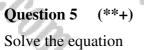
ADVANCED EQUATIONS VING ADVAL EQUATION SOLVING KILLS J, QUA SOLVIN, SKILLS T. I.Y.C.B. Madasmalls.com I.Y.C.B. Madaca

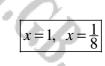

2	and the aspect of the second s
Dr.	Created by T. Madas
- Uh	Question 1 (**)
10	Find the solutions of the equation
b	$8x - x^4 = 0.$
~	I A AN AN AN AN
1.1	x = 0, 2
-6	$\begin{cases} \theta_{x-x^{i}=0} \\ x(\theta_{-x^{i}})=0 \end{cases}$
~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c} \cdot \epsilon_{nt} \epsilon_{n=0} e_{n} \\ \epsilon_{nt} \epsilon_{n=0} e_{n} \\ a = 2 i = 2 \\ \end{array}$
02	122 420 422 480
"Son	alla asp asp asp allar
- All	Question 2 (**)
1	Find the solutions of the equation
2	$x^4 = 5x^2 + 36$.
	$x = \pm 3$
1.1	
1.6	$\begin{array}{c} \mathcal{A}^{4} = 5 a_{*}^{4} + 3 c \\ \Rightarrow \alpha^{4} - \Omega^{2} - \mathcal{X} = D \\ \Rightarrow (a^{4} - \eta)(a^{4} + \eta) = 0 \end{array}$
5.	$\dot{x} \stackrel{i}{\to} \dot{x} \stackrel{j}{\to} x$
20	Man Made In Made
asp.	Question 3 (**)
12	Find the solutions of the equation
~	$4x^4 + 3x^2 = 1$.
2.	On Co. On The
	$x = \pm \frac{1}{2}$
- 11	$\frac{42^{\frac{1}{2}}+32^{\frac{1}{2}}-1}{2^{\frac{1}{2}}(2^{\frac{1}{2}})^{\frac{1}{2}}} \qquad \qquad$
	$\begin{array}{c c} I_1 q_2 ^{-1} \\ \Rightarrow 4q^2 + 3q_2 = 1 \\ \Rightarrow 4q^2 + 3q_1 - 1 = 0 \end{array} \qquad \qquad$
	$\Rightarrow (4g-1)(g+1)=0 \qquad a_{-} < \frac{2}{4} / $
b .	Created by T. Madas
40.	202 282 202 202 202
982	Sh Car Sh Ca

Question 4 (**+)

I.V.G.B.

Find as exact surds the roots of the equation

 $4x^2 + \frac{1}{x^2} = 4, \ x \neq 0.$ Y.C.B. Madasm



L.C.B. Madasm

2ths.Com

I.F.C.P.

 $8x^3 + \frac{1}{x^3} = 9, x \neq 0.$

COM

I.V.C.B. Madasn

 $x = \pm \frac{\sqrt{2}}{2}$

.G.5.

KG

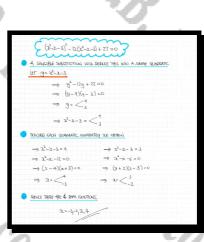
				- 10 C
82 ³ + <u>()</u> Let y=	a_ ³	5	y=<'_b	
⇒ 8y + 4y ⇒ 8y ² + 1 ⇒ 8y ² + 1	= 9 = 9y	2222	$a_3 = < \frac{1}{2}$	
=> 09 - 39 => (89-1)(9		}	IN	
		H		F.
		1	2	P
5			1	

Created by T. Madas

00

1.1.0.1

Question 6 (***)


I.C.B.

Find the real solutions of the following equation

ŀ.C.p.

 $(x^2 - x - 3)^2 - 12(x^2 - x - 3) + 27 = 0.$

Madas,

x = -3, x = -2, x = 3, x = 4

The Com

Question 7 (***)

I.V.G.B

Determine the four real roots of the equation

2

 $(x-2)^4 - 5(x-2)^2 + 4 = 0.$

GB

1

1121/251

$(3-2)^{4} - 5(3-2)^{2} + 4 = 0$ $\Rightarrow [(3-2)^{2}]^{2} - 5(3-2)^{2} + 4 = 0$	
$ift y=(x-z)^2$ $\Rightarrow y^2 - 5y + 4 = 0$	-2
$\Rightarrow (y - 1)(y - 4) = 0$ $\Rightarrow y = \swarrow_{4}^{1}$	
$\Rightarrow (2-2)^2 = -\frac{1}{t}$	- 2= 011,3,4

Question 8 (***)

C.B.

P.C.P.

 $6x^{-\frac{1}{2}} - x^{\frac{1}{2}} = 5.$

a) Show clearly that the substitution $y = x^{\frac{1}{2}}$ transforms the above irrational equation into the quadratic equation

 $y^2 + 5y - 6 = 0$.

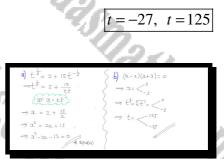
b) Solve the quadratic equation and hence find the root of the **irrational** equation.

 $\begin{array}{c} \mathbf{q} & (\mathbf{c}_{1}^{-1}, \mathbf{u}_{1}^{1} = \mathbf{s} \\ \Rightarrow & \mathbf{c}_{2}^{-1}, \mathbf{u}_{1}^{1} = \mathbf{s} \\ \Rightarrow & \mathbf{c}_{2}^{-1}, \mathbf{u}_{2}^{1} = \mathbf{s} \\ \Rightarrow & \mathbf{c}_{1}, \mathbf{q}_{2}^{-1} = \mathbf{s} \\ \Rightarrow & \mathbf{c}_{2}, \mathbf{q}_{2}^{-$

x = 1

C.P.

Maria


Question 9 (***)

 $t^{\frac{1}{3}} = 2 + 15t^{-\frac{1}{3}}.$

a) Show that the substitution $x = t^{\frac{1}{3}}$ transforms the above irrational equation into the quadratic equation

 $x^2 - 2x - 15 = 0$.

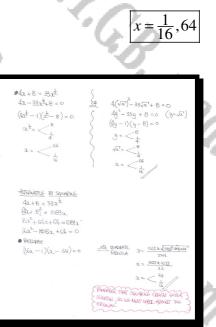
b) Solve the quadratic equation and hence find the two solutions of the **irrational** equation.

Question 10 (***+) Find the solutions of the equation

 $x^6 - 26x^3 = 27$.

$\begin{aligned} & (aT g = a) \\ & (g^2 - 2G) - cT = 0 \\ & (g^2 - 2G) - cT \\ & (g + 1)(g + 1) = c \\ & (g + 1)(g + 1)(g + 1) = c \\ & (g + 1)(g + 1) = c \\ & (g + 1)(g + 1) = c \\ & (g + 1)(g + 1) = c \\ & (g + 1)(g + 1) = c \\ & (g + 1)(g + 1) = c \\ & (g + 1)(g + 1) = c \\ & (g + 1)(g + 1)(g + 1) = c \\ & (g + 1)(g + 1)(g + 1)(g + 1) = c \\ & (g + 1)(g + 1)(g + 1)(g + 1)(g + 1)(g + 1) = c \\ & (g + 1)(g $

x = -1, 3


Question 11 (***+)

Find the roots of the equation

R.

 $4x + 8 = 33x^{\frac{1}{2}}, \ x \ge 0.$

21/2

in,

Question 12 (***+) Find the solutions of the equation

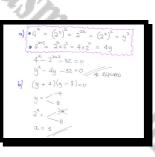
1

I.C.p

 $8x - x^{\frac{5}{2}} = 0 \, , \ x \ge 0 \, .$

1

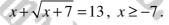
2020

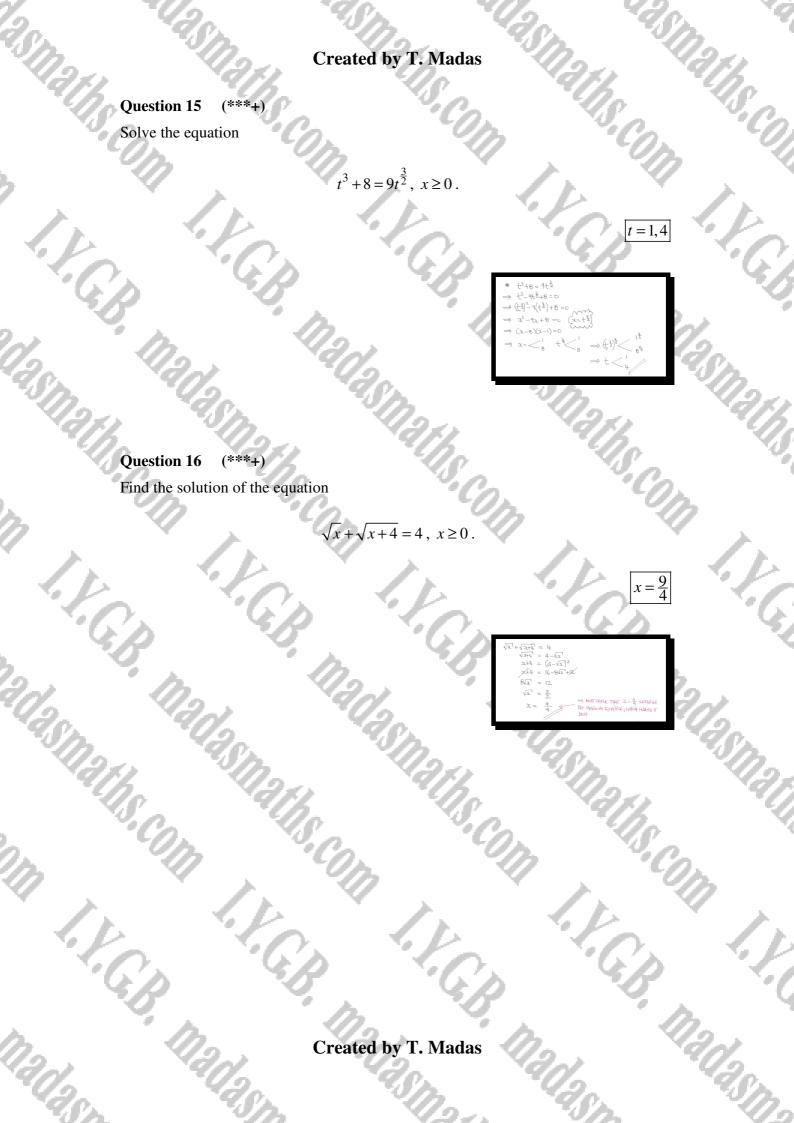

Question 13 (***+)

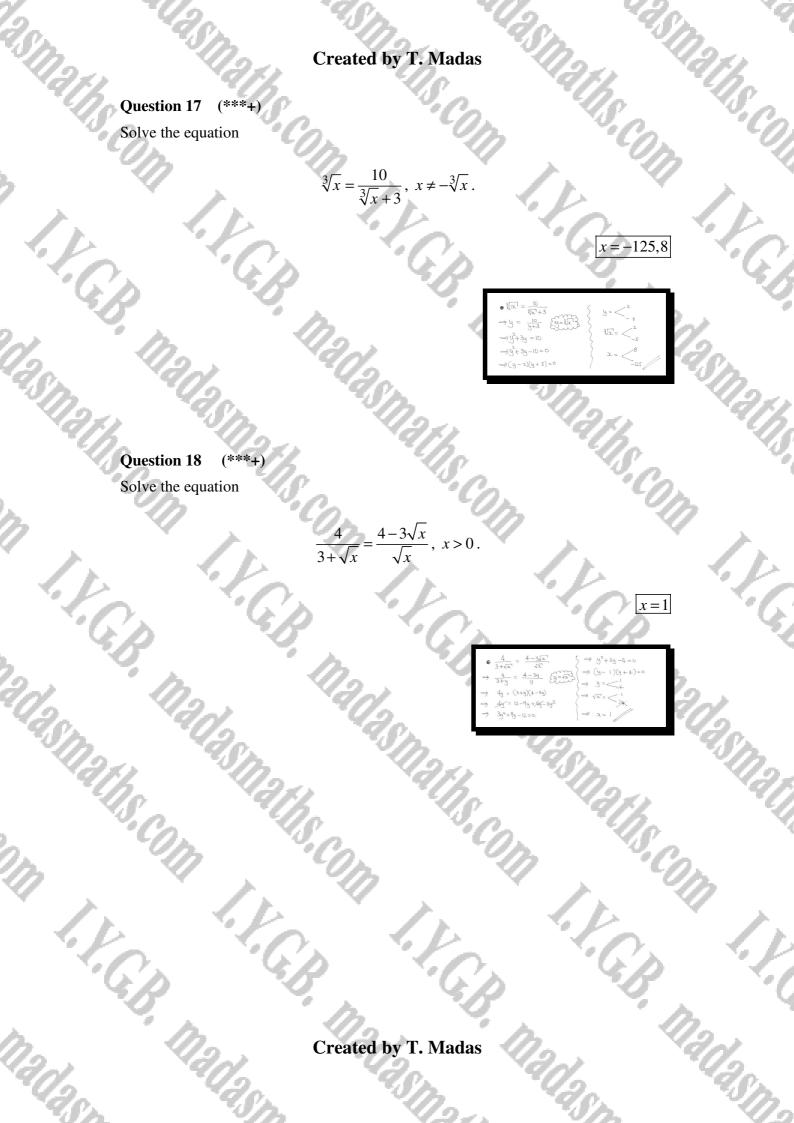
 $4^x - 2^{x+2} = 32.$

a) Show that the substitution $y = 2^x$ transforms the above indicial equation into the quadratic equation

 $y^2 - 4y - 32 = 0$.

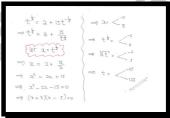

b) Solve the quadratic equation and hence find the root of the **indicial** equation.


x = 3


x = 9

Question 14 (***+) Find the solution of the equation

x+1x+7=13	$\int x + \sqrt{x+7} = 13$	
-> Nat7 = 13-32	Sler y========	
$\Rightarrow \qquad x+7 = (13-x)^2$	2 En 2= 4-75	
REMANDER SQUARING SOULATIONES CREATES EXTRA SOUTIONS	$\langle -99-7+\sqrt{9}=8$	
== 32+7=169-262+22	(- y+1y-20=0	
$= 0 = \pi^2 - 27\alpha + 162$	$\left\langle =\left(\left(\sqrt{y}\right)^{2} + \left(\sqrt{y}\right)^{2} - 20 = 0 \right) \right\rangle$	
→ 0 = (2 - 4)(2 - 18)	$\left\{ (\sqrt{y} + 5)(\sqrt{y} - 4) = 0 \right\}$	
- 2 - 9 Deter Transfer) NG= <#	
OBONAL SPUTT	Ta) y = 16	
	347=16	
	2=9/	



Question 19 (***+)

 $t^{\frac{1}{3}} = 2 + 15t^{-\frac{1}{3}}, \quad t \neq 0.$

Use the substitution $x = t^{\frac{1}{3}}$ to solve the above irrational equation.

27, t = 125

Question 20 (****) The indicial equation

 $2^{x+1} + 2^{3-x} = 17, x \in \mathbb{R},$

is to be solved by a suitable substitution.

a) Show clearly that the substitution $y = 2^x$ transforms the above indicial equation into the quadratic equation

 $2y^2 - 17y + 8 = 0.$

b) Solve the quadratic equation by factorization and hence determine the two solutions of the **indicial** equation.

$\begin{array}{c} \mathbf{q} = (\mathbf{x}_{1}^{2} + \mathbf{x}_{2}^{2} + \mathbf{x}_{3}^{2} + \mathbf{z}_{3}^{2} + \mathbf{z}_{$	a) = 2 ³⁽⁴⁾ , 2 ³⁻³⁰	
	$ \begin{array}{c} \rightarrow & \sqrt[3]{3} \mathbb{Z}_{1}^{1} + \frac{1}{3} \mathbb{Z}_{2}^{2} = i \mathbb{I} \\ \Rightarrow & \sqrt[3]{3} \mathbb{Z}_{2}^{1} + \frac{1}{3} \mathbb{Z}_{2}^{2} = i \mathbb{I} \\ (\mathbb{W} = \mathbb{Z}_{2}^{1}) \\ \vdots \\ \mathbb{Z}_{3}^{1} + \frac{1}{3} \mathbb{Z}_{2}^{2} = i \mathbb{I} \\ \vdots \\ \mathbb{Z}_{3}^{1} + \frac{1}{3} \mathbb{Z}_{2}^{1} = i \mathbb{I} \\ \vdots \\ \mathbb{Z}_{3}^{1} + \frac{1}{3} \mathbb{Z}_{3}^{1} = i \mathbb{I} \\ \mathbb{Z}_{3}^{1} = $	

x =

Question 21 (****) Solve the equation

 $x - 8\sqrt{x} + 11 = 0, \ x \ge 0,$

giving the answers in the form $a + b\sqrt{5}$, where a and b are integers.

<u>h</u>		2
$ \begin{split} & $	$ \begin{array}{c} \bullet \ensuremath{\mathbbmath\mathbbms} & \ensuremath{\mathbbms$} & \ensuremat$	

 $x = 21 \pm 8\sqrt{5}$

Question 22 (****)

KR,

Find the two roots of the equation

 $5 - x^{\frac{1}{2}} - 4x^{-\frac{1}{2}} = 0, \ x > 0.$

$$\begin{split} & 5 - \chi^{\frac{1}{2}} - \chi^{\frac{1}{2}} = 0 \\ & \Rightarrow 5 - \sqrt{3} - \frac{4}{\sqrt{2}} = 0 \\ & \Rightarrow 5 - \sqrt{3} - \frac{4}{3} = 0 \\ & \Rightarrow 5 - \sqrt{3} - \frac{4}{3} = 0 \\ & \Rightarrow 0 = \sqrt{3}^{-1} + 1 = 0 \\ & \Rightarrow 0 = \sqrt{3}^{-1} - \frac{1}{3} + 1 \\ & \Rightarrow 0 = (g - 1)(g + 1) \\ & \Rightarrow y = \sqrt{4} \quad \Rightarrow \sqrt{4} = \sqrt{\frac{1}{3}} \quad \Rightarrow x = 1 \end{split}$$

		1000
Question	23	(****

Solve the equation

 $(25x^2)^{-\frac{1}{2}} = 2, \quad x \neq 0.$

	-	A
$ \begin{array}{c} (2\Sigma_{1}^{2})^{-\frac{1}{2}} = 2 \\ \Rightarrow \left[(2\Sigma_{1}^{2})^{-\frac{1}{2}} \right]^{-\frac{1}{2}} = 2^{2^{2}} \\ \Rightarrow \left[(2\Sigma_{1}^{2})^{-\frac{1}{2}} \right]^{-\frac{1}{2}} = \frac{1}{4} \\ \Rightarrow 2\Sigma_{1}^{-\frac{1}{2}} = \frac{1}{4} \\ \Rightarrow 2\Sigma_{1}$	$\begin{array}{c} \mathbf{o} \Im S^{\frac{1}{2}} \left[\mathcal{A}_{1}^{T} = 2 \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 2 \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 2 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 2 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \Rightarrow \frac{1}{5} \left[\mathcal{A}_{1}^{T} = 1 \\ \mathbf{o} \\ \end{bmatrix} \right] \right]$	/

 $x = \pm \frac{1}{10}$

Question 24 (****)

5.

 $2^{2p-2} - 2^{p-2} - 3 = 0, \ p \in \mathbb{R},$

a) Show clearly that the substitution $x = 2^{p}$ transforms the above indicial equation into the quadratic equation

 $x^2 - x - 12 = 0$.

b) Solve the quadratic equation and hence determine the value of p.

Madasn.

p = 2

(a) $2^{\frac{2}{3}-2} - 2^{\frac{2}{3}} - 3 = 0$ $(4^{\frac{2}{3}} - 2^{\frac{2}{3}} - 3 = 0)$ $\Rightarrow 3^{\frac{2}{3}} + 2^{-2} - 3 + 2^{\frac{2}{3}} - 3 + 0$ $\Rightarrow 3^{\frac{2}{3}} + 2^{-2} + 2^{\frac{2}{3}} - 3 + 0$ $\Rightarrow 3^{\frac{2}{3}} - 2^{-1} - 12 = 0$ $\Rightarrow 3^{\frac{$

Question 25 (****)

Solve the equation

?ß

 $\sqrt{x-2} + \sqrt{x+1} = 3, \ x \ge 2.$

-6	x=3
$\begin{array}{c} \sqrt{3 \cdot 2^{2}} + \sqrt{3 \cdot 4^{2}} = 3 \\ \Rightarrow \sqrt{3 \cdot 2^{2}} = 3 - \sqrt{3 \cdot 4^{2}} \\ \Rightarrow \sqrt{2 \cdot 2} = 3 - \sqrt{3 \cdot 4^{2}} \\ \Rightarrow \sqrt{2 \cdot 2} = 4 - 6\sqrt{3 \cdot 4^{2}} \\ \Rightarrow \sqrt{2 \cdot 2} = 4 - 6\sqrt{3 \cdot 4^{2}} \\ \Rightarrow \sqrt{2 \cdot 4^{2}} = 12 \\ \Rightarrow \sqrt{3 \cdot 4^{2}} = 12 \\ \Rightarrow \sqrt{3 \cdot 4^{2}} = 2 \\ - \Rightarrow 3 \cdot 4 = \frac{4}{3} \end{array}$	("THE SURFOL JEE BERED ATTUG THE OBJAL)

Is.com

Question 26 (****)

K.C.B. Madasm

I.V.G.B

Determine the two real roots of the equation

F.G.B.

 $(x+2)^4 + 5(x+2)^2 = 6.$

Madasm,

x = -1, -3

15.COM

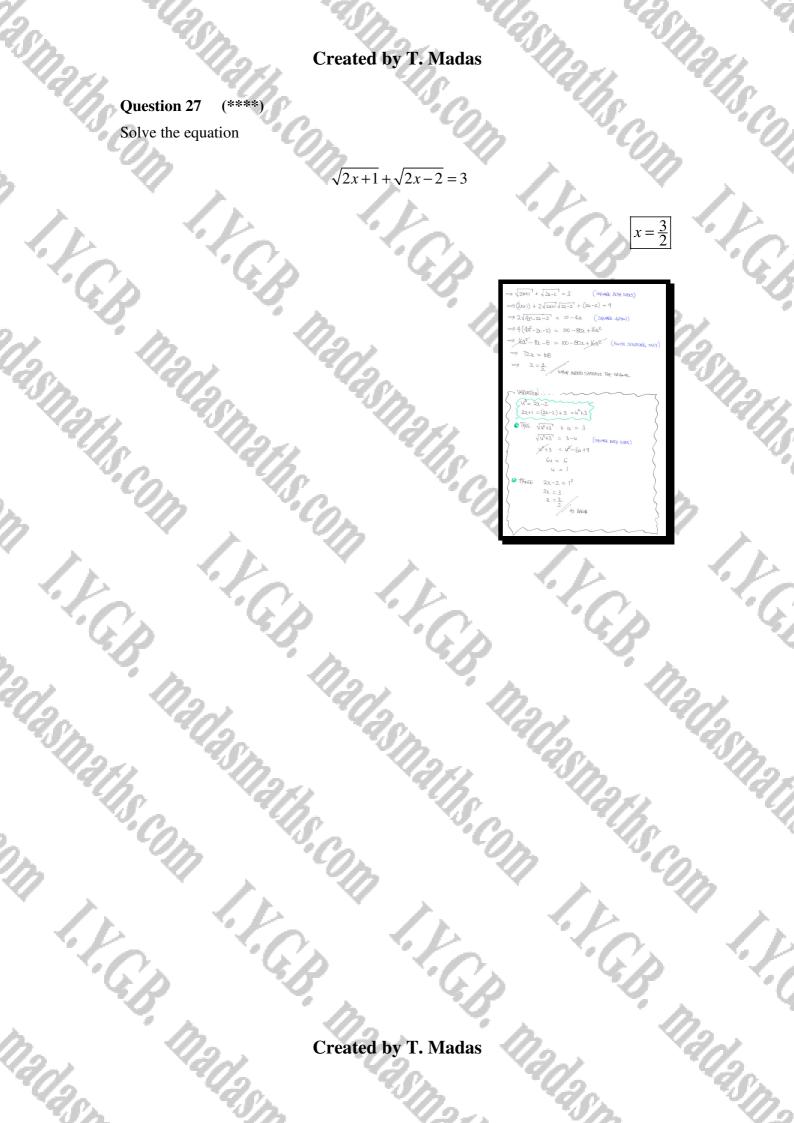
Madasn

¥.G.B.

$(\mathfrak{A}+2)^{4}+S(\mathfrak{A}+2)^{2}=6$ $S \Rightarrow (\mathfrak{A}+2)^{2}=C^{1}$	2
$\Rightarrow \left[(242)^2 \right]^2 \vdash S \left[(x+2)^2 \right] = 6 \qquad \qquad$	
$ y_{1}^{2} + 5y = 6 $ $ y_{1}^{2} + 5y = 6 = 0 $ $ y_{1}^{2} + 5y = 6 = 0 $ $ x_{1}^{2} + 2 = < -1 $	
$\Rightarrow (y-1)(y+k)=0 \qquad \qquad$	
⇒ y= < 1 3	
-6	

Created by T. Madas

COM


(****) **Question 27**

6

>

na

Solve the equation

Question 28 (****)

$100^{x} - 10001(10^{x-1}) + 100 = 0.$

a) Show that the substitution $y = 2^x$ transforms the above indicial equation into the quadratic equation

 $10y^2 - 10001y + 1000 = 0.$

b) Solve the quadratic equation and hence find the two solutions of the **indicial** equation.

2

Question 29 (****)

By using the substitution x = y+1, or otherwise, find in exact surd form the roots of the equation

 $x^4 - 4x^3 + x^2 + 6x + 2 = 0.$

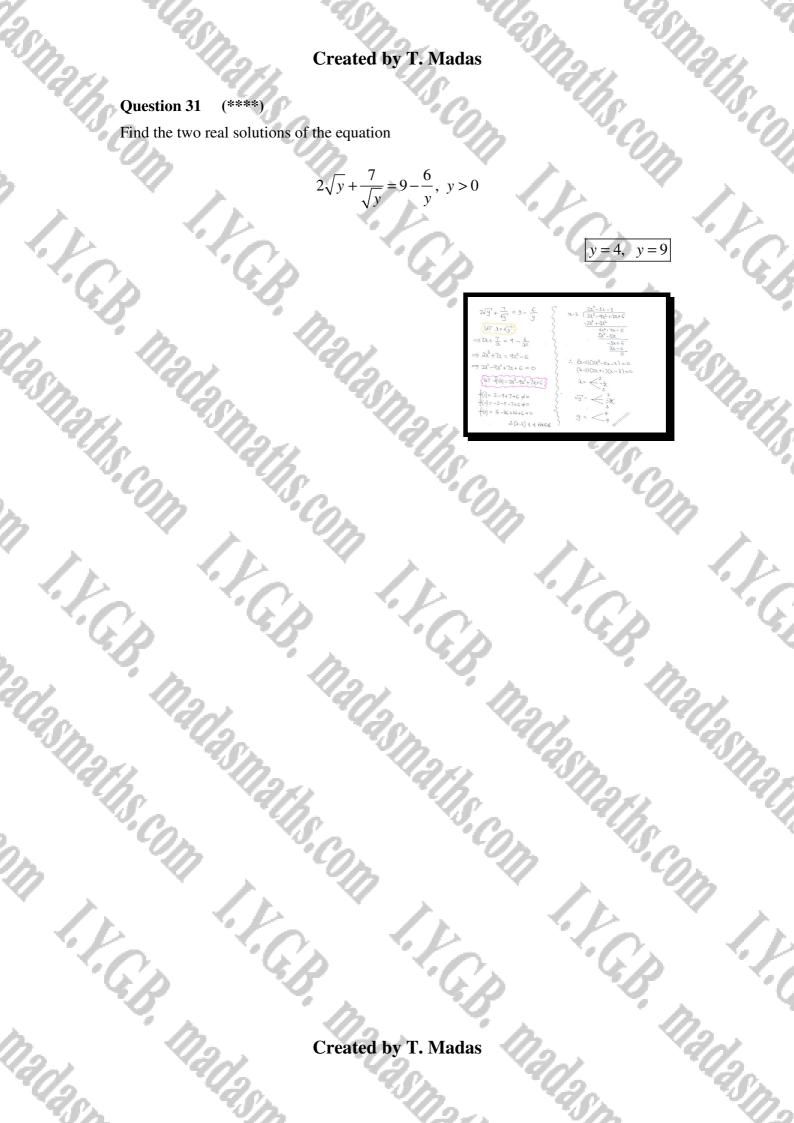
 $x = \pm \sqrt{2}, \pm \sqrt{3}$

$x_{-}^{\xi} = \int_{x_{-}^{3}} \frac{1}{x_{-}^{2}} + 6x + 2 = 0$
$=((y+1)^{4}-\frac{1}{2}(y+1)^{2}+((y+1)^{2}+6(y+1)+2=0)$
$\Longrightarrow 9^{4} + 14^{3} + 69^{2} + 49 + 1 - 4(9^{2} + 39^{2} + 39 + 1) + (9^{2} + 29 + 1) + 69 + 64 + 2 = 0$
$\left\{ \left(\alpha \pm b \right)^2 \equiv \alpha^2 \pm 2\alpha b + b^2 \right\}$
$\langle (a \pm b)^3 \equiv a^3 \pm 3a^2b + 3ab^2 \pm b^3 \rangle$
$\sum_{(a\pm b)^{4}} \alpha^{4} \pm 4d^{2}b + 6a^{2}b^{2} \pm 4ab^{3} + b^{4}$
-> y4+4y2+6y2+dy41 7
-49-1242-124-4 = 0
$\underbrace{y^{2}}_{\delta q + 6} + \underbrace{z_{0}}_{\delta q + 6} + I$
$\rightarrow g^4 - sq^2 + 6 = 0$
$\rightarrow (u^2 - 2)(u^2 - 3) = 0$
_ ± N2
$\Rightarrow y^{2_{0}} < \stackrel{<}{_{3}} \Rightarrow y^{2_{0}} < {_{\pm \sqrt{3}}}$

Question 30 (****)

Solve the equation

 $x - 8x^{\frac{1}{2}} + 13 = 0, \ x \ge 0,$


giving the answers in the form $a+b\sqrt{3}$, where a and b are integers.

$x = 19 \pm 8\sqrt{3}$

• x - BIL + 13 = 0 < ALTHANATTUE BY SQUARING-	
(x)2-8x2+B=0 mm \$ @2-8x2+B=0	
$\Rightarrow y^2 - \theta y + 13 = 0 (y = \sqrt{2}) \Rightarrow x + B = -\theta \sqrt{2}$ $\Rightarrow (x + B)^2 = (\theta \sqrt{2})^2$	
$\Rightarrow (9^{-4})^{-16+13=0}$ $\Rightarrow a^{2}+26a+169 = 64a$	
$\Rightarrow (\underline{\psi}_{-4})^2 = 3 \qquad \qquad$	
$\Rightarrow y-4 = \pm \sqrt{3}$ $7 \Rightarrow (2-19)^2 - 30 + 169 = 0$	
$\Rightarrow y = 4\pm \sqrt{3}$ $\Rightarrow (x-19)^2 = 192$	
=> VI= 4±13 .)= x-19=±V192	
$\Rightarrow \alpha = (4\pm\sqrt{3})^2 \qquad) \Rightarrow \alpha = 19\pm\sqrt{44\sqrt{3}}$	
⇒ 2 = 16 ± 813 +3) => 2 = 19 ± 815	
= a = 19±813 (NOTE THAT SQUARING, PROVIDED SONFTANDES) (STRA SQUARING, PROVIDED SONFTANDES)	

(****) **Question 31**

Find the two real solutions of the equation

Question 32 (****)

K.C.B. Madasm

I.C.B.

A polynomial p(x) is defined as

 $p(x) \equiv (x^2 - 2x - 4)^2 - 15(x^2 - 2x - 4), \ x \in \mathbb{R}.$

The equation p(x) = k, where k is a constant, is satisfied by x = -2.

Determine the other three values of x that satisfy the equation p(x) = k.

711.05
SHAZARYS TI LOTANGO THE ON HITTERNS - 5-35 24
$\begin{array}{rcl} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
The way k = - an we the
$\gg (\chi^2 - 2\lambda - 4)^2 - 15(\chi^2 - 2\lambda - 4) = -44$
$\implies (\chi^2 - 2\lambda - 4)^2 - 15(\chi^2 - 21 - 4) \mapsto 44 = 0$
→ +2-15× +44 =0
$Wmf = x^2 - 2x - 4$
⇒ (A - 1) (A - 4) = 0
$\Rightarrow A_{-} \stackrel{4}{\sim} \\ \Rightarrow \alpha^{2} - 2\lambda - 4 = \stackrel{4}{\sim} \\ \parallel$
Sowe that autopatic separaticy
• $\chi^2 - \chi - \mu = \mu$ • $\chi^2 - \chi - \mu = \mu$
$\Rightarrow \mathfrak{X}^{2}-\mathfrak{A}-\mathfrak{H}=0 \longrightarrow \mathfrak{X}^{2}-\mathfrak{H}=0$
$\Rightarrow (x+2)(x-4)=0$ $\Rightarrow (x-5)(x+3)=0$
$\rightarrow \gamma^{z} \leq \frac{4}{2} \qquad \Rightarrow \gamma_{z} \leq \frac{-3}{2}$
THE SHEES VALUES HAVE 4,5 8-3

COM

Mada

I.V.G.B.

nn

], $x = -3 \cup x = 4 \cup x = 5$

ths.com

4

Question 33 (****+)

Determine the real root of the equation

i C.B.

$$\sqrt{x-6} + \sqrt{x-1} = \sqrt{3x-5} \; .$$

x = 10 x = 10

+ 15 25-10 N + Ng = V25 = 5

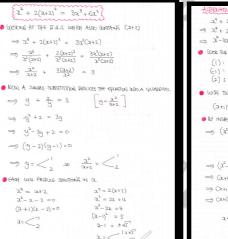
*, x=10

Question 34 (****)

I.C.B.

I.G.p.

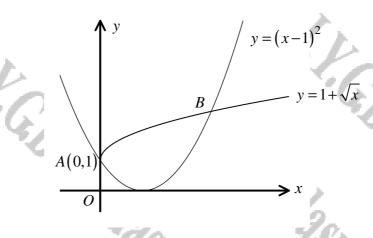
Determine, in exact form where appropriate, the solutions of the following equation.


Mada

 $x^4 + 2(x+2)^2 = 3x^3 + 6x^2.$

x = -1, x = 2, $x = 1 + \sqrt{5}$, $x = 1 - \sqrt{5}$

 $\rightarrow 4(x^2-7x+6) = (x+2)^2$


 $\Rightarrow 4n^2 - 28a + 24 = n^2 + 4a + 4$ $\Rightarrow 3n^2 - 32x + 20 = 0$

ng

Question 35 (****+)

The figure above shows the graphs of the curves with equations

 $y = (x-1)^2$ and $y = 1 + \sqrt{x}$.

The curves meet at the point A(0,1) and at the point B.

Determine the exact coordinates of Q.

$\begin{array}{c} \left(\sum_{i=1}^{n} -1 \right)_{i=1}^{n} + i \sum_{i=1}^{n} \\ \left\{ \sum_{i=1}^{n} \sum_{i=1}^{n} + i \sum_{i=1}^{n} \\ 0 \\ \left\{ \sum_{i=1}^{n} \sum_{i=1}^{n} -i \\ 0 \\ \left\{ \sum_{i=1}^{n} \sum_{i=1}^{n} -i \\ 0 \\ \left\{ \sum_{i=1}^{n} \sum_{i=1}^{n} \\ 0 \\ \left\{ \sum_{i=1}^{n} \sum_{i=1}^{n} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} \Rightarrow \varphi^{2} - \alpha - z = 0 \\ \Rightarrow 0 \left(z - \frac{1}{2}\right)^{2} + \frac{1}{2} + 1 \cos 2 \\ \Rightarrow (z - \frac{1}{2})^{2} = \frac{2}{2} \\ \Rightarrow \alpha - \frac{1}{2} + \frac{1}{2} \frac{2}{2} + \frac{1}{2} \frac{2}{2} \\ \Rightarrow \alpha - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \frac{2}{2} \\ \Rightarrow \alpha - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ \Rightarrow \alpha - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ \Rightarrow \alpha - \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\ \Rightarrow \alpha - \frac{1}{2} + \frac{1}{2} $
los and l	J. ≠ 1 (BY INSPECTION)
	, JEO & PONS A
	$\begin{array}{c} 2 \neq \frac{3 - 45}{2} < 1 & (\text{Taxishas four u}) \\ \hline 2 = \frac{3 + 45}{2} < -8 \end{array}$
	$\bigcup_{i=1}^{n} \left(\frac{3+45}{2}-l\right)^2 = \left(\frac{3+\sqrt{5}-2}{2}\right)^2 = \left(\frac{\sqrt{5}+l}{2}\right)^2$
	$= \frac{5+2\sqrt{5}+1}{4} = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2}$
	$\therefore B\left(\frac{3+\sqrt{2}}{2},\frac{3+\sqrt{2}}{2}\right)$

 $3 + \sqrt{5} 3 +$

2

В

√5

2

nn

Question 36 (****+)

By using the substitution $y = x^2 - x$, or otherwise, find the roots of the equation

nadas,

(x-7)(x-5)(x+4)(x+6) = 504.

	V.
$\begin{array}{c} (2,-1)(2,-2)(2+0)(2+1) = 504, \\ (2,-1)(2+0)(2+2)(2+2)(2+0)(2+1) = 504, \\ (2,-1)(2+0)(2+2)(2+2)(2+2)(2+0)(2+0)(2+0)(2+0$	21-2=56 02-2=6 21-2=56=0 08 21-2=6=0 (2+7)(2+7)=0 (2-3)(2+4) : 2=-7[9]3[-2
	aths COM

x = -

Question 37 (****+)

1

I.C.B.

I.C.B.

Determine the two real roots of the equation

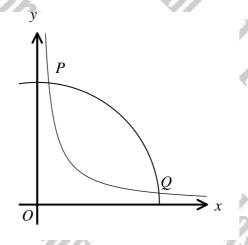
L.C.B.

 $x^2 - 5x + 2\sqrt{x^2 - 5x + 3} = 12.$

ŀ.G.p.

mana.

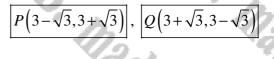
-7, -2, 3, 8

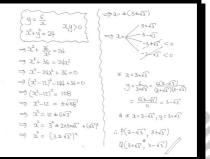

$\begin{array}{c} \mathcal{X}_{-}^{2} - 5x + \mathcal{I}_{\lambda} \sqrt{x^{2} - 5x + 3} \\ \Rightarrow \left(\mathcal{X}_{-}^{2} - 5x + 3 \right) + 2 \left(x^{2} - 5x + 3 \right)^{\frac{1}{2}} = 12 \\ \text{itr} \underline{q} = \left(x^{2} - 5x + 3 \right)^{\frac{1}{2}} \end{array}$	
\Rightarrow $y^2 + 2y - 15 = 0$ ((2 - 6)(2+1)=0
$\Rightarrow (y + 5)(y - 5) = 0$ $\Rightarrow y = \overset{3}{-5}$	3.= -1 <u>Zaj</u> Shropy The cellower

Question 38 (****+)

By using a suitable substitution, or otherwise, find as exact fractions where appropriate, the solutions of the equation

I.C.B. Madas $5\sqrt{\frac{3}{x}} + 7\sqrt{\frac{x}{3}} = \frac{68}{3}, \ x > 0.$ I.F.G.B. 4.G.D. $x = 27, \frac{75}{441}$ 11212 5/2 +7/3 Smaths, COM I.F.G.B. I.F.G.B. A.C.B. Madasman N.G. 10303S1030 2017 COM COM 2011 I.V.C.B. Madasn I.V.C.P I.C. 2 Created by T. Madas




The figure above shows a rectangular hyperbola and a circle with respective Cartesian equations

 $y = \frac{6}{x}, x > 0$ and $x^2 + y^2 = 8, x > 0, y > 0.$

The points P and Q are the points of intersection between the rectangular hyperbola and the circle.

Find the coordinates of P and Q, in the form $\left(a + \sqrt{a}, b + \sqrt{b}\right)$

Question 40 (****+)

Find the solutions of the quadratic equation

$$2\sqrt{3}\left(x^2+1\right)=7x.$$

Give the answers in the form $k\sqrt{3}$, where k is a constant.

Question 41 (****+)

Į.G.B.

Find in exact simplified form where appropriate the solutions of the equation

 $\sqrt{3}x^2 - x + 1 = \sqrt{3} \ .$

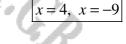
 $x = 1, \ x = \frac{1 - \sqrt{3}}{\sqrt{3}}$

1+

 $x = \frac{2}{3}\sqrt{3}, x =$

1 48

 $\frac{1}{12}\sqrt{3}^{2} \pm \frac{\sqrt{3}^{7}}{12}$ $\frac{1}{12}\sqrt{3}^{2} + \frac{1}{12}\sqrt{3}$ $\frac{1}{12}\sqrt{3}^{2} + \frac{1}{12}\sqrt{3}$ $\frac{1}{12}\sqrt{3}^{2} - \frac{1}{12}\sqrt{3}$

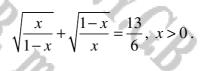

 $i\overline{3} a_{-2}^{2} + i = \sqrt{3}^{-1}$ Filtry 2.= is A southa) By higherial is A southa) $\sqrt{3} a_{-2}^{2} + i - \sqrt{3} = 0$ $(x - i) (\sqrt{3} x - (i + \sqrt{3}^{-1}) = 0)$ $3 = \langle \frac{1 - \sqrt{1}}{\sqrt{3}} \rangle$

ろう

Question 42 (****+)

Solve the equation

 $\sqrt{x^2 + 5x - 20} + \sqrt{x^2 + 5x} = 10$

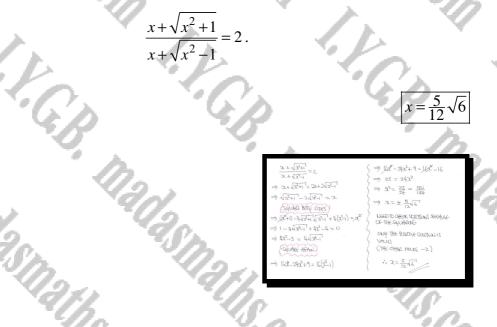


Chinan
$\sqrt{2^2 + 5x - 2v} + \sqrt{x^2 + 5x} = 10$
mm
O let $u^2 = x^2 + Sx$
$= \sqrt{u^2 - 20} + u = 10$
$= \sqrt{u^2 - v_0} = 10 - u_0$
=> 122-20 = 42-204 + 100 (WEINTY IS DET + STRETTEN)
= 204 = 120
$\implies u^2 = 36$
$\implies \chi^2 + 5\chi = 3\xi$
$\implies x^2 + 5x - 36 = 0$
$\implies (x-4)(x+9)=0$
⇒ 2= 4
-9 BORY SATISFY THE ORIGNAL

Question 43 (****+)

5.

By using a suitable substitution, or otherwise, find as exact fractions the solutions of the equation


$\sqrt{\frac{\alpha}{1-\alpha}} + \sqrt{\frac{1-\alpha}{\alpha}} = \frac{13}{6}$ $\lim_{x \to \infty} \frac{1}{\sqrt{\frac{1-\alpha}{\alpha}}} = \sqrt{\frac{1-\alpha}{2}}$	$\begin{array}{c} \underbrace{J^{\lambda_{-}} \underline{3}_{\mathcal{G}_{-}} + \underline{3}_{\mathcal{G}_{-}} = 0} \\ (\underline{4}_{-} +) (\underline{4}_{-} - q) = 0 \\ (\underline{3}_{\mathcal{G}_{-}} - 2) (\underline{3}_{\mathcal{G}_{-}} - 3) = 0 \end{array}$
$\Rightarrow \frac{1}{2} + y = \frac{B}{c}$	$y = \left\langle \frac{2}{3} \right\rangle \Rightarrow \int \frac{1-x}{x} = \left\langle \frac{3}{3} \right\rangle$ $\frac{1-x}{x} = \left\langle \frac{3}{3} \right\rangle$
$\Rightarrow \frac{g}{g} + \frac{g}{g} = 13$ $\Rightarrow 6 + \frac{g}{g^2} = 13y$	± − 1 − 1/4 ± − 1 − 2 − 1/4 1/4 − 1 − 2 − 1/4
⇒ 6g²-13y+6 =0	$\frac{1}{\alpha} = \langle y_{4}, \\ y_{4} \rangle$

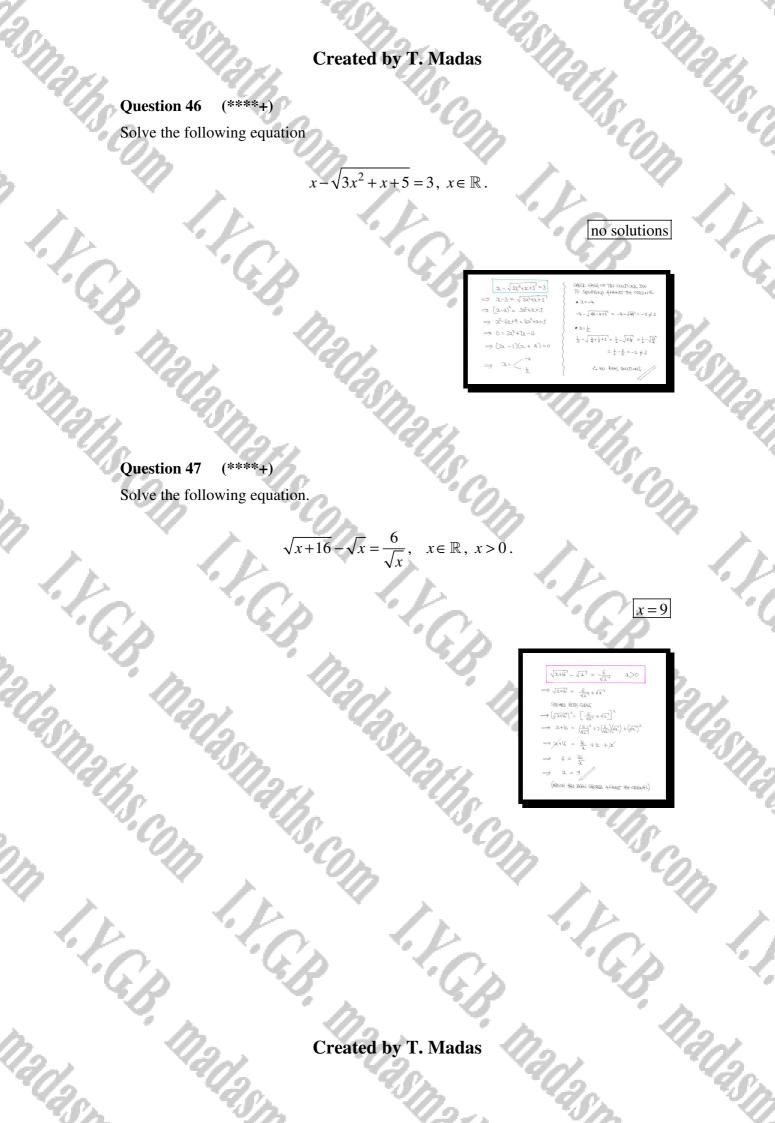
Question 44 (****+)

1

I.G.B.

Determine, in exact surd form, the solution of the equation

Question 45 (****+)


 $x^4 + (x-1)^4 = 1, x \in \mathbb{C}.$

Determine, in exact form where appropriate, the four roots of the above equation.

 $x = 0, 1, \frac{1}{2} \left(1 \pm i\sqrt{7} \right)$

1+

$\begin{array}{c} x_{n}^{k} + Q_{n} \eta_{n}^{k} = 1 & , \\ \Rightarrow \beta_{n}^{k} x_{n}^{-1} \int_{-1}^{1} + (z_{n} \eta_{n}^{k} = c) & , \\ \Rightarrow (z_{n} \eta) (z_{n}^{k} x_{n}^{k} x_{n}, t_{n}) + (z_{n} \eta_{n}^{k} = c) \\ \Rightarrow (z_{n} \eta) (z_{n}^{k} x_{n}^{k} x_{n}, t_{n}) + (z_{n} \eta_{n}^{k}) = c & , \\ \Rightarrow (z_{n} \eta) (z_{n}^{k} x_{n}^{k} x_{n} x_{n}) + (z_{n} \eta_{n}^{k}) = c & , \\ \Rightarrow (x_{n} \eta) (z_{n}^{k} - z_{n}^{k} x_{n}^{k} x_{n}) = c & , \\ \end{array}$	$\begin{split} & \oint y' \operatorname{Surflike} H_{1} \frac{\partial \varphi}{\partial x} \\ & \alpha^{2} - \partial (x + 2 < 0) \\ & \Omega_{n} \sim \frac{1 \pm \sqrt{1 - 4n(x)x^{2}}}{2 + 1} \\ & \overline{\Omega_{n}} \sim \frac{1 \pm \sqrt{1 - 2n}}{2} \\ & \overline{\Omega_{n}} \sim \frac{1 \pm \sqrt{1 - 2n}}{2} \\ & \overline{\Omega_{n}} \sim \frac{1 \pm \sqrt{1 - 2n}}{2} \\ \end{split}$
$\Rightarrow \Im(\chi - i)[\chi^2 - \chi + \chi] = 0$	
674/42 J=0 02 J~1 02 J2+2=0	* tru southals $\mathfrak{X} = \underbrace{ \begin{pmatrix} \circ \\ i \\ \sharp(+\sqrt{\tau'}) \\ \sharp(-\sqrt{\tau'}) \end{pmatrix}}_{\sharp(1-\sqrt{\tau'})}$

. (.)

6

.

(****+) **Question 48**

>

dasmaths.com

adasmans.com

Determine the real root of the equation

I.V.C.B. Madasman

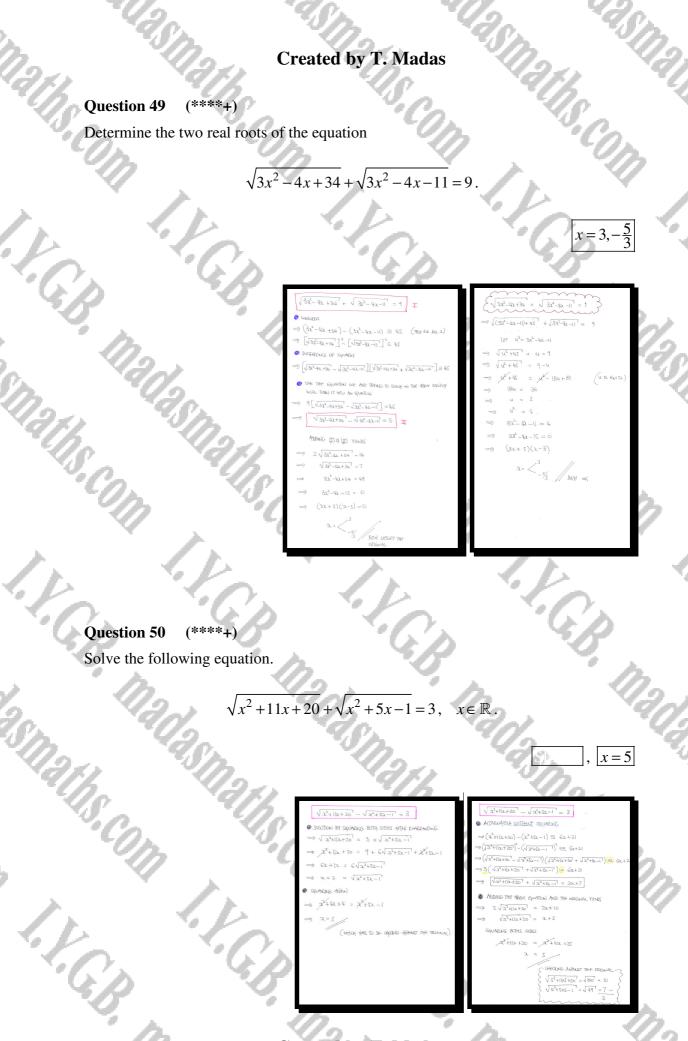
I.V.C.B

asmaths.com I.V.C.B. Madasmanna in the second sec $\sqrt{4x^2 + 20x + 17} + \sqrt{16x^2 + 11x + 10} + 2(x+2) = 0.$

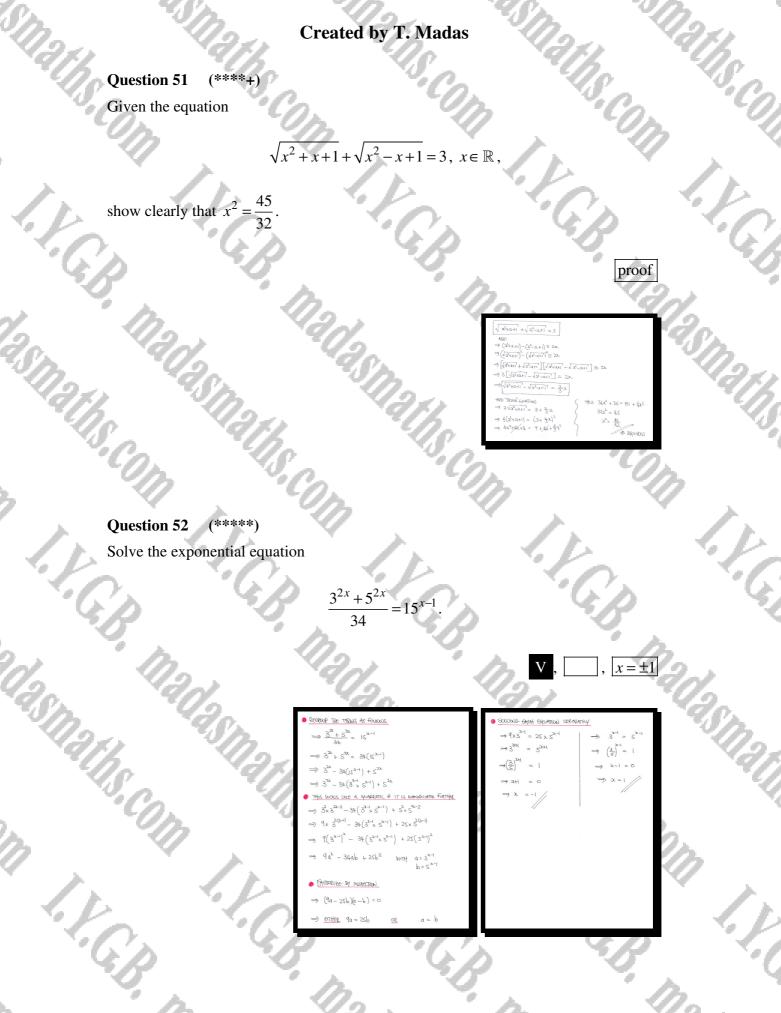
I.G.p.

The management of the second s

asmans.com


x = -3

4.65


G

Madasman Alasman

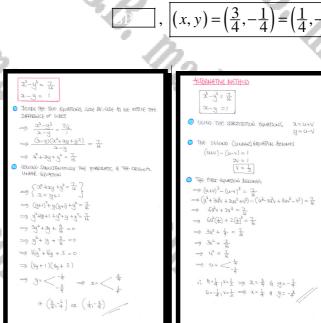
I.V.C.B. Madasm

 $\sqrt{\frac{s^2 + 1(x_5^2 + 2s^2)}{\sqrt{s^2 + 5x_5 - 1}}} = \sqrt{\frac{100}{49}} = \frac{1}{2}$

Question 53 (*****)

By using a suitable quadratic substitution, or otherwise, find in exact surd form where appropriate, the four real roots of the equation

1+



Question 56 (*****)

Use algebra to solve the following simultaneous equations

$$x^3 - y^3 = \frac{7}{16}$$
 and $x - y = 1$,

given further that $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

Question 57 (*****) Determine the two real roots of the equation

I.G.B.

$$x^2 + 2\sqrt{x^2 + 6x} = 24 - 6x.$$

 $\begin{array}{c|c} \chi_{1}^{2}+\chi_{1}^{2}\frac{1}{2^{2}+\zeta_{n}^{2}}=2\eta-6x\\ \Rightarrow (\chi_{1}^{2}+\zeta_{n})=\chi_{1}^{2}-\xi_{n}\\ \Rightarrow (\chi_{1}^{2}+\zeta_{n})=\chi_{1}^{2}+\zeta_{n}\\ & \exists \chi_{1}^{2}-\chi_{1}^{2}+\chi_{2}^{2}-\chi_{2}^{2}+z\\ \Rightarrow (\chi_{1}^{2}+\chi_{2}^{2}-\chi_{2}^{2}+z)\\ \Rightarrow (\chi_{1}^{2}+\chi_{2}^{2}-\chi_{2}^{2}+z)\\ \Rightarrow (\chi_{1}^{2}+\zeta_{n}^{2}-\zeta_{n}^{2}+\zeta_{n})\\ \Rightarrow (\chi_{1}^{2}+\zeta_{n}^{2}+\zeta_{n})\\ \Rightarrow (\chi_{1}^{2}+\zeta_{n}^{2}-\zeta_{n})\\ \Rightarrow (\chi_{1}^{2}+\zeta_{n}^{2}+\zeta_{n})\\ \Rightarrow (\chi_{1}^{2}+\zeta_{n}^{2}+\zeta_{n})\\ \Rightarrow (\chi_{1}^{2}+\zeta_{n})\\ \Rightarrow (\chi_{1}^$

x = -8, 2

 $\left(\frac{3}{4}\right)$

às III à IIIS. COL

5

K.C.B. Madash

naths.com

(****) **Question 58**

1020

I.F.G.p

dasmaths.com

I.V.G.B. May

Smaths.com

I.V.C.B. Madag

I.C.

3112

Solve following equation

 $4 + \sqrt{x^2 - 6x + 13} = x + \sqrt{2x - 5}, \ x \in \mathbb{R}, \ x \ge \frac{5}{2}.$

arns

COM

S,

(****) **Question 59**

Use algebra to solve the following simultaneous equations

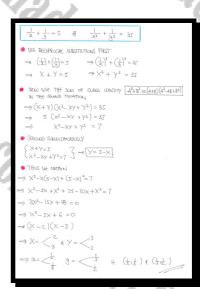
$$xy(5-xy) = 4$$
 and $x^2 + 9y^2 = 10$

given further that $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

Question 60 (*****)

I.G.B.

I.V.G.B


Use algebra to solve the following simultaneous equations

 $\frac{1}{x} + \frac{1}{y} = 5 \qquad \text{and} \qquad$

202.81

d $\frac{1}{x^3} + \frac{1}{y^3} = 35$,

given further that $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

I.C.B.

(x, y) =

 $\left(\frac{1}{2}\right)$

COM

 $=\left(\frac{1}{3},\frac{1}{2}\right)$

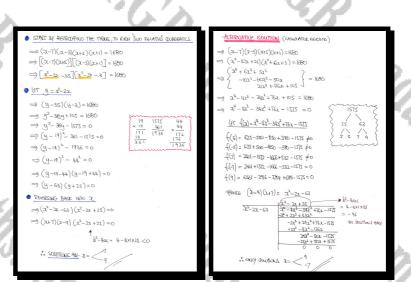
.G.D.

1+

Madasn

Created by T. Madas

N.C.

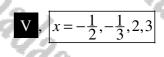

Question 61 (*****)

.Y.G.B.

naths.c.

Determine the two real roots of the equation

$$(x-7)(x-3)(x+5)(x+1) = 1680$$



Question 62 (*****) Solve the equation

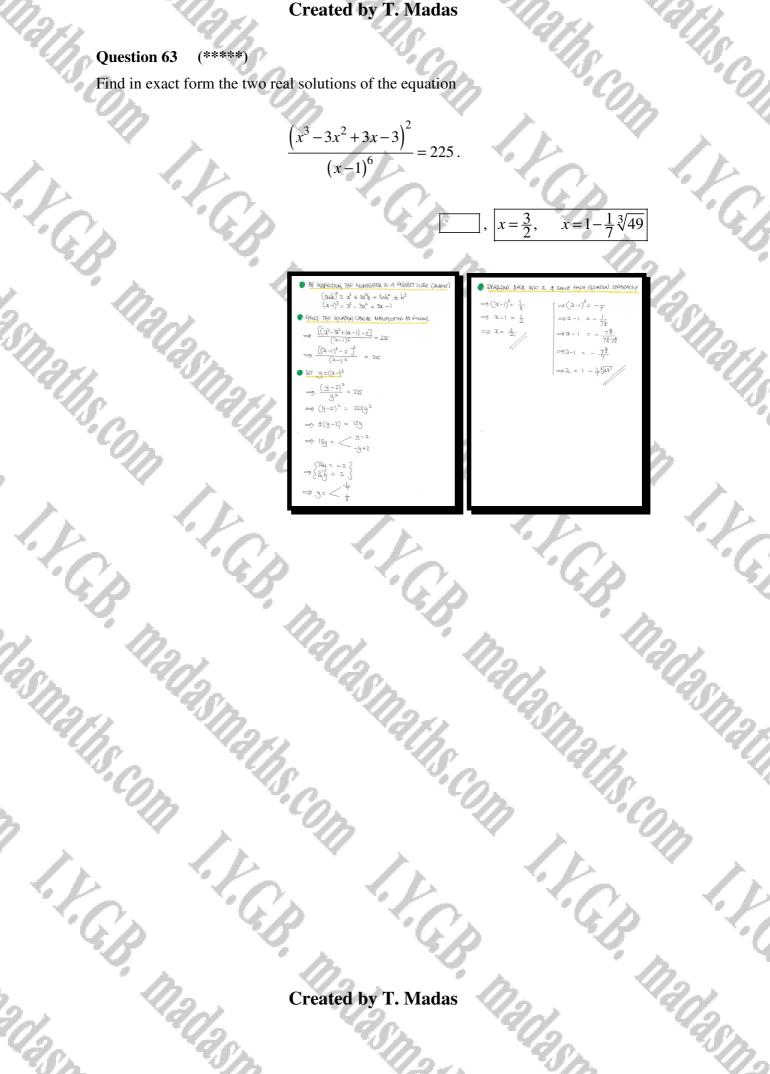
je.

I.C.B

 $6x^4 - 25x^3 + 12x^2 + 25x + 6 = 0.$

6

nadası,


x = -7,9

 $\begin{array}{c} (\underline{x}_{1}^{L}-\underline{x}_{2}^{L},\underline{x}_{1}^{L},\underline{x}_{2}^{L},\underline{x}_{2}^{L},\underline{x}_{2}^{L},\underline{x}_{1}^{L},\underline{x}_{2}^{L},\underline{x}_{2}^{L},\underline{x}_{1}^{L},\underline{x}_{2}^{L},\underline{x}_{1}^{L},\underline{x}_{2}^{L},\underline{x}_{1}^{L},\underline{x}_{2}^{L},\underline{x}_{1}^{L},\underline{x}_{2}^{L},\underline{x}_{2}^{L},\underline{x}_{1}^{L},\underline{x}_{2}^{$

(*****) **Question 63**

0

Find in exact form the two real solutions of the equation

.

Question 64 (*****)

Use an algebraic method to show that x = 1 and y = -1 is the only real solution pair of the following simultaneous equations

ISMAINS.COM

(****) **Question 65**

>

Use algebra to solve the equation

asmaths.com $55(x-4)^7 + (8-2x)^7 = 73, x \in \mathbb{R}.$

K.C.B. Madasma I.F.G.B. 4.40 |x=3|CASINALIS COM I.Y. C.B. MARASINALIS COM $(4)]^{7} = (-2)^{7} (3-4)^{7}$ 5.000 I. C.B. Madasman I.Y.C.B. Madasmarks.Com 1.4.6 I.C.B. madasman I.V.G.B. I.V.C.B. Madasm I.F.G.B. Madas,

(****) **Question 66**

 $\frac{2^{2}-2x+2}{2-3} = \frac{20}{2-2}$ $(x-x)(x^2-x+2) = 20($

 $x^{2} - 2x^{2} + 2x - 4x - 4$

N.C.B. Madasm

Smaths.com

I.V.G.B. M.

0

Use algebra to solve following simultaneous equations over the set of real numbers.

 $\frac{x}{x+2} + \frac{1}{x-3} = \frac{5}{y+2}$ and $\frac{1}{4}x^2 - y = 3$. $(4,1) \cup (-2,-2) \cup \left(\sqrt{14},\frac{1}{2}\right) \cup ($ $\left(-\sqrt{14},\frac{1}{2}\right)$ - 4x2 - 14x + 56 = $\frac{x}{x+2} + \frac{1}{2-3} = \frac{5}{9+2}$ $\Rightarrow \frac{1}{4}x^2 - y = 3$ $\Rightarrow \frac{1}{4}x^2 - 3 = y$ WOR FOR FACEDRS OR WITCH THE FACEDR ON BY PARES $\frac{3^2 - 3x + 3x + 2}{(3+2)(5-3)} = \frac{5}{9+2}$ - 2(2-4)-14(7-4)= -> +2-3+2-4 $\frac{x^2 - x + z}{x^2 - x - 6} = \frac{5}{-\frac{y}{y+2}}$ = (2-4)(22-14)=0 = .4+2 = 122-1 $\frac{9+2}{-5} = \frac{3^2 - 2 - 6}{3^2 - 2x + 2}$ $\frac{1}{42} = \frac{1}{42^2}$ 4 TRY (-2,-2) NOTING THE DEMONINATION J-22+2 = 10 20 $\frac{9+2}{5} = 0$ $\frac{4+2-6}{10} = 0$ $y = \frac{1}{2}\alpha^2 - 2$ INTO THE FIRST GOUATION & TIDY : (-2,-2) IS too + OAUD SOUTH $\vartheta^{=} \leftarrow \frac{1}{2}$ $\Rightarrow \frac{x}{x+2} + \frac{1}{x-3} = \frac{z}{y+2}$ HAVE WE HAVE $\frac{3(2r-3) + (242)}{(2r+2)(2r-3)} = \frac{20}{3^2-4}$ (4,1), G=12), (F, 1), (-F, 2) NOW RECAU 2=-2 $\frac{3\hat{t}-3\hat{x}+2}{(3k^{2})(k-3)} = \frac{20}{(3-2)(3k^{2})}$ $y = \frac{1}{4}(-2)^2 - 3 = -2$ IT CATHE LOOKING AT THE FIRST GRUATION) $\frac{-2}{-2+2} + \frac{1}{-2-3} = \frac{5}{-2+2}$

GRUATION BAUDUGE ROT IS THIS SECUTION OK?

F.G.B.

ma

23

1+

nadasm

2017

I.V.C.B. Madası

Created by T. Madas

2017

I.V.C.I

Question 68 (*****)

.C.B.

I.C.P.

Use algebra to solve the following simultaneous equations

 $x^4 + y^4 = 97$ and x + y = 5,

given further that $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

	(x, y) = (3, 2) = (2, 3)
	in 1
$\mathfrak{X}^{E} + \mathfrak{Y}^{E} = 97$ & $\mathfrak{X} + \mathfrak{Y} = \mathcal{I}$	$\frac{24697777738472}{2.9} = \frac{2640777}{2.9} = \frac{2}{2} + \frac$
V+U = S ZARTAYA GARATIZZOZ ANT 320 ● 2 = U-V	• FRESTLY THE SOLUTIONS ARE SYMMETERS AS SWAPPING 2 4 y LANUS THE EQUATIONS UNCHANGED
 v→1) 20JULY (NOTTING GUADEZ HFT ● v≤ 	$\mathcal{T}=(\mathcal{T}_{(k)})$ with summer summer summer summer $\mathcal{T}_{(k)}$, the summer $\mathcal{T}_{(k)}$, the summer $\mathcal{T}_{(k)}$
• The filt equility denotes the filt equility denotes $u = 0$ u = 0 ($u = 0$) $u = 0$ ($u = 0$) u	$= \frac{\pi}{2}$ $2^{6} + 5^{6} = 16 + 81 - 97 \text{when an access } \\ \frac{11}{2} \frac{11}{2} \frac{11}{2} \frac{1}{2} \frac$
/Z 2 50000	ut (17) (17)

207

I.C.p

COM

11-4-

Madasn.

5

Created by T. Madas

2017

Question 69 (*****)

I.V.G.B.

V.G.B. Mal

I.V.G.B.

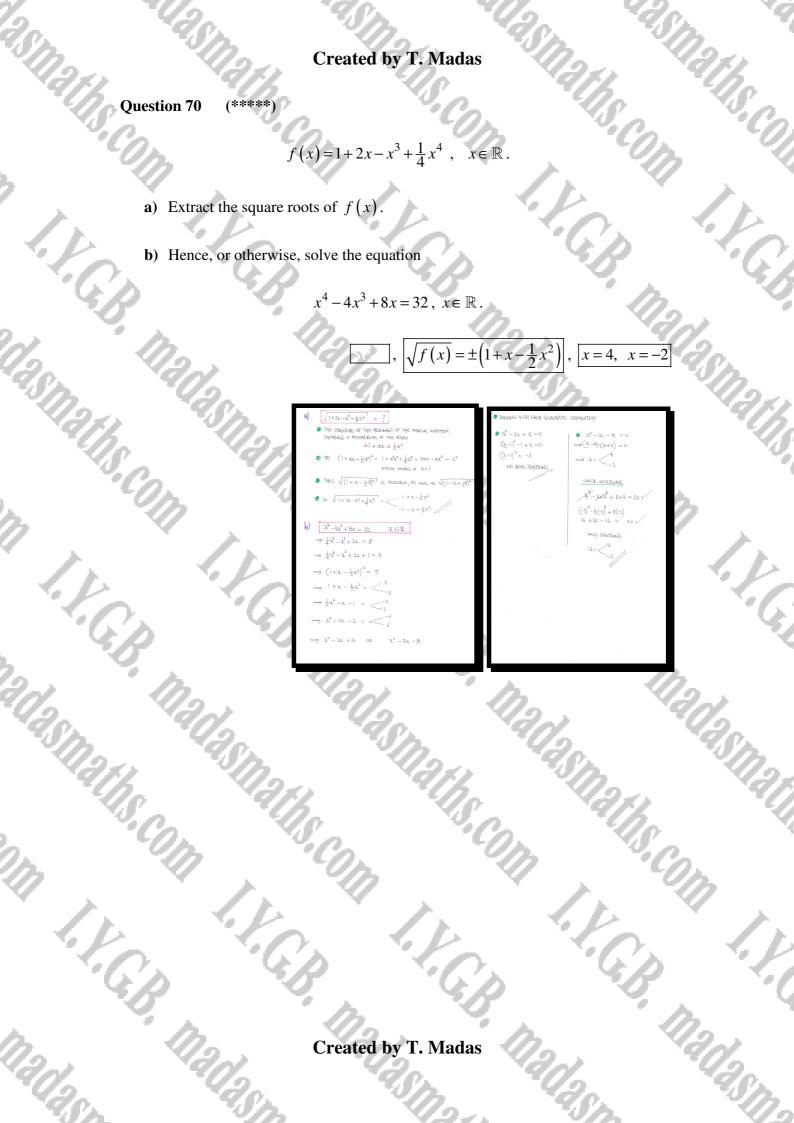
E.

10

If $x \in \mathbb{R}$, $y \in \mathbb{R}$, find the non-trivial solution the following simultaneous equations.

 $36y^2(x+1)+36x^2(y+1)=7x^2y^2$ and 6x+6y+xy=0.

36y²(x+1) + 36x²(y+1)=7x²y² TE THE EQUATIONS AS POUCUS $\frac{36q^2(3t+1)}{36a^2u^2} + \frac{36a^2(y+1)}{36a^2u^2} = \frac{7a^2_{4}u^2}{36a^2u^2}$ + $\frac{Gy}{2y}$ + $\frac{3y}{2y}$ = $\frac{0}{3y}$ + $\frac{32+1}{32^2} + \frac{34+1}{32^2} = \frac{7}{36}$ 1+ 1/2 = 7 36 $\frac{1}{2} + \frac{1}{y^2} + \frac{1}{42} = \frac{7}{2}$ $\frac{7}{36} + \frac{1}{6} = \frac{7}{36} + \frac{6}{36} = \frac{13}{32}$ $Y = -X - \frac{1}{6}$ $\chi^2 + \chi^2 = \frac{13}{3c}$


207

I.Y.G.B.

1

17_{202s1}

|, (x, y) = (-2, 3) = (3, -2)

(*****) **Question 71**

Use algebra to solve the following simultaneous equations

 $x^2 + y^2 = 45,$ $x + y + \sqrt{x + y} = 12$ and

Madasn.

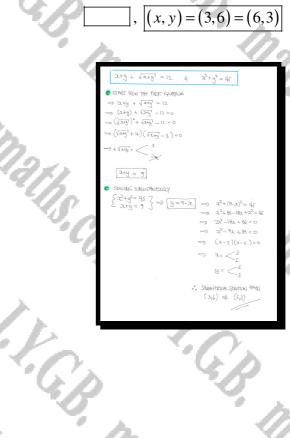
202

COM

No.

Smaths,

given further that $x \in \mathbb{R}$ and $y \in \mathbb{R}$.


nadasmaths.com

I.G.B.

maths.com

SM2/hs.com

I.V.C.P

nadasmaths,

nn,

naths.com

The COL

.G.D.

1+

/

¹212sm2

COM

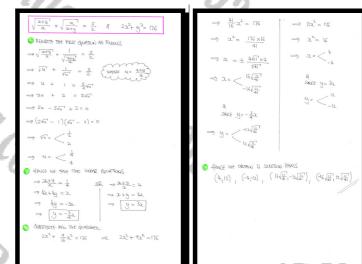
I.V.C.B. Madasn

(****) **Question 72**

201

ISMaths.com

Smaths.com


I.F.G.B.

Use algebra to solve the following simultaneous equations

D.

Created by T. Madas
****)
we the following simultaneous equations
$$\sqrt{\frac{x+y}{x}} + \sqrt{\frac{x}{x+y}} = \frac{5}{2}$$
 and $2x^2 + y^2 = 176$,

given further that $x \in \mathbb{R}$ and $y \in \mathbb{R}$.

2017

14

/

Ő,

COM

Created by T. Madas

COM

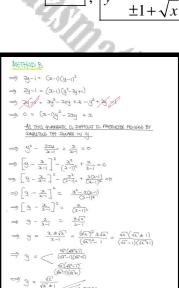
I.C.

Question 73 (*****)

ŀG.B.

I.G.B.

A curve has Cartesian equation


$$2y-1=(x-1)(y-1)^2, x \ge 0.$$

 $\frac{\sqrt{x}}{\sqrt{x} \pm 1}$

y =

Make y the subject of the above equation, to show that

 \sqrt{x}

FGB.

Madasn

2

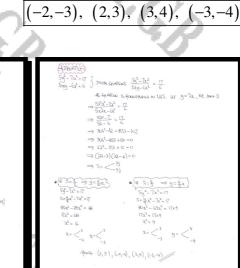
y =

in,

Question 74 (*****)

Find as exact surds the solutions of the equation

 $x(x+1)(5x+1)(5x-4) = -4, x \in \mathbb{R}.$



Question 76 (*****)

Find the real solutions for the following system of simultaneous equations

$$5y^2 - 7x^2 = 17$$

 $5xy - 6x^2 = 6$.

Question 77 (*****)

Find the real solutions for the following system of simultaneous equations

- *1*72

$$x^{3} + y^{3} = 26$$

$$x^{2}y + xy^{2} = -6.$$

$$V \quad [x, y] = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$

$$\int (x, y) = (-1,3) \text{ in any order}$$


1.G.D.

14

P-1

(****) **Question 78**

Find the real solutions for the following system of simultaneous equations

ins.

Com

5

(*****) **Question 79**

Solve the equation

13x + 11y = 414,

given further that $x \in \mathbb{N}$, $y \in \mathbb{N}$.

(x, y) = (9, 27), (20, 14),(31,1)13x + 11y = 414 $x_1y\in\mathbb{N}$ 13x + 11y = 410 START THE SOUTION AS POLLOUS $\implies |3(11k+4) + 11y = 414$ $\implies |3x11k + 117 + 11y = 414$ $\implies |3x11k + 11y = 297$ \Rightarrow (3x + 1(y = 4)4 \Rightarrow ||x+2x+||y = $x + \frac{2}{11}x + y = 30 + 7 + \frac{7}{11}$ \Rightarrow 13×11k + 11y = 220 + 7, +y-\$7 + = x = 13k+y= 20+ THE GENER Soution !! $\frac{4\chi - \frac{14}{n}}{n} + \frac{6\chi - 21}{n} + \frac{6\chi - 27}{n} + \frac{6\chi - 35}{n} + \frac{6\chi - 42}{0} = 1000660$ $\begin{pmatrix} \chi \\ g \end{pmatrix} = \begin{pmatrix} II \not\models + q \\ 27 - Bk \end{pmatrix}$ LEN (CONFIGNATION 2. EXC LUCATION OF 11 22 ON K=-(2<0 122 - 42 = 1016000 k=0 k=1 k=2 k=3 ⊐L= 9 3L= 20 3L= 31 lac + a - 33 - 9 = hotest 2= 4 2] 2] 2] 2] 2] 2] $\therefore \left(q_{1} 27 \right)_{1} \left(2 o_{1} 1 q \right)_{1} \left(3 l_{1} 1 \right)$ a= 11k+9 I.G.B. nadasm. nadaş 0 I.F.G.B. ŀ.G.p. nadası,

Question 80 (*****)

I.C.B.

I.V.G.P

Solve the following rational equation, over the set of real numbers.

$$\frac{5x}{2x^2 - 7x + 3} + \frac{4x^2 - 37x + 13}{2x^2 - 11x + 5} + \frac{6x^2 - 22x - 21}{3x^2 - 7x - 6} = \frac{1}{3x + 2}$$

You may ignore non finite solutions.

, x = 7

.G.D.

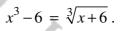
5

INadası

Created by T. Madas

R.

KCP


ろ

I.F.G.B.

às màins col

(****) **Question 81**

Show that x = 2 is the only real solution of the following equation.

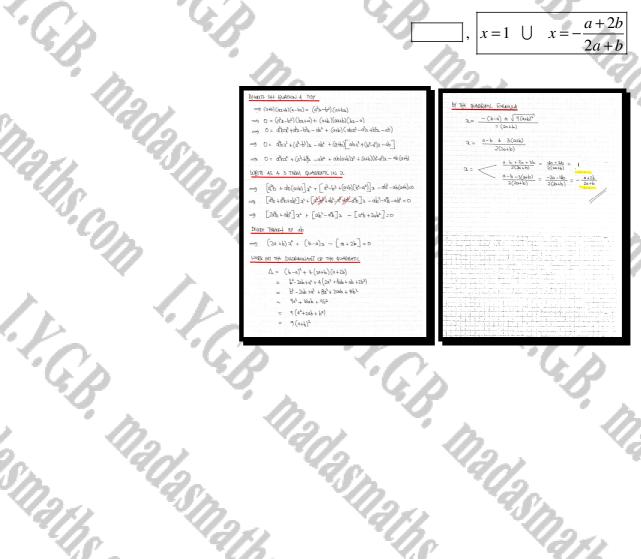
Question 82 (*****)

Solve the cubic equation

 $x^3 - 9x^2 + 3x - 3 = 0, x \in \mathbb{R}.$

You may assume that this cubic equation only has one real root.

20	~~ (p	V ,], $x = 1 + 2^{-\frac{2}{3}} - 2^{-\frac{4}{3}}$
ina Ins. Com	$ \begin{array}{c} \begin{array}{c} \text{SubSTITUTE No The CARM} \\ \Rightarrow & (y_{+3})^2 - q_{-}(y_{+3})^2 \\ \Rightarrow & (y_{+3$	$3 = 0$ $T = 9 - \frac{-\pi}{3} \implies 2 = 9 + 3$ $(5 - 7) = 3 = 0$ $T = 9 - \frac{-\pi}{3} \implies 2 = 9 + 3$ $(5 - 7) = 1 + 3 + 9 + 3 + 9 - 3 = 0$ $T = -7 $	$\begin{aligned} h &= \pm 4\Sigma^{2} = \pm 44\Sigma \\ &\frac{48}{2002} = 8\lambda = \pm 324\Sigma \\ &\frac{48}{2002} = 8\lambda = \pm 324\Sigma \\ &\text{constant} = 8\lambda = \pm \frac{3}{202} = \pm \frac{3}{24} = \pm \frac{3}{4} = \pm \frac{3}{4} = \pm \frac{3}{4} + \frac{3}{4} = \pm \frac{3}{4} + \frac{3}{$
G.B. 111.			
Lo.	I.V.C.D	I.V.O.	n ¹¹ 3/1/s.C.
	Creat	ed by T. Madas	nadasn


Question 83 (*****)

I.F.G.B

Solve the following equation

 $(a+b)(ax+b)(a-bx) = (a^2x-b^2)(a+bx), x \in \mathbb{R}.$

Give the solutions in terms of a and b, where appropriate.

Ths.com

I.G.B.

Madası

3

1+

Created by T. Madas

N.

The Co

Madasman

2011

 $2^{\frac{1}{3}}-1$

 $\frac{2}{2^{\frac{1}{3}}+1}$

x=0,

• a = 2b $\Rightarrow (a+i)^3 = 2(x-i)^3$

 $\Rightarrow \left(\frac{2\lambda+l}{\lambda-l}\right)^3 = 2$

nadasmaths.

nn

 $\left(\frac{3k+l}{3k-1}\right)^3 = -1$

32+1

(****) **Question 84**

Determine, in exact form where appropriate, the two real roots of the equation

 $(x+1)^6 - 2(x-1)^6 = (x^2 - 1)^3.$

K.G.p	I.F.C.p	
Inaths.Co	$\begin{split} & \underbrace{MCHOD \mathbf{A}} \\ \Rightarrow & (\mathbf{z}_{k1})^{L} - 2(\mathbf{z}_{k-1})^{G} = (\mathbf{x}^{2}-1)^{2} \\ \Rightarrow & (\mathbf{z}_{k1})^{L} - 2(\mathbf{z}_{k-1})^{2} = (\mathbf{z}_{k-1})^{2} (\mathbf{z}_{k1})^{2} \\ \Rightarrow & (\mathbf{z}_{k1})^{L} - 2(\mathbf{z}_{k-1})^{L} = (\mathbf{z}_{k-1})^{2} (\mathbf{z}_{k1})^{2} \\ \Rightarrow & (\mathbf{z}_{k1})^{L} - 2(\mathbf{z}_{k-1})^{L} = 1 \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - 2(\mathbf{z}_{k-1})^{L} = 0 \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - 2(\mathbf{z}_{k-1})^{L} = 0 \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - (\mathbf{z}_{k-1})^{L} = 0 \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - (\mathbf{z}_{k-1})^{L} = 0 \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - (\mathbf{z}_{k-1})^{L} = 0 \\ \Rightarrow & \mathbf{z}_{k-1} = 2\mathbf{z}_{k-1}^{L} \\ \Rightarrow & \mathbf{z}_{k+1} = -2\mathbf{z}_{k-1}^{L} \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - 2\mathbf{z}_{k-1}^{L} \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - 2\mathbf{z}_{k-1}^{L} \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - 2\mathbf{z}_{k-1}^{L} \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} - 2\mathbf{z}_{k-1}^{L} \\ \Rightarrow & (\mathbf{z}_{k-1})^{L} $	$\Rightarrow x = \frac{2t_{1-1}}{2t_{2-1}}$ $\Rightarrow x = \frac{(x^{1}_{2}+1)(2t_{1-2}^{2}x_{2}+1)}{(x^{1}_{2}-1)(2t_{1-2}^{2}x_{2}+1)}$ $\Rightarrow x = \frac{(x^{1}_{2}+1)(2t_{1-2}^{2}x_{2}+1)}{(x^{1}_{2}-1)(2t_{1-2}^{2}x_{2}+1)}$ $\Rightarrow x = \frac{2+2t_{2}x_{2}^{2}x_{2}^{2}+2t_{2}^{2}x_{2}^{2}}{2t_{2}^{2}} = \frac{3+2x_{2}^{2}t_{1-2x_{2}}^{2}t_{1-2$
1. Y.C.B	Gp	
asmarns.		
1.1.		Con I.V

1.Y.C.J

1720

I.C.B.

Created by T. Madas

(****) **Question 85**

I.F.G.B.

Smaths.com

I.V.C.B. Madasm

Smaths.com

I.V.G.B

Ò

0

Solve the following equation

madasmaths.com

I.C.P.

I.C.B.

 $\sqrt[3]{x} + \sqrt[3]{2x-3} = \sqrt[3]{12(x-1)}, x \in \mathbb{R}.$ V.C.B. Madas

LOCEED BY CUBING. 3 3 + 3 22-3' = 3 12 (2-1)

at + (21-3) = [12(2-1)] \$

 $2 + 32^{\frac{1}{2}(2\lambda-3)^{\frac{1}{2}}} + 32^{\frac{1}{2}(2\lambda-3)^{\frac{1}{2}}} + (2\lambda-3) = 12(\lambda-1)$

 $, x=1 \cup$

naths.com

x = 3

naths.col

S,

6

11303ST13

Madasn

The Com

I.C.B.

- $(a+b)^3 \equiv a^3+3a^2b+3ab^2+b^3$ TIDY UP BOTH SIDES
- 32\$ (22-3)\$ + 32\$ (22-3)\$
- $3x^{\frac{1}{2}}(2x-3)^{\frac{1}{2}}[x^{\frac{1}{2}}+(2x-3)^{\frac{1}{2}}] = 9x 9$
- BOT WORLING AT THE OBLIONAL EPUATION WE DESHEDE T $\lambda_{1}^{2} + (2x-3)^{2} = \left[12(x-1) \right]^{2}$

$\exists \vartheta^{\frac{1}{2}} (2\lambda - \vartheta)^{\frac{1}{2}} \left[1_2 (\lambda - \vartheta) \right]^{\frac{1}{2}} = - \mathfrak{q}(\lambda - 1)$

- $2(2(2x-3)(1_{2}(x-1)) = 9 \times 9 \times 9 \times (x-1)^{3}$
- 9×9×42(22-3)(2-1) = 9×9×9×(2-1)3
- $l(x_{2\lambda-3})(x-1) = 9(x-1)^3$

I.V.G.B.

17202

COM

- 3=1 IS & JOITUOR , AN WE , GOITUOR & ZI I=S
- (4 (22-5) = 9(2-1)2

madasn

200

- $8x^2 b_1 = 9x^2 18x + 9$ $0 = 3^2 - 6x + 9$
- (2-3)2 O : a=<

Question 86 (*****)

Solve the equation

5

14x - 11y = 29,

given further that $x \in \mathbb{N}$, $y \in \mathbb{N}$, and x + y < 100.

14x - 11y = 29,	
	A. C.
at $x \in \mathbb{N}$, $y \in \mathbb{N}$, and $x + y < 100$.	
at $x \in \mathbb{N}$, $y \in \mathbb{N}$, and $x + y < 100$.	30 C. Y.
	S 10
V. $(x, y) = (6, 5),$	(17,19), (28,33), (39,47)
,, (,,), (,),	(
	$\Delta = 14 \mu = 0$
	● HAVE THE GENERAL SOUTHON IS
$\implies (lax - 1]_{y} = 29$	$\begin{pmatrix} \alpha \\ \vartheta \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{N} + \mathbf{C} \\ 1 & \mathbf{N} + \mathbf{C} \end{pmatrix} \mathbf{N} \in \mathbf{N}$
$\Rightarrow x + x - y = 22 + 7$ $\Rightarrow f(x + x - y) = 2 + 7$	
• As $x^{1}R \in \mathbb{N}$ $\frac{1}{2}x - \frac{1}{2}$ mus be an object	$\implies N=\circ \Im = \varrho \Im = 2 \qquad (1)$ $\implies N=\circ \Im = \varrho \Im = 2 \qquad (1)$
$\Rightarrow \frac{3c-7}{\alpha} = 00462$	$\Rightarrow n = 1 \qquad \qquad$
$ \Rightarrow \frac{ \mathbf{s}_{-1} _{-1}}{ \mathbf{s}_{-1} _{-1}} = \operatorname{wn}(\mathbf{s}_{-2}) $ $ \Rightarrow \frac{ \mathbf{s}_{-2} _{-2}}{ \mathbf{s}_{-2} _{-1}} = \operatorname{wn}(\mathbf{s}_{-2})$	$\implies n=3 a=39 g=47 86$ $\implies n=4 a=55 g=6 (11)$
$\Rightarrow \Delta_{11}^{-} = \text{NIT(Sec}$ $\Rightarrow \frac{(2k-2k)}{(2k-2k)} = \text{NIT(Sec}$ (Generation of a , detect if by))	
$\Rightarrow \frac{\ \mathbf{x} + \mathbf{x} - 2\mathbf{x} - 6}{\mathcal{H}} = \text{interm}$	$\therefore (c_i S) {,} {(c_i 1_i 4)} {,} (2e_i 33) {,} {(3q_i 47)}$
$\Rightarrow \alpha_{-2} + \frac{\alpha_{-1}}{\alpha} = m_{\rm H} \epsilon_{\rm H}^2$	<i>"</i>
$\Rightarrow \frac{\chi_{-\mathcal{L}}}{U} = N = hatter$	2.
$x = \ln x + 6, n \in \mathbb{N}$	
• Substitution with the conjunct quarter quarter quarter for $g = 0$ (111) +(1) - 11 $g = 23$	
$ \rightarrow \frac{1}{4} \times \frac{1}{10} + \frac{2}{10} - \frac{1}{10} = \frac{2}{2} $ $ \rightarrow \frac{1}{4} \times \frac{1}{10} + \frac{2}{10} = \frac{1}{10} $	
WY. C.L.	60
40 C.A.	
· · · · · · · · · · · · · · · · · · ·	510
m v	· · · · · ·
22	h $\langle l \rangle_{2}$
	10. Q
90.	90 9
a. On	42
12 121	
V2 91%	~ <i>O</i> _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1011
- Un	
· · · · · · · · · · · · · · · · · · ·	
CO. S	m va
, m	Y . W
Smaths Com	- F. 4
Smarks Com Starks	
You I.L.	
Mr. Mar	30 C. Y.
Y.C.B. I.Y.C.	
<u> </u>	

#### (*****) Question 87

Ċ,Ŗ

I.C.P.

Solve the cubic equation

 $16x^3 + 96x^2 + 180x + 99 = 0, x \in \mathbb{R}.$ 

You may assume that this cubic equation only has one real root.

that this cubic equation only has one r	eal root.
	$x = -2 + 2^{\frac{-2}{3}} - 2^{-\frac{4}{3}}$
• START BY WRITING THE WEIL IN REDUCED FORM $62^3 + 62^2 + 160x + 99 = 0$	$\Rightarrow 3t = \pm \operatorname{arccode}(\frac{\pi}{2}) = \pm \ln \left[ \frac{1}{2} + \sqrt{\frac{\pi}{16}} \right]$ $\Rightarrow 3t = \pm \ln \left( \frac{\pi}{2} + \sqrt{\frac{\pi}{16}} \right) = \pm \ln \left( \frac{\pi}{2} + \frac{\pi}{16} \right)$
$f(L) = \mathcal{R} - \frac{q}{q} = \mathcal{R} - \frac{q}{q} = \mathcal{R} - \frac{q}{q} = \mathcal{R} - \frac{q}{q} = \mathcal{R} - \frac{q}{q}$	$\Rightarrow t = \pm \frac{1}{3} h_{2}.$ (a) Finity we that A bird. Source) $\Rightarrow x = y_{1-2}.$
$ \begin{array}{c} \underbrace{SUBTUTURS(\mathbf{N},\mathbf{ND},\mathbf{TH}_{\mathbf{K}},\mathbf{O},\mathbf{B}(\mathbf{K},\mathbf{V} \mathbf{Le},\mathbf{O})^{2} + SU_{\mathbf{K}}(\mathbf{y}_{-2})^{2} + SU_{\mathbf{K}$	$\Rightarrow z = \cosh[t - 2$ $\Rightarrow z = \cosh[\frac{t}{2}\frac{1}{3}\ln 2] - 2$ $\Rightarrow z = \cosh(\frac{t}{3}\ln 2) - 2$ $\Rightarrow z = \cosh(\ln 2^{\frac{1}{2}}) - 2$
$\Rightarrow [kg]^{3} - kg - Z = 0$ $\Rightarrow [kg]^{3} - [kg - Z = 0$ $(\text{wereans or g wereas)} (\text{consist} = \frac{1}{2}(\text{cos}^{2}t - 3)(\text{cos}^{2}t))$ $(\text{constant or g wereas)} (\text{cos}^{2}t) = \frac{1}{2}(\text{cos}^{2}t - 3)(\text{cos}^{2}t)$	$\Rightarrow x = \frac{1}{2} \left[ e^{bx^{\frac{1}{2}}} + e^{-bx^{\frac{1}{2}}} \right] - 2$ $\Rightarrow x = 5 \left[ 2^{\frac{1}{2}} + 2^{\frac{1}{2}} \right] - 2$ $\Rightarrow x = 5 \left[ 2^{\frac{1}{2}} + 2^{\frac{1}{2}} - 2 \right]$
$\Rightarrow 6\omega' - 12y = 5$ $\Rightarrow 4y^{3} - 3y = \frac{5}{4}$ $\Rightarrow 4calt - 3calt = \frac{5}{4}$ $\Rightarrow acalt = \frac{5}{4}$	
Cp. I.F.	C.p.

M21/2

F.C.P.

nadasn.

's.com

1+

Created by T. Madas

2017

Question 88 (*****)

Solve the equation

F.G.S.

I.C.B.

7x + 12y = 220,

given further that  $x \in \mathbb{N}$ ,  $y \in \mathbb{N}$ .

# (x, y) = (28, 2), (16, 9), (4, 16)

 $n \in \mathbb{N}$ 

F.C.B.

nadasn.

Is.com

10.00

$7x + 12y = 220$ $x \in \mathbb{N}, y \in \mathbb{N}$	$\Rightarrow x + 12n =$ $\Rightarrow x = 28 - 12$
Once why is to Assis values for i.e. $i, z_1z_2, \ldots, 3\sigma$ and some the Primar Br explanation	
21400007 24- FOROPER JARBENIA (14: EXAT OT 21 FUTRUSITIA ENT .	p(z) = 82 $p(z) = \begin{pmatrix} 2 \\ y \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ y \\ y \\ y \end{pmatrix}$
=> Tax + 12y = 220	η=−1 η=0 α=2
$ \Rightarrow 72 + 7y + 5y = 210 + 7 + 3 \Rightarrow 7x + y + 5y = 30 + 1 + 3 > 12 + 7 + 5y = 30 + 1 + 3 > 12 + 7 + 5y = 30 + 1 + 3 > 12 + 7 + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y = 30 + 1 + 3 > 12 + 7y + 5y + 5y + 5y + 5y + 5y + 5y + 5y$	N=1 2=16
$\Rightarrow x + y + \frac{5}{7}y = 30 + 1 + \frac{5}{7}$	η=2. 2=4 η=3 3<
(a) As $x_1 \cdot y$ there positive incidences $\frac{5}{7} \cdot y - \frac{3}{7} = integer.$	1 (m.) (11)
$\frac{S_{1}-S}{7} = 1016972$	.* (2812) (1619)
$\implies \underbrace{(is_{4}-q)}{(2)} = infeel (approximation of 2, by care in the comparison of a second structure of 7)$	
$\implies \frac{149-7+9-2}{7} = 1046E\varrho$	
$\rightarrow \lambda_{y} - l + \frac{y-2}{7} = 1034452$	
$\implies \frac{g_{-2}}{7} = n = M6472$	
⇒ y = 71+2	
SUBSTITUTING THE IND THE " OPIGNAL" OPPESSION & SOUR FOR a	
$7_{3-} + 12(7_{1}+2) = 220$	
7x + 84y + 24 = 220	

Created by T. Madas

COM

### Question 89 (*****)

Ĉ,

Y.G.B.

Solve the cubic equation

 $16x^3 - 48x^2 + 60x - 31 = 0, \ x \in \mathbb{R}.$ 

You may assume that this cubic equation only has one real root.

 $+ 2^{\frac{4}{3}}$  $x=3+2^{\frac{5}{3}}$ THRET BY WRITING THE WBIC IN REDUCED FROM = t= ± m [ = + 125]  $|6x^3 - 48x^2 + 60x - 31 = 0$ ⇒ t= ±[== + =]  $\Omega^3 = \frac{3}{2}\Omega^2 + \frac{15}{4}x - \frac{31}{16} = 0$ =) t= 1 h2  $\forall e \tau \quad \mathfrak{A} = \mathfrak{Y} - \frac{\mathfrak{a}}{\mathfrak{Z}} = \mathfrak{Y} - \frac{-\mathfrak{z}}{\mathfrak{Z}} \implies \fbox{} \mathfrak{A} = \mathfrak{Y} + \mathfrak{I}$ => t= ln2 3 SOBSTITUTE BACK INTO THE COBIC  $\implies 16(y+1)^2 - 48(y+1)^2 + 60(y+1) - 31 = 0$ HAVE THE REPUBLIC SOLUTION OAN BE ROUND ⇒ 2 = y+1 ⇒a=1+ sinht  $= \frac{16y^3 + 48y^4 + 48y + 16}{-968y^2 - 96y - 48} = 0$  $\Rightarrow \alpha = 1 + smh(l_{12}\frac{1}{3})$  $\Rightarrow a = 1 + \frac{1}{2} \left[ e^{h 2^{\frac{1}{4}}} - e^{h 2^{\frac{1}{4}}} \right]$  $\implies \overline{16g^3 + 12y - 3} = 0$  $\Rightarrow \mathcal{L} = 1 + 2^{1} \left[ 2^{\frac{1}{2}} - 2^{-\frac{1}{2}} \right]$  $\Rightarrow$   $16y^3 + 12y = 3$  $\Rightarrow 2 = 1 + 2^{\frac{2}{3}} - 2^{\frac{4}{3}}$ WE NOW USE THE IDMNITY OF SINNER AS THE CORFIGINNT OF sunh3t= 3smht+4smh³t  $\Rightarrow 49^3 + 39 = 3/4$   $\Rightarrow 4 \operatorname{senh}^3 + 3 \operatorname{senh} = \frac{3}{4}$ Ethne = E ⇒ sinhist = ₹  $\Rightarrow 3t = \operatorname{anzwh}^{3}_{\frac{2}{4}}$  $\Rightarrow t = t \ln \left[\frac{3}{4} + \sqrt{\frac{9}{16} + 1}\right]$ 

Created by T. Madas

F.C.B.

1720251

#### (****) **Question 90**

. K.G.

I.F.G.B.

I.Y.G.B.

manas,

the madasman

Smaths.com

I.F.G.B.

I.V.G.B.

Smaths.com

2014

2

Solve the following system of equations for  $x \in \mathbb{R}$ ,  $y \in \mathbb{R}$ ,  $z \in \mathbb{R}$ .



¥.G.D.

.G.

2

202511211

adasmaths.com

I.V.C.B. Madasa

Created by T. Madas

COM

naths.col

4.60

1+

Madasma,

aths.com

I.V.C.B. Madash

proof

BOT  $4 = 3 + \sqrt{3^2 + 4}$ 

 $\frac{1}{\alpha} = \frac{1}{2 + \sqrt{2^2 + q^2}}$ 

 $\implies \frac{1}{q} = \frac{\chi - \sqrt{\chi^2 + 4^2}}{\chi^2 - (\chi^2 + 4)}$ 

 $\implies \frac{1}{4} = \frac{\chi - \sqrt{\chi^2 + 4^2}}{-4}$ 

 $= -\frac{1}{4}\chi + \frac{1}{4}\sqrt{2}+\frac{1}{4}\sqrt{-\frac{1}{4}}\chi - \frac{1}{4}\sqrt{2}\sqrt{-\frac{1}{4}}\chi$  $= -\frac{1}{2}\chi$ 

y = - 1/2 & BHORE AND THE

nadasm.

nn

 $\implies \frac{1}{n} = -\frac{1}{4}x + \frac{1}{4}\sqrt{x^{2}+1}$ 

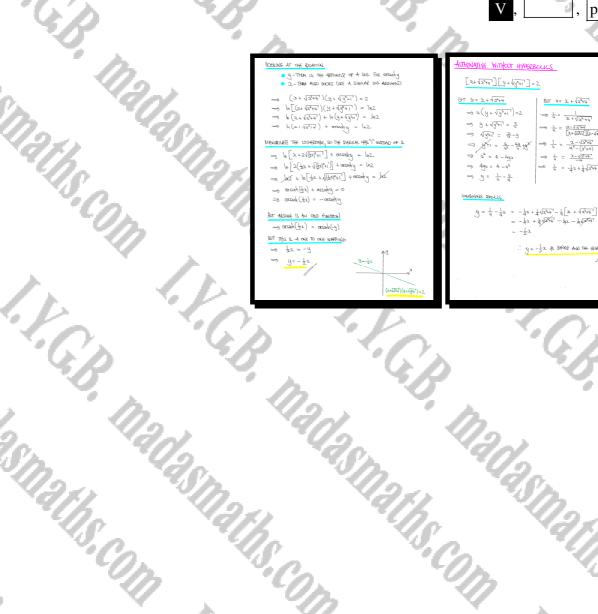
 $= \frac{1}{p} = \frac{(x - \sqrt{x^2 + q})}{[x + \sqrt{x^2 + q}]}$ 

(*****) **Question 91** 

Sketch the graph of

Mada

ISMATHS.COM


Smaths.com

I.V.G.B.

2014

aths com  $x + \sqrt{x^2 + 4} \left[ y + \sqrt{y^2 + 1} \right] = 2, \quad x \in (-\infty, \infty), \quad y \in (-\infty, \infty)$ 

You must show a detailed method in this question



Created by T. Madas

12

COM

.V.C.

11202

Smaths,

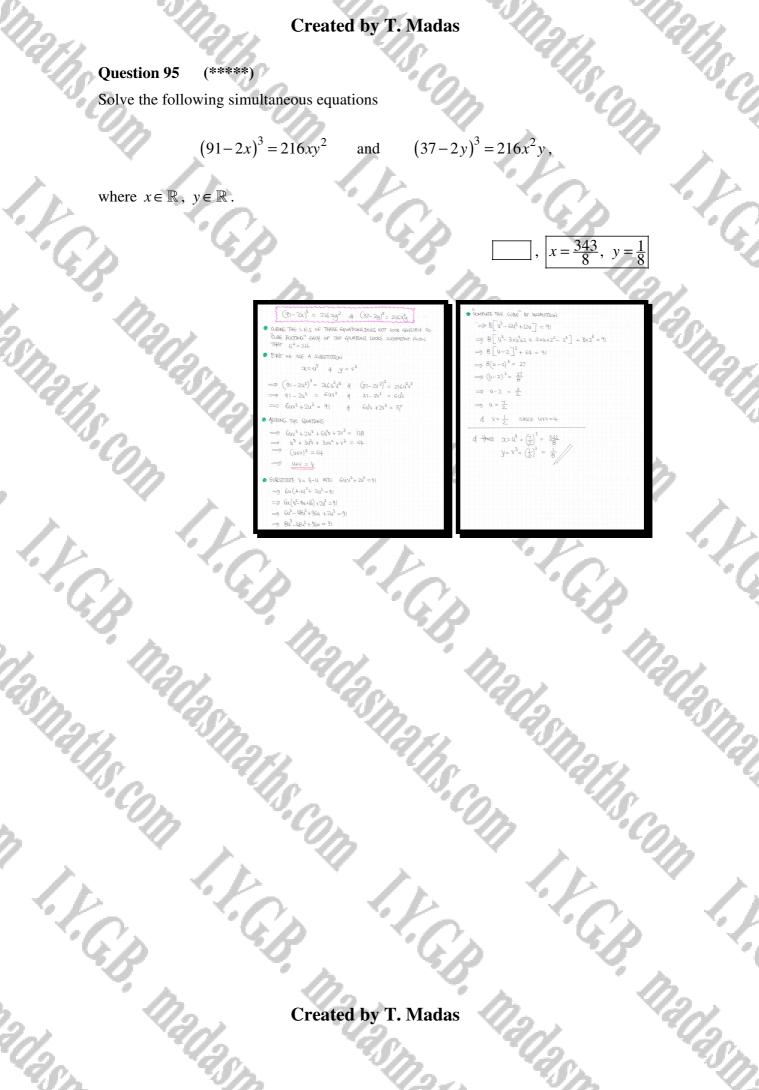
### Question 92 (*****)

Given that  $x \in \mathbb{Q}$  and  $y \in \mathbb{Q}$ , find the solution pair for the following system of simultaneous equations



#### (****) **Question 93**

20.


Given that  $x \in \mathbb{R}$  and  $y \in \mathbb{R}$ , find the solution pair for the following system of simultaneous equations

 $x^3 + 9x^2y =$ I.V.G.B.  $y^3 + xy^2 = 1$ (x, y) = (2, -1)THE IS + VIEY SPECIAL SET UP" BASED ON CA+3)² CAVE 21-ROTTALY & HEAT JAIWOB SOF DOT THE DO NOT MAKE OF A "SPECIAL BINEMIAL GUBE" 1720 DIVIDE THE GUATION ER=P. T31-" ZUOSVARDONAL" 21 24-1 34T  $\frac{\chi^3+\,9\chi^2(\lambda\chi)}{\lambda^3\chi^3\,+\chi\left(\lambda^2\chi^2\right)}=-\,28$  $\frac{\mathcal{Q}^3 + q_X^3 y}{(q^3 + q_X^2)} = \frac{-28}{1}$ Smaths.com ADDING THE (ОП ОИА 2010)ТАЦА  $\frac{\lambda^3 + q\lambda^3}{\lambda^5 \lambda^3 + \lambda^2 \lambda^3} = -28$  $\Rightarrow 3^{3} + 93^{3}y + 273y^{2} + 27y^{3} = -1$  $\Rightarrow (31^{3} + 5(4)^{2}(4y)^{4} + 3(2)(4y)^{7} + (3y)^{3} = -1$  $= \frac{1+9\lambda}{23+02} = -28$  $\Rightarrow \left[\alpha + 3y\right]^3 = -1$  $= -29\lambda^3 - 26\lambda^2$ =) It 39 = -1 (WHE THE EALS)  $38\gamma_3^+ 58\gamma_s + d\gamma + 1 = 0$ =) x = -1-3y LOOK FOR FACTORS STITUTE INTO THE SIMPLIFE QUETTON ● 1: 26+28+9+1 ● 士: 晋+7+急+1 ● 1: -26+28-9+1 ● 士: -晋+7-兄+1 = -矛-昱+8 = 0 · 43+ (-34)y==1 14 (22+1) 13 + FAOTOR  $-y^2 - 3y^3 = 1$  $|i\downarrow\lambda^2(2\lambda+i) + i\lambda(2\lambda+i) \downarrow (2\lambda+i) = 0$ . 42-1=0 (224)(142+72+1)=0 (224)(142+72+1)=0 ↓ HOREODOBLE 15-42(= 16)-4×14×1<0 LATIONS + 21 1-=11 KOTTERIN VE  $\Rightarrow \lambda^{3} = 8$  $\Rightarrow \lambda = 2$ J=-F ONTA વુ^{રે}+સ્પે=1 = 2y2(y+1)-y(y+1)+(y+1)=0  $\Rightarrow \frac{q_{z-\frac{1}{2}\lambda}}{(-\frac{1}{2}\lambda)^3 + \lambda(-\frac{1}{2}\lambda)^{\frac{3}{2}}} | ^{\frac{1}{2}}$   $\Rightarrow -\frac{1}{2}\lambda^3 + \frac{1}{4}\lambda^3 = 1$ - (y+1)(2g²-y+1)=0 12215000.64 K.C.B. Madasm  $-x^3 + 2x^3 = 8$ nadasm. 200 0 1. C.B. Madası I.F.G.B. 10 

### Question 94 (*****)

Use an algebraic method to find the real solutions for the following system of simultaneous equations





N.C.S.

1

F.G.P.

11202

Question	96	(*****)
Zuconon	20	( )

I.G.B.

A system of simultaneous equations is given below

x + y + z = 1

 $x^{2} + y^{2} + z^{2} = 21$  $x^{3} + y^{3} + z^{3} = 55$ . By forming an auxiliary cubic equation find the solution to the above system. You may find the identity  $x^{3} + y^{3} + z^{3} \equiv (x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx) + 3xyz,$ useful in this question. , x, y, z = -2, -1, 4 in any order START BY UGING THE IONSTITY (2+4+2)"= (a+1)(a-2)(a-4) = 0 $\rightarrow (2ty+2)^2 = 3^2+y^2+2^2+2xy+2yz+2xz$ ⇒ a= < ⁻¹ 4 - 21 + 2(24+92+22) I.C.B. -> 2(xy+y2+xz)= -20 (34+42+32) = -10 (1+4+=)(1+4+++++-20-4=-22) + 204= •)]+ 3242 3242 TAXING UNRIABLE, SAY 9 (8) = 0Z HEL THE SOUTION'S OF a³-a²-10a - 8 =0 (-1)³-(-1)²-10(4)-8 =0 AN CONTROL SCUTICAN,  $\Rightarrow a^{2}(a_{H}) - 2a(a_{H}) - B(a_{-1}) = 0$  $\Rightarrow (a_{H})(a^{2} - 2a - B) = 0$ 21/15

Created by T. Madas

10

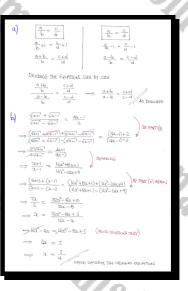
(****) **Question 97** 

The real numbers a, b, c and d satisfy

I.G.B.

$$\frac{a}{b} = \frac{c}{d}, \ a \neq b \neq c \neq d \neq 0.$$

**a**) Show that


1.4.6.9

0

c+da+ba

b) By using the result of part (a) or otherwise solve the equation

$$\frac{\sqrt{x+1} + \sqrt{x-1}}{\sqrt{x+1} - \sqrt{x-1}} = \frac{4x-1}{2}, \ x > 1$$



F.G.B.

COM

Madasm.

 $x = \frac{5}{4}$ 

.G.D.

5

.

madasn.

I.C.B.

### Created by T. Madas

2011

2

## Question 98 (*****)

2

Ismaths.com

If  $a \in \mathbb{R}$ ,  $b \in \mathbb{R}$ , solve the following simultaneous equations.

aths.com ₹, solve u.  $3(a^2+b^2)^{\frac{3}{2}}-125a=0$  and  $4(a^2+b^2)+25b=0\,.$ 1. V.C.B. 111.202

	$12Sa = 3(a^2+b^2)^{\frac{1}{2}}$ $-2Sb = 4(a^2+b^2)$ $-1ZSb = 20(a^2+b^2)^{\frac{1}{2}}$
NOL	D DIVIDE SUDE BY SIDE
	$-\frac{a}{b} = \frac{3}{2b}(a^2+b^2)^{\frac{1}{2}}$
	$-\frac{20q}{51} = (q^2 + b^2)^{\frac{1}{2}}$
-)	$ \begin{array}{c} -\frac{2\cos}{3b_{0}} = \left(q^{2}+b^{2}\right)^{\frac{1}{2}} \\ \frac{4\cos^{2}}{2b_{0}} = q^{2}+b^{2} \end{array} \right) \text{ solutions} $
MĄ	15 a ² THE SUBJECT
	400a² - 9a²b² + 3b²
\$	$400a^2 - 9a^2b^2 = 9b^4$
	a ² (400 - 9b ² ) = 9b ⁴
⇒	$a_1^2 = \frac{9b^4}{4\omega - 9b^2}$
SIR	STRUTE INDO EAHRE GRATION, THE SECOND GOUATION IS BET

I.F.C.B.

I.Y.C.B. Madasman

Smarns Com I.V.C.R

I.F.G.B.

K.C.B. Madasmarkins.Com

],  $\overline{(a,b)}=(3,-4)$ 

naths.col

1.65

in the

1.

Madasman

K.C.B. Madasn

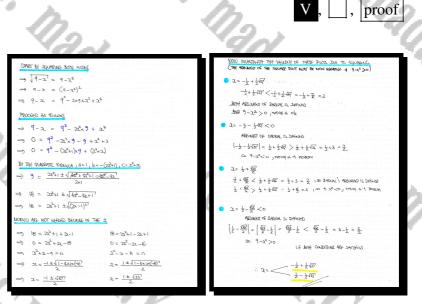
Created by T. Madas

Madasmaths.com

I.F.C.P.

### Question 99 (*****)

F.G.B.


I.C.B.

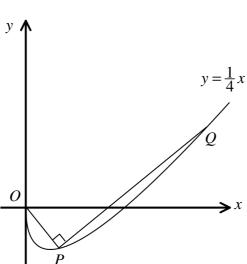
It is required to find the real solutions of the equation

 $\sqrt{9-x} = 9-x^2.$ 

Solve the equation by considering a quadratic equation with variable coefficients in x.

You must fully justify the validity of your answers.




in,

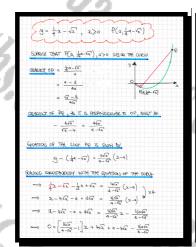
ŀG.p.

Madası

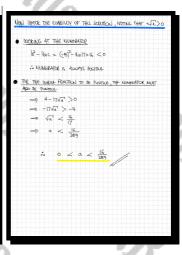


1.1




**>***x* 

The figure above show the curve with equation


 $y = \frac{1}{4}x - \sqrt{x} , x \in \mathbb{R}, x \ge 0.$ 

The points P and Q lie on the curve, so that  $\measuredangle OPQ = 90^\circ$ , where O is the origin.

Determine the range of possible values of the x coordinate of P.



 $= \left[\frac{16\sqrt{a}-4+\sqrt{a}}{4-\sqrt{a}}\right] \propto + 4\sqrt{a} + \frac{da-a\sqrt{a}-16\sqrt{a}+4q-16a\sqrt{a}}{4-\sqrt{a}} = 0$  $= \int \left[ \frac{17\sqrt{a} - 4}{4 - \sqrt{a}} \right] x + 4\sqrt{x} + \frac{8a - 16\sqrt{a} - 17a\sqrt{a}}{4 - \sqrt{a}} = 0$  $\Rightarrow (17\sqrt{a} - 4)\alpha + 4(4 - \sqrt{a})\sqrt{x} + 8\alpha - 16\sqrt{a} - 17a\sqrt{a} = 0$ A QUADRATIC IN NE AND X = a WAT A SOLUTION DUE TO THE POINT P  $\left(\sqrt{2} - \sqrt{a}\right) \left[ (7\sqrt{a} - 4)\sqrt{2} + 17a - 8\sqrt{a} + 16 \right]$ to mild POINT P  $\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} + \frac{1$ GHECK THE "NE" CONFIGNS √x = -17a + 8√a - 16 17√a - 4 , a>o N2 -



the com

 $0 < x < \frac{16}{10}$ 

289

1

### Question 101 (*****)

Find, in exact trigonometric form where appropriate, the real solutions of the following polynomial equation

۵

$$x^{7} - 7x^{6} - 21x^{5} + 35x^{4} + 35x^{3} - 21x^{2} - 7x + 1 = 0.$$