Created by T. Madas

Created by T. Madas

Question $1 \quad$ (**)

Differentiate each of the following expressions with respect to x, simplifying the final answers as far as possible
a) $y=\left(x^{2}-4\right)^{3}$
b) $y=x \cos 2 x$
c) $y=\frac{\sin x}{x}$

Question 2 (**)

Differentiate each of the following expressions with respect to x, simplifying the final answers as far as possible.
a) $y=\left(1-x^{2}\right)^{6}$
b) $y=x^{3} \sin 3 x$
c) $y=\frac{5 x}{x^{3}+2}$

$$
\square, \frac{d y}{d x}=-12 x\left(1-x^{2}\right)^{5}, \frac{d y}{d x}=3 x^{2}(\sin 3 x+x \cos 3 x), \frac{d y}{d x}=\frac{10\left(1-x^{3}\right)}{\left(x^{3}+2\right)^{2}}
$$

Created by T. Madas

Question 3 (***)

Differentiate each of the following expressions with respect to x, writing the final answers as simplified fractions.
a) $y=\frac{\ln x}{1+\ln x}$.
b) $y=\ln \left(\frac{1}{x^{2}+9}\right)$.

Question 4 (***)

Differentiate each of the following expressions with respect to x, simplifying the final answers as far as possible
a) $y=\frac{4}{(2 x-1)^{2}}$.
b) $y=x^{3} \mathrm{e}^{-2 x}$.
c) $y=\frac{2 x^{2}+1}{3 x^{2}+1}$.

$$
\square, \frac{d y}{d x}=-\frac{16}{(2 x-1)^{3}}, \frac{d y}{d x}=x^{2}(3-2 x) \mathrm{e}^{-2 x}, \frac{d y}{d x}=-\frac{2 x}{\left(3 x^{2}+1\right)^{2}}
$$

$$
\square, \frac{d y}{d x}=\frac{1}{x(1+\ln x)^{2}}, \frac{d y}{d x}=-\frac{2 x}{x^{2}+9}
$$

b)
${ }^{7}$

Created by T. Madas

Question 5 (***)
Differentiate each of the following expressions with respect to x, simplifying the final answers where possible.
a) $y=\frac{1}{\sqrt{1-2 x}}$.
b) $y=\mathrm{e}^{3 x}(\sin x+\cos x)$.
c) $y=\frac{\ln x}{x^{2}}$.

Created by T. Madas

Question 6 (***)
Differentiate each of the following expressions with respect to x, simplifying the final answers where possible.
a) $y=\sqrt{x^{2}-1}$
b) $y=x^{4} \ln x$
c) $y=\frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}$

Created by T. Madas

Question 7 (***+)
Show clearly that ...
i. $\quad \cdots \frac{d}{d x}\left(x^{\frac{3}{2}} \mathrm{e}^{2 x}\right)=\frac{1}{2}(4 x+3) x^{\frac{1}{2}} \mathrm{e}^{2 x}$.
ii. $\ldots \frac{d}{d x}\left(\frac{4 x+1}{1-2 x}\right)=\frac{6}{(1-2 x)^{2}}$.
iii. $\ldots \frac{d}{d x}(\ln (\sec x+\tan x))=\sec x$.

Created by T. Madas

Question 8 (***+)
Show clearly that ...
i. $\quad . \quad \frac{d}{d x}\left[2 x^{3}(2 x+3)^{5}\right]=2 x^{2}(16 x+9)(2 x+3)^{4}$.
ii. $\ldots \frac{d}{d x}\left[\frac{2 x^{2}+1}{3 x^{2}+1}\right]=-\frac{2 x}{\left(3 x^{2}+1\right)^{2}}$.
iii. $\ldots \frac{d}{d x}[\ln (\sec x+\tan x)]=\sec x$.

Created by T. Madas

Question 9 (***+)
Differentiate each of the following expressions with respect to x, simplifying the final answer as far as possible.
a) $y=\sec ^{2} x$.
b) $y=x(1-2 x)^{6}$.
c) $y=\frac{\sin x}{2-\cos x}$.
$\frac{d y}{d x}=2 \sec ^{2} x \tan x, \frac{d y}{d x}=(14 x-1)(2 x-1)^{5}=(1-14 x)(1-2 x)^{5}, \frac{d y}{d x}=\frac{2 \cos x-1}{(2-\cos x)^{2}}$

Created by T. Madas

Question 10 (*****)
Differentiate each the following expressions with respect to x, simplifying the final answers as far as possible.
(Fractional answers must not involve double fractions)
a) $y=\sin ^{3} 2 x$.
b) $y=x \tan 4 x$.
c) $y=\ln \left(\frac{x+1}{x}\right)$.

Created by T. Madas

Question 11 (****)
Differentiate each of the following expressions with respect to x, simplifying the answers as far as possible.
a) $y=\mathrm{e}^{-4 x}\left(x^{2}+1\right)$.
b) $y=\sqrt{1+2 \mathrm{e}^{2 x^{2}}}$.
c) $y=\frac{4 x^{2}+3 x}{x^{2}-7 x}$.

$$
\text { O } \frac{d y}{d x}=-2 \mathrm{e}^{-4 x}\left(2 x^{2}-x+2\right), \frac{d y}{d x}=\frac{4 x \mathrm{e}^{2 x^{2}}}{\sqrt{1+2 \mathrm{e}^{2 x^{2}}}}, \frac{d y}{d x}=-\frac{31}{(x-7)^{2}}
$$

Created by T. Madas

Question 12 (****)
Prove that ...
i. $\ldots \frac{d}{d x}\left(x^{4} \sqrt{4 x-1}\right)=\frac{2 x^{3}(9 x-2)}{\sqrt{4 x-1}}$.
ii. $\ldots \frac{d}{d x}\left(\frac{3 x^{2}+6 x-5}{(x+1)^{2}}\right)=\frac{16}{(x+1)^{3}}$.

Created by T. Madas

Question 13 (****)
Differentiate each of the following expressions with respect to x.
a) $y=(2 x+\ln x)^{3}$.
b) $y=\frac{x^{2}}{3 x-1}$.
c) $y=\sin ^{4} 3 x$.
$\frac{d y}{d x}=3(2 x+\ln x)^{2}\left(2+\frac{1}{x}\right), \frac{d y}{d x}=\frac{3 x^{2}-2 x}{(3 x-1)^{2}}, \frac{d y}{d x}=12 \sin ^{3} 3 x \cos 3 x$

Question 14 (****)
Show, with detailed workings, that
a) $\frac{d}{d x}(\cos 2 x \tan 2 x)=2 \cos 2 x$.b) $\frac{d}{d x}\left(\frac{x^{2}}{(3 x-1)^{2}}\right)=-\frac{2 x}{(3 x-1)^{3}}$.

, proof

Created by T. Madas

Show clearly that ...
i. $\quad \ldots \frac{d}{d x}\left(\frac{x-4}{\sqrt{x}+2}\right)=\frac{1}{2 \sqrt{x}}$
ii. $\ldots \frac{d}{d x}\left(\frac{4 x-8 \sqrt{x}+3}{(\sqrt{x}-1)^{2}}\right)=\frac{1}{\sqrt{x}(\sqrt{x}-1)^{3}}$.

