Created by T. Manas EXPONENTIALS & EXPL. & LOGARITHMS EXAMQUESTIONS TH I.Y.C.B. Madasmanning I.Y.C.B. Madasu

Question 1 (**) Solve the equation

 $5 + e^{2x-4} = 7$

giving the answer in the form $k + \ln \sqrt{k}$, where k is an integer.

Question 2 (**)

A new antibiotic is tested by spraying it on a lab dish covered in bacteria.

Initially 12000 bacteria were placed on the dish and 24 hours later this number has fallen to 2000.

The number of bacteria N on this lab dish reduces according to the equation

 $N = A e^{-kt}, t \ge 0,$

where t is the time in hours since the bacteria were first placed on the dish and, A and k are positive constants.

a) Show that k = 0.07466, correct to 4 significant figures.

b) Find the value of t when the bacteria will reach 1000.

and the second s	
N= Ae	N= bactria t= but (kuns) t= 0 N=12000 t=24 N= 2000
$\begin{array}{l} \textbf{0} \mid 1200 = 4, e^{\circ} \\ & \underbrace{4 \leq 12000}_{k} \\ & \underbrace{1 \leq 1200}_{k} \\ & 1 \leq$	$(\bullet) \qquad \qquad$

 $t \approx 33.3$

k = 2

Question 3 (**)

Find, in exact form where appropriate, the solution of each of the following equations.

- **a**) $e^{2x} = 9$
- **b**) $\ln(4-y) = 2$
- c) $\ln t + \ln 3 = \ln 12$

Question 4 (**)

A preservation programme, for elephants in Africa, was introduced 8 years ago. The elephants were then released to the wild. Let t be the number of years since the start of the programme.

The population of elephants P, is given by

$P = 400 \,\mathrm{e}^{\frac{1}{12}(t-8)} \,, \ t \ge 0 \,.$

Assuming that P can be treated as a continuous variable, find ...

- a) ... the number of elephants when the programme started.
- **b**) ... the number of elephants released to the wild.
- c) ... the value of t when the number of elephants will reach 1000.

205, |400|, t = 19

- the f=400 $\frac{1}{2}^{(6-4)}$ = 25.30... ≈ 265 for each of the f=400 $\frac{1}{2}^{(6-4)}$ = 400 e⁶ = $\frac{1}{2}$ = $\frac{1}{2$
- ⇒ 12/14 = t-8 ⇒ t = 8+12/14 = ~ 19

Question 5 (**)

The value $\pounds V$ of a certain model of car, t years after it was purchased, is given by

$$V = B e^{-kt}, t \ge 0$$

where B and k are positive constants.

The value of the car when new was $\pounds 21000$ and after five years it dropped to $\pounds 5000$.

Find the value of B and the value of k.

54 h	
B = 21000), $k \approx 0.2870$
90.	
SU R-KU	@ WHEN +- 5 V- 5
0 t=0 V=21000	$\frac{1}{2} = e^{-sk}$
B = 24000	$ P\left(\frac{2}{51}\right) = 2k$ $\frac{2}{51} = e_{2k}$
V= 210ton	K==1m(ジ) ~ 0.2870

Question 6 (**) A curve has equation

 $y = Ae^{kx}$

A=4,

 $k = \frac{1}{6} \ln 2$

y = 128

where A and k are non zero constants.

The curve passes through the points (0,4) and (12,16).

- **a**) Find the value of A and the exact value of k.
- **b**) Determine the value of y when x = 30

Question 7 (**)

A cup of coffee is cooling down in a room.

The temperature T °C of the coffee, t minutes after it was made is modelled by

$$T = 20 + 50 \,\mathrm{e}^{-\frac{t}{15}}, \ t \ge 0$$

- a) State the temperature of the coffee when it was first made.
- **b**) Find the temperature of the coffee, after 30 minutes.
- c) Calculate, to the nearest minute, the value of t when the temperature of the coffee has reached 35°C.

T = 70, 26.8°C, t = 18

() T= 20+50eist	(() whim T=35
· WHM t=0	$f_{3}^{\pm} = 22 + 20 = 2\xi$ $f_{3}^{\pm} = 20 = 2 \downarrow \iff$
T = 20 + 50 $T = 70^{\circ}C$	$ = \frac{3}{10} = e^{\frac{1}{10}t} $ $ = e^{\frac{1}{10}t} $
(b) • When $t=30$ $T=20+50e^{-2}$	$\Rightarrow h(g) = \frac{1}{2}t$
T≈ 26.8 ℃	$\Rightarrow \pm \sim 18$

Question 8 (**+)

Find, in exact form where appropriate, the solution of each of the following equations.

- **a**) $4-3e^{2x}=3$
- **b**) $\ln(2w+1) = 1 + \ln(w-1)$

 $x = -\frac{1}{2}\ln 3 \approx -0.549$, $w = -\frac{6}{2}$

w =	$\frac{e+1}{e-2}$	≈ 5.18	

(a) $4 - 3e^{23} = 3$	(b) $h_1(2N+1) = 1 + h_1(N-1)$
$\Rightarrow 1 = 3e^{2x}$	$\Rightarrow \ln(2n+1) - \ln(n-1) = 1$
$= \frac{1}{3} = e^{2k}$	$\Rightarrow \left \eta \left(\frac{2\eta + 1}{\eta - 1} \right) \right = 1$
$=9\ln\frac{1}{3}=22$	$\frac{1}{2m+1} = e_1$
=> a= ±m5	⇒ 2m+1 = em-e
⇒ x=-2m3 × -0.599	= e+1 = ew-2w
	\implies e+1 = $W(e-2)$
	$\forall w = \frac{e+1}{e-2} \approx 5.18$

Question 9 (**+)

A microbiologist models the population of bacteria in culture by the equation

$$P = 1000 - 950e^{-\frac{1}{2}t}, t \ge 0$$

where P is the number of bacteria in time t hours.

- a) Find the initial number of bacteria in the culture.
- **b**) Show mathematically that the limiting value for P is 1000.
- c) Find the value of t when P = 500.

CA.		
P - 50		$t \sim 1.28$
$I_0 - 50$,	$i \sim 1.20$
	-	1. Contract of the second s

(a)	P=1000-900-22t	(c) • P= 500
	@ t=0 P=1000-950e" P= 50	$ \begin{array}{c} 500 = 1000 - 950e^{\frac{1}{2}t} \\ \Rightarrow 950e^{\frac{1}{2}t} = 500 \\ \Rightarrow -tt \end{array} $
(L)	As two entropy	$ \Rightarrow e^{\frac{1}{2}} = \frac{1}{2} 1$
	P -> 1000	\Rightarrow t= 2b($\frac{h}{2}$) ≈ 1.28

Question 10 (**+) It is given that

 $\frac{7}{4}\ln 16 - \frac{2}{3}\ln 8 \equiv k\ln 2.$

Determine the value of k.

k=5

 $\begin{array}{l} \frac{1}{4} [hb - \frac{2}{3} hb = \frac{1}{4} \times [h2^4 - \frac{2}{3} \times [h2^4 - \frac{2}{3} \times h2^4 - \frac{2}{3} \times h2^4 + \frac{1}{3} \times h2^4 + \frac{1}$

Question 11 (**+)

The function f is given by

 $f(x) = 4 - \ln(2x - 1), x \in \mathbb{R}, x > \frac{1}{2}.$

- **a**) Find an expression for $f^{-1}(x)$, in its simplest form.
- **b**) Find the exact value of ff(1).
- c) Hence, or otherwise, solve the equation f(x) = ff(1).

 $f^{-1}(x) = \frac{1}{2}(1+e^{4-x})$, $ff(1) = 4 - \ln 7$, x = 4

(a) $y = 4 - \ln(2x - 1)$	(b) \$(\$(0)= \$(4-br)
$\Rightarrow h(2x-1) = 4-y$	= +(4)
$\Rightarrow 2\alpha - 1 = e^{4-3}$ $\Rightarrow 2\alpha = 1 + e^{4-3}$	= 4-ly7
$\Rightarrow \propto = \frac{1}{2}(1+e^{4-q})$	$\Rightarrow \ln(2x-1) = \frac{4}{107}$
$1/2$ $f(x) = \frac{1}{2}(1+e^{4-x})$	= 22-1 = 7

Question 12 (***)

Find, in exact form where appropriate, the solution of each of the following equations.

- **a**) $e^{2x+1} = 4$
- **b**) $\ln(4y+1) = 2$
- c) $2\ln t + \ln 3 = \ln(5t+2)$

The second s		
$x=\frac{1}{2}\left(-1+\ln 4\right),$	$y = \frac{1}{4} \left(e^2 - 1 \right)$, t=2

(a) e = 4	(b) In(4y+1)=2	() 2/mt +/m3=/m(5++2)
⇒ 20c+1 = hn4 ⇒ 20c - 1 1 hull	$\Rightarrow 4y + 1 \ge e^2$ $\Rightarrow 4y = e^2 - 1$	$\Rightarrow ht_+ _{h3_=} _{h(st+2)}$
$\Rightarrow 2 = \frac{1}{2}(-1+\ln 4)$	$\Rightarrow y = \frac{1}{4} \left(e^2 - i \right) / $	$\Rightarrow \ln(3t^2) = \ln(5t+2)$ $\Rightarrow 3t^2 = 5t+2$
	//	⇒ 3t-st-2=0
		te 2

Question 13 (***)

Find, without the use of a calculating aid, the solution of the equation

 $x\ln 9 + \ln 28 = \ln 12 + x\ln 49$

giving the answer as an exact fraction.

$\begin{array}{l} \Sigma h\eta^{q} + [h28 = [h]2 + \lambda h49 \\ \Rightarrow \lambda h9 - \lambda h49 = [h]2 - [h28 \\ \Rightarrow \lambda (hq - [h49) = [h2 - h28 \\ \Rightarrow \lambda (hq - [h49) = (h2 - h28 \\ hq - h49) \end{array}$	$\begin{cases} \Rightarrow \alpha = \frac{\ln \frac{h_{\chi}}{h_{\chi}}}{\ln \frac{q}{q}} = \\ \Rightarrow \alpha = \frac{\ln \frac{h_{\chi}}{h}}{2 \ln \frac{h_{\chi}}{q}} \\ \Rightarrow \alpha = \frac{1}{2 \ln \frac{h_{\chi}}{q}} \end{cases}$	$\frac{\ln\frac{3\gamma_{7}}{\gamma_{7}}}{\ln\frac{3}{\gamma_{7}}}$
--	---	---

 $x = \frac{1}{2}$

1+

Question 14 (***) Rearrange each of the following equations for *x*.

a) $y = \ln(x-2) + 3$, $x \in \mathbb{R}$, x > 2

b) $y = \frac{1}{2} \left(e^{x-4} + 3 \right)$

(a) $y = \ln(x-2) + 3$	(b) y= 1/(ex+4)
=> y-3= ln(2-2)	$\Rightarrow 2y = e^{x-4} + 3$
=) e = 1-2 =) e +2 = x	\Rightarrow $2y-3 = e^{2-4}$ \Rightarrow $h(2y-3) = 2-4$
=) = 2+e ^{y-3}	$\Rightarrow 4 + ln(2g-3) = 2$
	$\Rightarrow \alpha = 4 + h(2y-3)$

Question 15 (***)

A liquid is cooling down and its temperature θ °C satisfies

$$\theta = 20 + 30e^{-\frac{t}{20}}, t \ge 0$$

where t is the time in minutes after a given instant.

Find the value of t when the temperature of the liquid has reduced to half its initial temperature.

t = 35.8

Question 16 (***)

A car tyre develops a puncture.

The type pressure P, measured in suitable units known as p.s.i., t minutes after the type got punctured is given by the expression

$$P = 8 + 32 e^{-kt}, t \ge 0,$$

where k is a positive constant.

a) State the tyre pressure when the tyre got punctured.

The tyre pressure halves 2 minutes after the puncture occurred.

- **b**) Show that k = 0.4904, correct to 4 significant figures.
- c) Calculate the time it takes for the tyre pressure to drop to 12 p.s.i.
- d) Find the rate at which the pressure of the tyre is changing one minute after the puncture occurred.

P = 40, $t \approx 4.24$, -9.61 p.s.i/min

() P= 8+32e ^{kt}	> G) P= 8+ 32 e 4904t
when too	==> 12 = B + 3200-0-49045
P= 8 + 32e° P=40	$\begin{cases} \Rightarrow 4 = 3e^{-6.4709t} \\ \Rightarrow e = e^{-6.4704t} \\ \Rightarrow 8 = e^{0.4504t} \end{cases}$
() 20 = 8+32e ^{-2k}	$\Rightarrow 0.4904t = 4.8$ $\Rightarrow t = 4.24$
-3 = e ^{-2K}	(d) P = 8+3200 49042
= e t	(dp = 32(-04904) = 04904E
→22= hg → k= thg ≈ 04904	de = -15,6929 e -0.4904 +
- 3 //	$\left \frac{dP}{dt} \right _{tel} = -9.61$

Question 17 (***)

The population P, in thousands, of a colony of rabbits in time t years after a certain instant, is given by

$$P = 5 + a e^{-bt}, t \ge 0$$

where a and b are positive constants.

It is given that the initial population is 8 thousands rabbits, and one year later this population has reduced by 2 thousands.

- **a**) Find the value of a and the value of b.
- **b**) Explain mathematically, why the population can never reach 1000, according to this model.

 $|a=3|, |b=\ln 3|$

Question 18 (***)

 $f(x) = 4e^{-x}, x \in \mathbb{R}$ $g(x) = x + 2, x \in \mathbb{R}$

a) Find an expression for gf(x).

b) State the range of gf(x).

c) Solve the equation $gf(x) = \frac{10}{2}$

Question 19 (***)

Simplify the following expression, giving the final answer in the form $k \ln 3$, where k is an integer.

 $2\ln 9 - \ln 6 - 4\ln \sqrt{3} + \ln 2$

k = 1

 $\begin{array}{l} 2 \ln 9 - \ln 6 - 4 \ln 3^{-1} + \ln 2 = 2 \ln 3^{-1} - (\ln 2 + \ln 3) - 4 \ln 3^{-1} + \ln 2 \\ = 2 \ln 3 - \ln 2 - \ln 3 - 2 \ln 3 - 2 \ln 3 \\ = \ln 3 - \ln 2 - \ln 3 - 2 \ln 3 \\ = \ln 3 - \ln 2 - \ln 3 - 2 \ln 3 \\ = \ln 3 - \ln 2 - \ln 3 \\ = \ln 3 - \ln 2 - \ln 3 \\ = \ln 3 - \ln 2 - \ln 3 \\ = \ln 4 - \ln 2 - \ln 6 \\ = \ln 4 - \ln 2 - \ln 6 \\ = \ln 4 - \ln 2 \\ = \ln 6 - \ln 6 \\ = \ln 6 - \ln 6 \\ = \ln 6 - \ln 6 \\ = \ln 6$

(***) Question 20

Rearrange each of the following equations for x.

a)
$$y = 1 - 2e^{-x}$$

Ismanan Com i vog

Maga

I.F.G.B.

>

b)
$$y = 2 - \ln(x+1), \quad x > -1$$

c) $y = \sqrt{e^x - 2}, \quad x \ge \ln 2$

b)
$$y = 2 - \ln(x+1), x > 2$$

c) $y = \sqrt{e^x - 2}, x \ge \ln 2$

JEN INALASINALIS COM INCOM INCOM INCOM

(a) y= 1-2e"	(b) 4= 2-1n(2+1)	(c) M=4/2557
⇒ 2e ⁻¹ - 1-9	-> lu(2+4) = 2-9	=> 4 ² = 2-2
$\Rightarrow e^{a_{\pm}} = \frac{1-a_{\pm}}{2}$	= 2+1 = e2-9	m y+2 = e'
$\Rightarrow e^2 = \frac{1}{1-y}$	= 2 -1 +0-3	> h(g2+2) = 2
$\Rightarrow a = h\left(\frac{2}{1-y}\right)$		=> 2= h(y2+2)
/		/

I.F.G.B.

The Com

ths.col

K.G.D.

I.Y.C.B. Madasmalls.Com I.Y.C.B. Madasn

Question 21 (***)

A hot drink is cooling down in a room.

The temperature T °C of the drink, t minutes after it was made is modelled by

$$T = 22 + 50e^{-\frac{1}{8}t}, \ t \ge 0$$

- a) State the temperature of the drink when it was first made.
- **b**) Assuming the drink is not consumed ...
 - i. ... calculate, to the nearest minute, the value of t when the temperature of the drink has reached 40° C.
 - ii. ... determine the value of T, when the drink is cooling at the rate of 2.5°C per minute.

T = 72, $t \approx 8 \min$, T = 42

Question 22 (***+) Solve the equation

 $\ln x = \frac{2}{\ln x} + 1, \ x > 0,$

giving the answers in exact form.

Question 23 (***+)

A population P is decreasing according to the formula

$$P = A e^{-kt}, \ t \ge 0$$

where A and k are positive constants and t is the time in years since the population was 10000.

Ten years later the population has reduced to 5000.

Find the value of t when the population reaches 1000.

4	and the second
• t is MHAURED SINCE P WAS 100	000 mB t=0 P=10000
10000 = 48" A= 10000 So P= 10000 e t	
• when t=10 P=.5000 S000 = 10000 e ⁻¹⁰⁴	<pre></pre>
$\frac{1}{2} = e^{10k}$ $2 = e^{10k}$	(0 = e0.0003 E
K= 10/42 2 0.0693	t ≈ 33.2

 $t \approx 33.22$

Created by T. Madas

 $x = \frac{1}{e}, e^2$

Question 24 (***+)

Find in exact form the solution of the equation

$$\ln\left(x^2 - 2x - 8\right) = 1 + \ln\left(x^2 - 6x + 8\right)$$

.	h	$(\mathcal{J}_{s}^{2}-\mathcal{J}_{s}-\mathcal{S})=1+j\omega(\mathcal{J}_{s}^{2}-\mathcal{C}\mathcal{J}+\mathcal{B})$	{ ⇒	2+2= e2-2e
۰.	⇒hn	$(3_{5}^{-3x-6}) = \mu(3_{5}^{-6x+\delta}) = 1$	} =>	2+2e = ex -2
ø	⇒ hn	$\left(\frac{\alpha - 2\alpha - 6}{\alpha^2 - 6\alpha + 6}\right) = 1$	} =>	20+2 = ale-1)
	⇒	$\frac{3^2-2\lambda-8}{\lambda^2-6\lambda+8} = e^1$	19	2= 2e+2 e-1
1	Ĩ	(2+2)(2+4) = e	1	
1				

Question 25 (***+)

The volume of water in a tank $V m^3$, t hours after midnight, is given by the equation

 $V = 10 + 8e^{-\frac{1}{12}t}, t \ge 0.$

- a) State the volume of water in the tank at midnight.
- **b**) Find the time, using 24 hour clock notation, when the volume of the water in the tank is 14 m³.
- c) Determine the rate at which the volume of the water is changing at midday, explaining the significance of its sign.
- **d**) State the limiting value of V.

], V = 18, 08:19, $-\frac{2}{3e} \approx -0.245$, decrease, $t \to \infty$, $V \to 10$

(à)	V= 10+82 ^{bt} t=0 V=10+88°=18	$\begin{cases} (c) V_{e} b_{+} B e^{-\frac{1}{12}t} \\ \frac{dv}{dt} = -\frac{2}{3}e^{-\frac{1}{6}t} \end{cases}$
(6)	$\begin{split} & t = 10 + 8e^{ht} \\ & 4 = 8e^{ht} \\ & \frac{1}{2} = e^{ht} \\ & 2 = e^{ht} \\ & hn_2 = \frac{1}{ht} \\ & t \approx 12 \ln 2 \\ & t \approx 8.3 (7, -100 + 10) \end{split}$	$\begin{cases} \frac{dv}{dt} \Big _{t=0}^{t} = -\frac{t}{2} e^{t} \approx -0.45\\ (w_{MA,t} = diverse) \end{cases}$ $(a) + t = a co + d + a co + d + a + a + a + a + a + a + a + a + a$

(***+) **Question 26**

Find the exact solution of the simultaneous equations

Question 27 (***+)

A curve has equation

 $y = A \ln \left(B x \right), \ x > 0$

where A and B are positive constants.

a) Given the curve passes through the points with coordinates (3,0) and (6,1) find the exact values of A and B.

A different curve has equation $y = y_0 e^{-2x}$, where y_0 is a constant.

b) Show clearly that $x = \ln\left(\frac{y_0}{y}\right)^n$, where *n* is a constant to be found.

(a) y= Alm (Ba)	/ (b) y=y, e2
· (3,0) → o=Alb(B)	⇒ <u></u> = = = = ≈
(dhuiz- no correl)	> = = = = = = = = = = = = = = = = = = =
\Rightarrow $\ln(3B) = 0$	$\Rightarrow 2a = l_1 \left(\frac{y_0}{y}\right)$
-) 38 = e° 	$= 2 = \frac{1}{2} l_{\mu} \left(\frac{l_{\mu}}{5} \right)$
$\Rightarrow B = \frac{1}{3}$	$\Rightarrow \chi = \ln \left(\frac{y_0}{y}\right)^{\frac{1}{2}}$
• $(G_1) \Rightarrow I = A \ln(B \times G)$ $\Rightarrow I = A \ln_2$	It was
$\Rightarrow A = \frac{1}{\ln 2}$	(
· (

F.G.B.

1+

Question 28 (***+)

Make x the subject in each of the following expressions.

a)
$$y = y_0 e^{0.2(x-1)}$$
.

b)
$$y = \ln \sqrt{\frac{4}{x-1}}, x > 1.$$

$$x = 1 + 5\ln\left(\frac{y}{y_0}\right), \quad x = 1 + 4e^{-2y} = \frac{e^{2y} + 4}{e^{2y}}$$

 $\mathcal{Q} = 1 + \mathcal{S}h_{1}\left(\frac{g}{g_{0}}\right)$

 $e^{2y} +$

2y

(***+) Question 29

Determine, in exact simplified form where appropriate, the solution of each of the following equations.

- $2\ln 54 x\ln 3 = \ln 12$ a)
- **b**) $e^{-3y} + 5 = 32$
 - c) $\ln(1-2w) = 1 + \ln w$

	- 4	20
x=5,	$y = -\ln 3$	$w = \frac{1}{2+e} \approx 0.212$

	Sh.
(a) $2h_{3}t_{-2}h_{3} = h_{12}$ $\Rightarrow 2h_{3}t_{-}h_{12} = h_{13}$ $\Rightarrow h_{2}t_{-}h_{12} = h_{13}$ $\Rightarrow h_{2}t_{-}h_{12} = h_{13}$ $\Rightarrow h_{2}t_{-}h_{13}$ $\Rightarrow a = \frac{h_{13}}{h_{13}}$ $\Rightarrow a = \frac{h_{13}}{h_{23}}$ $\Rightarrow a = \frac{h_{23}}{h_{23}} = s$	(b) $e^{3d} + 5 = 32$ $\Rightarrow e^{3d} = 27$ $\Rightarrow -3d = ha27$ $\Rightarrow -3d = ha27$ $\Rightarrow -3d = -ha3$ $\Rightarrow y = -ha3$
(c) $h(1-2w) = 1 + hw$ $\Rightarrow h(1-2w) - hw = 1$ $\Rightarrow h(\frac{1-2w}{w}) = 1$ $\Rightarrow \frac{1-2w}{w} = e^{1}$	$ p = \frac{1-2w}{2} = ew $ $ p = ew + 2w $ $ p = w = w(e+2) $ $ p = w = \frac{1}{e+2} $

asillatils.Co

(***+) Question 30

Show that $x = -\ln 2$ is the only real solution of the equation

maths.com T.Y.G.R. HARASHAHAGAN I.Y.G.R. HARASHAHAGAN I.Y.G.R. HARASHAHAGAN I.Y.G.R. HARASHAHAGAN I.Y.G.R. HARASHAHAGAN I.Y.G. MASTRALISCOM I.Y.C.B. MARIASIRALISCOM I.Y.C.B. MARIASIR

The figure above shows the curves with equations

 $y = \ln x$, x > 0 and $y = 2\ln(x-6)$, x > 6.

The curves cross the x axis at the points A and B respectively, and intersect each other at the point C.

A(1,0),

B(7,0)

 $B(9,2\ln 3)$

- **a**) Write down the coordinates of A and B.
- **b**) Determine the exact coordinates of C.

Question 32 (***+)

Find the exact solution of the following equation

 $e^{x} - e^{-x} = \frac{3}{2}$.

 $\begin{array}{c} \frac{w}{w}_{-} - \frac{w}{w}_{+} = \frac{y}{2}, \\ \frac{w}{2}, \frac{w}{w}_{-} - \frac{w}{w}_{+} = 3, \\ \frac{w}{2}, \frac{w}{w}_{-} - \frac{w}{w}_{+} = 3, \\ \frac{w}{2}, \frac{w}{w}_{-} - \frac{w}{w}_{+} = 3, \\ \frac{w}{2}, \frac{w}{w}_{-} - \frac{w}{w}_{-} = 3, \\ \frac{w}{w}_{-} - \frac{w}{w}_{-} - \frac{w}{w}_{-} - \frac{w}{w}_{-} = 3, \\ \frac{w}{w}_{-} - \frac{w}{w}_{-} - \frac{w}{w}_{-} = 3, \\ \frac{w}{w}_{-} - \frac{w}{w}_{-} - \frac{w}{w}_{-} - \frac{w}{w}_{-} = 3, \\ \frac{w}{w}_{-} - \frac{w}{w}$

 $x = \ln 2$

Question 33 (***+)

Show clearly that

 $5\ln\left(\frac{5}{6}\right) + 2\ln\left(\frac{4}{3}\right) - \left[5\ln\left(\frac{2}{3}\right) + 2\ln\left(\frac{5}{3}\right)\right] \equiv 3\left(\ln a - \ln b\right)$

where a and b are integers to be found.

a=5, b=4

$$\begin{split} &Sh_{1}\left(\frac{5}{8}\right)+2h_{1}\left(\frac{4}{8}\right)-\left[Sh_{1}\left(\frac{5}{8}\right)+2h_{2}\left(\frac{5}{8}\right)+2h_{1}\left(\frac{5}{8}\right)-2h_{2}\left(\frac{5}{8}\right)-2h_{2}\left(\frac{5}{8}\right)-2h_{1}\left(\frac{5}{8}\right)\\ &=S\left[h_{1}\left(\frac{5}{8}\right)-h_{2}\left(\frac{5}{8}\right)+2h_{1}\left(\frac{5}{8}\right)-h_{2}\left(\frac{5}{8}\right)-2h_{2}\left(\frac{5}{8}\right)+2h_{1}\left(\frac{5}{8}\right)\right)\\ &=Sh_{1}\left(\frac{5}{8}\right)+2h_{2}\left(\frac{5}{8}\right)+2h_{1}\left(\frac{5}{8}\right)-2h_{2}\left(\frac{5}{8}$$

Question 34 (***+) A curve has equation

F.G.B.

F.C.B.

 $y = \ln x + 4x, \ x > 0.$

The points A and B lie on this curve, where $x = \frac{1}{4}$ and $x = \frac{1}{2}$, respectively.

adasman

F.G.B.

277

Show that the gradient of the straight line segment AB is $4+4\ln 2$.

200

 $\begin{array}{l} \frac{1}{2} - b_{1} + \frac{1}{2} \\ = \frac{1}{2} + \frac{1}{2} - b_{1} + 1 \\ = \frac{1}{2} - b_{2} \\ + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \\ + \frac{1}{2} - \frac{1}{2} \\ + \frac{1}{2} - \frac{1}{2} \\ = \frac{1 - b_{2} + b_{3}}{2} \\ = \frac{1 - b_{3}}{2}$

F.C.B.

M2(12)

proof

1+

COM

Question 35 (***+)

The functions f(x) and g(x) are defined

$$f(x) = 4 + \ln x, \ x \in \mathbb{R}, \ x > 0$$

 $g(x) = e x^2, x \in \mathbb{R}.$

- **a**) Find an expression for $f^{-1}(x)$.
- **b**) State the range of $f^{-1}(x)$.
- c) Show that $x = \sqrt{e}$ is the solution of the equation fg(x) = 6.

Madas,

(a) (a)= 4+hnx	(c) $f(g(x)) = f(ex^2)$	
⇒ y = 4+Ma	$= 4 + \ln(ex^2)$	
$\Rightarrow 9-4 = lmx$	$= 4 + \ln e + \ln x^2$	
$\Rightarrow e^{g \cdot q} = \alpha$	= 4+1 + 2hg	
: fa= e-4	= S+ 2lwX	
12	~ S+2M2=6	
D. R	2)mx= (
1 270 /	lva=+	
the / false a	2-84-15	
latt. Leave	- AC - AC - AS BEPALLE	
1		

i.G.B.

22

(***+) **Question 36**

COM

Com I. K.C.J

I.F.G.B.

alasmaths,

Find, in exact simplified form, the solution of each of the following equations.

Madasman

Y.C.B. Madasmatics.Com

a)
$$1-25e^{-4x} = \frac{24}{25}$$
.

b) $\ln(e-5x) = 1 + \ln(5x-e)$.

madasmaths.com

	N.
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	$\begin{aligned} e^{-S_{2}} &= 1 + h_{1}(S_{2}-e) \\ e^{-S_{2}} &= -h_{1}(S_{2}-e) = 1 \\ \frac{g^{-S_{2}}}{S_{2}-e} &= e \\ e^{-S_{2}} &= S_{2}e^{-e^{2}} \\ e^{2} &= S_{2}e^{-e^{2}} \\ e^{2} &= S_{2}e + S_{2} \\ e^{2} &= S_{2}(e_{1}) \end{aligned}$

I.C.P.

COM

I.Y.C.B. Madasmarks.Com

6

17303ST131

I.V.C.B. Madasa

Created by T. Madas

in C.P.

Question 37 (***+)

The value, $\pounds V$, of a painting is modelled by the equation

 $V = 600 + 200 \ln (2t + 1), \ t \ge 0$

where t is the number of years since the painting was purchased.

Determine...

- **a**) ... the value of the painting when it was first purchased.
- **b**) ... the value of t when the value of the painting doubles.
- c) ... the rate at which the value of the painting is increasing twelve years after it was purchased.

Question 38 (***+)

Find, in exact form where appropriate, the solutions of the equation

$\frac{-e^{n}}{(a^{2}-1)^{2}} = 1$	$\Rightarrow (y-4)(y-1) = 0$
	{ > y= <'+
$\Rightarrow e^2 = e^2 + 4e^2 + 4$	(=) e'= </td
$\Rightarrow 0 = e^{2\xi} - 5e^{2\xi} + 4$	-+
$\Rightarrow \circ = y^2 - sy + (y = e^2)$	- Inv
	1 7 2 =144

Question 39 (***+)

The function f(x) is given by

 $f(x) = 3e^{2x} - 4, x \in \mathbb{R}.$

- **a**) State the range of f(x).
- **b**) Find an expression for $f^{-1}(x)$.
- c) Find the value of the gradient on $f^{-1}(x)$ at the point where x = 0.

f(x) > -

 $-1(x) = \frac{1}{2} \ln\left(\frac{x+4}{3}\right)$, $\frac{1}{8}$

Question 40 (***+)

Find the solution of the following simultaneous equations

 $e^{2x+4} = e y$

 $\ln y = 4x + 6.$

Question 41 (***+)

The functions f(x) and g(x) are defined

$$f(x) = x^2 - 10x, \ x \in \mathbb{R}$$

 $g(x) = e^x + 5, \ x \in \mathbb{R}.$

- a) Find, showing all the steps of the calculation, the value of $g(3\ln 2)$.
- **b**) Find, in its simplest form, an expression for fg(x).
- c) Show that g(2x) fg(x) = k, stating the value of the constant k.
- **d**) Solve the equation gf(x) = 6.

$g(3\ln 2)=13$,	$fg(x) = e^{2x} - 25$, k = 30,	x = 0,10

(9)	$g(3h_2) = e + 5 = e^{H_1} + 5 = 8 + 5 = 13$
(L)	$f(g(x)) = f(e_{+5}^2) = (e_{+5}^2)^{-10}(e_{+5}^2) = e_{+10}^{24} + 25 - 10e_{-50}^{2}$
	= e ² ,-25
(;)	$g(a) - fg(b) = (e^{2a} + 5) - (e^{2a} - 25) = 30$ 14 1-30
(d)	s(fω)=6 · ≤ : a ² -ma=0
=	$\Im(a^2 - 10a) = b$ $\Im(a - 10) = 0$
-	$e^{2^2 - i\Omega x} = 6$
=)	e ⁿ² -Ka = 1

Question 42 (***+)

The figure above shows the graphs of the curves with equations

 $y = 2e^{-x}$ and $y = e^x - 1$

The two graphs intersect at the point P.

Determine the exact coordinates of P.

SOLUTING	VIZUONATUMIZ ZINDITAUGO OHT
y = 2€ ४= €	e^{2} e^{2} e^{2} e^{2} e^{2} e^{2} e^{2} e^{2}
	$\implies A - l = \frac{2}{A} (A \in e^{2})$
	$\implies A^{2} - A = 2$
	⇒ + ² -4-?=∩
	\Rightarrow $(A+1)(A-2)=0$
	⇒ A= <_'
	$\rightarrow \dot{e}_{3} < \dot{\chi}_{2}$
	= 2= ln2
USING-	e=2 IND THE SECOND QUATTON THUS y=1
	∴ p(lw21)
ALIERI	VATIVE
8.	2 e y = e - i
- 2	-= € [*] → € [*] = y+1
-29	= e ²
+++-ĭ	

= u ² +u-2=0	
- 3.3 -	
-(u-1)(u+2) =	o
- (0)(0)-)	
	2
- 3- < -2	e = y+1
	2 2
	^
	2 - 1+2
- Ile as D(1 - 1) la P	02.4.4
time ((uz1) to b	4064
	the second s

 $P(\ln 2, 1)$

COM

2013.8n

х

Question 43 (***+)

During a chemical process the mass of a substance, m kg, at time t hours grows exponentially according to the formula

$$m = 20 e^{0.02t}, t \ge 0.$$

- a) Find the time taken for the substance to increase to three times its initial mass.
- **b**) Calculate the rate of change of m, when m = 100.

$t = 50 \ln 3 \approx 5$	54.93 hours,	$\left. \frac{dm}{dt} \right _{m=100}$	= 2
Sinaths.	($M_{1} = 20^{0.01}$, $t \ge 0$ ($M_{1} = 20^{0.01}$, $t \ge 0$ ($M_{1} = 0$) ($M_{1} = 0$) ($M_{1} = 0$) ($M_{1} = 0$) ($M_{2} = 0$) (M	UN = MASE IN by C= THME IN GOODS = 20xe ^o = 20 by <- INATIAL WARS	2
1. K.C.	$t = so hs 2 \approx 54.43$ $\therefore 40$ $b) \frac{2Att or otheose = Difference \frac{d_{11}}{dt} = 20e^{-0.02t} \frac{d_{11}}{dt} = 20e^{-0.02t} \frac{d_{11}}{dt} = 0.4x e^{-0.02t} \frac{d_{11}}{dt} = 0.4x e^{-0.02t} \frac{d_{11}}{dt} = 0.4x e^{-0.02t}$	Pen SS three STATION $100 = 30 e^{500t}$ $5 = e^{1002t}$ $t^{+} = 0.4 \times S = 2 (g h^{-1})$	

Question 44 (***+)

The half life of a radioactive isotope is the time it takes for a given mass to reduce to half the size of that given mass.

A radioactive substance reduces from 12 g to exactly 10.24 g in 30 days.

Assuming that the isotope decays exponentially, determine the half life of the isotope, correct to the nearest day.

,	≈131 days

	M =	mekt	£>0	(14.=	INITIAL	(224.14
-	10.24	= 12 e-txab				
⇔	eter ;	= 64				
->	e ³ k -	- 74				
⇒	3ek =	JN 12				
-	k=	hh 25				
WH	M= M=	「 2 14=	1 ₂ 14₀ = .6)t			
net ->	es t≈ M=	12日(日本語)	ξ146 = 6)t T			
net P	63 tz. M= 63	「 2 M= 12.0(台) 12.0(d) 12	}н ₆ = 6 t т			
1 1 1 1 1	M = 6 = 6 =	「 」 M= 12 = (約4頁) 12 = (約4頁) 12 = (約4頁) 12 = (約4頁) 12 = (約4頁)	τ τ T			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62 t= M= 12= 2=	「 」 N= 12 = (約4頁) 12 = (約4頁) = (約4頁) [16 4년]]	<u> </u> -16 + T]T			
v#	62 t= M= <u>1</u> 2= 2= br2=	- 11 (長の子) (王) (王) (王) (王) (王) (王) (王) (王) (王) (王				
M P P P P P P	$M = M = \frac{1}{2} = \frac{1}{2$	「) M= (2) (4) (4) (2) (4) (4) (2) (4) (km = 6 π)Γ			

Question 45 (****) A curve has equation

 $y = \ln(Ax + B), x > 0,$

where A and B are non zero constants.

The curve passes through the points $P(2,\ln 3)$ and $Q(4,\ln 27)$.

- **a**) Find the value of A and the value of B.
- **b**) Show that the equation of the straight line through P and Q can be written as

 $y = (x-1)\ln 3.$

(a)	$\begin{array}{ccc} (2_1 y_3) \Rightarrow & y_3 = y_4(2x+8) \\ (4_1 y_7) \Rightarrow & y_7\rangle = y_1(4x+b) \end{array} \Rightarrow$	24+8=3 44+8=27
	()(Lp - 2	24 = 24 SUBRIZADS" A = 12 "UPWARDS"
	24+8=3 8=-21	
(b)	$GLADINJT PQ = \frac{y_{1}-y_{1}}{x_{2}-x_{1}} = \frac{y_{2}7-y_{3}}{41-7} =$	$\frac{3h_3 - h_3}{2} = \frac{2h_3}{2} = h_3$
	WING P(2,143) y-y	I.,)
	y-143 = 143 ()	(-2)
	y-143 = 2643	-2h13
	y = a.443 -4	13
	y = (2-1) lu3,	AS ESPUERO

A = 12, B = -21

è

Question 46 (****)

Find, in exact simplified form, the solution of each of the following equations.

a) $e^{2x-3} = 2e$.

b) $\ln(2y-1) = 1 + \ln(e-y)$.

		- 14P	- -	
	$x = \frac{1}{2}(4 +$	ln 2)	, y=	$=\frac{e^2+1}{e+2}$
Q	200			9

()		
(9) e ²⁻³ = 2e	5 (b) ln(2y-1)=1+ln(e-y)	=======================================
$\Rightarrow \frac{e^{2}}{e^{2}} = 2$	$\zeta \Rightarrow h(2g-1) - h(e-y) = 1$	- JC C/= C+1
=) e2-4 = 2	$\rangle \Rightarrow h\left(\frac{2t-1}{c-y}\right) = 1$	7 3- 042
⇒ 24-4 =42	> =	
-> 22= 4+142	< = 2y-1 = e ² -eq	
=9 2= 1/(4+1/H2)	$\begin{cases} \Rightarrow 2y + ey = e^2 + l \end{cases}$	
/	1	

Question 47 (****)

Find, in exact form if appropriate, the solution of the following simultaneous equations

 $x + e^{-x}$

 $\ln\left(x+1\right)^2 = 2y.$

x = 2 $y = \ln 3$

Question 48 (****)

The function f is defined as

 $f(x) = a\ln(bx), x \in \mathbb{R}, x > 0$

where a and b are positive constants.

- a) Given that the graph of f(x) passes through the points $(\frac{1}{3}, 0)$ and (3, 4), find the exact value of a and the value of b.
- **b**) Solve the equation

f(x) = 8.

asna.	
$a = \frac{2}{\ln 3}$, $b = 3$, $x = 27$	

(a) (1/3	n)=) o=alu±b	a.≠o { NOW (3,4)
	In the o	$\begin{cases} \Rightarrow 4 = \alpha \ln(3 \times 3) \end{cases}$
	Sper.	$\begin{cases} \Rightarrow 4 = \alpha \ln 9 \\ l \Rightarrow 4 = 2\alpha \ln 3 \end{cases}$
	b=3)-ja= 2/
(b) -	2_lh3a=8 ς	
-9 -	?h3a=8h3	⇒ x=27 //
=9	In3a = 41m3	/
⇒	h3a = 1481	

C.B.

è

Question 49 (****)

The figure above shows the graph of the curve with equation

$$y = 4 - x + 2\ln(x-1), x > 1.$$

The point A is the maximum point of the curve and the point B lies on the curve where x = 5.

a) Find the coordinates of A and B.

The points C and D lie on the x axis directly below the points A and B, respectively.

b) Show that the area of the trapezium *ABDC* is 6ln 2 square units.

$A(3,1+2\ln 2), B(5,-1+4\ln 2)$

and the second s	
(a) $y = 4 - \alpha + 2\ln(\alpha - 1)$ $\frac{dy}{d\lambda} = -1 + \frac{2}{\alpha - 1}$	(b) E
-1+2-1=0	# An #
$\frac{2}{3-i} = 1$ 2 = 3 - i	203 2 2+5
2=3	Area = (1+104)+(-1+402) ×2-
% y= 4-3+21η2 y=1+1n4	Apa = 144 + 4/m2
A(3, 1+144)	Area = Gluz
wlm 2=5 4=4-5+2144	A Repulto
y = −1+ 4142.	
: B(5, 4+4/h2)	
Question 50 (****)

An area is to be replanted with eucalyptus trees after a large fire.

The height, H m, of one such tree is given by the formula

$$H = 25 - 24 \,\mathrm{e}^{-0.1t} \,, \ t \ge 0 \,,$$

where t is the time in years since the tree was planted.

- **a**) State the height of a newly planted tree.
- **b**) Find the height of a tree, after 2 years.
- c) Calculate, to the nearest integer, the value of t when the height of a tree has reached 80% of its eventual height.

{	300 m w 11000 m + t
(۵	with t=0 b) with t=2.
	$H = 2S - 24e^{-100}$ $H = 2S - 24e^{-100}$ $H = 2S - 24e^{-100}$
	4= D5-24 4 ≈ 25 - 10.6445 4= 1 4 ≈ 5.35m -
	le (metre
c)	"Систик" НССАТ МУЗЕ АЗЕСИТО WITH 12 "FRECHE" HMONT, "Адиа НЕСАН", МАКИИМ ЦЕСЭН ЕГС
	$-4s \pm \rightarrow \infty \in e^{-vt} \rightarrow o$ $2te^{-vt} \rightarrow o$ $H \rightarrow 2s \leftarrow Netaurum Hearr$
	149THU OS 21 22 70 %08
	$= 3 20 = 2\xi - 24 e^{i t \cdot t}$ $= 3 24 e^{i \cdot t} = 5$ $\Rightarrow e^{i \cdot t} = \frac{5}{24}$
	$\Rightarrow e^{0.1C} = 24/3$ $\Rightarrow 0.1C = 1/(4R)$
	\implies t ~ 10 $ _{h}(l,l)$
	→ t « 15.69 LE LE YMPL)

 $H_0 = 1 \text{ m}$, $H \approx 5.35 \text{ m}$, $t \approx 16$

Question 51 (****)

A radioactive substance decays so that its mass, m kg, at time t years from now, satisfies the exponential equation

$$m = 400 \,\mathrm{e}^{-0.05t}$$
, $t \ge 0$.

- a) Find the time it takes for the substance to halve its mass.
- b) Determine the exact value of t when the radioactive substance is decaying at the rate of 5 kg per year, giving the answer in terms of $\ln 2$.

 $t = 20 \ln 2 \approx 13.86 \text{ years}, \quad t = 40 \ln 2$

Question 52 (***

It is given that

 $x = \frac{\ln 3 - \ln 2}{1 + \ln 3}.$

Show clearly that x is the solution of the equation

 $2\times 3^x = 3\times e^{-x}.$

 $\begin{array}{c} \longrightarrow & 2\times3^{3} = 3\times e^{-\lambda} \\ \implies & h(2\times3^{3}) = h(3\timese^{-\lambda}) \\ \implies & h_{2}\timesh_{3}^{2} = h_{3}^{2} + h_{6}e^{-\lambda} \\ \implies & h_{2}^{2} + h_{3}^{2} = h_{3}^{2} + h_{6}e^{-\lambda} \\ \implies & h_{2}^{2} + h_{3}^{2} = h_{3}^{2} - h_{2} \\ \implies & h_{2}^{2} + h_{3}^{2} = h_{3}^{2} - h_{2} \\ \implies & \chi_{1}^{2} + h_{3}^{2} = h_{3}^{2} - h_{2} \\ \implies & \chi_{1}^{2} + h_{3}^{2} = h_{3}^{2} - h_{2} \\ \implies & \chi_{1}^{2} + h_{2}^{2} \\ \implies & \chi_{1}^{2} + h_{2}^{2} \\ \implies & \chi_{1}^{2} + h_{2}^{2} \\ \end{array}$

proof

Question 53 (****)

Find, in exact form where appropriate, the solutions of each of the following equations.

a)
$$2\ln 56 - \left[\ln 168 - \ln\left(\frac{3}{7}\right)\right] = x \ln 2$$
.

- **b**) $e^{y} 3^{e} = 3$.
- c) $e^{\cos(\ln w)} = 1, \ 1 \le w < 5.$

Question 54 (****

 $f(x) = \ln(4x), x \in \mathbb{R}, x > 0.$

Find, in exact simplified form, the solution of the equation

 $f(x)+f(x^2)+f(x^3)=6.$

1 A.	- Y/F .
(a) = 1042 x>0 3	
min	
No of the equilion	
$\Rightarrow +(x) + +(x^2) + +(x^2) = -6$	
$\Rightarrow \mathbf{h} _{\mathbf{x}} + \mathbf{h} _{\mathbf{x}^2} + \mathbf{h} _{\mathbf{x}^2} = 6$	
= 1/042 + 42 × 42] = 10	
$642^6 = e^6$	
$a^6 = \frac{e^6}{64}$	
a' = e'	
26	
2 - (2e)	

Question 55 (****)

Water is heated in a kettle which is kept in a kitchen. The kitchen is kept at a constant temperature, T_0 .

The temperature, $T \, ^{\circ}\mathrm{C}$, of the water in the kettle satisfies

 $T = 95 - 75e^{-t}, t \ge 0,$

where t is the time in minutes since the kettle was switched on.

- a) Find the time it takes for the water in the kettle to reach a temperature of 85 °C
- **b**) Determine the initial rate of the temperature rise of the water in the kettle.

Once the water has reached a temperature of 85 °C the kettle is switched off and is allowed to cool. Its temperature is now given by

$$T = 15 + A \operatorname{e}^{-kt}, \ t \ge 0,$$

where A and k are positive constants, and t now represents the time in minutes since the kettle was switched off.

 $t \approx 2.01 \text{ minutes}$, $|75^{\circ}\text{C}/\text{min}|$, |A = 70|

c) Find the value of A.

d) State, with a reason, the constant temperature of the kitchen, T_0 .

 $T_0 = 15$

(****) Question 56

 $f(x) = \ln(5x^2 + 9x + 5), x \in \mathbb{R}.$

Show that the statement

"f(x) is positive for all real values of x

adasm.

Madasm

00

R

. Com

is in fact false.

1. C.B. 111.20/28/

COM

I.G.B

2

Smaths,

adasmaths.com

1. C.B. Madası

2017

The Com

proof

E.

1+

2

nn,

120/2sm

11₂₀₂

1.5.

K.G.

I.G.B.

The figure above shows the graphs of

$$y = 2 + 3e^x$$
 and $y = -1 + e^{x+3}$

 $\frac{2e^{3}+3}{e^{3}-2}$

The graphs meet at the point P.

Show that the y coordinate of P is

(****) Question 58

Find, in exact form where appropriate, the solution for each of the following equations.

Ka

a) $2\ln x = \ln(4x+12)$.

dasmaths.com

- **b**) $3e^{y} + 2e^{-y} = 7$.
- c) $\frac{\mathrm{e}^{t}}{2^{t}} = \mathrm{e}$.

ISMaths.com

Smaths.com

I.V.G.B.

0

Y.C.F.

14.0

6

nadasm.

Created by T. Madas

N.C.

Question 59 (****)

When hot cooking oil cools down, its temperature, $T \,^{\circ}C$, is related to the time, t minutes, for which it has been cooling, by the formula

$$T = 20 + 160 \,\mathrm{e}^{-0.1t} \,, \ t \ge 0 \,.$$

- a) Sketch the graph of T against t, clearly marking its asymptote and the coordinates of the starting point of the curve.
- **b**) Determine the value of t, when T = 100.
- c) Find an expression for $\frac{dT}{dt}$
- d) Calculate the value of T, at the instant when the oil is cooling down at the rate of 2°C per minute.

 $|t| = 10 \ln 2 \approx 6.93$

 $\frac{dT}{dt} = -16e^{-0.1t}$

T = 40

Question 60 (****)

The point $P(\ln 2, 5b - 3a)$ lies on the curve with equation

 $y = a + b e^x,$

where a and b are non zero constants.

The gradient at P is 8.

a) Find the value of a and the value of b.

b) Determine the exact coordinates of the point where the normal to the curve at P crosses the x axis.

(a) P(1n2 5b -3a)	(6) NORMAL GRADINT (1 - 1
• y= a+bex	fourthing) Of MORING
56-3a = a + be W2	(9-40=m(Q-7.)
Sb - 3a = a + bx2 Sb - 3a = a + 2b	$y - (5b-3a) = -\frac{1}{8}(x - 1n2)$
36 = 44	$g = (20-3) = -\frac{1}{8}(2-1/42)$
· dy be a dy B	$y - 11 = -\frac{1}{5}(x - 4x^2)$
8 = beh2 == m2	-II = -1 (x - 12)
8 = 26	$-88 = -\infty + \ln 2$
b=4	2 = B8+42
a=3	(+ (perline))
/	(00+m2,0)

Question 61 (****) Find the exact solutions of the equation

 $3e^{3x} - 4e^{2x} - 5e^x + 2 = 0.$

$q_{=} \leq -1$
1 the last
e a a
5
$r_{2} < ln \frac{1}{2} = -ln3$

Question 62 (****)

A curve has equation

 $y = \frac{1}{4}x^3 - 6\ln x + 1, \ x > 0.$

 $2^x e^{3x+1} = 10$.

The points C and D lie on this curve, where x = 4 and x = 8, respectively.

Show that the gradient of the straight line segment CD is $28 - \frac{1}{2} \ln 2$.

G.	
Gha+ l	
4 9= 16-bln 4 H = 17-cln 4 8 9= 128-cln 8H = 129-cln 8	C(a, 17-6/44) D (B) 129-6/48)
<u>yy_i</u> = (129 - 6148) - (17-644) -	112-6h18+6h14

proof

Question 63 (****)

Find in exact simplified form the solution to the equation

 $x = \frac{-1 + \ln 10}{3 + \ln 2}$

Ĉ.Ŗ.

 $\begin{array}{c} \begin{array}{c} 2^3 e^{2k z 1} = |0 \\ \Rightarrow b_1 \left[2^3 e^{2k z 1} \right] = b_1 0 \\ \Rightarrow b_1 \left[2^3 e^{2k z 1} \right] = b_1 0 \\ \Rightarrow b_1 \left[2^3 e^{2k z 1} \right] = b_1 0 \\ \Rightarrow b_1 \left[2^3 e^{2k z 1} \right] = b_1 0 \\ \Rightarrow c_1 \left[2^3 e^{2k z 1} \right] = b_1 0 \\ \Rightarrow c_2 \left[2^3 e$

(****) Question 64

Find the exact solution of the following simultaneous equations

(****) Question 65

1.Y.C.J.

ŀ.C.p.

I.C.p

Find the exact solutions of the equation

	$2e^{2x} - 5e^x + 3e^{-x} = 4.$	1.	1
1.12	1.1.	$x \neq \ln$	$\overline{3,-\ln 2}$
S.C.	· Gr		
50	-0-	$\begin{array}{c} \hline (60M + 646C + 3) & 6482457445 \\ \hline \end{array} \\ \begin{array}{c} \rightarrow & 2e^{2k} + 5e^{2k} + 3e^{2k} = 4 \\ \hline \end{array} \\ \begin{array}{c} \rightarrow & 2e^{2k} - 5e^{2k} + \frac{3}{e^{2k}} = 4 \end{array} \end{array} \\ \begin{array}{c} \hline \end{array} \\ \begin{array}{c} \text{Mutter Theorem 1} \end{array}$	H ty e ^a
. í	b_{α} 4	$ \begin{array}{c} \longrightarrow 2e^{3k} - 5e^{3k} + 3 = 4e^{3k} \\ \implies 2e^{3k} - 5e^{3k} + 4e^{3k} + 3 = 0 \\ \hline \\ \underline{tr} g = e^{3k} \end{array} $	00
201	ada.	$ = 3y^3 - 5y^2 - 4y + 2 = 0 $ $ \underline{ 4^{c} + (y) = 3y^3 - 5y^2 - 4y + 3 = 0} $ $ + (i) = 2 - (z - 4 + 3) \neq 0 $	¥ 0
282	"Sm	$(-i)^{-2} - 2 - c + e + 3 = 0 \qquad (1)$ $\frac{\partial f(QNG, D)(N = O(Q, e))}{\partial g^2(Q + i)} - \frac{\partial f(Q + i)}{\partial g} + \partial f(Q +$	3 H) is 4 FARDe
1211	d'h.	$ = \underbrace{(g_{1})}_{g_{1}} \underbrace{(g_{2})}_{g_{2}} \underbrace{(g_{2}$	< (e ⁺ >0)
- Q	0.1	→ 2= h± = -42 h3 ∴ 2=-42 at 2=3	
	Op 1	7	~
1.2		Ir.	4
- C)	· · ·		P.,
~ <i>5</i> ,	6.0	n se	9
5	12. 9.	h	n
201	*(Jao. `	Q _{an}	- "do
"asm	no.	282	
21	s the	192	14
A	S		15
7	"On		COM
/ Y.		/ Y.	V

ths.com

I.V.C.B.

madası,

Created by T. Madas

.K.C.

Question 66 (****)

Find, in exact form where appropriate, the solutions for each of the following equations.

Question 67 (****) Show that the following simultaneous equations

$$\ln(x+1) = 2y - 1$$

 $e^{2y} + 4 = x$

are satisfied by the solution pair

Ĉ.B.

I.C.B.

 $x = \frac{4+e}{1-e}, \quad y = \frac{1}{2}\ln\left(\frac{5e}{1-e}\right)$

and hence explain why the equations have no real solutions.

I	BY AMY SHIERE SUBATITION	Ą	LTERNA
1	$e^{2g} = x - \psi$ g. $e_{i} = 1 + h(x_{i+1})$		\mathcal{J}^{z}
I	$2y = \ln(x-y)$		
I			
I	\longrightarrow $ w(x-t) = u(x+t) = 1$ \longrightarrow $ w(x-t) = (t + (v(x+t)))$		
I	$\implies \ln\left(\frac{3-4}{3(4+1)}\right) = 1$		
I	$\rightarrow \frac{2-4}{2+1} = e$		
I			
I	$\rightarrow x - ex = e + 4$		
	$\Rightarrow \chi_z \xrightarrow{e+4} \alpha \chi_z \xrightarrow{f+e} q$		
I	(4-x) = 15 0M STUTREAUS		
ł	$\Im_{ij} = \ln\left(\frac{4+e}{1-e} - u_{i}\right) = \ln\left(\frac{4+e-u(1-e)}{1-e}\right) = \ln\left(\frac{u+e-u+u_{e}}{1-e}\right)$	6	
I	$\sum h = \mu\left(\frac{1-6}{2}\right)$	ANI	D ZING
	$A_{j} = \frac{1}{2} \ln \left(\frac{\varepsilon}{1-\varepsilon} \right)$		2 - 5
	No effic southan the substay the ferminist of the localization in $g = \frac{1}{2} \ln \left(\frac{1}{1-e} \right)$ is interminit		

ALTERNATIVE	
3= e+4 h(x+1) = 2g-1	
\sim \sim	
$\implies h(e^{2y}_{+\psi+1}) = 2y-1$	
$\implies e^{2s} + s = e^{2s-1}$	
\rightarrow 5 = $e^{24}(e^{-1}-l)$	
$\rightarrow e^{24} = \frac{s}{e^2 - 1}$	
$\rightarrow e^{24} = \frac{se^{4}}{e^{54}}$	
- e ²⁴ <u>Se</u>	
$\rightarrow 2_{j=h}\left(\frac{se}{1-e}\right)$	
$\rightarrow g = \frac{1}{2} h \left(\frac{s_e}{1-e} \right)$	
ND SINCE $e^{2\hat{\theta}} = \frac{5e}{1-e}$	
$\lambda = \frac{5e}{1-e} + e = \frac{5e+4(1-e)}{1-e} = \frac{5e+4-4e}{1-e} = \frac{e+4}{1-e}$	
* 1	¢>84 ·

E.B.

F.G.B.

, proof

1+

(****) Question 68

Solve the following logarithmic equation

Question 69 (****)

The value V, in £, of a computer system t years after it was purchased is modelled by the following expression

$$V = 100 + A e^{-kt}, t \ge 0,$$

where A and k are positive constants.

Its value after one year was $\pounds 650$ and after a further period of four years $\pounds 350$.

Find, correct to the nearest £, the value of the system when new.

- Sm	,	£770
V= 100+ Ae Kt		
tal V=650	t=s	V= 350
$650 = 100 + 4e^{-k}$ $550 = 4e^{-k}$	350 = 100 250 = 4e	+ Ae-st
$\frac{3}{200} \frac{4}{\sqrt{200}} = \frac{3}{200} \frac{4}{\sqrt{200}} = \frac{1}{\sqrt{200}}$	n(22) 14(22):25 O·1971	•
$e^{4\kappa} = 2.2$ $(e^{\kappa})^{4} = 2.2$ $e^{L} = \sqrt[3]{22}$	$A = \frac{550}{e^{2}}$ $A = 550e^{4}$ $A = 550e^{4}$ $A = 550e^{4}$	^{22¹} ≈ 669.84
FINALLY WE HAVE		
V= 100 1 GOT-OVE		
WHEN t=0 (NEW)		
V= 100 + 669.84 × = 0		
V≈770		
1.4 ± 770	/	

è

Question 70 (****)

The curve C has equation

 $y = e^{2x} - 4e^x - 16x.$

a) Show that the x coordinates of the stationary points of C satisfy the equation

 $e^{2x} - 2e^x - 8 = 0$.

b) Hence find the exact coordinates of the stationary point of C, giving the answer in terms of $\ln 2$.

Question 71 (****)

Find, in exact form where appropriate, the solutions of the following equation

Question 72 (****)

The temperature of an oven is modelled by

 $\theta = 225 - 200 e^{-0.1t}, t \ge 0$

where θ °C is the temperature of the oven, t minutes after it was switched on.

- a) State the highest temperature of the oven according to this model.
- **b**) Determine the value of t when the oven temperature reaches 125° C.
- c) Show clearly that

$$\frac{d\theta}{dt} = \frac{1}{10} (225 - \theta)$$

and hence find the rate at which the temperature of the oven is increasing when its temperature has reached 125 °C.

a)	WHEN I BECOMIS VERY LARGE, IF t- = = = =
	e-oit > 0
	$2o_0 \in O^{\circ, t} \rightarrow D$
	∴ θ → 22.5
	* MAX THUPFRATURE IS 225 C
	ang gingen te teta antendet di terlette di antendette di esta di est Canta antende teta antendette di terrette di terrette della contenda di esta di terrette della di terrette della
9	WARN 0=125
	=> 125= 225- 2000 ⁻⁰¹
	⇒ 200e ^{ott} = (oo
	$\Rightarrow e^{-0.1t} = \frac{1}{2}$
	$\Rightarrow e^{o\cdot t} = 2$
	= 0.1t = 102
	=) t = 1042 2 6.4516/ ~ 1 min
d	AND A CLEAR
9	WOLL AS MINIST
	0 = 225-200e
	$\frac{d\theta}{d\theta} = 0 + 2ee^{evt}$
	\$\$ = 20501t
	10 db = 200 e 011
	$\log \theta = 225 - \theta$ $\log \theta = 225 - \theta$ $\log \theta = 225 - \theta$
	$\frac{d\theta}{dt} = \frac{1}{10} \left(\frac{2\alpha}{-\theta} \right) \xrightarrow{A} \frac{1}{200} \left\{ \frac{2}{200} \left\{ \frac{1}{200} \left\{ \frac{1}{2000} \left\{ \frac{1}{200} \left\{ \frac{1}{2000} \left\{ \frac{1}$
	a de = 10 c/m/
	U=102

 $\theta_{\text{max}} = 225$, $t \approx 6.93$, 10° C/min

y /

"On

nn,

madasn.

15

F.G.B.

Question 73 (****)

P O $y = 2 - 3e^{x}$ $y = 1 + e^{x+1} + e^{x-1}$

The figure above shows the graphs of

 $y = 2 - 3e^x$ and $y = 1 + e^{x+1} + e^{x-1}$

The graphs meet at the point P.

I.G.B.

Show that the y coordinate of P is

 $\frac{2e^2 + 3e + 2}{e^2 + 3e + 1}.$

Process 44 Fournes 44 THE 2. CO-DEDMART UN NO DEPUTIO 9. $y_{2} = 2 - 3e^{2k}$ 9. $y_{1} = 2 - 3e^{2k}$ 9. $y_{1} + e^{2k} + e^{2k}$ 9. $y_{2} + e^{2k} + e^{2k}$ 9. $y_{3} + e^{2k} + e^{2k} + e^{2k} + e^{2k}$ 9. $y_{3} + e^{2k} + e^{$

proof

1202

Question 74 (****)

The functions f(x) and g(x) are defined by

$$f(x) = e^x - 3, \ x \in \mathbb{R}$$

 $g(x) = x+1, x \in \mathbb{R}$

- **a**) Find an expression for $f^{-1}(x)$, the inverse of f(x).
- **b**) State the domain and range of $f^{-1}(x)$.
- c) Solve the equation

gfg(x) = 2(e-1),

giving the final answer in terms of logarithms in its simplest form.

d) Solve the equation

$$fgf(x) = e$$

 $f^{-1}(x) = \ln(x+3)$, $x \in \mathbb{R}$, x > -3, $f^{-1}(x) \in \mathbb{R}$, $x = \ln 2$, $x = \ln [2 + \ln(3 + e)]$

$ \begin{array}{c} (a) y = e^{-3} \\ y + 3 = e^{2} \\ z = h(y+3) \\ \hline \\ (b) = h(y+3) \\ \hline \\ (c) = h(y+$	
(c) $g(\mathcal{H}(\mathbf{x}_{1})) = 2(e_{-1})$ $g(\mathcal{H}(\mathbf{x}_{1})) = 2(e_{-1})$ $g[e^{e_{-1}t}, s] = 2(e_{-1})$ $(e^{e_{-1}t}, s_{-1}) = 2(e_{-1})$ $e^{e_{-1}t}, s_{-1} = 2(e_{-1})$	
$\begin{array}{c} e^{2AH} = 2e, \qquad (AH = h(2e)) \\ \hline e^{2aH} = 2, b(AH = h(2e)) \\ \hline e^{2a} = 2, b(AH = h(2e)) \\ \hline e^{2a} = 2, (AH = h(2e)) \\ \hline a = h(2e), (AH = h$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Question 75 (****)

The number of bacteria N present in a culture at time t hours, is modelled by the equation

$$N = A e^{kt}, \ t \ge 0$$

At the instant when $t = \ln 64$, there are 1200 bacteria present in the culture and bacteria are increasing at the rate of 200 bacteria per hour.

a) Find the value of A and the value of k.

The time T it takes for the bacteria to triple in number is constant.

b) Find the exact value of T.

N= Aet	
$\frac{dN}{dt} = A_{ke} k_{ke}$ or	dil= LN
• t= h64 N=1200	• t= lnc4 dN = 200 N=1200
1200 = Le Khilt	200 = k x 1200
	k= t
↓ ←	1//
1200 = 1 c = 1404	
1200 = A e 164.2	
1200 = d e 142	
1200 = Ax 2	
4= 600	
WIFW t=0, N=1200	
WHW toT, N= 3600	(×3)
. 46	
⇒ N=600e ^{€L}	
= 360 = 600 P.	

 $k = \frac{1}{6}$

A = 600,

 $T = 6 \ln 3$

Question 76 (****)

R

F.C.B.

Simplify the following logarithmic expression

$$\ln\left(2\sqrt{e}\right) - \frac{1}{3}\ln\left(\frac{8}{e^2}\right) - \ln\left(\frac{1}{3}e\right)$$

giving the answer in the form $\frac{1}{a} + \ln b$, where a and b are positive integers.

 $\frac{1}{2} + \ln 3$

Ĉ.Ŗ

(****) Question 77

Find, in exact form where appropriate, the solutions for each of the following equations.

200

12

0

I.G.B.

a)
$$\ln(2x) - \ln(x+2) = 1$$
.

- **b**) $(3e)^{y} = \frac{1}{9}$
- $e^{2t} + 15 = 8e^{t}$. c)

N.G.B. Madasn

I.F.G.B

200)

1215	$\Rightarrow \ln(2x) - \ln(2x+2) \approx 1$ $\Rightarrow \ln(\frac{2x}{x+2}) = 1$	$(9 (3e)^2 = \frac{1}{9})^2 = \frac{1}{9}$ $\Rightarrow 3^2e^2 = 3^2$	At $T: (3e)^2 = \frac{1}{9}$ $\Rightarrow l_4(3e)^2 = l_9(\frac{1}{9})$
18	$\Rightarrow 2i = ae + 2e$ $\Rightarrow 2i - 3e = 2e$ $\Rightarrow a(2-e) = 2e$	⇒ e ⁹ = 3 ⁻²⁻⁴ ⇒ y = h 3 ⇒ y = (2-9) h3	$\Rightarrow g \ln(3e) = \ln[3]$ $\Rightarrow g = \frac{\ln[(4)]}{\ln(3e)}$ $\Rightarrow g = \frac{\ln 3^{2}}{\ln^{3}}$
~~Q	=) 2 - 2 - e	$\Rightarrow g = -2h_3 - yh_3$ $\Rightarrow y + gh_3 = -2h_3$ $\Rightarrow g(1 + h_3) = -2h$ $\Rightarrow g = -\frac{2h_3}{1 + h_3}$	$\begin{array}{c} 3 \\ 3 \\ 3 \end{array} \begin{array}{c} y = \\ 1 + \left y_{3} \right \\ 3 \end{array}$
	$ \begin{array}{l} \Leftrightarrow & (e_t - 3)(e_t - 2) = 0 \\ \Leftrightarrow & (e_t)_{5-} e(e_t) + (2 = 0 \\ \Rightarrow & e_{5t} - 8e_t + (2 = 0 \\ e_{5t} + (2 = 8e_t \\ \end{array} \right) $: t= 145
1.	1	P	
.°.C.		~-Q	2
			~ ,
è .	0.		~

Madasn

nn

N.C.

hains,

I.Y.C.B. Madasa

K.C.

G

(****) Question 78 Solve the equation

COM

2017

I.V.G.B

anasmaths.

 $\ln\left(\mathrm{e}\,x^2\right)\ln x = 1, \ x > 0\,,$

madasmaths,

CO17

00

I.Y.C.B. Madasmarks.Com

giving the answers in exact form.

Madasmaths.com

,	$x = \frac{1}{e}, \sqrt{e}$
$\ln(ea^2) \ln c = 1$	⇒ 2y ² +y-1 =0
\Rightarrow $h(ex^2) = \frac{1}{h_2}$ \Rightarrow $he + best^2 = \frac{1}{h_2}$	$ \Rightarrow (2g-1)(g+1) = 0 $ $ \Rightarrow g_{3} < \frac{-1}{2} $
$\Rightarrow 1 + 2b_{2} = \frac{1}{b_{2}}$	$\Rightarrow ha_{x} < \frac{1}{2}$

I.F.G.B.

The Com

6

Madasmall

I.V.C.B. Madasn

Question 79 (****)

A curve has equation

Y.C.B. 1030381

I.C.B.

 $f(x) = e^{x} + 10e^{-x} - 7, x \in \mathbb{R}.$

- **a**) Solve the equation f(x) = 0.
- **b**) Hence, or otherwise, solve the equation

 $e^{2x-2} - 7e^{x-1} + 10 = 0.$

 $x = \ln 2, x = \ln 5$, $x = \ln(2e), x = \ln(5e)$

Om

9	o=(2) twee of 24000 24 anos
	$\Rightarrow e^{X} + 10e^{X} - T = 0$
	$\Rightarrow e^{\alpha} + \frac{10}{e^{\alpha}} - 7 = 0$
	\implies E + $\frac{10}{E}$ - 7 = 0) WHEEE E= e ²
	→ E ² + 10 - 7E = 0
	⇒ E ² -7E+10 = 0
	⇒ (E - 2)(E - 5) = 0
	$\Rightarrow b = e^2 = <_s^2$
	: a= lnz or a= lns
6)	240000 AR COUNTRY AND AR COUNTRY AND AND
	$= e^{2n-2} - 7e^{2n-1} + 10 = 0$
	$\implies e^{2Q_{-1}} - 7e^{Q_{-1}} + 0 = 0$
	CONPADE THIS GRATION WITH
	south the also of more all
	$e^{2\lambda} - \frac{2}{6}e^{\lambda} + 10 = 0$
	$ = \sum_{k=1}^{n} \frac{1}{2} \sum$

21/18

I.F.G.B.

17202

nn

1

Created by T. Madas

D

Question 80 (****)

A hot metal rod is cooled down by dipping it into a large pool of water which is maintained at constant temperature.

The temperature of the metal rod, $T \, ^{\circ}\mathrm{C}$, is given by

 $T = 20 + 480 e^{-0.1t}, \ t \ge 0,$

where t is time in minutes since the rod was dipped in the water.

- a) State the temperature ...
 - **i.** ... of the rod before it enters the water.
 - ii. ... of the water.
- **b**) Determine the value of t when the rod reaches a temperature of 260 °C.

c) Find the value of t when the rod is cooling at the rate of 0.533 °C per minute.

d) Show clearly that

$$\frac{dT}{dt} = -\frac{1}{10}(T-20)$$

T = 500

1	AT 1.	M
(a) (I)	T= 20+480="""" (II) WATTLE THANKATIONEL IS 20	°c
(4)	$\begin{array}{c} \mbox{line} to_1 \ T=20 + 480 t^{\circ} \\ T=50 t^{\circ} t^{\circ} \\ \mbox{line} t^{\circ} \\ \m$	
€)	$ \begin{array}{l} \frac{dT}{dt} = -4ee^{ott} \\ \frac{dT}{dt} = -\frac{1}{10} \left[d3e^{ott} \right] \\ \frac{dT}{dt} = -\frac{1}{10} \left[d3e^{ott} \right] \\ \frac{dT}{dt} = -\frac{1}{10} \left[T - 2e \right] \\ \frac{dT}{dt} = -\frac{1}{10} \left[T - 2e \right] \\ \end{array} $	

 $T_{\text{water}} = 20$, $t \approx 6.93$, $t \approx 45$

Question 81 (****)

The mass, M grams, of a leaf t days after it was picked from a tree is given by

$$M = A e^{-kt}, t \ge 0$$

where A and k are positive constants.

When the leaf is picked its mass is 10 grams and 5 days later its mass is 5 grams.

- a) Show clearly that
- $k = \frac{1}{5} \ln 2 \; .$
- **b**) Find the value of t that satisfies the equation

to $M \times 10 \Rightarrow A = 10$ $\begin{array}{c} \frac{dM}{dt} = -Ake^{kt}, \\ \hline M = (De^{2k}) \\ \frac{dM}{dt} = \frac{1}{2} + Ae^{-kt}, \\ \hline M = \frac{1}{2} + \frac{1}$	M= te	(b) $M = A e^{-kt}$
$\begin{array}{rcl} \frac{1}{2} = e^{-5k} & 40k2 - 10k2 & = -2kt1 & x \in E^{-10k} \\ e^{kt} = 2 & \frac{1}{2}k2 - b_{12} & = -2kt2 & x \in F^{-10k2} \\ e^{kt} = 2 & -\frac{1}{2}kk2 & = -2kt2 & x \in F^{-10k2} \\ \frac{1}{2}kk2 - kk2 & -\frac{1}{2}kk2 & -\frac{1}{2}kk2 \\ k = \frac{1}{2}kk2 & \frac{1}{2}k^{-1} + e^{-k}k^{-1} \\ \frac{1}{2}kk2 & \frac{1}{2}k^{-1} + e^{-k}k^{-1} \\ \frac{1}{2}kk2 & \frac{1}{2}k^{-1} & \frac{1}{2}k^{-1} \\ \frac{1}{2}kk2 & \frac{1}{2}kk2 \\ \frac$	$t=0$ $M=10 \implies A=10$ $M=10e^{Et}$ t=5 $M=5S=10e^{St}$	$\frac{dM}{dt} = -Ake^{-kt_{x}}$ $\ln \frac{\sqrt{2k}}{2} = -\log \frac{1}{5}\ln^{2}x e^{-\frac{k}{2}\ln^{2}t_{x}}$ $\ln \frac{\sqrt{2k}}{2} = -2\log x e^{-\frac{1}{5}t\ln^{2}t_{x}}$ $\ln \frac{\sqrt{2k}}{2} = -2\log x e^{-\frac{1}{5}t\ln^{2}t_{x}}$
$4 = e^{\frac{1}{2}t + h_2}$ $h_4 = \frac{1}{2}t + h_2$ $\frac{Stud_1}{h_2} = t$	$ \frac{1}{2} = e^{-5k} $ $ e^{5k} = Z $ $ Sk = 1y_2 $ $ k = \frac{1}{2}y_2 $	$\begin{array}{rcl} u_{MNZ} & - u_{NZ} & = -2b_{12}\times e^{\frac{1}{2}t-1u_{22}}\\ \frac{1}{2}b_{2} - b_{12} & = -2b_{12}\times e^{\frac{1}{2}t+1u_{22}}\\ & - \frac{1}{2}b_{2}c_{2} & = -2b_{12}c_{2}\times e^{\frac{1}{2}t+1u_{22}}\\ & \frac{1}{4}e^{-\frac{1}{2}e^{-\frac{1}{2}t-1u_{22}}} \end{array}$
t= 1042 t=10	to Rhubo	$4 = e^{\frac{1}{2}th_{2}}$ $ht = \frac{1}{2}th_{2}$ $\frac{5ht}{h_{2}} = t$ $t = \frac{10he^{2}}{14t} = t = 10$

t = 10

Question 82 (****+)

A scientist investigating the growth of a certain species of mushroom observes that this mushroom grows to a height of 41 mm in 5 hours.

He decides to model the height, H mm, t hours after the mushroom started forming, by the equation

$$H = k \left(1 - \mathrm{e}^{-\frac{1}{12}t} \right), \ t \ge 0$$

where k is a positive constant.

a) Show that k = 120, correct to three significant figures.

The equation

$$H = k \left(1 - e^{-\frac{1}{12}t} \right), t \ge 0,$$

is to be used for the rest of this question.

- b) Determine the value of t when H = 90, giving the answer in the form $a \ln 2$, where a is an integer.
- c) Show clearly that

$$\frac{dH}{dt} = 10 - \frac{1}{12}H \; .$$

- d) Hence find the value of H when the height is the mushroom is growing at the rate of 7.5 mm per hour.
 -) State the maximum height of the mushroom according to this model.

	-
(a) $H = k(1 - e^{-\frac{k}{k}t})$	(b) $H = 120\left(1 - e^{-\frac{1}{R}t}\right)$
When the s H=41	$\Rightarrow 0 = 120 (1 - e^{-\frac{1}{Lt}})$
$\Rightarrow 41 = k(1 - e^{\frac{k}{2}})$	⇒3 = 1-e ¹²⁺
== 41 ~ k (0.3407)	⇒ e ^{-12t} = ↓
- k ~ 120 3195	$\rightarrow e^{\frac{1}{12}t} = 4$
→ K ~ 120	$\Rightarrow \frac{1}{12}t = lu4$
	-> t= 12/14
	-> t= 24/42 a=24

(c) $H = 120 (1 - e^{\frac{1}{2}t})$ $\Rightarrow \frac{dH}{dt} = 100 (\frac{1}{2}e^{\frac{1}{2}t})$ $\Rightarrow \frac{dH}{dt} = 10e^{\frac{1}{2}t}$ $\Rightarrow 12 \frac{dH}{dt} = 12e^{\frac{1}{2}t}$	$BT \left(\begin{array}{c} H = 120 - 120 e^{\frac{1}{2}t} \\ 120 e^{\frac{1}{2}t} \\ 120 e^{\frac{1}{2}t} \\ 120 e^{\frac{1}{2}t} \\ 120 - H \end{array} \right)$ $\Rightarrow \begin{array}{c} \frac{dH}{dt} = 120 - H \\ \frac{dH}{dt} = 120 - H \\ \frac{dH}{dt} = 120 - H \end{array}$
$\frac{1}{2} \frac{1}{2} - 0 = \frac{1}{2} \frac{1}{2} \frac{1}{2}$	(c) $+t \neq -\infty = e^{-\frac{1}{h}t} = 0$ $\therefore \# \longrightarrow 120((-0))$
$\Rightarrow \frac{1}{12} H = 2.5$ $\Rightarrow H = 30$: + Hmax= 120

=120

 $|a = 24|, |H = 30|, |H_{max}|$

Question 83 (****+)

Determine, in exact simplified form where appropriate, the solutions for each of the following equations.

- **a**) $e^{2x} + 2 = 3e^x$.
- **b**) $e^{2y-2}+2=3e^{y-1}$
- **c**) $e^t = 3^{\frac{3}{\ln 3}}$.

Ĉ,

I.C.B.

1+

F.G.B.

Madası

Question 84 (****+)

Find the solution of the following logarithmic equation

 $2\ln 108 - x\ln 48 = x\ln 3 - 8\ln 2.$

The Com

	$2 \lim 100 - \chi \lim 40 - \chi \lim 5 - 8 \lim 2$.	
1. 1.1.	1. ju	<u>x=3</u>
Y.O		$(2 + 2b_1k_2 + 2b_1k_2) = 2b_1^2 + 2b_1k_2 + 2b_1 + 2b_1$
SP S		$\begin{array}{llllllllllllllllllllllllllllllllllll$
a Man	12da	$\frac{g}{2} = \frac{\ln (2\theta_1^2 + \ln 2^{\theta})}{\ln (2\theta_1^2} = \frac{\ln (2\theta_2 \times 2^{\theta})}{\ln (2\theta_1^2)} = \frac{\ln (2\theta_2 \times 2^{\theta})}{\ln (2\theta_1^2)} = \frac{\ln (2\theta_2 \times 2^{\theta})}{\ln (2\theta_1^2)}$
nare asm	- Shar	Mari Math
IS Val	the also	als co
	Con On	
In Sp		1.2 6.2
1.C	p Ko	· G & · G
-6 p	m S.	in the second se
20. 920.	1 day 1	201 4202
and asin	1212	asp. Sh.
115.00	the ase	Allo A
	Con U	Con
1. 1	- In	1. V 1.
Gr il	ip 'Ch	Gp ·
-0- A	10. 30.	
120	Created by T. Madas	an do

Question 85 (****+)

The function f is defined as

$$f(x) = 3 - \ln 4x, \ x \in \mathbb{R}, \ x > 0$$

a) Determine, in exact form, the coordinates of the point where the graph of f crosses the x axis.

Consider the following sequence of transformations T_1 , T_2 and T_3 .

 $\ln x \xrightarrow{T_1} \ln 4x \xrightarrow{T_2} -\ln 4x \xrightarrow{T_3} 3 - \ln 4x$

b) Describe geometrically each of the transformations T₁, T₂ and T₃, and hence sketch the graph of f(x).
Indicate clearly any intersections with the coordinate axes.

The function g is defined by

 $g(x) = e^{5-x}, x \in \mathbb{R}.$

c) Show that

$$fg(x) = x - k - k \ln k ,$$

where k is a positive integer.

, $\left(\frac{1}{4}e^3, 0\right)$, T_1 = stretch in x, scale factor $\frac{1}{4}$, T_2 = reflection in the x-axis

 $T_3 = \text{translation, "up", 4 units}, k = 2$

Question 86 (****+)

A curve has equation

 $y = 4e^{2-x} - e^{4-2x}, x \in \mathbb{R}.$

Use differentiation to find the exact coordinates of the stationary point of the curve, and determine its nature.

	,	$\max(2 - \ln 2, 4)$
h_		
$\begin{cases} q = 4e^{2x} - e^{4x} \\ dq = 4e^{2x} - e^{4x} \\ dd = -4e^{2x} + 2e^{4x} \\ dd = -4e^{2x} + 2e^{4x} \\ dd = -4e^{2x} + 2e^{4x} \\ dq = 4e^{2x} + 2e^{4x} \\ dq = 6e^{2x} \\ dq = 6e$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c} \overrightarrow{} & \overrightarrow{} \\ \overrightarrow{} \\ \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$

Question 87 (****+)

Find, in exact form where appropriate, the solutions of the following equation

 $6e^{3x}+1=7e^{2x}$.

à	x = 0, -1	n.
[h		٩
	<u>n</u>	
THU 15 4 0	BICN e	
$\rightarrow 6e^{31}$	1= 7e ²	
⇒ 6°°-	76.41=0	
= 66er2	-7(e ^x)* + 1 = 0	
- 6A3.	-74°+1=0 A=e°3	
	- Euro	
BY NATIFEETION	A=1 15 + SOUTION - SO LONG DUIDE BY +-1	
$\Rightarrow 6A^2(A -$	-1) - A(A-1) - (A-1) = 0	
$\Rightarrow (4-1)(1$	$iA^2 - A - 1 = 0$	
⇒ (A-1)(34 + 1) (24-1)=0	
- Ai -		
1		
	2	
⇒ er = €	< <u>'</u> } € >>	
	<u>_</u>	
	. (1)	
-> a = <		

Question 88 (****+)

When a tree of a certain species was planted it was 2 metres in height and after 2 years its height was measured at 3.81 metres.

The height, h metres, of this tree, t years after it was planted, is modelled by the equation

 $h = A - B e^{-kt} ,$

where A, B and k are positive constants.

Given that this species of tree will reach in its lifetime a maximum height of 12 metres find the value of t when h = 10.

AUTHOUGH IT IS THMPTING TO	D START FROM THE TWO GNDITIONS
GIVAN (teo, h=2 of t=2	, k=3.81), IT BEST TO START ADM
MINFETTING MAX 460048 NG 1243	⇒ * t→~ h→12
	→ & t→∞ e ^{tt} →∞ Be ^{tt} →∞
	h->A
	5A=12
h= 12-Bet	
· t=0, h=2	• t= 2, b= 3. PI
2=12-Be ^o <u>B=10</u>	$3\cdot81 = 12 - Be^{-2k}$ $3\cdot81 = 12 - Be^{-2k}$ $10e^{-2k} = 8\cdot19$ $e^{2k} = 8\cdot19$
	-26 = ln (0.819)
	L = 0.099835
FINITION WE HAVE	
→ h= 12-10e ⁻⁰¹ t → 10=12-10e ⁻⁰¹ t	
$\Rightarrow 0e^{ort} = 2$ $\Rightarrow e^{ort} = \frac{1}{2}$	
-) e''' = S -) oit= hs	$\therefore t = tolys \approx 16.1$

 $t \approx 16$

Question 89 (****+)

The figure below shows the curve with equation

 $y = 3\ln(Ax+B), Ax+B > 0,$

where A and B are positive constants.

The curve passes through the points P(-1,0) and $Q(0, \ln 27)$.

- **a**) Find the values of A and B.
- **b**) State the equation of the vertical asymptote to the curve.

The shaded region R is bounded by the curve and the coordinate axes.

c) Show that the area of R is

 $\frac{3}{2}(\ln 27-2).$

2	2. 48
. (a)	$y = 3\ln(A_{\alpha+B})$
	$ \begin{array}{c} (-l_1 \circ) \Longrightarrow & \circ \circ = 3 l_{H}(-4 + B) \\ (0_1 l_{H}(\mathcal{I}) \Rightarrow & l_{H}\mathcal{I}\mathcal{I} = 3 l_{H}\mathcal{B} \end{array} \end{array} \begin{array}{c} \mathcal{B} - \mathcal{A} = \mathcal{C}^{\circ} & \cdot_{H} \\ \mathcal{B} - \mathcal{A} = \mathcal{C}^{\circ} \\ \mathcal{B} - \mathcal{C} = \mathcal{C}^{\circ} \\ \mathcal{B} - \mathcal{C} = \mathcal{C} \\ \mathcal{B} - \mathcal$
	: 4 = 2 q B=3
6	VERTICE formation of y=3/n(2+3) 15 2=-32 It when Assaults of LOG BECOMPS RAMO
୯)	$\int_{-1}^{0} 3\ln(2x+3) dx = \int_{1}^{3} 3\ln(4 \times \frac{d_{1}}{2}) = \int_{1}^{3} \frac{3}{2}\ln(4 + \frac{d_{1}}{2}) = \int_{1}^{3} \frac$
	$= \dots b_{1} \operatorname{post}_{\underline{X}}^{\underline{X}} \dots = \frac{3}{2} \omega b_{1} \omega - \int \frac{3}{2} d_{4} \qquad \begin{cases} dx & -\frac{du}{2} \\ dx = \frac{du}{2} \end{cases}$
	$= \left[\frac{3}{2}\alpha h_{M} - \frac{3}{2}\alpha\right]_{2}^{2} = \left(\frac{3}{2}\chi_{3}\chi_{M} - \frac{5}{2}\chi_{3}\right) - \left(0 - \frac{3}{2}\right) \qquad \qquad$
	$= \frac{q}{2} \ln 3 - \frac{q}{2} + \frac{3}{2} = \frac{q}{2} \ln 3 - 3 = \frac{3}{2} \left[3 \ln 3 - 2 \right]$
	$= \frac{3}{2} \left(\ln 21 - 2 \right) \qquad $

A=2, B=3, $x=-\frac{3}{2}$

Question 90 (****+)

Find, in exact form where appropriate, the solutions for each of the following equations.

Question 91 (****+)

The function f is defined as

 $f: x \mapsto 6 - \ln(x+3), x \in \mathbb{R}, x \ge -2.$

Consider the following sequence of transformations T_1 , T_2 and T_3 .

 $\ln x \xrightarrow{T_1} \ln (x+3) \xrightarrow{T_2} -\ln (x+3) \xrightarrow{T_3} -\ln (x+3) + 6.$

- a) Describe geometrically T_1 , T_2 and T_3 , and hence sketch the graph of f(x). Indicate clearly any intersections with the axes and the graph's starting point.
- **b**) Find, in its simplest form, an expression for $f^{-1}(x)$, stating further the domain and range of $f^{-1}(x)$.

The function g satisfies

 $x \to e^{x^2} - 3, x \in \mathbb{R}$.

c) Find, in its simplest form, an expression for the composition fg(x).

Question 92 (****+)

0

ISMaths,

Show that the value of x in the following expression

$$\ln x = \frac{3\ln 2}{2\ln 2 - 1}$$

satisfies the logarithmic equation

203sm2

N.G.B. Madasn

00

I.C.p

ation

$$2 + \log_2 x = 2 \ln \left(\frac{x}{\sqrt{e}}\right), \quad x > 0$$

G.p

2017

com

Madasm.

2017

ldasnaths.com

I.C.B. Madasn

The COM

proof

11-4-

21/2.SM

Question 93 (****+) non calculator

Ĉ.Ŗ

I.C.B.

An implicit relationship between x and y is given below, in terms of a constant A.

$$y \sec^2 x = A + 2\ln(\sec x), \ 0 \le x < \frac{\pi}{2}$$

Given that y = 2 at $x = \frac{\pi}{3}$, show clearly that when $x = \frac{1}{6}\pi$

$$y = \frac{3}{4}(8 - \ln 3)$$
.

i G.B.

Maria.

è

(****+) Question 94

I.C.B.

I.C.B.

200

Find, in its simplest form, the solution of the following equation

112/281

200

00

F.G.B.

 $e^{4x} = 16^{\frac{1}{\ln 2}}.$

The answer must be supported by detailed workings.

	<u> </u>
TAKING NATORAL LOGARITHUL BOTH SIDES	
enz = 16 112	
- 42 = h 16 hz	
$\Rightarrow 4\lambda = \frac{1}{\ln z} \times \ln k$	
$\Rightarrow 4\lambda = \frac{\ln k}{\ln 2}$	
=> 42 = 4 haz: Jan-	
= 2.1	
ACTIVALATILY BE FUN	logo b = 1 logo
e = 16/2 = (-4)/2 = . [] = -	L = lae]
- Carl - Chiz log	3e ² 02-1
~ = (1) -	
= 2 682 4 1	100.3
= e ^y	$a \circ a \equiv \infty$
, 4×_4	

Madasmaths,

I.F.G.B.

2017

|, x=1

1+

212.sm

INadasn

Question 95 (****+)

A population of bacteria P is growing exponentially with time t and the table below shows some of these values.

	h		
t	12	36	60
Р	576	2304	а

Show clearly that a = 9216.

P.C.B.

Ĉ.

na

12

proof

(****+) Question 96

Find, in exact form where appropriate, the solutions for each of the following equations.

í.

1+

Question 97 (****+)

The temperature T °C in a warehouse is regulated by a thermostat so that when the temperature drops to 12 °C the heating system is switched on.

It takes 10 minutes for the temperature to rise to 20 °C and at that point the thermostat switches the heating system off. It takes 50 minutes for the temperature to drop back down to 12 °C.

The cycle then repeats.

This is shown in the graph below, where the time t is in minutes.

The section of the graph for which $10 \le t \le 60$ is modelled by the equation

$$T = 10 + A e^{-kt}, \ 10 \le t \le 60$$

where A and k are positive constants.

a) Find, correct to 5 significant figures, the value of A and the value of k.

[continues overleaf]

[continued from overleaf]

The section of the graph for which $70 \le t \le 120$ is a horizontal translation of the section of the graph for which $10 \le t \le 60$.

This section is modelled by the equation

 $T = 10 + B e^{-kt}, \quad 70 \le t \le 120$

where B is a positive constant.

b) Find, to 4 significant figures, the value of B.

	18
(@)	T= 10+ 4e2t
	$\begin{array}{c} \mbox{whut} t=10 T=20 \implies 20=104 \mbox{λe^{-10k}$} \\ t=60 T=12 \implies 12=10+ \mbox{λe^{-60k}$} \end{array} \right) \implies$
	$\begin{array}{c} \int_{0}^{\infty} e^{\frac{2\pi}{3}} \left[0 \right] \text{3uuse} e^{\frac{2\pi}{3}} \\ \int_{0}^{\infty} e^{\frac{2\pi}{3}} e^{-\frac{2\pi}{3}} \\ & \qquad \qquad$
	USING A COK =10
	$A = \frac{10}{e^{\infty}(\cos \omega_{-1})} \sim 13.797 (5.14)$
(b)	THALLAND OF AND THAT TO UNTER THAT

A = 13.797, k = 0.032189, B = 95.18

(****+) Question 98

2

Find, in exact form if appropriate, the solutions of the following equation.

Question 99 (****+)

A scientist is investigating the population growth of farm mice.

The number of farm mice N, t months since the start of the investigation, is modelled by the equation

$$N = \frac{600}{1 + 5 \,\mathrm{e}^{-0.25t}} \,, \ t \ge 0 \,.$$

- a) State the number of farm mice at the start of the investigation.
- **b**) Calculate the number of months that it will take the population of farm mice to reach 455.
- c) Show clearly that

$$\frac{dN}{dt} = \frac{1}{4}N - \frac{1}{2400}N^2.$$

d) Find the value of t when the rate of growth of the population of these farm mice is largest.

 $|100|, |t \approx 11|, |t = 4 \ln 5 \approx 8|$

Question 100 (****+)

The populations P_1 and P_2 of two bacterial cultures, t hours after a certain instant, are modelled by the following equations

 $P_1 = 1600e^{\frac{1}{4}t}, P_2 = 100e^{\frac{1}{2}t}, t \in \mathbb{R}, t \ge 0.$

When t = T, P_1 contains 4800 more bacteria than P_2 .

a) Find, in terms of natural logarithms, the possible values of T.

At a certain time there are P extra bacteria in P_1 compared with P_2 .

b) Determine the greatest value of P.

 $T = 8 \ln 2$ or $4 \ln 12$, P = 6400

(****+) Question 101

The function f is defined as

$$f(x) = \ln(4-2x), x \in \mathbb{R}, x < 2.$$

a) Find in exact form the coordinates of the points where the graph of f(x)crosses the coordinate axes.

Consider the following sequence of transformations T_1 , T_2 and T_3 .

$$\ln x \xrightarrow{T_1} \ln(x+4) \xrightarrow{T_2} \ln(2x+4) \xrightarrow{T_3} \ln(-2x+4)$$

b) Describe geometrically the transformations T_1 , T_2 and T_3 , and hence sketch the graph of f(x).

Indicate clearly any asymptotes and coordinates of intersections with the axes.

c) Find, an expression for $f^{-1}(x)$, the inverse function of f(x).

d) State the domain and range of $f^{-1}(x)$.

 $\left(\frac{3}{2},0\right)$, $\left(0,\ln 4\right)$, T_1 = translation, "left", 4 units, T_2 = stretch in x, scale factor $\frac{1}{2}$, T_3 = reflection in the y-axis, asymptote x = 2

 $f^{-1}(x) = 2 - \frac{1}{2}e^{x}$, $x \in \mathbb{R}$, $f^{-1}(x) < 2$

· f(x)=2-fex

(****+) **Question 102**

The amount X milligrams, of an anaesthetic drug in the bloodstream of a patient, is given by

$$X = D e^{-0.2t}, t \ge 0$$

where D is the dose, in milligrams, of the anaesthetic administered and t is the time in hours since the dose was administered.

A patient undergoing an operation is given an initial dose of 20 milligrams.

This patient will remain asleep if there are more than 12 milligrams of anaesthetic in his bloodstream.

- a) Show that one hour later X = 16.37, correct to two decimal places.
- Show, by calculation, that two hours after the initial dose was administered, the **b**) patient should still be asleep.

Two hours after the initial dose was administered a further dose of 10 milligrams is given to the patient.

c) Find the amount of the anaesthetic in the patient's bloodstream one hour after the second dose is given.

No more anaesthetic is given and the operation lasts for 4 hours.

d) Show by solving a relevant equation that the patient should "wake up' approximately 80 minutes after the end of his operation.

 $X \approx 19.16$

TIVE USING PART C

Question 103 (****+)

The temperature, θ °C, of an oven t minutes after it was switched on is given by

$$\theta = 300 - 280 e^{-0.05t}, t \ge 0$$

- a) State the initial temperature of the oven.
- **b**) Find the value of t when the temperature of the oven ...
 - **i.** ... reaches 160 °C.
 - **ii.** ... is increasing at the rate of 4 °C per minute.
- c) Determine, with justification, the maximum temperature this oven can reach.

The temperature θ °C of a **different** oven *t* minutes after it was switched on is modelled by a similar equation

 $\theta = 250 - 230 e^{-0.1t}, t \ge 0.$

d) Assuming that both ovens are switched on at the same time find the time when both ovens will have the same temperature since they were switched on.

], 20° C, $20\ln 2 \approx 13.86$, $20\ln \left(\frac{7}{2}\right) \approx 25.06$, 300° C, $20\ln \left(\frac{23}{5}\right)$

≈ 30.52

Question 104 (*****)

The population P of seals on an island obeys the equation

$$P = \frac{800k \,\mathrm{e}^{0.25t}}{1 + k \,\mathrm{e}^{0.25t}}, \quad t \ge 0$$

where k is a positive constant and t is the time, in years, measured from a certain instant.

Initially there were 175 seals on the island.

- a) Find, showing a detailed method, ...
 - i. ... the value of t when the number of seals reaches 560.

ii. ... the long term prospects of the population of these seals.

b) Show further that

 $\frac{dP}{dt} = \frac{P(800-P)}{3200} \,.$

 $t \approx 8.48$

 $P_{\rm max} = 800$

(****) Question 105

Find, in exact form where appropriate, the solutions for each of the following equations.

a)
$$\ln(x+1) = 2 + \ln(3x)$$
.

 $\frac{8e^y}{e^{2y}-1}$ b)

F.G.B.

I.C.B.

c)
$$e^{2t+2}(e^{2t}-4)=1+e^2(e^2-2)$$

$$[x = \frac{1}{3e^2 - 1} \approx 0.0472], \ y = \ln 3], \ t = \ln \left[e^{\frac{1}{2}} + e^{-\frac{1}{2}} \right]$$

10

-e - ± e +2 + 1 e - (e - 2 + 1)

 $\ln\left(e^{\frac{1}{2}}+e^{\frac{1}{2}}\right)$ $\frac{1}{\ln(2\cosh \pm 1)}$

F.C.B.

è

12

$a) \bullet \underbrace{ h(x+i) = 2 + _M 3_2}_{\implies h(x+i) - h_1 3_k} = 2$	b) $\bullet \frac{Be^{4}}{e^{24}-1} = 3$		2t 2 - 2 - <	$\leq \frac{e+\frac{1}{e}}{-e-\frac{1}{e}}$
$\Rightarrow h\left(\frac{3+1}{3\lambda}\right) = 2$ $\Rightarrow \frac{3+1}{3\lambda} = e^{2}$ $\Rightarrow 2+1 = 3e^{2}$	$\implies 0 = 3e^{2y} - 8e^{y} - 3$ $\implies 0 = 3(e^{y})^{2} - 8(e^{y}) - 3$. z	$< \underbrace{e}_{-(e-2+\frac{1}{e})}^{e+2+\frac{1}{e}}$
$\Rightarrow 1 = 3\alpha e^{2} - \alpha$ $\Rightarrow 1 = \alpha(3e^{2} - 1)$	$\Rightarrow \circ = (3e^{4}+1)(e^{4}-3)$ $\Rightarrow e^{4}= \checkmark 3$	-) e	t = ;	$\begin{pmatrix} \left(\sqrt{e} + \frac{1}{\sqrt{e}}\right)^2 \\ -\left(\sqrt{e} - \frac{1}{\sqrt{e}}\right)^2 \end{pmatrix}$
$\implies x = \frac{1}{3q^2 - 1} \swarrow 0.0412$	- y= h3	-) e	et =	$\left(\sqrt{2} + \frac{1}{\sqrt{2}}\right)^2$
c) $e^{2t+2}\left(e^{2t}+4\right) = 1 + e^{2}\left(e^{2t}+4\right) = 1 $	e ² -2)	- •	e =	$+\left(\sqrt{e} + \frac{1}{\sqrt{e}}\right)$
$= e^{4t+2} - 4e^{2t+2} = 1 - 2e^2$	+ e ^µ	-, -	с. е	$\ln\left(e^{\frac{1}{2}}+e^{\frac{1}{2}}\right)$
Divide the equation by e^2 $\Rightarrow e^{4t} - 4e^{3t} = \frac{1}{e^2} - 2$	+ c ²			↑ In (2 coch ±)
$\Rightarrow \left(e^{\frac{t}{t}}-2\right)^2 - 4 = \frac{1}{e^2} - 2$	4e ²			
$\Rightarrow \left(e^{2t}-2\right)^2 = \frac{1}{e^2} + 2$	+ e ²			
$=5\left(\frac{e^{2t}-2}{e}\right)^2 = \left(e+\frac{1}{e}\right)$	2			

(****) **Question 106**

alasmaths.com

I.Y.C.B

Solve the following logarithmic equation.

nadasmaths.com

On I.Y.C.B.

 $\ln\left(\frac{1}{12} - \frac{1}{3x^2}\right) - 1 = \ln\left(\frac{1}{12} + \frac{1}{4x} + \frac{1}{6x^2}\right),$

nadasn.

giving the value of x in exact form.

 $\frac{1}{3\chi^2}$ = $\int = \int_{N} \left(\frac{1}{12} + \frac{1}{4\chi} + \frac{1}{6\chi^2} \right)$ $\ln\left(\frac{1}{12}-\frac{1}{3\lambda_{2}}\right)-\ln\left(\frac{1}{12}+\frac{1}{4\lambda}+\frac{1}{C\lambda_{2}}\right)=1$, I.Y.C.B. Madasman

madasmaths com

I.V.C.B. Madası

Ths.com

 $x = \frac{2 + e}{1 - e}$

1.40

nadasm

Created by T. Madas

I.V.C.P.

Question 107 (*****)

On the 1st January 2000 a rare stamp was purchased at an auction for £16000 and by the 1st January 2010 its value was four times as large as its purchase price.

The future value of this stamp, $\pounds V$, t years after the 1st January 2000 is modelled by the equation

 $V = A e^{pt}, t \ge 0,$

where A and p are positive constants.

On the 1st January 1990 a different stamp was purchased for £2.

The future value of this stamp, $\pounds U$, t years after the 1st January 1990 is modelled by the equation

$$U = B e^{2pt}, t \ge 0,$$

where B is a positive constant.

Determine the year, during which the two stamps will achieve the same value, according to their modelling equations.

LOOKING AT THE FUST STANLP		kalan di Kal	ni ana an' amin' dia ma
V= Aet	t≈o	V= 16000	(YHAR 2000)
	tain	V- Alan	(YEAR 2610)
• $6000 = \lambda e^{Px0}$ • $64000 = 16$ $16000 = A \times 1$ $4 = e^{10P}$ $A = 16000$ $P^{a} = \frac{1}{10} h_{a} F$	jaare ^{lop}		
LOOKING AT THE SECOND STAMP			
V: Bezet	t=0	V=2	(YEAR 19to)
	• U 2	= Be ^{2pt}	
	B	°≏2,	
NOW WIC HAVE			
V= 16000 e (HINA)E	σ=	20(2/149)t	
(t snypes from 2000)	(t	NO-9 ZIMPRZ	1980)
ADJUST THE TIME SO THEY BOAH START	Frank 171	90.	
V= 16000 €(#1/12/16-10) (t≥0)	⊽=	2e(\$142)£ (£)	10)
SOWING NOW YHILDS, IF V=U			
=) (food = (folk2)(-10) =	(4/n2)	t.	

, 1000C TE
\Rightarrow $\Theta \cos e^{(\frac{1}{2}h_2) \leftarrow -2h_2} = e^{(\frac{2}{3}h_2) \leftarrow -2h_2}$
\implies $B000 e^{(\frac{1}{2}h2)t} \times e^{-2m2} = e^{(\frac{1}{2}h2)(t)}$
\Rightarrow 8000 $(e^{h_2})^{\xi t} \times e^{h_{\frac{1}{2}}} = (e^{h_2})^{\xi t}$
-> 8000 × 2 tt × = 2 tt
$\Rightarrow 2000 \times 2^{\frac{1}{3}t} = 2^{\frac{3}{3}t}$) here is 2t
= 2000 = 2 st
KUNG VOBS (ANDY BASE)
$\rightarrow h_{2000} = h(2^{\frac{1}{2}t})$
\rightarrow lh2000 = 56 lh2
$\Rightarrow (\frac{1}{2}h_2)E = h_2 \infty o$
\Rightarrow t = $\frac{5 \ln 2000}{\ln 2} \propto 54.82$
: YEAR 2044

(+b12)(+=10)

, 2044

(*****) **Question 108**

Yo	Use algebra, to solve the follow	ing equation.	n '	·Cn.	10
3		$e^x + e^{1-x} = e + 1$.	× 1.	1	× ~
1.	1.1.	1.1		x = 0, x = 1	K
1	r. Co	67	Provint that As 4. SUADDATIC IN C	ß	G,
Q.	B G	. Y	$\Rightarrow e_{i}^{k} + e_{i}^{i-\chi} = c+i$ $\Rightarrow e_{i}^{k} + e_{i}^{e_{i}} = c+i$ $\Rightarrow (e_{i})^{k} + e = (e+i)e_{i}^{\chi}$		
205	no. 4	201	$\Rightarrow e^{2\lambda} - (e_{H})e^{\lambda} + e = 0$ $\xrightarrow{BY} (H+ QORDEATIC RQUILA CE COURCE \Rightarrow \left[e^{\lambda} - \frac{e_{H}}{2}\right]^{2} - \left(\frac{e_{H}}{2}\right)^{2} + e =$	o	2
"SID	1993 C.	"dsm	$ = \left[\left[e^{\lambda} - \frac{e_{+}}{2} \right]^{\lambda} - \left[\frac{e^{\lambda} + 2e_{+}}{4} \right] + e^{\lambda} \right] $ $ = \left[\left[e^{\lambda} - \frac{e_{+}}{2} \right]^{\lambda} = \left[\frac{e^{\lambda} + 2e_{+}}{4} \right] $ $ = \left[\left[e^{\lambda} - \frac{e_{+}}{2} \right]^{\lambda} = \left[\frac{e^{\lambda} - 2e_{+}}{4} \right] $	- c	Qar)
A.	he Mars	All.	$ \Rightarrow \left[e^{2} - \frac{c+1}{2}\right]^{2} = \frac{e^{2} - 2c+1}{4} $ $ \Rightarrow \left[e^{2} - \frac{c+1}{2}\right]^{2} \approx \frac{(c-1)^{2}}{4} $ $ \Rightarrow \left[e^{2} - \frac{c+1}{2}\right]^{2} \approx \frac{(c-1)^{2}}{4} $		
	Con Us		$C \rightarrow e^{\lambda} = \frac{e^{+1}}{2} \pm \frac{e^{-1}}{2}$ $\rightarrow e^{\lambda} = \langle e^{-1} \rangle$		
6		20		7	
11	· · ·	× 1.	.1	× ×	Ŀ,
	C. 4	1.6		20	~G
3		m s	B	· m	
202	(nan)	405 -	na.	120.	1
	2812	- Charles	-428		Sp.
19	18 4212	11 ali		211	Nel 1
2.	Con VS	Co.	Con	-AS	
1			- ⁴⁴ - y	On	
	t ita	1.1			1.
	Go Ch)	<u>}</u>	60	1
		no.	<i>o</i> ,	· 1).	
(an)		Created by T. Mac	las 2	- Al	120
28	ASD.		. " <i>?</i> s	2	VD.

ths.com

hs.co

Question 109 (*****)

It is given that

2

$$y = 2\ln\left(e^x + 1\right) - \ln\left(e^x - 1\right), \ x \in \mathbb{R}$$

nada

Express x in terms of y.

)

ths.com

Question 110 (*****)

I.C.P.

Given that $x = \frac{1}{2} (e^y - e^{-y})$ show that

10

$$y = \ln\left(x + \sqrt{x^2 + 1}\right)$$

proof

12.50

$\mathcal{X} = \frac{1}{2} \left(e_{a}^{e} - \bar{e}_{a} \right)$	$\Rightarrow e^{3} - a = \pm \sqrt{a^{2} + 1}$
$\Rightarrow 2\lambda = e^{\underline{\mu}} - e^{\underline{a}}$	$= e^{ij} = 2 \pm \sqrt{2^{2}+1}$
$\Rightarrow 0 = e^9 - 2\alpha - e^9 R$	SUT e">0
$\Rightarrow 0 = e^{2y} - 2ae^{y} - 1$	$\therefore e^{0} \neq \alpha - \sqrt{\alpha^{2} H^{2}}$
(HUDINUKO BY et) /	$\Rightarrow e^{y} = 2 + \sqrt{2^{2} + 1}$
= e ² - 21e ³ - 1 = 0	= y = h(2+ 12+1)
$\Rightarrow \left(e_{\partial} - x \right)_{5} - x_{5} - 1 = 0$	
$\Rightarrow (e^{4}-x)^{2} = x^{2}+1$	

Question 112 (*****)

 $\langle c \rangle$

It is given that 2^{10} is approximately 1000.

- a) Given further that $\ln 2$ is approximately 0.7, find the approximate value of $\ln 10$, giving the answer in the form $\frac{a}{b}$, where a and b are positive integers.
- b) Given further that e^3 is approximately 20, show that the approximate value of $\ln 2$ is $\frac{9}{13}$.

 $\ln 10 \approx \frac{7}{3}$

i G.B.

Question 113 (*****)

Show that the expression

simplifies to $e - e^{3x+1}$.

$$\begin{split} & \left[\begin{array}{c} \mathbf{e} - \left(\underbrace{e^{2\mathbf{i} \frac{1}{2}}}_{\mathbf{e}^{2\mathbf{\lambda}}} \right)^2 \times \underbrace{\frac{1}{e^{2\mathbf{i} \frac{1}{2}}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} = \frac{\left(\underbrace{e} - \underbrace{e^{2\mathbf{i} \frac{1}{2}}}_{\mathbf{e}^{2\mathbf{\lambda}}} \right) \times \underbrace{\frac{1}{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} = \frac{\left(\underbrace{e} - \underbrace{e^{2\mathbf{i} \frac{1}{2}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}}} \right) \times \underbrace{\frac{1}{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} = \underbrace{\frac{e^{2\mathbf{i} \frac{1}{2}}}{e^{2\mathbf{i} \frac{1}{2}}} \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} = \underbrace{\frac{e^{2\mathbf{i} \frac{1}{2}}}{e^{2\mathbf{i} \frac{1}{2}}} \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} = \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} = \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} = \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}}} = \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}}} \right) \\ \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} \right) = \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}}} \right) \\ \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}} \right) = \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}}} \right) \\ \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}}} \right) \\ \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \mathbf{h}_{\mathbf{e}}}}_{\mathbf{e}^{2\mathbf{i} \frac{1}{2}}} \right) \\ \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} \left((1 - e^{2\mathbf{i}}) (1 + e^{2\mathbf{i}}) \times \underbrace{e^{2\mathbf{i} \frac{1}{2}} (1 + e^{2\mathbf{i}}) \times \underbrace$$

proof

1

Question 114 (*****)

I.C.p

Find, in exact form, the solutions of the following equation

 $\frac{2 - \ln x^7}{7 - \ln x^2} + (\ln x)^2 = 0.$

MURULATE TO A POWNOWIAL EPOETTON IN INC.

- $= \frac{7 \ln x^2}{7 \ln x} + (\ln x) =$
- $\implies \frac{1}{7-2\ln 2} + (\ln 2) = 0$
- $= \frac{2-ra}{7-2a} + a^2 = 0$ $= \frac{1}{7-2a} + a^2(7-2) = 0$ $= \frac{1}{7-2a} + a^2(7-2) = 0$ $= \frac{1}{7-2a} + a^2(7-2) = 0$
- $= 2 7a + 7a^2 2a^3 = 0$
- Lock for fators by inspection)
- $\rightarrow d \in [2x]^{2} 7x[+7x] 2 = 0$ By tand Division (a-1) is 4 fractor, or white children
- $\Rightarrow 2a^{2}(a-1) 5a(a-1) + 2(a-1) = 0$
- $= (a-1)(2a^2-5a+2) = 0$ = (a-1)(2a-1)(a-2) = 0
- $a = |h|_{2} = \left\langle \frac{1}{2} \right\rangle$
- ž e

Question 115 (*****)

1.Y.C.

Solve the following equation

R.B.

 $e^{4(x+1)^2} = \ln e^{-e} + (1+\frac{1}{e})e^{2x^2+4x+3}$

 $x = -1, \frac{1}{2}$

 $-2\pm\sqrt{2}$

Question 116 (*****)

I.C.B.

 $y = 16e^{-\frac{t}{3}\ln 2}, t \in \mathbb{R}$

Show clearly that when t = 10, $y = \sqrt[3]{4}$

1+

 $\begin{array}{c} \underbrace{(d)_{1}}{(d)_{2}} = \left[\int_{0}^{-\frac{1}{2}} \frac{1}{4} \log 2 \right] \\ \underbrace{(d)_{2}}{(d)_{2}} = \left[\int_{0}^{-\frac{1}{2}} \frac{1}{4} \log 2 \right] \\ \underbrace{(d)_{2}}{(d)_{2}} = \left[\int_{0}^{-\frac{1}{2}} \frac{1}{4} \log 2 \right] \\ = \left[\int_{0}^{-\frac{1}{2}} \frac{1}{2} \log 2 \right] \\ = \left[\int_{0}^{-\frac{1}{2} \log 2 \right] \\$

(****) Question 117

, i. i. G.B.

>

Solve the following simultaneous equations.

 $3^{\ln x} = 2^{\ln y} \,.$ $(2x)^{\ln 2} = (3y)^{\ln 3}$ and

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\square, 2, 3$	
S.O. 62	S SP	0	- G
4B 4	· · · ·	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
an m	η_2 , γ	$ \begin{array}{c} \Rightarrow (b_2) \left u(x_1) = (b_13) \left u(y_2) \right \\ \Rightarrow (b_2) \left b_2 + b_2 \right = (u_2) \left u_3 + b_2 \right \\ \Rightarrow (b_12) \left b_2 + b_2 \right = (u_2) \left u_3 + b_2 \right \\ \Rightarrow (b_2) \left b_2 + b_2 \right = (u_2) \left u_3 + b_2 \right \\ \Rightarrow b_1 y = \frac{(u_2) (u_3)}{b_2} = \frac{(u_2) (u_3)}{b_2} \right $	25
420. ×120	· 902	SUBSTRUCE ABY THE SUBSTRUCE ABY	Sp.
Sh 420	"Sp	$ = \int (h_{0}^{2})^{2} + (h_{0}^{2}) \int (h_{0}^{2}) = (h_{0}^{2}) \int (h_{0}^{2})^{2} + (h_$	421
All One	1212	$ = \bigcup_{i=1}^{n} - \bigcup_{i=1}^{n}$	· · · ? .
AS ALA	28	$\Rightarrow \frac{ n_{2,z} - n_{2} }{ n_{2,z} - n_{2} }$.0
	· · · · · · · · · · · · · · · · · · ·	• EVALUE TO BET U $\Rightarrow hy = \frac{(h_{12})(h_{13})}{h_{12}} = \frac{(-h_{12})(h_{13})}{h_{12}} = -h_{13}$	b
$h \sim 1$	Op "	$\Rightarrow \boxed{3} = \frac{1}{2}$	
Y. Ch			1.1.
· V. KO			
Ch Ch	0 K.O.	60	- C.
	a SP		
an in	12.	m 4	20.
·420. · 40	~ () a.	42N	905
The So	- Charles	-420	Sm
the Va	o dito	- On	121
S.C. Y	n 18,	2 Th	
b. Op	Co.	On S.	2
	- Ch	N . N	200
1. 60	· · · · · ·	6.12	Y .
S. S.	2. 5.1.	50.	.1
63 4	$B \rightarrow C$	h \mathcal{G}	1
-0-	· ~ ~		<u>~</u>
n n	Nan'	m.	12~
1901 do.	Created by T. Madas	Ne de la compañía de	·420.
438 - 48h	The second secon	desn	n.
	The second s		the second s

The Com

y =

Question 118(*****)A function f is defined as

 $f(x) = e^{ax} + b, \quad -\ln 2 \le x \le \ln 2,$

where a and b are positive constants.

It is given that $f\left(\ln\left(\frac{3}{2}\right)\right) = \frac{13}{4}$

a) Show clearly that

 $b = \frac{13}{4} - \left(\frac{3}{2}\right)^a.$

It is further given that

 $f\left(\ln\left(\frac{2}{3}\right)\right) = \frac{13}{9}.$

b) Find the value of a and the value of b.

[a=2, b=1]

$\left\langle \rightarrow \frac{13}{4} - \left(\frac{3}{2}\right)^n = \frac{13}{9} - \left(\frac{3}{3}\right)^n$
$\left\langle \Rightarrow \left(\frac{2}{3}\right)^{q} - \left(\frac{3}{2}\right)^{q} + \frac{65}{36} = 0$
$\left\langle \rightarrow \left(\frac{2}{3}\right)^{\alpha} - \left(\frac{2}{3}\right)^{-\alpha} + \frac{67}{36} = 0$
$\left(\begin{array}{c} \mathcal{U} \in \left(\frac{Z}{3} \right)^{q} = Z \end{array} \right)$
$\Rightarrow \overline{2} - \overline{2}' + \frac{35}{36} = 0$
(=) Z - ½ + 65 = 0 =) Z ² - 1 + 65 Z = 0
$\langle \Rightarrow (q_2 - 4)(4z + q) = 0$
$ \begin{array}{c} \searrow S = < -\frac{k^{d}}{-4^{d}} \mathbb{I}^{+} \left(\frac{3}{5} \right) = < \frac{k}{4} \end{array} $
·: a=2
HAVE $b = \frac{13}{9} - \frac{12}{9} = 1$
(t- b=1

Question 119 (*****) A curve has equation

112(12SI

m20

COM

I.C.p

I.G.B.

2

 $y = e^{x} + 2e^{\frac{1}{2}x}$.

202

COM

112112

K.C.

Find a simplified expression for $\frac{dy}{dx}$ in terms of y.

200

The Com

aths com

Inadası

I.Y.C.P.

(*****) **Question 120**

Find in exact form the solution of the following equation.

Question 121 (*****)

F.G.B.

I.C.B.

 $f(x) \equiv (2+e)(2e)^{x-1} - e^{2x-1}4^{x-\frac{1}{2}}, x \in \mathbb{R}.$

- a) Find in exact simplified form the solution of the equation f(x) = 0.
- **b**) Determine, in terms of $\ln 2$, the two solutions of the equation f(x) = 1.

 $=\frac{1}{1+\ln 2}$ $\bigcup x =$ $\ln(2+e)$ $\ln 2$ x =x = $1 + \ln 2$ $1 + \ln 2$ b) <u>f(a)=1</u> $(a) = (2e)^{2-1}(e+2) - e^{2a}$ $\Rightarrow (2e)^{2+i}(e_{\pm 2}) - e^{2i+i} \varphi^{2-\frac{1}{2}} = i$ a) <u>(x) = 0</u> $\Rightarrow 2^{2^{-1}} e^{2^{-1}} (e^{+2}) - e^{2^{2^{-1}}} (2^{2})^{2^{-\frac{1}{2}}} = 1$ \Rightarrow (2e)²⁻¹(e+2) - e²¹⁻¹4^{3-1/2} =0 $\Rightarrow 2^{3+i} e^{3i} (e^{2i}) - e^{2i} 2^{3i+i} = 1$ $\Rightarrow 2^{3} e^{3} (e^{i}) - e^{2i} 2^{2i} = 2e$ $\Rightarrow (2e)^{2-1}(e+2) = e^{2k-1} \times (2^2)^{2-\frac{1}{2}}$ $\implies 2^{2-1} \times e^{2-1} \times (e+2) = e^{22-1} \times 2^{22-1}$ \implies 0 = (2e)^{2x} + 2e - (2e)^x(e+2) $\frac{2^{2^{n/2}} \times e^{2^{2n/2}}}{2^{2^{n/2}} \times e^{2^{2n/2}}} = \frac{e^{22^{n/2}} \times 2^{22n/2}}{2^{2^{n/2}} e^{2^{2n/2}}}$ $\implies (2e)^{22} - (2e)^{2}(e+2) + 2e = 0$ 2× € ≠0 $= y^2 - (e+2)y + 2e = 0$ $y=(2e)^x$ $e+2 = e \times 2^{\alpha}$ ⇒ (y-e)(y-z) =0 ++2 = (20)2 HANCE WE OBTIGHT FOR EARCH SOUTHON $\ln(e+2) = \ln(2e)^2$ • y = (2e) = e • y= (2e) = 2 h(e+2) = ah(2e)m(2e) = 1 $\ln(2e)^{2} - \ln 2$ In (2+e' $\lambda \ln(2e) = 1$ almze = lnz 2 = 1 Inze (2+e)

I.C.B.

na

Question 122 (*****)

The distinct points A and B lie on the curve with equation

 $\ln(x+y) = \ln x + \ln y, \quad x \in (0,\infty), \quad y \in (0,\infty).$

- a) Determine possible coordinates for A and B, further verifying that these coordinates indeed satisfy the above given equation.
- **b**) Sketch the curve, showing clearly all the relevant details.

 $\ln(\infty) + \ln |u|$ 2,≠0, 4,≠0 ma+ liny = ln(2+g) is THE SMUL to y= -2 2+4 y= 2 = 2-1+1 $\frac{1}{\chi - 1}$ **a**+4 29 y=± Bγ (!) a= 24-9 Ina+ loy a = y(a-1) 9-3-1 POKING ANY I , EXCEPT 1 OR ZENO a=4 y= \$: A(41\$) $\begin{array}{c} \bullet \left[h\left(x+y\right)=b_{0}\left(4+\frac{y}{2}\right)=-b_{0}\left(\frac{y}{2}\right)\\ \bullet \left[h\left(x+b_{0}\right)=-b_{0}\left(\frac{y}{2}\right)=-b_{0}\left(\frac{y}{2}\right)\end{array}\right] \end{array}$ $\mathfrak{J} = \frac{3}{2} \quad \mathfrak{Y} = \frac{3\mathfrak{Z}}{3\mathfrak{Z}-1} = \frac{3\mathfrak{Z}}{1/2} = 3 \qquad \qquad \mathfrak{L} \quad \mathfrak{L} \left(\frac{3}{2} | 3 \right)$ • $\ln(\alpha + \frac{\alpha}{2}) = \ln(\frac{3}{2} + 3) = \ln(\frac{4}{2})$ $\ln \frac{1}{9} + \ln \frac{1}{9} = \ln \frac{1}{2} + \ln 3 = \ln (\frac{4}{2}) = \ln (\frac{4}{2})$ INDERD POSSIBLE (a

 $A\left(4,\frac{4}{3}\right)$

 $B\left(\frac{3}{2},3\right)$

Two exponential curves, C_1 and C_2 , intersect at the point $P(\ln 8, 6)$.

- C_1 meets the y axis at (0,18) and the straight line with equation y = 2 is an asymptote to C_1 .
- C_2 meets the y axis at (0,2) and the straight line with equation y=10 is an asymptote to C_2 .

Show that at P, C_1 and C_1 cross each other at an acute angle of $\arctan\left(\frac{36}{23}\right)$

proof

(*****) Question 124

Solve the following equation.

 $3e^{2(x+1)} - (2e)^{x}(e^{4}+9) + 3e^{2} \times 4^{x}, x \in \mathbb{R}.$

Give the two solutions of the equation in the form $x = \pm A$, where A is in the form $\frac{a-\ln 3}{b-\ln 2}$, where a and b are positive integers.

I.C.B.

 $2 - \ln 3$

 $-\ln 2$

1+

 $x = \pm$

 $\Rightarrow 2h(\frac{1}{2}e) = h(\frac{3}{e^2})$

=> a[-ln2+1] = ln3-2

F.G.B.

 $a = \frac{\ln 3 - 2}{1 - \ln 2}$

 $\alpha \ln(\frac{1}{2}e) = \ln \frac{1}{2}e^2$

(****) Question 125

Solve the following equation.

naths.com

mains.co

1:0

Question 126 (*****)

The positive solution of the quadratic equation $x^2 - x - 1 = 0$ is denoted by ϕ , and is commonly known as the golden section or golden number.

Show, with a detailed method, that the real solution of the following exponential equation

 $9^x + 12^x = 16^x$,

can be written in the form

 $\frac{\ln(\varphi-1)}{\ln 3 - \ln 4},$

Loole with Penul Accord to smer with	BUT BETURNING TO a , DOES NOT "Award" out of THE
$ = \left\{ \begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\$	$ = \left(\frac{z}{4} \right)^{2} = \left\{ \frac{\frac{1}{2} (-1 + \sqrt{z})}{\frac{1}{2} (-1 + \sqrt{z})} \right\} $
$\implies 3^{2} + 2^{2} \times 3^{2} = 2^{2}$	$\implies \left(\frac{3}{4}\right)^2 = \frac{-1+ S' }{2} \qquad \qquad$
$\frac{3}{2^{3}} \frac{2^{4}}{2^{4}} = \begin{pmatrix} 2^{4} \\ 2^{4} \\ 2^{4} \end{pmatrix}$	$-\phi = 1 - \frac{2}{2} + \frac{1}{2} = \frac{2}{2-\frac{2}{2}+1} = \frac{2}{2} + \frac{1}{2} + \frac{2}{2} + \frac{1}{2} + \frac{2}{2} + \frac{1}{2} + \frac{2}{2} + \frac{1}{2} + \frac{1}{$
$ = 3^{2} + 3^{2} = 1 $	$\implies \left \ln \left(\frac{3}{4} \right)^{2} = \ln \left(\frac{4}{4} \right) \right ^{2}$
$ \frac{4^{2k}}{4^{2k}} = \left(\left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^k \right)^{-k} = 1 $	$\Rightarrow \mathfrak{L} [n \neq z = \frac{\ln(\phi - 1)}{\ln(\phi + 1)} \text{of } \mathfrak{L} = \frac{\ln(\phi - 1)}{\ln(\phi + 1)}$
Let $A = \begin{pmatrix} x \\ -x \end{pmatrix}$ the grappent	
$\Rightarrow \left[\left(\frac{3}{4} \right)^{2} \right]^{2} + \left(\frac{3}{4} \right)^{2} - (= 0)$	MPOLINE THE STUDIE HAS BEEN EXTENDED IN THE MAN AND A THE STUDIES IN THELE IS + DOUDLE UMAN MAXIMA
$\Rightarrow A^2 + A - 1 = 0$	$\begin{cases} \Rightarrow q^2 + p^2 = 16^2 \end{cases}$
DOLS NOT FACTORIZE NICELY	$\begin{cases} \Rightarrow \frac{\partial y}{\partial x} + \frac{\partial y}{\partial x} = \frac{\partial y}{\partial x} \end{cases}$
$\Rightarrow 44 + 44 + 1 = 5$	$Z \xrightarrow{\rightarrow} (\underline{F})^* \cdot (\underline{F})^* = (\underline{F})^*$
$\Rightarrow (DA+1)^2 = S$	$Z \rightarrow (a) \circ (a) = 1$ $Z \rightarrow (a)^{2} \circ (a) = 1$
$\Rightarrow 24+1 = \pm \sqrt{2},$	f er
\rightarrow 24 = -1 ± \sqrt{s}^{1}	m
$\Rightarrow A = \frac{1}{2}(-(\frac{1}{2}Nz))$	

proof

Question 127 (*****) The product operator \prod , is defined as

I.C.B. Mal

I.C.B.

 $\left[\begin{bmatrix} u_i \end{bmatrix} = u_1 \times u_2 \times u_3 \times u_4 \times \dots \times u_{k-1} \times u_k \right].$

Given that e is Euler's number, use a detailed method to find the exact value of

$\prod_{r=1}^{\infty} \left[$	$\left[\frac{\binom{2r}{e}}{\binom{2r+1}{e}}\right].$	nadas,		
-04	naths,	$\begin{array}{c} \hline \hline \\ $	<u>λ</u> , <u>1</u>	
00	۲. ۲.	$1_{2} = \frac{a_{1}^{\pm}}{a_{1}^{\pm}} \times \frac{a_{1}^$	ε ^t × e ^t × e ^t × ΝΕΙΙΟΧΟ WHICH (<u>CONVOCENTO №2</u> ¹ /2 +	2
,	Y.C.	$= \frac{1}{1-\left(1-\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)}$ $= \frac{1-\left(1-\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)}{\frac{1+1}{2}}$ $= \frac{1-\frac{1}{2}}{\frac{1+\frac{1}{2}}{2}}$ $= \frac{1-\frac{1}{2}}{\frac{1-\frac{1}{2}}{2}} = \frac{1-\frac{1}{2}}{2} = \frac{1-\frac{1}{2}}{2} = \frac{1}{2} + \frac{1}{2}$	$ \frac{1}{2} = e_{Y} \frac{1}{2} = \frac{1}{2}e_{Y} $	
	Sm -	nada		7.202
	13/1/5	,, CO2,	naths.	0
-017	1.	-17	L.	00

the com

Created by T. Madas

1.01

Question 128 (*****)

The distinct points A and B lie on the curve with equation

 $\ln(x-y) = \ln x + \ln y, \quad x \in (0,\infty), \quad y \in (0,\infty).$

- a) Determine possible coordinates for A and B, further verifying that these coordinates indeed satisfy the above given equation.
- **b**) Sketch the curve, showing clearly all the relevant details.

A(4,2), $B\left(\frac{9}{2},\frac{3}{2}\right)$ $\mathcal{X}_{-} = \frac{q^2}{q_{-1}} - \frac{g(q_{-1}) + (q_{-1}) + 1}{q_{-1}} = g + t + \frac{1}{q_{-1}}$ 4=2 J= 4 = 0 ;. A(412) • |n(x-y)| = |n(d-y)| = |u|n4-ly2=ln(生)=ln2 y=== 2==== : B(==) • $|\eta(2-q) = |\eta(\frac{q}{2}-\frac{3}{2})$