + \frac{z}{\sqrt{1-y^2}}$	D 22062-1 P 05f0/<1 for 22
$\therefore \frac{1}{2}(x) = \frac{2}{\sqrt{1-x^{2^{1}}}}$	10122

20

Ĉ.ŀ.

nn,

201

Question 134 (****+)

The function f is defined on a suitable domain, so that the functions g and h satisfy the following relationships.

$$g(x) = \frac{1}{2}f(x) + \frac{1}{2}f(-x)$$
$$h(x) = \frac{1}{2}f(x) - \frac{1}{2}f(-x).$$

a) Show clearly that g is an even function and h is an odd function.

It is now given that

$$f(x) = \frac{x+1}{x-1}, x \in \mathbb{R}, x \neq \pm 1$$

b) Express f(x) as the sum of an even and an odd function.

 $x^{2}+1$ 2xf(x) =

à	$\begin{split} & g(x) = \frac{1}{2}f(x) + \frac{1}{2}f(x) = \frac{1}{2}f(x) + \frac{1}{2}f(x) = \frac{1}{2}f(x) + \frac{1}{2}f(x) = \frac{1}{2}g(x) \longrightarrow \begin{array}{c} g(x) = g(x) \\ & g(x) = \frac{1}{2}g(x) + \frac{1}{2}f(x) = \frac{1}{2}g(x) \\ & g(x) = \frac{1}{2}g(x) + \frac{1}{2}g(x) = \frac{1}{2}g(x) + \frac{1}{2}g(x) = \frac{1}{2}g(x) = \frac{1}{2}g(x) \\ & g(x) = \frac{1}{2}g(x) + \frac{1}{2}g(x) = \frac{1}{2}g(x) + \frac{1}{2}g(x) = \frac{1}{2}g(x) =$
	$\begin{split} h(\mathfrak{A}) &= \frac{1}{2} \frac{1}{2} f(\mathfrak{A}) - \frac{1}{2} \frac{1}{2} f(\mathfrak{A}) \\ h(\mathfrak{A}) &= \frac{1}{2} \frac{1}{2} f(\mathfrak{A}) - \frac{1}{2} \frac{1}{2} f(\mathfrak{A}) - \frac{1}{2} \frac{1}{2$
f)	Now $g(x) + h(x) = \frac{1}{2}f(x) + \frac{1}{2}f(x) + \frac{1}{2}f(x) - \frac{1}{2}f(x) = f(x)$
	$\begin{aligned} T(\lambda) &= \underbrace{\delta(X)}_{\lambda \to -1} + \underbrace$
	$\frac{3+1}{3-1} = \frac{1}{2} \left[\frac{3+1}{3-1} + \frac{3-1}{3+4} \right] + \frac{1}{2} \left[\frac{3+1}{3-1} - \frac{3-1}{3+1} \right]$
	$\frac{\partial t+1}{\partial -1} = \frac{1}{2} \left[\frac{\partial_{1}^{2} \partial_{2} t+1}{(2 - 1)(2 + 1)} \right] + \frac{1}{2} \left[\frac{\partial_{1}^{2} \partial_{2} t+1}{(2 - 1)(2 + 1)} \right]$
	$\frac{\partial_t + 1}{\partial_{X-1}} = \frac{1}{2} \left[\frac{2t^2 + 2}{2^{K-1}} \right] + \frac{1}{2} \left[\frac{4t_2}{\lambda^{K-1}} \right]$
	$\frac{\alpha_{k+1}}{\alpha_{k-1}} = \frac{\alpha_{k+1}^2}{\alpha_{k-1}^2} + \frac{\alpha_{k}}{\alpha_{k-1}^2}$
	Poins Peop

Question 135 (****+)

The functions f and g are defined by

$$f(x) \equiv 3\sin x, \ x \in \mathbb{R}, \ -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$g(x) \equiv 6 - 3x^2, \ x \in \mathbb{R}.$$

a) Find an expression for $f^{-1}g(x)$.

b) Determine the domain of $f^{-1}g(x)$.

Y.G.B.

1.Y.C.J

I.V.G.B. Mada

COM

I.F.G.B.

$f^{-1}g(x) = \arcsin(2-x^2), \ -\sqrt{3} \le x \le -1 \ \text{or} \ 1 \le x \le \sqrt{3}$

2017

a) $f(x) = 3 \sin x - \frac{\pi}{2} \leq x$	S H
$\mathcal{F}(a) = 6 - 3a^2$ and \mathbf{R}	
-9 y = 3sma	NOW $f'(g(x)) = f'(6-3x^2)$
== 3 = sma	= $O(CSM)\left(\frac{6-3\chi^2}{3}\right)$
$\Rightarrow \alpha = \arcsin \frac{4}{3}$ $\therefore \int (x) = \arcsin \frac{\alpha}{3}$	= arcsw(2-2 ²)
b) f(x) this Downin [-玉匠] M f(3) this Downin [-33] Mil	[王] 300408 [王] 3 87M96 [王] 38M9
$(x \in \mathbb{Q})^{n}$ $g(x)$ $g(x)$ $g(x)$ $g(x) \in \mathbb{Q}$	ESSE Fa
46.00C	
$\Rightarrow -3 \leq 8(3x) \leq 3$ $\Rightarrow -3 \leq 6 - 3a^{2} \leq 3$ $\Rightarrow -9 \leq -3x^{2} \leq -3$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} -1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	En al 23 th
$\mathfrak{A} \leq \mathfrak{Z} \twoheadrightarrow -\mathfrak{A} \leq \mathfrak{A} \leq \mathfrak{A}^{2}$ $\mathfrak{A}^{2} \geq 1 \twoheadrightarrow \mathfrak{A} \geq 1 \ \mathfrak{A} \leq \mathfrak{A} \leq \mathfrak{A}^{2}$	-6 -1 0 1 6
	-NEEZZ-1 OR 1522NE

I.C.B.

ŀG.p.

COM

Ð

1º

(****+) Question 136 A function f is defined as

 $y = 3x^4 - 8x^3 - 6x^2 + 24x - 8$, $x \in \mathbb{R}$, $-2 \le x \le 3$.

Sketch the graph of f, and hence state its range.

The sketch must include the coordinates of any stationary points and any intersections with the coordinate axes.

\$ b²-4ac = 16-4x3x(-2)= 40

Adasm.	$-27 \le f(x) \le 3$
STATE WITH THE CANTROLOGY FOULS	ECTING THE BOOK OF THE QUINNING
$\begin{aligned} f(x) &= 3x_1^6 - 8x_2^3 - 6x_2^2 + 24x_2 - 8\\ f(x) &= (x_1^3 - 24x_2^2 - 12x_2 + 24) \end{aligned}$	$\mathbf{a} = -\frac{\mathbf{b} \pm \sqrt{\mathbf{b}^2 + \mathbf{a} \mathbf{x}^2}}{2\mathbf{a}} + -\frac{\mathbf{a} \pm \sqrt{\mathbf{b}^2}}{2\mathbf{x}^3} = -\frac{\mathbf{a} \pm 2\sqrt{\mathbf{b}^2}}{4} = -\frac{\mathbf{a}}{2} \pm \frac{1}{2\sqrt{\mathbf{b}^2}}$ $\underbrace{\text{HOULE Lie cettral } \mathbf{a} + \mathbf{a} \cdot \mathbf{a} + \underbrace{\text{Sign}}_{\mathbf{a} \in \mathbf{a}} = -\frac{\mathbf{a}}{2} + \frac{1}{2\sqrt{\mathbf{b}^2}}$
$\begin{array}{rcl} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	
$\Rightarrow (\underline{3}, 2)(\underline{3}, -1)(\underline{2}, 1) \circ \circ$ $\Im_{\alpha} \leftarrow \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -27 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 3 \\ -27 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 2 \\ (1, 2) \\ (-1, 2) \end{bmatrix}$	$\frac{1}{\sqrt{20}}$
NOW AS THE FOUNDING IS STATIONARY ON WHIT A ANS IT WIT THAT & REPEATED	
2007 AT a=2 (NO INFLEXION AS THERE HAR TWO MORE STATION/NOV VALUES).	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ - \\ 1 \\$	
$4\frac{1}{4}^{1-\frac{1}{2}} \frac{1}{4}\frac{3}{4} = 6$ = $\frac{-\frac{1}{2}}{4}^{1-\frac{1}{2}}\frac{1}{4}\frac{1}{2}\frac{1}{4} = \frac{1}{2}$ = $\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{1}{4}\frac{1}{2}\frac{1}{4$	
$\therefore f(x) = (x-2)^2(3x^2+4x-2)$	

 $-27 \le f(x) \le 37$

Question 137(****+)The function f is defined as

$$f(x) \equiv \frac{x+1}{2x-1}, \quad x \in \mathbb{R}, \quad x \neq \frac{1}{2}.$$

The function g is suitably defined so that

$$f(g(x)) \equiv \frac{3x+2}{3x-5}, \quad x \in \mathbb{R}, \quad x \neq \frac{5}{3}$$

a) Determine an expression for g(x).

The function h is suitably defined so that

$$h(f(x)) \equiv \frac{2x-7}{x-2}, \quad x \in \mathbb{R}, \quad x \neq 2.$$

b) Determine an expression for h(x).

, g	$(x) = \frac{2x-1}{x+3}$, $h(x) = \frac{4x-3}{x-1}$
10.	65
$ \begin{array}{c} f(\mathfrak{g}) = \frac{241}{2\mathfrak{a}-1} & -f(\mathfrak{g}(\mathfrak{g})) = \frac{3\mathfrak{a}_{4}\mathfrak{a}_{2}}{\mathfrak{a}_{3}-\mathfrak{a}_{3}} & \mathfrak{l}(f(\mathfrak{g})) = \frac{2\mathfrak{a}_{-7}}{\mathfrak{a}_{-2}} \\ \mathfrak{a}_{-\mathfrak{c}}\mathfrak{g} & \mathfrak{a}_{+}\mathfrak{f} & \mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{c}\mathfrak{g} & \mathfrak{a}_{+}\mathfrak{f} & \mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{g} & \mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{g} & \mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{g} & \mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{\mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{g} \\ \mathfrak{a}_{-}\mathfrak{g} \\ $	$\Rightarrow \hat{q}(x) = \frac{3+3}{2^{N-1}} \qquad $
$(f_{ij}) = \frac{3\alpha_{i+2}}{2\alpha_{i-2}}$ $\Rightarrow \frac{\beta(\alpha)+1}{2\beta(\alpha)-1} = \frac{3\alpha_{i+2}}{3\alpha_{i-2}}$ $\Rightarrow (\alpha_{i+2}) + \beta\alpha_{i-2} = 2(\alpha_{i+2})\beta_{i-2} - 2(\alpha_{i+2})\beta_{i-2}$	b) $h\left(\hat{f}(\hat{a}) \approx \frac{2k-7}{2k-2}\right)$ • Let $\hat{f}(x) = a$ $\Rightarrow a = \frac{2k+1}{2k-1}$ $\Rightarrow 2a - a = a + 1$
$\Rightarrow (a_1 - 3) = (a_1 + q) = \frac{a_1 + q}{3a_1 + q}$ $\Rightarrow (b_1 - 3) = (a_1 + q) = \frac{a_1 + q}{3a_1 + q}$	$ \implies 2\alpha u - \lambda \approx 4 + i $ $ \implies \chi(2u-i) \approx 4u+i $ $ \implies \chi \approx \frac{4u+i}{2bu-i} $
ALTRENATIVE USING INJURGES find the Invice of first g == 3041 from from for the proceed as follows from the Invice of first	$ \begin{array}{l} \psi(q) \text{ for from } \\ \psi(k) = \frac{2\left(\frac{(k+1)}{2k+1} - 7\right)}{\frac{(k+1)}{2k+1} - 2} \\ \\ & \Longrightarrow \psi(k) = \frac{2(k+1) - 7(2k+1)}{4(k+1 - 2(2k+1))} \end{array} $
$\begin{array}{c} \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots &$	$ \Rightarrow b(a) = \frac{-b_{11} + 4}{-3a + 3} $ $ \Rightarrow b(a) = \frac{4a - 3}{a - 1} (untiple again. Herrich) $ $ \therefore b(x) = \frac{4x - 3}{a - 1} $

**** Question 138

ASINALIS COM I. K.C. Created **b**, $f(x) = \ln\left[\left(x^2 + 1\right)^{\frac{1}{2}} + x\right], x \in \mathbb{R}.$

a) ... $f'(x) = \sqrt{x^2 + x}$ **b)** ... f(x) is an odd function.

a)	$f'(x) = \frac{1}{\sqrt{x^2 + 1}}$.	6.6			G
b)	$\dots f(x)$ is an odd functi	on.	N202	12028	
"Snarp	and since	asnarr	"Snar	proof	21
CO.	n ^{alls} a	n in	$\begin{array}{c} (\mathbf{k}) = \mathbf{k} \left\{ (\mathbf{k}) \right\} = \mathbf{k} \left\{ (\mathbf$	$\begin{array}{c} \left[\left(\left(\lambda^{i} \right)^{l} \right)^{l} \left(\lambda^{i} \right) \right] \\ \left[\left(\left(\lambda^{i} \right)^{l} \right)^{l} \left(\lambda^{i} \right)^{l} \left(\lambda^{i} \right) \right] \\ \left(\left(\left(\lambda^{i} \right)^{l} \right)^{l} \left(\lambda^{i} \right)^{l} \left(\lambda^{i} \right)^{l} \left(\lambda^{i} \right) \\ \left[\left(\left(\lambda^{i} \right)^{l} \right)^{l} \left(\lambda^{i} \right)^{l} \left(\lambda^{i} \right)^{l} \left(\lambda^{i} \right)^{l} \left(\lambda^{i} \right) \\ \left[\left(\left(\lambda^{i} \right)^{l} \right) \\ \left[\left(\left(\lambda^{i} \right)^{l} \left(\lambda^{i} \left(\lambda^{i} \right)$	
· · · · · · · · · · · · · · · · · · ·	1. J. G.p.	1. J. C.	(++)2 /* 10000) >> f(-) =	(a) Pop fundari	Y.C.
120/28 - 5	nado.	11.20/28.		17 ₂₀ ,	
anaths.	Sinaths	, and		le.	II al
		000 1.1			7,
	n.	112.5		B. 172	
120/282	Vallasm C	Created by T. Madas	130/3Sp	40	esp.

(*****) **Question 140**

The function f satisfies

 $2f(x) + 3f\left(\frac{2x+3}{x-2}\right)$ $, x \in \mathbb{R}$. 3x + 1

I.G.B.

(n)

ŀ.C.B.

madasmaths,

00

K.C.A

madasn

The Com

I.G.p.

Find the value of f(9).

nadasm

1. Y. G.B. 11130/281

Smaths.com

I.C.B.

Ż

adasmaths.com

2

Madasmaths.com

I.C.p

Madasm.

Madası

The Com

Parns.co

Ż

0

f(x)

The figure above shows the graph of

i.C.B.

 $f(x) = \frac{5 - 3x}{(x - 1)(x - 3)}, \ x \in \mathbb{R}, \ x \neq 1, 3.$

a) State the equations of the vertical asymptotes of f(x), which are shown as dotted lines in the figure.

[continues overleaf]

Y.C.B.

12

COM

The com

12.8m

[continued from overleaf]

The function g is defined by as

I.F.G.B.

I.C.p

 $g(x) = \frac{5 - 3x}{(x - 1)(x - 3)}, x \in \mathbb{R}, 0 \le x < 1.$

- **b**) Find an expression for $g^{-1}(x)$.
- c) State the domain and range of $g^{-1}(x)$.

 $g^{-1}(x) = \frac{4x - 3 - \sqrt{4x^2 - 4x + 9}}{2x}, \quad x \in \mathbb{R}, \quad x \ge \frac{5}{3}, \quad g^{-1}(x) \in \mathbb{R}, \quad 0 \le g^{-1}(x) \le 1$

(a) 2=1 of 2=3
(b) $y = \frac{5-32}{(5-3)(2-3)}$
$\Rightarrow 9 = \frac{5 - 3x}{x^2 + 4x + 3}$
$\Rightarrow 3^{2}y - 4ay + 3y = 5 - 32 \qquad (9)$
⇒ 3 ² y + 3x-4xy + 3y-5 =0
$\Rightarrow \mathfrak{I}_{\mathcal{Y}}^{\mathfrak{t}} + \mathfrak{X}(\mathfrak{d}-4\mathfrak{y}) + (\mathfrak{Z}_{\mathcal{Y}}-\mathfrak{Z})_{=0}$ $\mathfrak{X}^{\mathfrak{s}}$
$\Rightarrow x = \frac{-(3-4y) \pm \sqrt{(3-4y)^2 - (4y(3y-5))}}{2y}$
$\Rightarrow \alpha = \frac{4y-3 \pm \sqrt{4y^2 - 5y + 5}}{2y}$
= 2 - 3 + 1 1 1 2 - 3 - 2 - 3 - 2 - 3 - 3 - 3 - 3 - 3 -
$(x) = 2 - \frac{3}{24} + \frac{\sqrt{43^2 - 42 + 9^2}}{23} or g(x) = 2 - \frac{3}{24} - \frac{\sqrt{43^2 - 42 + 9^2}}{23}$
$\mathfrak{G}_{\mathcal{T}}^{(n)} = (\mathfrak{F}_{\mathcal{T}}^{(n)}) \mathfrak{L} \mathfrak{H}_{\mathcal{T}} = \mathfrak{L} \mathfrak{H}_{\mathcal{T}} \mathfrak{H}_{\mathcal{T}$
CYECK, BUTH INVESSE TO SEE WHAT SATISFIES THE REWARD POINT
$\therefore g^{-1}(x) = 2 - \frac{3}{2x} - \frac{\sqrt{42^{2} - 42 + 7^{2}}}{2x}$
(c) g(x) g'(x)
D [062<1 2)5 0: Daughi: 2>5
(R) 3(2) 5 (0 < 3(0) < 1) RANE:05 0(2) <1

I.C.B.

mana.

COM

madas,

R
(*****) Question 142

The function f is defined below.

Madasmaths.com

, $x \in \mathbb{R}$. $f(x) \equiv \ln \left| \sin x + \sqrt{2 - \cos^2 x} \right|$

nadasn,

Prove that f is odd.

I. C.B. Madasman

Smarns.com i Kog

na,

I.F.G.B.

adasmaths.com

122	$\left\{ f(x) = \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right\}$
at TOS	Emmini
20.	Let us note that $sim(-z) = -simz$ seas $= (z-)sol$
ac m	1792 WE NOW HAVE
n. Vax	$-\left(-\overline{z}\right) = \ln\left[\sin(-z) + \sqrt{2 - \cos^2(-z)}\right]$
Var Th	$= \ln \left[-\sin 2 + \sqrt{2 - \cos^2 x} \right]$
	$= \left\{ n \left[\frac{\sqrt{2 - (\omega_{3}^{2} + s_{1})} \left(\sqrt{2 - (\omega_{3}^{2} + s_{1})} \right) \right] \right\}$
48	$= \ln \left[\frac{(2 - \log^2 x) - \sin^2 x}{\sqrt{2 - (\log^2 x + \sin^2 x)}} \right]$
· · · · · · · · · · · · · · · · · · ·	= lh [J2-0022 + 5102]
. Oh i	$= \ln \left[\sqrt{2 - \omega 3} + \sin 2 \right]^{-1}$
F. 10	$= -\ln \left[\sqrt{2 - \cos^2 x} + \sin^2 x \right]$
	$= -+(x)$ $As - f(-x) = -f(x) \cdot f(s \text{ onn})$
MALL YE	
SR SN.	60
- U U D	
· . · .	
	x (
N. 420.	da
an Un	· 42
VA Var.	19.0° -
12. ark	~(D_
· 9/2 · · / 0	di
-U.O	
1000	2⊾ ¥J′.
	(h ~ (
× ~())	V X T
SV- IN	51

nadasmaths.com

I.F.C.B.

ths.com

proof

5

the Co

i.G.

nadasmal

Madasn,

Created by T. Madas

Madasmaths.com

I.V.G.B.

120

I.V.G.B.

$$f(x) \equiv \frac{e^{\sin x \cos x} + 1}{e^{\sin x \cos x} - 1}, \ x \in \mathbb{R}.$$

nadasmath

Prove that f is odd.

adasmaths.com

2

madasmaths.com

I.V.C.B. Madash

naths.com

proof

Smarns.co

nadasmal

N.G.

Created by T. Madas

COM

madasmaths.com

I.F.C.B.

Question 144 (*****)

$$f(x) = \frac{\mathrm{e}^{x} - 1}{\mathrm{e}^{x} + 1}, \ x \in \mathbb{R}.$$

a) Show clearly that ...

i. ... f(-x) = -f(x).

- **ii.** ... $f'(x) = \frac{2e^x}{(e^x + 1)^2}$.
- **b**) Explain how the results of part (a) show that $f^{-1}(x)$ exists.
- c) Find an expression for $f^{-1}(x)$.

The function g(x) is defined in a suitable domain, so that

$$fg(x) = \frac{x^2 + 6x + 8}{x^2 + 6x + 10}$$

 $\overline{f^{-1}(x)} = \ln\left(\frac{1+x}{1-x}\right)$

d) Determine the equation of g(x), in its simplest form.

 $g(x) = 2\ln(x+3)$

Ĉ.B.

I.C.P.

I.C.p.

nadasmarna

Com

(*****) **Question 145**

i.

20

The function f satisfies the following three relationships

I.C.P.

$$f(3n-2) \equiv f(3n)-2, n \in \mathbb{N}.$$

ii.
$$f(3n) \equiv f(n), n \in \mathbb{N}$$
.

ii.
$$f(1) = 25$$
.

I.V.C.B. Madasm

Paths Com

I.F.G.B.

Determine the value of f(25).

ŀ.C.p.

The Com

R

Nadasmal

Madasn,

$f(3n-z) \equiv -f(3n)$ $f(3n) \equiv -f(n)$ $f(3n) \equiv -2z - II$	-2 I	- I	
● h= 9 => f(25)	-	f(zr) - z	(BA I)
	11	f(9) - 2	(BY II)
	=	€(3) - 2	(by II)
		f(1) - 2	(BA I)
	=	25 - 2	(ву ш)
		23 /1	
		/	

nadasmaths,

I.F.C.P.

2011

Question 146(*****)The function fis defined as

 $f(x) = -4 + \sqrt{mx + 12}, x \in \mathbb{R}, x \ge -\frac{m}{12},$

where m is a positive constant.

It is given that the graph of f(x) and the graph of $f^{-1}(x)$ touch each other.

Solve the equation

KC,

ic.p.

 $f(x) = f^{-1}(x).$

$\left\{\begin{array}{c} -\left\{ \chi\right\} =-\psi +\sqrt{\psi_{12}+\psi_{2}^{2}}, \chi\in\mathbb{R}, \ \chi\gg-\frac{4\omega}{2}\\ \end{array}\right\}$	1
● If f(d) & f(d) later, THEY MULT MEET ON THE WHE M= 2	
THUS WE WAY SAUSE	
f(x) = x = f(x)	
$-\psi + \sqrt{8\eta x + 12} = \infty$	
$\Rightarrow \sqrt{w_{X+12}} = x+4$	
$\implies M_{1}x + 12 = (x+4)^{2}$	
$= -3 - 10^{2} + 12 = -3^{2} + 8x + 16$	
\Longrightarrow $O = \mathcal{X}^2 + (\mathfrak{B} - \mathfrak{b}_1) \mathcal{X} + \mathcal{U}$	
) IF THE TWO GRAPHS TRUCH EACH OTHER, THEY MULT ALSO THE WHE $y\!=\!x$	
⇒ b2-4ac =0 34 / 18=2	
\Rightarrow $(8-w)^2 - 4x(x) = 0$	
$\Rightarrow (8-lm)^2 - 16 = 0$	
$\Rightarrow (8 - w_1)^2 = 16$	
= 8-m = < 4.	
$\Rightarrow -iM = < -i2$	4
$\Rightarrow m = 4_{12}$	
	-

e = w = d	IF 7M=12.
$\chi^{2} + (8 - M)\chi + 4 = 0$	$\mathcal{X}^2 + (\beta - u_1)\mathcal{X} + \mathcal{U} = 0$
$x^2 + 4x + 4 = 0$	$x^2 - 4x + 4 = 0$
$(x+2)^2 = 0$	$(2-2)^2 = 0$
3.=-2_	3.= 2.
$x \ge -\frac{M}{2}$	$\Im \ge -\frac{w_1}{12}$
$x \ge -\frac{1}{3}$	$\mathcal{F} \ge -1$
i. a≠-2	ONLY SOUTION 2=2

 $x = \pm 2$

Question 147 (*****)

The functions f and g are defined by

$$f(x) \equiv \cos x, \ x \in \mathbb{R}, \ 0 \le x \le \pi$$

 $g(x) \equiv 1 - x^2, \ x \in \mathbb{R}.$

a) Solve the equation

KR

F.G.B.

 $fg(x) = \frac{1}{2}.$

b) Determine the values of x for which $f^{-1}g(x)$ is **not** defined.

 $x = \pm \sqrt{1 - \frac{\pi}{6}}$

KR,

 $x < -\sqrt{2}$ or $x > \sqrt{2}$

(*****) Question 148 The function f is defined

$$f(x) = \sqrt{4-x} , x \in \mathbb{R}, x \le 4.$$

It is further given that

$$f(x) = \sqrt{4-x}, x \in \mathbb{R}, x \le 4.$$
$$fg(x) = \sqrt{4+2x}, x \in \mathbb{R}, x \ge -2.$$

$$hf(x) = x - 4, x \in \mathbb{R}, x \le 4$$

for some functions g(x), $x \in \mathbb{R}$ and h(x), $x \in \mathbb{R}$.

Find simplified expressions for ...

 $\dots g(x)$. a)

b) ... h(x).

I.G.B.

ŀG.p.

,	$g(x) = -2x , h(x) = -x^2$

f(x)= 14-00	$-(g(a)) = \sqrt{4+2a}$
$\implies f(g(x)) = \sqrt{4+2x}$	ATTRALAT
$\Rightarrow \sqrt{4-80} = \sqrt{4+21}$	87 IN24
\Rightarrow 4-g(x) = 4+2x	TRAVE

 $f(g(x)) = \sqrt{4+2x}$ f(f(g(x))) = f((4+2x)) $\mathfrak{g}(\mathfrak{X}) = 4 - (\sqrt{4+2\mathfrak{X}})$ g(x) = 4 - (4 + 2x)g(x) = -2x

hs.com

COM

nadasm

6

12

F.G.B.

$f(x) = \sqrt{4-x^2}$	h(f(x)) = x - 4
$\implies h(f(x)) = x$	-4
$\implies h\left(\sqrt{4-x^2}\right) =$) 4.
Let u= J4	-2
u ² = 4	- 2
$\partial = 0$	-112

Question 149 (*****)

The functions f and g are defined by

$$f(x) = \begin{cases} x^2, & x \in \mathbb{R}, \ 0 < x \le 1 \\ 2 - x, & x \in \mathbb{R}, \ 1 < x \le 2 \end{cases}$$

$$g(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

- a) Find expressions for the function compositions fg(x) and gf(x), giving full descriptions of their domains.
- **b**) Sketch the graphs of the function compositions fg(x) and gf(x), and hence state the ranges of fg(x) and gf(x).

Question 150 (*****)

 $f(x) = x \ln \left[\left(x^2 + 1 \right)^{\frac{1}{2}} + x \right] - \left(x^2 + 1 \right)^{\frac{1}{2}}, x \in \mathbb{R}.$

?0M

Show clearly that ...

COM

I.V.G.B.

2

a) ... $f'(x) = \ln\left[\left(x^2 + 1\right)^{\frac{1}{2}} + x\right]$.

b) ... f'(x) is an odd function.

I.F.G.B.

1.1.6.13

, proof

(D)]]

$$\begin{split} \frac{1}{2}(r^{2}\Omega) &= \left[\frac{1}{2} \frac{1}{2} (r^{2}\Omega) x \right]_{X} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} = c.c. + \left[c.c. \frac{1}{2} (r^{2}\Omega) \right]_{X} \left[c.c(\Omega) \right]_{X} \quad 0 \\ \frac{1}{2} (r^{2}\Omega) &= -\frac{c.c. \frac{1}{2} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. + \frac{1}{2} (r^{2}\Omega)} = \frac{1}{c.c. + \frac{1}{2} (r^{2}\Omega)} \left[d = (\Omega) \right]_{X} \\ \frac{1}{2} \frac{c.c. - c.c. \frac{1}{2} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. + \frac{1}{2} (r^{2}\Omega)} = \left(c.c. \frac{1}{2} (r^{2}\Omega) \right)_{X} = (\Omega) \right]_{X} \\ \frac{1}{2} \frac{c.c. - c.c. \frac{1}{2} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. - (r^{2}\Omega)} = \frac{1}{c.c. + \frac{1}{2} (r^{2}\Omega)} \left[d = (\Omega) \right]_{X} \\ \frac{1}{2} \frac{c.c. - c.c. \frac{1}{2} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. - (r^{2}\Omega)} = \frac{1}{c.c. + \frac{1}{2} (r^{2}\Omega)} \left[d = (\Omega) \right]_{X} \\ \frac{1}{2} \frac{c.c. - \frac{1}{2} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. - (r^{2}\Omega)} = \frac{1}{c.c. + \frac{1}{2} (r^{2}\Omega)} \left[d = (\Omega) \right]_{X} \\ \frac{1}{2} \frac{c.c. - \frac{1}{2} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. - (r^{2}\Omega)} = \frac{1}{c.c. + \frac{1}{2} (r^{2}\Omega)} \left[d = (\Omega) \right]_{X} \\ \frac{1}{2} \frac{c.c. - \frac{1}{2} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. - (r^{2}\Omega)} \\ \frac{1}{2} \frac{c.c. - \frac{1}{2} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. - (r^{2}\Omega)} \\ \frac{1}{2} \frac{c.c. - \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. - (r^{2}\Omega)} \\ \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} = \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{d - \frac{1}{c_{1}r_{1}^{2}\Omega^{2}}}{c.c. - (r^{2}\Omega)} \\ \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \\ \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \\ \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \\ \frac{1}{c_{1}r_{1}^{2}\Omega^{2}} \frac{1}{c_{$$

 $= \ln \left[\frac{(2^{k+1})^{k+2}}{(2^{k+1})^{k}+2} \right] = \ln \left[\frac{(2^{k+1})^{k}+2}{(2^{k+1})^{k}+2} \right]$ $= \ln \left[\frac{(2^{k+1})^{k}+2}{(2^{k+1})^{k}+2} \right]^{-1} = -\ln \left[\frac{(2^{k+1})^{k}+2}{(2^{k+1})^{k}+2} \right]$

= - fá) ... fá) u obd

I.F.G.B.

20

P.C.P.

Question 151 (*****)

The piecewise continuous function f is given below.

$$f(x) \equiv \begin{cases} 2x-2 & x \le 5\\ x+3 & x > 5 \end{cases}$$

a) Determine an expression, in similar form to that of f(x) above, for the inverse

function, $f^{-1}(x)$.

b) Sketch a detailed graph for the composition ff(x).

Question 152 (*****)

F.G.B.

Ĉ.B.

The function f is defined as

 $f(x) \equiv 4x^3 - 12x^2 + 8x, \quad x \in \mathbb{R}, \ 0 \le x \le 3$

Con

201

.C.b.

Find the range of f, and hence sketch its graph, showing clearly the coordinates of any relevant points.

Question 153 (*****)

 $f(x) \equiv \frac{x-k}{x^2-4x-k}, \quad x \in \mathbb{R}, \quad x^2-4x-k \neq 0,$

where k is a constant.

F.G.B.

Ĉ.p

Given that the range of the function is all the real numbers determine the range of possible values of k.

 $\frac{\alpha - k}{\alpha^2 - 4 \kappa - k}$, $\alpha \in \mathbb{R}$, $\alpha^2 - 4 \kappa - k + 0$ $(2-k)^2 - (4+k) \leq 0$ 4-46+62-4-6 0 WETTE IN & NOTATION ARE SIMPLICITY k²− 5K ≤0 $\mathfrak{Y} = \frac{\alpha - k}{\alpha^2 - \mathfrak{Y} \alpha - \kappa}$ $k\left(\,k-S\right)\leqslant o$ $yz^2 - 4zy - ky = x - k$ ya2- 4yx -x+k-ky=0 ga2-x(4y+1) + k(1-y)=0 BEMIND THE DUDENINANT OF THE QUADDATIC IN 2, VIEWS
$$\begin{split} b^2 - 4ac &= \left[-(\underline{H}y + I) \right]^2 - \underline{H}y \underline{k} (J - \underline{y}) \\ &= \left[\underline{h} \underline{y}^2 + \underline{\theta} \underline{y} + I - \underline{q} \underline{k} \underline{y} + \underline{k} \underline{k} \underline{y}^2 \right] \end{split}$$
 $=((l_{0}+l_{0}l_{0})q^{2}+(l_{0}-l_{0}l_{0})q+l_{0}$ The discremental wat produce cautals \mathfrak{X} for the VANKS of of Gall. The $\left[(\kappa + 4k)g^2 + (\mathfrak{F} - 4k)g + 1\right]$ SO THE GOART OF THE ABOVE THAT AS AN GOT TOUCHING $b^{2}-\mathrm{Hac}\leqslant 0$ HUGHIN 2/177 $\Rightarrow ((1-44)^2 - 4(16+44) \times 1 \leq 0$ \implies $|b(2-k)^2 - b(4+k) \leq 0$

 $0 \le k \le 5$

C.B.

(*****) Question 154

Created by T. Madas
****)
$$f(x) = \frac{1}{x^{100} + 100^{100}} \sum_{r=1}^{100} (x+r)^{100}, x \in \mathbb{R}, x \ge 0.$$

Use a formal method to find the equations of any asymptotes of f(x).

ASTRAINS.CO.

I.V.

(*****) Question 155

The functions f and g are defined in the largest possible real domain and their equations are given in terms of a constant k by

$$f(x) = \frac{(3k^2+1)x-k+1}{x-k+3}$$
 and $g(x) = \frac{7x+4k}{4x+10}$

Given that f and g are identical, determine the possible value or values of k.

 $f(x) = \frac{(3k^{2}+1)x - k+1}{x - k + 3}$ $g(x) = \frac{7x + 4k}{4x + 10}$ · GROATING [x] ≠ 4(342+1)=7 $\Rightarrow 10(3k+1) + 4(1-k) = 4k + 7(3-k) \longrightarrow 10(1-k) = 4k(3-k)$ Metho A 32+1=7 == 30k2+10+4-4k = 4k+21 ⇒ 3t²= 3 COOKING AT THE AS - 31/2a_k+3 $\Rightarrow k^2 = \frac{1}{4}$ ⇒(1sk+7)(2k-1) = c 5-k+3= K= < WHEN THIS VALUE FOR FACH OF TH . function are identical if k= 1 , with de $-\left(\chi\right) = \frac{\left(3\left(\frac{1}{2}\right)^2 + 1\right)\chi - \frac{1}{2} + 1}{\chi - \frac{1}{2} + 3} = \frac{\frac{7}{4}\chi + \frac{1}{2}}{\chi + \frac{5}{4}} = \frac{7\chi + 2}{4\chi + 10}$ $g(x) = \frac{7x + 4(\frac{1}{x})}{4x + 10} = \frac{7x + 2}{4x + 10}$ THE FUNCTIONS ARE IDENSILIAL IF K= 1 , WITH D METHOD B SET THE TWO FAUGULAR
 Construction of the construction $\Rightarrow \frac{(3l^2+l)x+(l-k)}{x+(3-k)} = \frac{7x+lk}{4x+l0}$ $\Longrightarrow \left[\left(\partial \mathcal{E}_{H} \right)_{\mathcal{I}} + \left(\iota - k \right) \right] \left[d_{\mathcal{I}} + \iota_{\mathcal{D}} \right] = \left[\mathcal{L} + \left(\iota_{\mathcal{I}} - k \right) \right] \left[\mathcal{L}_{H} + \ell_{\mathcal{L}} \right]$ $\Rightarrow 4(3\ell^2 t_1)x^2 + [10(3\ell^2 t_1)+4(1-k)]x + to(1-k) = 7x^2 + [14k+7(3-k)]x + 4k(1-k)]x$

k =

· EQUATING [x°]

- 4k2-22K+10=0

=> (2k-1)(2-5)=0

 $\implies k < \leq \frac{1}{2}$

= 2K2-11k +5=0

Question 156 (*****)

The function f is defined by

$$f(x) = 2 - \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

a) Prove that

I.G.B.

i C.B.

$$x^{n}(x) = \frac{(n+1)x - n}{nx - (n-1)}, \ n \ge 1$$

where $f^{n}(x)$ denotes the n^{th} composition of f(x) by itself.

b) State an expression for the domain of $f^n(x)$.

n-1 $x \in \mathbb{R}, x \neq$

m

madasn.

(a) $\Phi_{1}^{(1)}(x) = \frac{(1+1)x-1}{(x-(1-1))} = \frac{2x-1}{x} = 2-\frac{1}{x} = \frac{1}{2}(x)$

F.G.B.

 $f_{(2)}^{(2)} = \frac{(2+1)_{2,-2}}{2\alpha_{-}(2-1)} = \frac{3\alpha_{-}-2}{2\alpha_{-}1} \qquad \text{ or PHOT HADS GR } n=1_{1,2}.$

SUPPOSE THE BOOM HOUSE ER N= KEN

• $f_{(2)}^{k} = \frac{(k+1)a-k}{ka-(k-1)}$

 $\begin{array}{l} \bullet \ \left(\begin{matrix} u_{1}^{bel} \\ (\lambda) \end{matrix} \right) = \ \left\{ \begin{matrix} \left(\begin{matrix} u_{1}(\lambda) - k \\ (\lambda - (\nu_{1}) \end{matrix} \right) \end{matrix} \right) = 2 & - \begin{matrix} u_{1} \\ (\mu_{1}(\lambda) - k \end{matrix} \right) \\ \begin{matrix} u_{2} & - (\lambda_{1}) \end{matrix} \\ \begin{matrix} u_{2} & - (\lambda_{2}) \end{matrix} \\ \end{matrix} \\ \begin{matrix} u_{2} & - (\lambda_{2}) \end{matrix} \\ \end{matrix} \\ \begin{matrix} u_{2} & - (\lambda_{2}) \end{matrix} \\ \end{matrix} \\ \begin{matrix} u_{2} & - (\lambda_{2}) \end{matrix} \\ \end{matrix} \\ \end{matrix} \end{matrix} \\ \end{matrix} \end{matrix} \right)$ = $\left(\begin{matrix} u_{2} & u_{2} & - (\lambda_{2}) \end{matrix} \\ \begin{matrix} u_{2} & u_{2} & - (\lambda_{2}) \end{matrix} \\ \end{matrix} \\ \begin{matrix} u_{2} & u_{2} & - (\lambda_{2}) \end{matrix} \\ \end{matrix} \\ \end{matrix} \\ \end{matrix} \right)$

This if THE ROUT HERE WE WILK $\in \mathbb{N} \Rightarrow$ THE ROUT AND HERE BE WILK! SAVE THE ROUT HERE WE RE $\mathbb{N}_{+} \in \mathbb{N}$

 $\begin{array}{c} (\underline{J}) & \text{RESTRUCTION IN JUSTICE MATCHING IN M$

Question 157 (*****)

I.C.B.

ŀ.C.p.

The real functions f and g have a common domain $0 \le x \le 4$, and defined as

 $f(x) \equiv (x-1)(x-2)(x-3)$ and $g(x) \equiv \int_0^x f(t) dt$.

Use a detailed algebraic method to determine the range of g.

f(x) = (x-1)(x-2)(x-3)0 4 2 54 $g(\alpha) = \int_{-\infty}^{\infty} f(t) dt$ 05254 FIRSTY TIDY -fc) $+(\alpha) = (\alpha - 1)(\alpha^2 - \alpha + \alpha) =$ $\frac{x^{3} - 5x^{2} + 6x}{-x^{2} + 5x - 6}$ $\frac{x^{3} - 6x^{2} + 11x - 6}{-x^{2} + 11x - 6}$ OF OF THE FUN A(0) . $\int_{-}^{-} f(t) dt = 0$ $\mathscr{G}(4) = \int_{0}^{4} f(\theta) d\theta = \int_{0}^{4} t^{3} - 6t^{2} + 1|t - 6 dt$ = $\left[\frac{1}{2}t^{4} - 2t^{3} + \frac{11}{2}t^{2} - 6t\right]_{0}^{4}$ $=\left(\frac{1}{4}x\psi^{4}-2x\psi^{2}+\frac{11}{2}x\frac{8}{6}-6x\psi\right)-c$ - 43- 2x43 + 88 - 24

\$ g(0)= g(4) = 0

NEXT LOOK FOR STATIONARY POINTS g'(x) = f(x)STATIONARY AT 2= 2 : $g(t) = \left[\frac{1}{2}t^4 - 2t^3 + \frac{1}{2}t^2 - 6t \right]$ $=\left(\frac{1}{4}-2+\frac{11}{2}-6\right)-0=\frac{1-8+22-24}{4}=-\frac{4}{4}$ $g(z) = \left[\frac{1}{4} t^4 - 2t^3 + \frac{11}{2} t^2 - 6t \right]_0^2$ = (4-16+22-12)-0 = -2 $\vartheta(b) = \left[\frac{1}{4} t^4 - 2t^3 + \frac{1}{2} t^2 - 6t \right]_0^3$ $= \left(\frac{81}{4} - 54 + \frac{99}{2} - 18\right) - 0 = \frac{81 - 216 + 198 - 72}{4} = -\frac{9}{4}$ AGO IS CONSIGNED THE NAMES OF OF ARE SUBUNICAD ZI GOB DETRUINE THE DANCE <u>AUTENATIONY</u> DETERMINE THE NATURE U14 CAULUS $\underline{A}''(\mathbf{x}) = -\underline{f}'(\mathbf{x}) = (\underline{\alpha}_{-2})(\mathbf{x}_{-3}) + (\underline{\alpha}_{-1})(\underline{\alpha}_{-3}) + (\underline{\alpha}_{-1})(\underline{\alpha}_{-2})$

I.C.B.

 $\frac{9}{4} \le g(x) \le 0$

Question 158 (*****)

The functions f and g are each defined in the largest possible real number domain and given by

 $f(x) = \sqrt{x - \sqrt{x^2 - x - 2}}$ and $g(x) = \sqrt{x - \sqrt{x + x^2}}$

proof

By considering the domains of f and g, show that fg(x) cannot be formed.

Question 159 (*****)

KG

The function f, defined for all real numbers, satisfies the following relationship

$$f(x) + 4f(-x) \equiv 1 + x^2 \int_{-1}^{1} f(u) du$$

 $\int_{-1}^{1} f(x) \, dx \, .$

Determine as an exact fraction the value of

 $\int_{1}^{1} dx + \int_{1}^{2\pi i} x^{2} \int_{1}^{1} dx$ f(u) du di $\Longrightarrow \int_{-1}^{1} f(\Omega) \, dx + \psi \int_{-1}^{1} f(\Omega) \, dx = \int_{-1}^{1} x \int_{-1}^{1} f(\Omega) \, dx = \int_{-1}^{1} x^{2} \, dx.$ $\implies 5 \int_{-1}^{1} f(x) \, dx = (-(-)) + \left(\int_{-1}^{1} f(u) \, du \right) \left(\frac{1}{3} x^{3} \right)_{-1}^{1}$ $\Rightarrow 5 \int_{-1}^{1} f(x) dx = 2 + \left[\int_{-1}^{1} f(u) du \right] \left(\frac{1}{2} - \left(-\frac{1}{2} \right) \right)$ $g \leq \int_{-1}^{1} f(\alpha) d\alpha = 2 + \frac{2}{3} \int_{-1}^{1} f(\alpha) d\alpha$ BUT $\int_{-t}^{t} f(x) dx = \int_{-t}^{t} f(x) d\alpha = \int_{-t}^{t} f(t) dt = \int_{-t}^{t} f(t) dt = \dots$ $\Rightarrow \frac{13}{3}\int_{-1}^{1} f(a) dx = 2$ $\int_{-1}^{1} - \frac{1}{10} dx = \frac{6}{10}$

Y.C.P.

1.0.

 $\frac{6}{13}$

Question 160 (*****) The function y = f(t) is defined by the integral

 $f(t) \equiv \int_0^1 (x-t)^2 + t^2 \, dx \, , \quad t \in \mathbb{R} \, , \ t \ge 0 \, .$

nadasn,

2011

I.F.G.B.

1.1.6.5

Determine the range of y.

202.50

20

asmaths.com

I.Y.C.B. Mada

Smaths.com

I.F.G.B.

COM

112.51

COM

I.F.G.B.

Created by T. Madas

Madasmath

0

2011

L.C.P.

Question 161 (*****) The function $y = f(x), x \in \mathbb{R}$ satisfies

I.V.G.B. Ina

ŀG.B.

 \diamond

 $f(x)+2f(2-x)=x^2, t \in \mathbb{R}, t \ge 0.$

202.81

?0M

Determine a simplified expression for y = f(x).

I.C.B.

$f(a) + 2f(2-a) = a^2$

- $\text{ let } x = 2 y \implies y = 2 x$
- $f(2-y) + 2 f(y) = (2-y)^2$ DEDURITH BOTH, IN & LOWARDAN ANALAHOUE SAY AL

 $f(x) = \frac{1}{3}x^2 - \frac{1}{3}x^$

inn

 $\frac{8}{3}x +$

2012.50

ng

By SUBSTITUTION)

30

I.C.p

F.G.B.

- $\Rightarrow f(u) + 2\left[(2-u)^2 2f(u)\right] = u^2$ $\Rightarrow f(u) + 2(2-u)^2 4f(u) = u^2$
- $\Rightarrow +(u) + 2(2-u)^{2} (u+(u)) = u^{2}$ $\Rightarrow 2((u^{2}-4u+u)) - u^{2} = 3+(u)$
- $\Rightarrow 4^2 8a + 8 = 3 f(a)$
- $= \frac{1}{2} + \frac{$

The figure above shows the graph of the function f(x), consisting entirely of straight line sections. The coordinates of the joints of these straight line sections which make up the graph of f(x) are also marked in the figure.

Given further that

 $\int_{-2}^{2} k + f(x^2 - 4) \, dx = 0 \, ,$

determine as an exact fraction the value of the constant k.

k + f(x2-4) dr

Created by T. Madas

Question 163 (*****)

 $f(x) \equiv \frac{1}{k} \left(x^2 - 1 \right) \left(x^2 - 9 \right), \ x \in \mathbb{R}, \ k \in \mathbb{N}.$

Determine the solution interval (n,k), $n \in \mathbb{N}$, so that the equation

 $\left|f\left(x\right)\right|=n\,,$

has exactly n distinct real roots.

K.C.

f(x) = n, roots.	m Mari
(n,k) = (8,1) = (6,2)	2) = (4,4) = (5,2) = (6,2) = (7,2)
$\begin{cases} (1) = \frac{1}{1} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right) \left($	• NOW WORKING AT THE South a $ \{00\} =h \leftarrow Roots B_{7}B_{1}H_{1}Z$ IF $R=2$. $\frac{16}{15} > 2 \longrightarrow \frac{16}{15} < \frac{1}{2}$ $\implies k < 8$ IF $h=1$. $\frac{16}{15} = 4 \longrightarrow \frac{16}{15} + \frac{16}{15}$ IF $h=6$. $\frac{1}{6} < 6 < \frac{16}{15}$ $\frac{1}{6} < c < \frac{16}{15} < c < \frac{16}{15} > 6$ $\frac{1}{6} < c < c < \frac{16}{15} > 6$ $R > \frac{1}{2}$ or $k < \frac{3}{2}$ R = 17. $R > 15$
• How we the maint at $a=\pm\sqrt{r}$, with $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)(r-1)$ $f(t=1)=\frac{1}{2}(r-1)(r-1)(r-1)(r-1)(r-1)(r-1)(r-1)(r-1)$	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
(-6), E)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

's.com

F.C.P.

20

•1