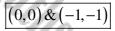
Created by T. Madas DIFFERENTIATION II EXAM QUESTIONS ACASINANSCOM LANCER MARIASINANSCOM LANCER MARIASINA

Question 1 (**)

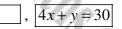

The curve C has equation

$$y = \frac{x^2}{2x+1}, \ x \neq -\frac{1}{2}$$

a) Show clearly that

$$\frac{dy}{dx} = \frac{2x^2 + 2x}{\left(2x+1\right)^2}.$$

b) Find the coordinates of the stationary points of *C*. [*the nature of these stationary points need not be determined*]



(ବ)	$\vec{a} = \frac{33}{2}$	+1		
(b)	MINSHAAX	$\frac{(2+1)(2\lambda) - 2^{2}(2)}{(2\chi+1)^{2}} =$	$\frac{4^2+2-21^2}{(21+1)^2}$	$=\frac{2a^2+2a}{(2x+1)^2}$
	<u>चेप</u> = ७	$\frac{2\chi^{2}+2k}{(2\chi+\eta)^{2}} = 0$ $2\chi^{2}+2k = 0$ $2\chi(\chi+\eta) = 0$. (
		α=<°(:	9=< <u>-</u> 1 	(-1 ₁ -1)

Question 2 (**) A curve *C* has equation

$$y = \sqrt{x-3} , \ x > 3 .$$

Find an equation of the normal to C at the point where x = 7

y= 12-3 = G2-3)2 (NORMAL GRADINST = -4 (7,2
$\frac{du}{dx} = \frac{1}{2}(x-3)^{\frac{1}{2}}$	$y - y_0 = w(x - x_0)$ y - 2 = -4(x - 7)
$\frac{d_{4}}{d\lambda}\Big _{\lambda=7} = \frac{1}{4}$	y - 2 = -4x + 28 y + 4a = 30
whim 2=7 g=2	J . 14 - 30

Question 3 (**)

Differentiate each of the following expressions with respect to x, simplifying the final answers as far as possible

$$\mathbf{a)} \quad y = \left(x^2 - 4\right)^3$$

b) $y = x \cos 2x$

c) $y = \frac{\sin x}{x}$

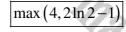
$$\boxed{\qquad}, \ \boxed{\frac{dy}{dx} = 6x(x^2 - 4)^2}, \ \boxed{\frac{dy}{dx} = \cos 2x - 2x\sin 2x}, \ \boxed{\frac{dy}{dx} = \frac{x\cos x - \sin x}{x^2}}$$

Question 4

(**)

$$f(x) = \frac{4x-3}{2x+3}, x \neq -\frac{3}{2}.$$

Evaluate f'(3).


 $\begin{array}{c} \frac{1}{2}(i_{1})=\frac{i_{1}y_{2-3}}{2x+3} & \Longrightarrow & \frac{1}{2}(i_{1})=\frac{(2x+3)^{2}}{(2x+3)^{2}} = \frac{ger(i_{2-2}gr+i_{2})}{(2x+3)^{2}} \\ & \vdots & \frac{1}{2}(i_{2})=\frac{g}{(2x+3)^{2}} \\ & \vdots & \frac{1}{2}(i_{2})=\frac{g}{(2x+3)^{2}} = \frac{g}{g} \end{array}$

Question 5 (**)

The curve C has equation

 $y = \ln x - \frac{x}{4}, \ x > 0.$

Find the exact coordinates of the turning point of C, determining by calculation whether it is a maximum or minimum.

$y = \ln - \frac{x}{4}$	When x=+ y= lnt-#
$\frac{dy}{dx} = \frac{1}{x} - \frac{1}{4} = \tilde{x} - \frac{1}{4}$	y = 242 - 1
$\frac{d^3y}{du^2} = -\frac{1}{x^2} = -\frac{1}{x^2}$	$\frac{d^2 q}{d \lambda^2} \bigg _{\substack{a=4\\a=4}} = -\frac{1}{4^2} = -\frac{1}{16} < 0$
JL - 4=0	: (4,2142-1) UANAX
±=4 ≈=4	

Question 6 (**)

The curve C has equation

 $y = x \ln x, \ x > 0.$

Find the exact coordinates of the turning point of C.

1/0			
y = alvac	5 0 FC Minslaurix	dy =0	
ly = lx lvar + 2×1	$\sigma = I + SN$ I = zN	AND	y=alma y=tht
$\frac{hy}{h} = hx + 1$) 2 = e 2 = t		3-6
			. (1) (1 1)

 $\left(\frac{1}{e}, -\frac{1}{e}\right)$

Question 7 (**)

Differentiate each of the following expressions with respect to x, simplifying the final answers as far as possible.

 $\mathbf{a}) \quad y = \left(1 - x^2\right)^6$

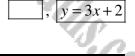
b)
$$y = x^3 \sin 3x$$

$$y = \frac{3x}{x^3 + 2}$$

۳	. UQ. V	il an	
J,	$\frac{dy}{dx} = -12x(1-x^2)^5$, $\frac{dy}{dx} = 3x^2(\sin 3x + x\cos 3x)$	(3x),	$\frac{dy}{dx}$
1.00			

(a) y= (1-x) "	(b) y=a3sm3x	(c) y = <u>Sx</u>
$\frac{du_{i}}{dx} = 6(1-\chi^{2}) \frac{1}{2}(-2\chi)$	du= 32 5432+2 (300)	
$\frac{\partial u}{\partial t} = -i2x(i-x^2)^{5}$	$\frac{dy}{dx} = 3\hat{z}_{3}y_{3}x + 3\hat{z}_{4}x$	β_{λ} β_{λ} $(q^{3}+2)^{2}$
/	$\frac{dy}{d\xi} = 3t^2 (SN3x + \chi t)$	(23+2) dx = (2(3+2)2
	,	$\frac{\partial 4}{\partial \lambda} = \frac{ o - iox^3 }{(2^3 + 2)2}$
		_ · /

10(1-x)


 $x^{3}+2$

Question 8 (**+)

A curve has equation

 $y = \left(x^2 + 3x + 2\right)\cos 2x \,.$

Determine an equation of the tangent to the curve at the point where the curve crosses the y axis.

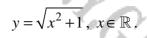
$y = (x^2 + 3x + 2) \cos 2x$	j 1030 WHM 21≤0 Y= 260sD = 2
$\frac{du}{d\lambda} = (2x+3) (cs(2x+(x^2+3x+2))(-2x+(\lambda)))$	·· 4=3 (0,2)
$\frac{dg}{d\lambda} = 3\cos 0 - 4\sin 0$	* y= 3a+2
gr ()== 3	

Question 9 (**+)

A curve C has equation

 $y = xe^{2x}, x \in \mathbb{R}$.

Show that an equation of the tangent to C at the point where $x = \frac{1}{2}$ is


 $2y = \mathrm{e}(4x - 1).$

1	, proof
6	
y= Je ²²	when a h as he was
dy = 1xe2 + 2xe2)	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $
$\frac{dy}{dt} = \frac{23}{6} + 21e^{23}$ ($\frac{dy}{dt} = \frac{23}{6}(1+2)$	$\Rightarrow y - \frac{1}{2}e = 2e(2 - \frac{1}{2})$ $\Rightarrow y - \frac{1}{2}e = 2e_2 - e_1$
	$\Rightarrow 2y - e = 4ex - e$ $\Rightarrow 2y = 4ex - e$ $\Rightarrow 2y = e(b-1)$

COM

Question 10 (**+)

A curve C has equation

Cn,

Show that an equation of the normal to C at the point where x = 1 is given by

 $y=\sqrt{2}\left(2-x\right).$

, proof

$\mathcal{Y} = \sqrt{x^{t+1}} = \left(2^{t+1}\right)^{\frac{1}{2}}$	> # White and y=12" w= -12"
$\frac{dy}{da} = \frac{1}{2} \left(\frac{d^2 + 1}{2} \right)^{\frac{1}{2}} \times 2a$	$y - y_0 = m(2 - 2_0)$ $\Rightarrow y - u^{2} = -u^{-2}(2 - 1)$
$\frac{du}{d\lambda} = \frac{x}{\sqrt{x^2 + 1^2}}$) = y-1==-1=x+1=
$\frac{du_1}{d\chi}\Big _{\chi=1} = \frac{1}{N_{\Sigma}^{-1}}$	$ = \frac{3}{2} = -\sqrt{2} \times +\sqrt{2}^{7} $ $ = \frac{9}{2} = \sqrt{2} (-\alpha + 2) $
408204 68A01057 = -1/2"	= y= v2(2-2)

Question 11 (**+)

The point *P*, where x = 2, lies on the curve with equation

$$f(x) = \ln\left(x^2 + 4\right).$$

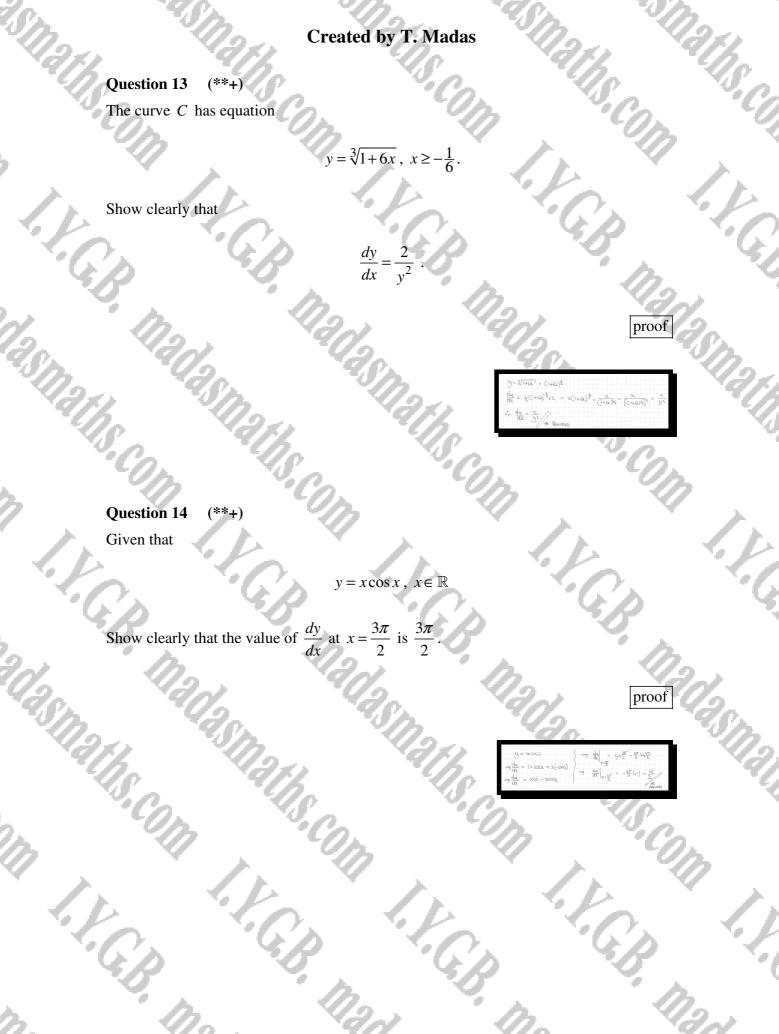
Show that an equation of the normal to the curve at P, is given by

 $y + 2x = 4 + 3\ln 2$

$(x) = \frac{1}{x^2 + t^2} \times cx$	f@)=(n8 f(i)= <u>1</u>	$\Rightarrow y - y_0 = m(x - x_0)$ $\Rightarrow y - ly_0 = -2(x - 2)$
$(3) = \frac{2\lambda}{\lambda^3 + 1}$. Norman Grass	→ y-148=-2+4 → y+2 = 4+148 → y+22 = 4+342

nn,

proof

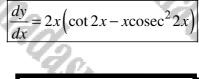

Question 12 (**+) The curve *C* has equation

1

 $, x > 0, x \neq e^{-1}.$ y = $1 + \ln x$

Show that C has a single stationary point and find its coordinates.

	, (1,1)]
y= <u>a</u>	Sol min/have dy a o
$\frac{b_{ij}}{i1} = \frac{(1+b_{ij})x_1 - 2_i(\frac{1}{x})}{(1+b_{ij})^2}$	linx = 0
$\frac{h_{1}}{d\lambda} = \frac{1 + \ln 2 - 1}{(1 + \ln 2)^2}$	$\frac{2=1}{1+br} = 1$
$\frac{h_{\rm H}}{h_{\rm L}} = \frac{h_{\rm H}\chi}{(1+ h_{\rm H})^2}$	÷ (11) //



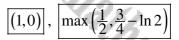
Question 15 (***)

a) Find $\frac{d}{dx}(x^2 \cot 2x)$

b) Show clearly that

 $\frac{d}{dx}(\tan x) = \sec^2 x$

(a) $\begin{array}{l} \frac{d}{dx}(x^2 a^2 x^3) = \frac{2x(w^2 x) + x^3(-2i\omega x^2 x)}{x^2 + 2x^2 +$

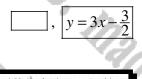

Question 16 (***)

The curve C has equation

 $y = (x-1)(x-2) + \ln x, x > 0.$

a) Show that one of the turning points of C has coordinates $(\frac{1}{2}, \frac{3}{4} - \ln 2)$ and find the coordinates of the other.

b) Determine the nature of the turning point with coordinates $\left(\frac{1}{2}, \frac{3}{4} - \ln 2\right)$.

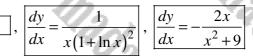

Q y= a ² -3a+2+ha	$\begin{cases} \Rightarrow y = \langle \circ \\ \frac{3}{4} + \ln \frac{1}{2} \end{cases}$
$\frac{dy}{d\lambda} = 2\lambda - 3 + \frac{1}{2}$	$\begin{cases} \Rightarrow y = < \frac{s}{\frac{1}{4} - ly_2} \end{cases}$
FOR HIN MAX dy =0	$ \left \begin{array}{c} \vdots & \vdots \\ \hline \hline$
$\Rightarrow 2\lambda - 3 + \frac{1}{\lambda} = 0$	
$\Rightarrow 2a^2 - 3a + 1 = 0$	(b) $\frac{dq}{dx} = 2\chi - 3 + \frac{1}{\chi} = 2\chi - 3 + \chi^{-1}$
⇒ (22-1)(2-1)=0	$\frac{d^2 y}{dx^2} = 2 - x^{-2} = 2 - \frac{1}{x^2}$
⇒. 2= <1	1 21
⇒ y= < (+)(+)+=0 (+)(+)+=±	$\left(\begin{array}{c} \frac{d\lambda_z}{d\lambda_z}\Big ^{J=\frac{1}{2}} = -5 - \frac{1}{(\lambda)^2} = -5 < 0 \end{array}\right)$
(f)(f)+mf	: MAX (1213-102)
	. 11

Question 17 (***)

The point *P*, where x = 2, lies on the curve with equation

$$y = \frac{1}{6} (x^2 + 5)^{\frac{3}{2}}, x \in \mathbb{R}.$$

Find an equation of the tangent to the curve at P.


= tx z (x+s) z = tx (x2+s) z

Question 18 (***)

Differentiate each of the following expressions with respect to x, writing the final answers as simplified fractions.

 $\mathbf{a}) \quad y = \frac{\ln x}{1 + \ln x}.$

b) $y = \ln\left(\frac{1}{x^2+9}\right)$.

Question 19 (***)

A curve has equation

 $x = \left(y+2\right)^3.$

a) Find $\frac{dy}{dx}$ in **terms of** x, by **first** finding $\frac{dx}{dy}$

b) By making y the subject of the equation and differentiating the resulting equation, verify the result of part (a).

 $\frac{dy}{dx} = \frac{1}{3x^{\frac{2}{3}}}$

@)	$\alpha = (y_{+2})^{3}$ $\frac{d\alpha}{dy} = 3(y_{+2})^{2}$ $\frac{d\alpha}{dy} = \frac{1}{1}$	(b)	a = (y+2) ³ a ³ = y+2 y = -2 + a ¹ /3
	$\frac{d_{A}}{d\lambda} = \frac{1}{3(y+z)^2}$ BT $(y+z)^3 = \infty$ $y+z = \infty \frac{1}{3}$		$\frac{dy}{dx} = \frac{1}{3}x^{\frac{2}{3}}$ $\frac{dy}{dx} = \frac{1}{3x^{\frac{2}{3}}}$
	$\frac{dy}{dx} = \frac{1}{3(x_1^2)^2}$ $\frac{dy}{dx} = \frac{1}{3(x_2^2)^2}$		AS BREVEL

Question 20 (***)

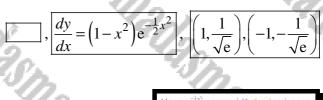
The point *P*, where $x = \pi$, lies on the curve with equation

 $f(x) = e^x \sin 2x, \ 0 \le x < 2\pi.$

Show that an equation of the normal to the curve at P, is given by

 $x + 2y e^{\pi} = \pi$

,	proof
	-7/


f(a)= e ² sinza	Genation of NORMAL, $M = \frac{1}{2e^{\frac{1}{2}}} a$ (T),0)
-{(1)= e suy 2x + e (20022) }	- y - y = m(2 - x)
f(a) = = (sm/2 +2us22) }	$\Rightarrow \underbrace{y}_{-0} = \frac{1}{2e^{\eta}}(x - \eta)$
-f(x)=0	⇒ 2ye ^π =-2+T
f(m) = 2e }	⇒ 3+2ye = T the itepulation

Question 21 (***)

The curve C has equation

$$y = x e^{-\frac{1}{2}x^2}, x \in \mathbb{R}.$$

- **a**) Find an expression for $\frac{dy}{dx}$.
- **b**) Find the exact coordinates of the turning points of C.

(a)	y= xe ^{2x2}	(b) Ge Nic/MAX dy = 0
	$\frac{du}{d\lambda} = 1 \times \frac{e^{\frac{1}{2}\lambda^2}}{e^{\frac{1}{2}\lambda} + \lambda \times e^{\frac{1}{2}\lambda^2}} (-\lambda)$	$1 - \chi^2 = 0$ $\left(\begin{array}{c} -\frac{1}{2}\chi^2 \\ \neq 0 \end{array} \right)$
	$\frac{dy}{d\lambda} = \bar{e}^{\frac{1}{2}\chi^2} - \chi^2 \bar{e}^{\frac{1}{2}\chi^2}$	$\lambda = \langle 1 \\ y_2 \langle e^{-\frac{1}{2}} \rangle$
	$\frac{dq}{d\lambda} = e^{\frac{1}{2}\lambda^2}(1-\lambda^2)$	$(I_{i}\bar{e}^{\frac{1}{2}}) \in (-I_{i}-\bar{e}^{\frac{1}{2}})$

E.

Question 22 (***)

$$f(x) = 2 - \frac{x^2}{3} + \ln\left(\frac{x}{4}\right), \ x > 0.$$

22

- **a**) Find an expression for f'(x).
- **b**) Find β in exact surd form, such that $f'(\beta) = 0$.

f'(x) =	$\frac{1}{x} - \frac{2}{3}x$	$, \beta = \frac{1}{2}\sqrt{6}$
	6	

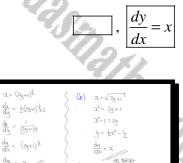
$\left(a - \frac{1}{2} \left(a \right) = 2 - \frac{\chi^2}{3} + \ln \left(\frac{2}{4} \right) \right)$	(b) f(b) = 0	
$\pi(x) = 2 - \frac{1}{3}n^2 + h(\pm x)$		$\Rightarrow b = \pm \sqrt{\frac{3}{2}}$
$f(x) = -\frac{2}{3}x + \frac{1}{4x}x_{+}^{1}$	$\Rightarrow \frac{1}{8} = \frac{2}{3}\beta$	oke ne
4(0)====+===x_{+}^{+}	⇒ I = zl²	$\therefore \theta = \sqrt{\frac{3}{2}}$
$f'(x) = \frac{-2}{3}x + \frac{1}{3}x^{4}$	⇒ 3 = 2k²	B= 1/6/
7(4)= 3~15	= 62 3	

Question 23 (***)

A curve C has equation

 $y = \ln\left(\frac{x}{4}\right), \ x > 0 \ .$

Find an equation of the normal to C at the point where x = 4


	, y=16-4x
$\begin{array}{l} y = \ln \left(\frac{x}{q}\right) = \ln \left(\frac{1}{q}\right) \\ \frac{dy}{dx} = \frac{1}{\sqrt{x}} \times \frac{1}{4} = \frac{1}{\sqrt{x}} \times \frac{1}{4} \\ \frac{dy}{dx} = \frac{1}{\sqrt{x}} \\ \frac{dy}{dx} = \frac{1}{\sqrt{x}} \\ \hline (cc. y = \ln \left(\frac{a}{q}\right) = \ln x_{-} \ln d \\ \frac{dy}{dx} = \frac{1}{\sqrt{x}} \end{array}$	$ \begin{array}{l} \displaystyle \frac{dq}{dt} = \frac{1}{4} \Longrightarrow \text{NORMAL} \\ \displaystyle \frac{dq}{dt} = \frac{1}{4} \Longrightarrow \text{ROMANT} u \rightarrow t \\ \displaystyle \frac{1}{4} \frac{1}{4} \frac{d}{2} u^2 b_1 = 0 (4, v) \\ \displaystyle \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{$

Question 24 (***) A curve has equation

 $x = \sqrt{2y+1}, y \ge -\frac{1}{2}.$

a) Find $\frac{dy}{dx}$ in **terms of** x, by **first** finding $\frac{dx}{dy}$

b) By making y the subject of the above equation and differentiating the resulting equation, verify the result of part (**a**).

Question 25 (***)

Given that

 $y = \cos^4 x$

find the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$

 $\frac{dy}{dx}$

Question 26 (***)

The point *P* with $x = \frac{\pi}{4}$ lies on the curve with equation

 $f(x) = 3\sin 2x + \cos 2x, \ 0 \le x < 2\pi.$

a) Find the gradient at P.

b) Show that an equation of the tangent to the curve at P, is given by

 $4x + 2y = 6 + \pi.$

(a) f(a) = 35m22 + 10522	(b) When 2013
=> f(3) = 660522 - 2511122	$\left \left(\frac{\pi}{2}\right)=3\sin\frac{\pi}{2}+65\frac{\pi}{2}=3$
$\Rightarrow f(\frac{\pi}{2}) = 608\frac{\pi}{2} - 284\frac{\pi}{2}$	w=-2 (葉13)
$\Rightarrow - f'(\frac{\pi}{4}) = 0 - 2x1$	-> y-y==m(x-x=)
	⇒ y-3=-2(2-F)
$\Rightarrow f(\overline{x}) = -2$	⇒ y - 3 = -2a + ₹ → 2y - 6 = -4a + T
	$= 34_{1}+2_{2}=6+\pi$

-2

Question 27 (***)

The point A, where x = 1, lies on the curve with equation

 $f(x) = (x+1)\ln x, x > 0.$

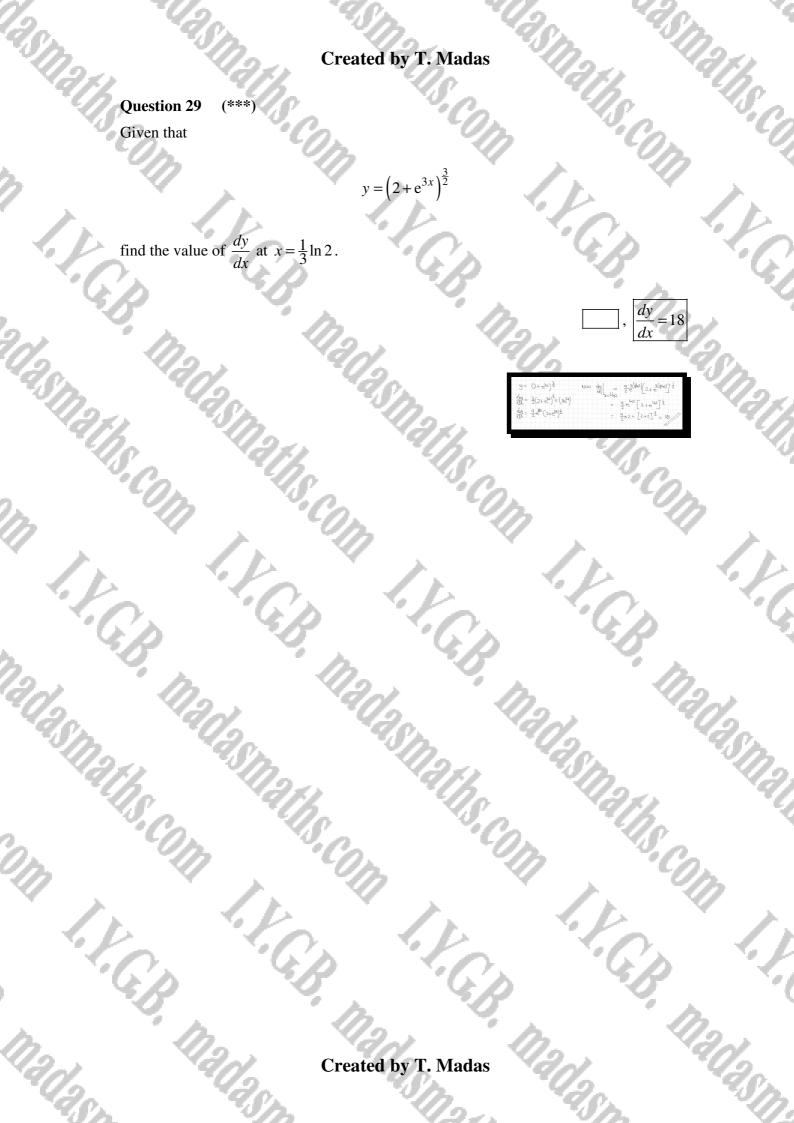
Find an equation of the normal to the curve at A.

- 18 A		
17 J	•	-
-	2v + x = 1	I
-	, . <i>.</i> ,	-

$\begin{array}{c} f(\mathbf{x}) = \mathbf{x} _{\mathbf{x}} + (\mathbf{x}_{1}) _{\mathbf{x}_{2}}^{\mathbf{x}} \\ f(\mathbf{x}) = \mathbf{x} _{\mathbf{x}} + (\mathbf{x}_{-1}) \\ f(\mathbf{x}) = \mathbf{x} _{\mathbf{x}} + (\mathbf{x}_{-1}) \\ f(\mathbf{x}) = 2\mathbf{b}\mathbf{x}(=\mathbf{x}) \\ f(\mathbf{x}) = 2\mathbf{b}\mathbf{x}(=\mathbf{x}) \\ f(\mathbf{x}) = 2\mathbf{b}\mathbf{x}(=\mathbf{x}) \\ f(\mathbf{x}) = \mathbf{x}(\mathbf{x}) $	i,o)	5 -Howe NORMAL, M= -12 & AC	f(a)= GuH) (ma
f(0) = M[+1+] = 2		$ \Rightarrow 2y = -\alpha + 1 \Rightarrow \alpha + 2y = 1 $	f(1)= 2h1=0 f(1)= h1+1+1=2.

Question 28 (***)

Differentiate each of the following expressions with respect to x, simplifying the final answers as far as possible


a) $y = \frac{4}{(2x-1)^2}$

c) $y = \frac{2x^2 + 1}{x^2 + 1}$

b) v =

 $], \frac{dy}{dx} = -\frac{16}{(2x-1)^3}, \frac{dy}{dx} = x^2(3-2x)e^{-2x}, \frac{dy}{dx} = -\frac{2x}{(3x^2+1)^2}$

6)	$\lambda = \chi \in S^{2}$
	$\frac{dy}{dt} = 3te^{2} + 3e^{(-2)}$
	$d_{1} = 3 e^{2} - 2 e^{2}$
(1)	H= 2e2(s-2)
9	$y = \frac{2x^2 + 1}{3x^2 + 1}$
	$\frac{du}{dt} = \frac{(3t^2+1)(4t) - (2t^2+1)(4t)}{(3t^2+1)^2}$
	$\frac{du}{d\lambda} = \frac{4u + l2x^3 - l2x^3 - dk}{(3u^4 + l)^4} = -\frac{2x}{(3u^4 + l)^4}$
	(b) ©

I.V.

Question 30 (***)

I.G.B.

i.C.B.

A curve has equation

$$y = \frac{2x^2 + 3x}{2x^2 - x - 6} - \frac{6}{x^2 - x - 2}, x \in \mathbb{R}, 0 < x < 2.$$
hat

a) Show clearly that

 $y = \frac{x+3}{x+1}, x \in \mathbb{R}, 0 < x < 2.$

b) Show further that the equation of the normal to the curve at the point where x = 1 passes through the origin.

14 IT GOB THROUGH O

I.C.B.

proof

Question 31 (***)

Differentiate each of the following expressions with respect to x, simplifying the final answers where possible.

ろ

$$\mathbf{a}) \quad y = \frac{1}{\sqrt{1 - 2x}}.$$

b)
$$y = e^{3x} (\sin x + \cos x).$$

c) $y = \frac{\ln x}{x^2}$.

I.C.B.

ŀG.B.

$$\frac{dy}{dx} = (1 - 2x)^{-\frac{3}{2}}, \quad \frac{dy}{dx} = 2e^{3x}(\sin x + 2\cos x), \quad \frac{dy}{dx} = \frac{1 - 2\ln x}{x^3}$$

Ċŀ,

6)	$g = \frac{1}{\sqrt{1-2a^2}} = (1-2a)^{\frac{1}{2}} \implies \frac{dy}{d1} = -\frac{1}{2}(1-2a)^{\frac{1}{2}}(-2a)^{\frac{1}{2}}$
6	$g = e^{34}(a_{112}+i_{10}c_{2}) \implies \frac{d_{11}}{d_{12}} = 3e^{33}(g_{112}+i_{10}c_{2}) + e^{34}(a_{12}-g_{14}c_{2})$
	$=e^{3t}(39ta+3losa+cdsa-5tra)$
	$= e^{2n} (2nn + luon)$ $= 2e^{2n} (2nn + 2uon)$
(.)	$y = \frac{\ln x}{\Delta z}$
	$\frac{\mathrm{d}y}{\mathrm{d}\xi} = \frac{2\xi_{1}\xi_{2} - \ln x \times 2i}{(3)^{2}} = \frac{2 - 2a\ln x}{24} = \frac{2(1 - 2\ln a)}{24} = \frac{1 - 2\ln a}{3^{2}}$
	(Le) at the

I.C.p

F.G.B.

Ż

21/2.51

12.01

Question 32 (***)

A curve has equation

 $y = xe^{2x}, x \in \mathbb{R}$.

Show clearly that

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0.$$

do.	
$y = 2e^{2x}$ $dy = 1xe^{2x} + 2(e^{2x})$	$\begin{cases} \therefore \frac{d_{s_1}^2}{ds^2} - 4\frac{ds}{ds} + 4s \end{cases}$
$ \begin{array}{c} \frac{dy}{dx} = (xe^{2x} + 2e^{2x}) \\ \frac{dy}{dx} = e^{2x} + 2e^{2x} \\ \frac{dy}{dx} = e^{2x} (1+2x) \\ \frac{dy}{dx} = e^{2x} (1+2x) \end{array} $	$\begin{cases} = 4(2e^{24})e^{-4x}e^{-4x}e^{-4x}e^{-2}(e^{24}) \\ = e^{24}[(4x+4)-4((4x))+44] \\ = e^{24}[(4x+4)-4((4x))+44] \end{cases}$
$\frac{d^{2}y}{dx} = \frac{2e^{2x}}{2e^{2x}}(1+2x) + \frac{2x}{e^{2x}}$ $\frac{d^{2}y}{dx} = \frac{2e^{2x}}{2e^{2x}}(1+2x) + 2e^{2x}$	= e ² (44,44,-44,-86,+46]
$\frac{d^{2}y}{dt^{2}} = \frac{1}{\sqrt{2}} \frac{\partial^{2}}{\partial (1+2x)+1}$ $\frac{d^{2}y}{\partial x^{2}} = -2(2x+2)e^{2x}$	in alaret
$\frac{d^2y}{dx^2} = 4(x+i)e^{2i}$	- 1

C:H

COM

proof

Question 33 (***)

The point A, where $x = \frac{1}{2}$, lies on the curve with equation

 $y = e^{2x} + \frac{2}{x}, \ x \neq 0.$

Show that an equation of the tangent to the curve at A is given by

y = (2e-8)x+8.

 $\begin{array}{c} \frac{2^{2n}+\frac{2}{2}}{2}=e^{\frac{2n}{2}}+2^{-1} \\ = 3e^{\frac{2n}{2}}-2a^{\frac{2n}{2}}=\frac{2}{2e^{-1}}-\frac{2}{a^{\frac{2}{2}}} \\ 3e^{\frac{2}{2}}=\frac{2}{3}e^{\frac{2}{2}}-\frac{2}{a^{\frac{2}{2}}} \\ \frac{3e^{\frac{2}{2}}}{2a^{\frac{2}{2}}}=\frac{2}{2e^{-1}}e^{\frac{2}{2}} \\ \frac{4e^{-2}}{2a^{\frac{2}{2}}}=e^{\frac{2}{2}}e^{-\frac{2}{2}} \\ \frac{4e^{-2}}{2a^{\frac{2}{2}}}=\frac{2}{a^{\frac{2}{2}}}e^{-\frac{2}{2}} \\ \frac{4e^{-2}}{a^{\frac{2}{2}}}=\frac{2}{a^{\frac{2}{2}}}e^{-\frac{2}{2}} \\ \frac{4e^{-2}}{a^{\frac{2}{2}}}e^{-\frac{2}{2}} \\ \frac{4e^{-2}}{a^{\frac{2}}$

proof

Question 34 (***)

Given that

 $y = 2\sin x \tan x$

 $\frac{dy}{dx}$

= 26052 Slinx + 2510x5

25142 (1+ sec2)

<u>dy</u>

 $=5\sqrt{3}$

2sim (2+tan2a)

23mm (2+ 62m)

Zx 1/2 x (2+3)

find the exact value of $\frac{dy}{dx}$ at $x = \frac{\pi}{3}$

Question 35 (***)

Differentiate each of the following expressions with respect to x, simplifying the final answers where possible.

Question 36 (***)

The point A, where x = 2, lies on the curve with equation

 $f(x) = x \ln x, \ x > 0.$

Find an equation of the tangent to the curve at A, giving the answer in the form y = mx + c, where m and c are exact constants.

	$y = x(1+\ln 2) - 2$
b .	1
$f(a) = \alpha \ln \alpha \\ f(b) = (x \ln x + \alpha x \frac{1}{2}) \\ f(b) = \ln \alpha + 1 \\ f'(z) = \ln 2 + 1 \\ f'(z) = \alpha \ln 2 + 1 \\ f'($	$\begin{cases} \Rightarrow \frac{4}{3} - \frac{9}{3} - \frac{9}{2} = \frac{9}{4} (x - \chi_{*}) \\ \Rightarrow \frac{9}{3} - \frac{2h_{2}}{2} = (1 + h_{2})(x - 2) \\ \Rightarrow \frac{9}{3} - \frac{2h_{3}^{2}}{2} = (1 + h_{1}2)(x - 2) - \frac{2h_{3}^{2}}{2} \\ \Rightarrow \frac{9}{3} = x_{*}(1 + h_{2}2) - 2 - \frac{2h_{3}^{2}}{2} \end{cases}$

Question 37 (***)

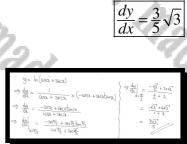
A curve C has equation

 $x = y^2 \ln y \,, \ y > 0 \,.$

Show that an equation of the normal to C at the point where y = e is

 $y + 3ex = e\left(3e^2 + 1\right).$

, proof


$\alpha = \alpha^2 \ln y$	S & NOLLIAE GRADINS7 -3e
dy = 29 my + yx y	$\begin{cases} \text{ when } y = e \\ 2 = e^2 \text{ be } = e^2 \end{cases} \Rightarrow (e^2 e)$
$\frac{dx}{dy} = 2yby + y$	< +mue y-y=m(a-x)
$\frac{dy}{dx} = \frac{1}{2ghy+y}$	
dy) - L	$\Rightarrow y + 3ex = e + 3e^3$
dy = zelyere	$ \Rightarrow y + 3e_a = e(3e^2 + 1) $
dy - 3e	1

Question 38 (***)

Given that

 $y = \ln\left(\cos x + \sec x\right)$

find the exact value of $\frac{dy}{dx}$ at $x = \frac{\pi}{3}$.

5

Question 39 (***) The curve *C* has equation

 $x = 4\sin y , \ x > 0 .$

a) Find $\frac{dy}{dx}$ in terms of y.

b) Show that an equation of the normal to the curve at the point where $y = \frac{\pi}{3}$ is

 $3y+6x=\pi+12\sqrt{3}.$

$a = 4 \cos y \qquad (b)$ $\frac{da}{dy} = 4 \cos y$ $\frac{dy}{dz} = \frac{1}{4 \cos y}$	$ \begin{array}{l} \displaystyle \frac{du}{dt} & = \frac{1}{2} $
---	--

Question 40 (***)

I.C.P.

I.V.G.B.

 $f(x) = 5\ln x + \frac{1}{x}, \ x > 0.$

a) Solve the equation

b) Hence write down the y coordinate of the turning point of f(x) in the form $k - k \ln k$, where k is an integer.

f'(x) = 0.

c) Find f''(x) and use it to determine the nature of the turning point of f(x).

$r = \frac{1}{5}$, $y = 5 - 5 \ln 5$ $f''(x) = \frac{2}{x^3} - \frac{5}{x^2}$, $f''(\frac{1}{5}) = 125 > 0$ so minimum

$f(x) = S mx + \frac{1}{x}$	(b) $f(\frac{1}{2}) = 2 \ln \frac{1}{2} + \frac{1}{2}$
$f(\alpha) = \frac{5}{2} - \frac{1}{2^2}$	= - SINS + 5
Solut TOE Zhus	= 5- 5h15 1+ k=5
5-1=0	(c) 1(b) = 55 ⁻¹ - 3 ⁻²
$\frac{S}{2} = \frac{1}{2^2}$	+"(6)=-52+22=3=================================
50 ² = 0.	
$5\lambda = (x \neq 0)$	$\int_{W} \left(\frac{2}{2}\right) = \frac{500 - 152}{150} = \frac{152}{150} > 0$
J=7	: (2 15-5/05) 12 min

ŀ.C.p.

COM

R

2.80

202

Question 41 (***)

- The curve C with equation $y = 4x + e^{-2x}$ has a turning point at A.
 - a) Find the exact coordinates of A and determine whether it is a local maximum or a local minimum.

The curve C lies entirely above the x axis.

b) Calculate the exact value of area bounded by the curve C, the x axis and the lines x = 1 and x = -1.

 $\min\left(-\frac{1}{2}\ln 2, 2-2\ln 2\right)$

area =

 $e^2 - e^-$

Question 42 (***)

- The curve C with equation $y = e^{2x} 18x + 11$ has a turning point at A.
 - a) Find the exact coordinates of A and determine whether it is a local maximum or a local minimum.

The curve C lies entirely above the x axis.

b) Calculate the exact value of area bounded by the curve C, the coordinate axes and the line x = 1.

 $\min(\ln 3, 20 - 18 \ln 3)$, $\operatorname{area} = \frac{1}{2} (e^2 + 3)$

(a)	$y = e^{2k} - 18k + 11$	S WHHM X=143	(b) 100 -	1 ×.
	du = 222-18	(y=e-1843+11	(c) 4rat =	$\int_0^l \frac{2k}{e^{-l}} \theta_{k+l} dk$
	$\frac{d^2y}{dr^2} = 4e^{2\lambda}$	}y=9-1843+11	= [2 e - 9x +12]
	mylinge dy =0	9 = 20 - 18/43		$\frac{1}{2}e^{2}-(+1)-(\frac{1}{2})$
	20-18:00	: 2(43,20-18/43)	= 4	e ² +2 -12
	e2, 9	$\frac{d^2}{dz^2} = 4e^{2h_3} = 36$	4	e2+2
	22 = 149 x = 143	Start A-21 71 00		£(e+3)
		/		

Question 43 (***

$$f(x) = x \ln(1+x^2), x \in \mathbb{R}.$$

Show that an equation of the tangent to the curve with equation y = f(x), at the point where x = 1, is given by

$$y = x(1+\ln 2)-1$$

$-\int (\sigma) = \infty \left h^{1+\lambda_{5}} \right $	$S \implies Y - y_o = w_{(\lambda - \lambda_o)}$
(G) = 1x h(H22) + 2x 22	2 => y-luz= (1+luz)(x-1)
$f(x) = \ln(1+x^2) + \frac{21^2}{1+x^2}$	< => y-luz = ac(+luz)-1-luz
· +(1)= 1+2+1	$\Rightarrow y = \alpha_{C1+lm2}-l$
$\cdot \frac{1}{2}(1) = \ln 2$	-ts Repuelo

Question 44 (***)

The equation of the curve C is given by

 $y = e^{2x} \left(\cos x + \sin x \right).$

a) Find an expression for $\frac{dy}{dx}$.

b) Show further that $\frac{dy}{dx}$ can be simplified to

Y.C.P.

I.C.B.

I.C.B.

 $\frac{dy}{dx} = e^{2x} \left(\sin x + 3\cos x \right).$

c) Hence show that the x coordinates of the turning points of C satisfy

 $\tan x = -3$

 $\int \frac{dy}{dx} = 2e^{2x}(\cos x + \sin x) + e^{2x}(\cos x - \sin x)$

20

I.C.B.

18.COM

madasm

2

I.G.p.

Question 45 (***)

A curve has equation

$$y^2 = 2x + 1, \ x \ge -\frac{1}{2}, \ y \ge 0.$$

- **a**) Use implicit differentiation to find $\frac{dy}{dt}$ - in terms of x. dx
- b) By making x the subject of the equation and differentiating the resulting equation, verify the result of part (a).

dy_	1
$\frac{dx}{dx}$	$-\overline{\sqrt{2x+1}}$

(a) $y^2 = 2\pi + 1$ (b) $y^2 = 2\pi + 1$	
Dill wrta y2-1=22	
$2g \frac{du}{dx} = 2$ $\int x = \frac{1}{2}y^2 - \frac{1}{2}$	
$y \frac{du}{dx} = 1$, $y \frac{du}{dy} = y$	
$\frac{dy}{dx} = \frac{1}{2}$ $\begin{pmatrix} \frac{dy}{dx} = \frac{1}{2} \\ \frac{dy}{dx} = \frac{1}{2} \\ \end{pmatrix}$	≥∘)
$\frac{dy}{dx} = \frac{1}{\sqrt{2z+1}} (y_{20}) \qquad \qquad$	11 BACORF

(***) **Question 46**

By differentiating both sides of the equation

 $\ln(\sin x) = \ln(\sec x), \ 0 \le x <$

show that the only solution is $x = \frac{\pi}{4}$

Ster × Stal

a = # 12 THF A VINO

= In (seer)

proof

Question 47 (***)

A curve has equation

 $y = x^2 \cos x, \ x \in \mathbb{R}$.

Show that the tangent to the curve at the point where $x = \pi$ is given by

 $y+2\pi x=\pi^2.$

g = 250002. 2 = 221052 + 21(-549) 2 = 221052 - 253442. 2 = 271051 - J264T = -27 2 = 7 2	$ \left \{ \begin{array}{l} \displaystyle \begin{array}{c} \displaystyle \displaystyle \operatorname{fin}(H) \otimes \mathcal{L} \otimes \operatorname{fin}(H) \otimes \mathcal{L} \otimes \mathcal{L}$

proof

Question 48 (***)

Find an equation of the normal to the curve with equation

 $y = x\sqrt{1+3x} - \ln(3x-2), x \in \mathbb{R}, x > \frac{2}{3},$

at the point on the curve where x = 1.

y= x(1+3x)= h(32-2)	S WM X=1
$\frac{d_{11}}{dL} = 1(1+34)^{\frac{1}{2}} + \frac{3}{2}x(1+34)^{\frac{1}{2}} - \frac{3}{34-2}$	5 y=1x2-brt=2
$\frac{\mathrm{d}u}{\mathrm{d}\lambda} = \sqrt{1+3u^2} + \frac{3u}{2\sqrt{1+3u^2}} - \frac{3}{3u-2}$	$\begin{cases} g - y_o = \mathcal{H}(\alpha - \chi_o) \\ f = \mathcal{H}(\alpha - \chi_o) \end{cases}$
	y-2=4(z-1) y-2=4z-4
$\frac{dy}{dx}\bigg _{x=1} = 2 + \frac{3}{2x^2} - \frac{3}{1} = -\frac{1}{4}$	5 9= 42 -2
· NORMAL GRADINST = 4) or
	1 42-9-2=0

Question 49 (***+)

A function is defined by

$$f(x) = \sqrt{e^x - 1}, \ x \ge 0.$$

- **a**) Find the values of ...
 - **i.** ... $f(\ln 5)$.
 - **ii.** ... $f'(\ln 5)$.

The inverse function of f(x) is g(x).

- **b**) Determine an expression for g(x).
- c) State the value of g'(2).

ŀ.C.B.

sion for $g(x)$.	1210	dre	
•	00	4.8	
(2).	20.00	· · C	2.
Co.	0		\square
$f(\ln 5)=2$	$\left f'(\ln 5) = \frac{5}{4} \right , g$	$(x) = \ln(x^2 + 1)$, $g'(2) =$	$\frac{4}{5}$
× .	<u>}.</u>	1.1.	

(a) $\sqrt{(a)} = \sqrt{(a^2 - 1)^2} = ((a^2 - 1)^{\frac{1}{2}})^{\frac{1}{2}}$
$\int_{\alpha}^{\beta} \left(x \right) = \frac{1}{2} e^{\alpha} \left(e^{\alpha} - i \right)^{-\frac{1}{2}} = \frac{e^{\alpha}}{2\sqrt{e^{\alpha} - i}}$
$ (\mathbf{\hat{z}}) \begin{pmatrix} \mathbf{\hat{z}} \\ \mathbf{\hat{z}} \\ \mathbf{\hat{z}} \end{pmatrix} = \sqrt{\frac{\mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{pmatrix}} = \sqrt{\frac{\mathbf{z} \\ \mathbf{z} \end{pmatrix}} = \sqrt{\frac{\mathbf{z} \\ \mathbf{z} \\ $
A)
$y^2 = e^x - 1$ $\frac{R(i)R(i)}{2} c = \frac{5}{4}$
$g^{2}+1 = e^{2}$ $3 = \ln(y^{2}+1)$
$f(t) = a(t) = b_1(t_{n-1})$ THEN THE GRADINT OUT THE
And a ferring a more the offer a ferring a more than the ferring a more than t

G.B.

nn

madasn.

R

F.G.B.

nadasm;

Question 50 (***+)

A curve has equation

y(y-1)=5x-3.

Find the gradient at each of the points on the curve where x = 3.

		- V
$y(y_{-1}) = z_{x-3}$	when a=3	y°-y ≃ 12
$\Rightarrow g^2 - y + 3 = 5\lambda$		y2-y-12=0
$\Rightarrow 2 = \frac{1}{5}y^2 - \frac{1}{5}y + \frac{3}{5}$		$(\underline{y}+3)(\underline{y}-\underline{y}) = 0$
=) da = 2y -1		3=<4-3
$\Rightarrow \frac{du}{du} = \frac{1}{\frac{dy}{dy} - \frac{1}{2}}$	· du yat =	= 5 //
$\Rightarrow \frac{\partial y}{\partial t} = \frac{2}{29-1}$		=-\$

 $\pm \frac{5}{7}$

Question 51 (***+)

The curve C has equation

$$f(x) = (2x-1)e^{-2x}, x \in \mathbb{R}.$$

- **a**) Find an expression for f'(x).
- **b**) Show clearly that

$$f''(x) = 4(2x-3)e^{-2x}$$

c) Hence find the exact coordinates of the stationary point of *C* and determine its nature.

$f'(x) = 4(1-x)e^{-2x}$	$\max(1,e^{-2})$

1.16

(***+) Question 52

A curve has equation

 $y = (3x+2)e^{-1}$ I.G.B.

Show clearly that ...

SMains.co

aths.com I.K.C.

a) $\frac{dy}{dx} = -(6x+1)e^{-2x}$	x. Gp	GB In	Č.
a) $\frac{dy}{dx} = -(6x+1)e^{-2}$ b) $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y =$	0.202		19800
nathe ashar	Sinath.	proof	All,
	Com CO	$ \begin{aligned} & \bigotimes_{i=1\\ i=1\\ i\neq j\\ i\neq j$ i\neq j\\ i\neq j i\neq j	
I.K. I.K.	· Ko	$\Rightarrow \frac{d}{db} = -k \in \{0, k\} \in \mathbb{C}$ $\Rightarrow \frac{d}{db} = e^{-\alpha_{k}} \left[-c + D \alpha_{k} \right]$	1.1.6
120 · 102	1120.		
	S.CO. 5.C.	n "Ths.co	5 5
Le l'E	N.Y.	I.F.C.	()
		n 1) · · (
adas ^{va} das.	Created by T. Madas	42023 N	U _{ASD} .

Question 53 (***+)

The curve C has equation

 $y = x^2 e^x, x \in \mathbb{R}$.

a) Find the exact coordinates of the stationary points of C.

b) By considering the sign of $\frac{d^2y}{dx^2}$ at each of these points determine their nature.

	× / /
$\ $, $\overline{\min(0,0)}$,	$\max\left(-2,\frac{4}{e^2}\right)$
- 30	
(a) $y = x e^{x}$	(b) $\frac{du}{dx} = 2e \frac{x}{(x+x)}$

COM

1	$\left(b \right) \frac{du}{du} = 2e Cx+z $
$\frac{dy}{d\lambda} = \lambda x e^{\lambda} + \lambda^2 e^{\lambda}$	$\left(\Rightarrow \frac{dy}{dx} = e^{x}(x + 2x) \right)$
= 22e2(2+2)	
For minilingx da =0	$ \Rightarrow \frac{d^2y}{d^2y} = e^2(x_1^2+2y) + e^2(2x+2) $
WE MINIMUM ON SD	$\Rightarrow \frac{d^3y}{da^2} = e^{\alpha}(\alpha^3 + 4\alpha + 2)$
Jej (3+3)=0	HENCE
$a \ge c_{-2}^{\circ} (e^{*} \neq 0)$	$\left \frac{d^2 y}{d\lambda^2} \right _{\alpha=0} = 2 > 0 \text{MIN}(\alpha_0)$
y= <°4e=2	$\left. \frac{d\xi_3}{d\chi_1} \right _{\chi_{m-2}} = -2e^2 c \text{Max}\left(-\xi_1\frac{4}{e^2}\right)$
$: (0,0) \in (-2, \frac{4}{6^2})$	14-12

Question 54 (***+)

The curve C has equation

 $y = 12 \ln x - x^{\frac{3}{2}}, x > 0.$

Determine the range of values of x for which y is decreasing.

y=hlna_a2	Decouver		$\frac{12}{2} - \frac{3}{2}a^{\frac{1}{2}} < 0$
y - wide - d-	-acouppino		
$\frac{dy}{dx} = \frac{12}{x} - \frac{3}{2}x^{\frac{1}{2}}$			$\frac{24}{\infty} = 3\alpha^{\frac{1}{2}} < 0$
···· ·· ·			$24 - 33^{\frac{3}{2}} < 0$
			$\theta = \pi_{\overline{2}}^2 < 0$
		=9	$-x^{\frac{3}{2}} < -8$
		=	22 > e4
		=)	274

Question 55 (***+)

2

The curve C has equation

$$y = \frac{kx^2 - a}{kx^2 + a},$$

where k and a are non zero constants.

a) Find a simplified expression for $\frac{dy}{dx}$ in terms of *a* and *k*.

b) Hence show that C has a single turning point for all values of a and k, and state its coordinates.

(a)	3=	$\frac{k_{2}^{n}-q}{k_{2}^{n}+a}$	(b) Fre Tip du =0
	dy =	$\frac{(kx^2+\alpha)(2kx)-(kx^2-\alpha)(2kx)}{(kx^2+\alpha)^2}$	4aka =0 ∴a=0 (466445)
	$\frac{dy}{dx} =$	243+1 2aka -2K3+ 2aka (kx2+a)2	-: (o,-l)
		(4akz (k2+4)2	IS 4 TURNING POINT BR ful NON ZHOO UMUES OF a d K
		-	

4akx

 $kx^2 + a$

(0,-1)

dy

dx

Question 56 (***+)

COM

ŀG.p.

2

The curve C has equation

$$y = \frac{x^2 - 6x + 12}{4x - 11}, x \in \mathbb{R}, x \neq \frac{11}{4}$$

a) Find a simplified expression for dx

I.C.B. **b**) Determine the range of values of x, for which y is decreasing.

CO17

F.G.B.

2017

(a) $y = \frac{3^{2}-bx+12}{4x-11}$	(b) Decentral Sak =) $\frac{43^2-222+18}{(43-11)^2} < 0$
da (4x-11)(2x-6)-(x-6a+2)x4	
$\frac{dy}{dt} = \frac{(4x-11)(2x-6)-(2t-6x+2)x^{4}}{(4x-11)^{2}}$	⇒ 4x ² -22x + 18 < 0
64 - 82-462+66 4222342-08	$\implies 2x^2 - 11x + 9 < 0$
da (42-11)2	$\Rightarrow (2 - q)(2 - 1) < 0$
$\frac{dy}{dx} = \frac{4a^2 - 2b + 18}{(4x - 11)^2}$	- C.V= < 1/2
	· 1<2<9

nadasm.

COM

madasn

I.C.B

COM

Created by T. Madas

Madasmath

2017

(***+) Question 57

2

asmaths.com

I.V.C.B. Mada

CO17

I.V.G.B

A curve C has equation

 $y = 4x^2 \ln(3x-1), x \in \mathbb{R}, x > \frac{1}{3}.$

Show that the value of $\frac{d^2y}{dx^2}$ at the point where x=1 is

^COM

I.G.B.

E.A.

 $15 + 8 \ln 2$.

I.G.B.

proof

hs.com

Z

R

11.4

nadasn.

COM

17_{202s1}

I.F.C.B.

a² In(3x $\left[8x \times \ln(3x-1)\right] + \left[4x^2 \times \frac{1}{3x-1} \times 3\right]$ $8x M(3\lambda - 1) + \frac{12\lambda^2}{3\lambda - 1}$ + $8_{\lambda \times} \frac{1}{3\lambda - 1} + \frac{(3\lambda - 1)(24\lambda) - 12\lambda^{2}_{\times 3}}{(3\lambda - 1)2}$

 $\frac{24_{22}}{3_{2}-1}$ + $\frac{.72x^2-24_2-.36_3x^2}{(3_{2}-1)^2}$

1120/2817

2017

P.C.P.

Created by T. Madas

Madasmarh

0

Question 58 (***+)

2

I.F.G.B.

The curve C has equation

$$f(x) = \frac{x^2}{(x-a)^2}, x \in \mathbb{R}, x \neq a$$

where a is a non zero constant.

Given that f'(2a) = -2, determine the value of a.

Y.C.

M202

ろ

ŀ.G.p.

n =	,	a = 2
20.		
$f(x) = \frac{x^2}{(x-q)^2}, x \in \mathbb{R}$, =≠a	
DIFFERENCIATING BY THE QUOTUSS	RULE	
$ \Rightarrow f(x) = \frac{(x-q)^2 \times 2x - x^2 \times x}{(x-q)^4} $	2(2-a)	
$\implies f(x) = \frac{2x(x-a)^{k}-2c(x-a)}{(x-a)^{k}}$	<u>ð</u>	
$\implies f'(x) = \frac{2x(x-a) - 2x^2}{(x-a)^2}$		
$= -f(a) = \frac{2a^2 - 2ax - 2a^2}{(x-a)^3}$		
$\implies f(x) = -\frac{2ax}{(\lambda-q)^3}$		
0 NOW USING ((2a)=-2		
$\implies -2 = -\frac{2a(2a)}{(2a-a)^3}$		
$\rightarrow -2 = -\frac{4a^2}{a^3}$		
\Rightarrow -2. $=$ - $\frac{4}{a}$		
⇒ - 2a = -4		
= 4 = 2		
	1	
	U .	
		- A.

3

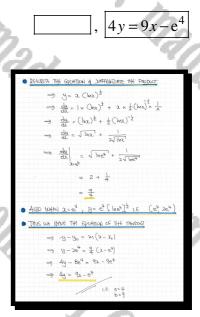
I.C.p

mana.

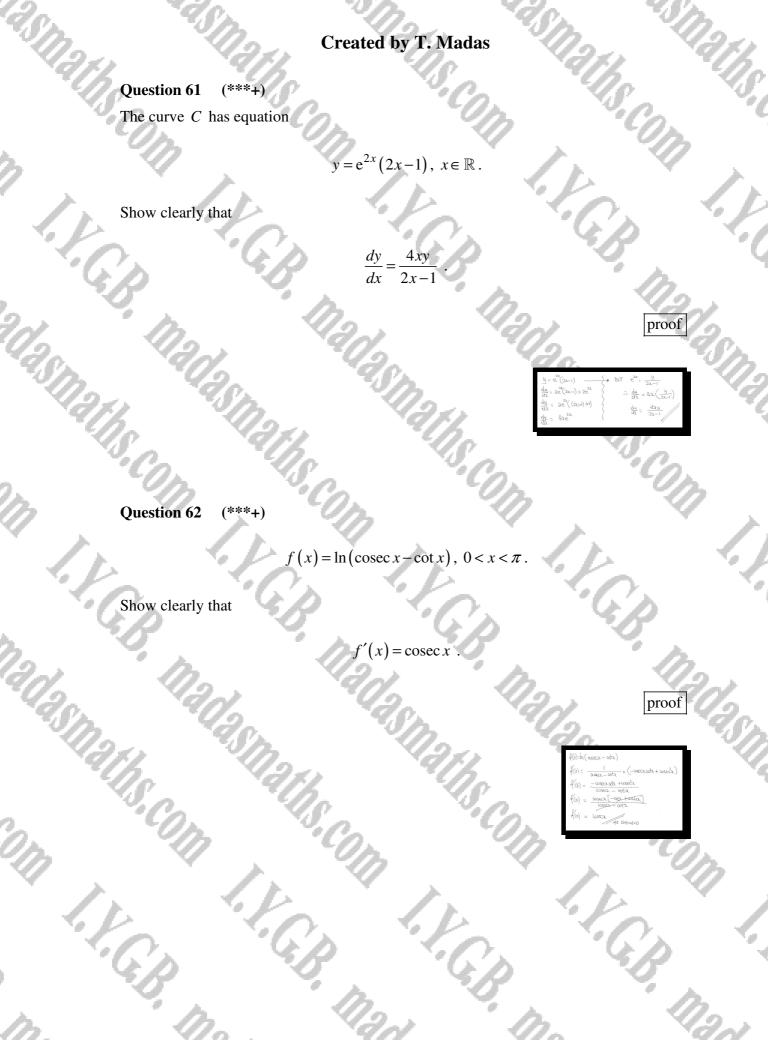
K.G.B.

COM

Question 60 (***+)


Kej

The curve C has equation


 $y = x\sqrt{\ln x} , \ x > 1 .$

Find an equation of the tangent to the curve at the point where $x = e^4$ giving the answer in the form $ay = bx - e^4$, where a and b are integers.

202

?nn

Question 63 (***+)

 $f(x) = \frac{x^2 - 4x + 1}{x - 4}, \ x \in \mathbb{R}, x \neq 4.$

Solve the equation $f'(x) = \frac{3}{4}$.

	x = 2, 6
$ \begin{array}{l} \displaystyle \left\{ \left(0 \right) = \frac{2^2 - \frac{1}{2} + \frac{1}{2}}{2 - 4} \\ \displaystyle \left\{ \left(0 \right) = \frac{\left(2 - 4 \right) - \left(2^2 - 4 + 1 \right) + 1}{\left(2^2 - 4 \right)^2} \\ \displaystyle \left\{ \left(0 \right) = \frac{2^3 - \frac{1}{2} + 2 + 4 - \frac{2}{2} + \frac{1}{2} + \frac{1}{2}}{\left(2^2 - 4 \right)^2} \\ \displaystyle \left\{ \left(0 \right) = \frac{2^2 - \frac{1}{2} + 1 + 1 - \frac{1}{2}}{\left(2^2 - 4 \right)^2} \\ \end{array} \right\} $	$\begin{array}{c} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$

KGB

the com

Question 64 (***+) The curve *C* has equation

I.F.G.B.

 $y = \ln(x^2 - 4) - \frac{1}{5}x^2$, |x| > 2.

arns

Find the exact coordinates of the turning points of C and determine their nature.

nadasn.

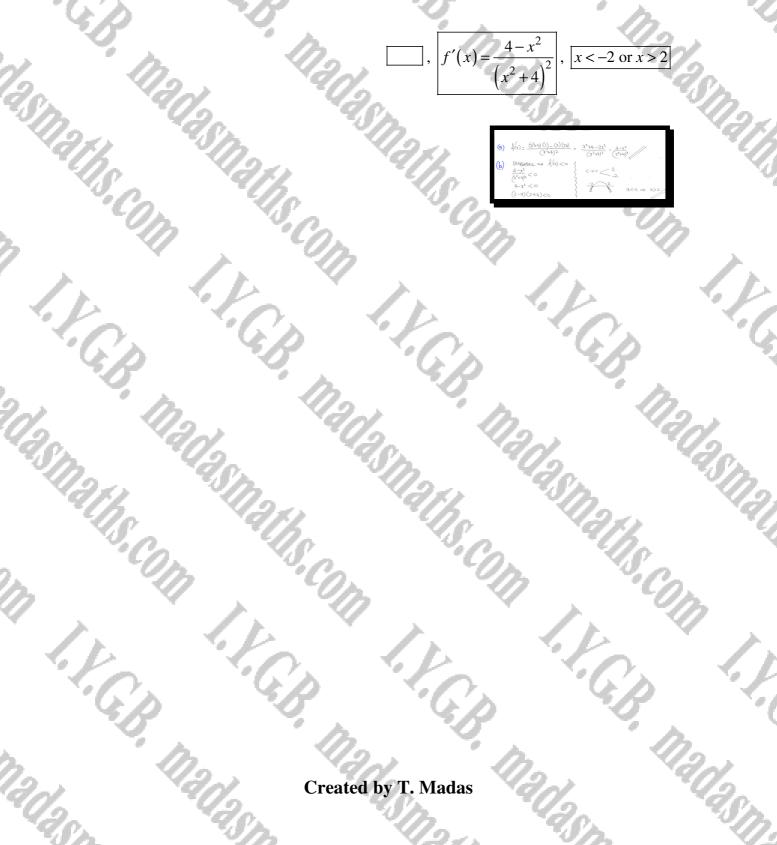
 $\left|\max\left(-3,\ln 5-\frac{9}{5}\right)\right|, \left|\max\left(3,\ln 5-\frac{9}{5}\right)\right|$

$y = h_1(x_{-}^2 + y) - \frac{1}{5}x^2$	$have \frac{dy}{dt} = 0$
$= \frac{dy}{d\xi} = \frac{\chi_{2,1}}{\chi^2 - \psi} - \frac{\chi}{2}\chi$	$\Rightarrow \frac{J_{2}-0}{5T} - \frac{2}{5}T = 0$
$\Rightarrow \frac{\partial^2 y}{\partial \lambda^2} = \frac{(\chi^2 - 4)\chi_2 - 2\epsilon(2\epsilon)}{(\chi^2 - 4)^2} - \frac{2}{5}$	$\Rightarrow \frac{2a}{3^2+} = \frac{23}{5}$
$\Longrightarrow \frac{d^2 q}{d\Omega^2} = \frac{\Omega^2 - \theta - 4 \chi^2}{\left(\chi^2 - q\right)^2} - \frac{2}{5}$	- 2 ² = 9
$\Rightarrow \frac{\hat{a}^{1}\hat{b}}{d\lambda^{2}} = \frac{-2\sigma^{2}-\theta}{(\lambda^{2}-\theta)^{2}} - \frac{2}{-S}$	$ \left \begin{array}{c} + (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ + (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ \end{array} \right \left + (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ + (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ \end{array} \right \left \left - (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ - (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ \end{array} \right \left \left \left - (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ - (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ - (3^{1})^{\mu}2^{-\frac{\mu}{2}} \\ \end{array} \right \left \left $
$\Rightarrow \frac{dy_1}{d^3y} = -\frac{(y_1 - q)_2}{2y_1^2 q} = \frac{z}{z}$	121
	$\begin{cases} \frac{dM_{1}}{d\lambda^{2}} = -\frac{36}{25} < c & \text{Berry} \\ \frac{dM_{1}}{d\lambda^{2}} = -\frac{36}{25} < c & \text{Berry} \\ \frac{dM_{2}}{d\lambda^{2}} = -\frac{36}$

naths.co

i.C.

6


The Com

(***+) Question 65

20

$$f(x) = \frac{x}{x^2 + 4}, \ x \in \mathbb{R}.$$

- **a**) Find an expression for f'(x).
- **b**) Determine the range of values of x, for which f(x) is decreasing.

Question 66 (***+)

A curve C is defined by the function

$$f(x) = \frac{1 + \sin 2x}{4 + \cos 2x}, \ 0 \le x < 2\pi$$

a) Show clearly that

$$f'(x) = \frac{2 + 2\sin 2x + 8\cos 2x}{\left(4 + \cos 2x\right)^2}$$

b) Show further that the equation of the tangent to C at the point with $x = \frac{\pi}{2}$ is

given by

KQ,

Ĉ.Ŗ

 $2x + 3y = \pi + 1.$

0	$f(x) = \frac{1 + 5w_{2x}}{4 + 6w_{2x}}$
	$f_{0}^{\prime} = \frac{(4 + \cos 2i)(2\cos 2i) - (1 + 5w2i)(-25w2i)}{(4 + \cos 2i)^{2}}$
	$= \frac{86s2\lambda + 2ss32\lambda + 2ssy2\lambda + 2sy2\lambda}{(4 + 6s2\lambda)^2}.$
	$= \frac{8(\alpha_{2}^{2} + 2s_{11}2_{2} + 2((\alpha_{2}^{2}2_{3} + s_{11}^{2}2_{3}))}{(4 + (\alpha_{1}\alpha_{1})^{2}}$
	$= \frac{8682x + 25192x + 2}{(4+1052)^2}$
(L)	$\label{eq:unimposed} \text{Unim} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	$f\left(\frac{\pi}{2}\right) = \frac{6e_{1}t_{1} + 2Smt^{-1}2}{(2 + los \pi)^{2}} = -\frac{2}{3} = -\frac{2}{3}$
	$\therefore taught: \underline{y} - \underline{y}_0 = M(\alpha - x_0)$ $\underline{y} - \underline{z} = -\underline{z}(\alpha - \underline{z})$
	$3y = 1 = -2(2 - \frac{1}{2})$ 3y = 1 = -22 + 17
	34+22 = #+1
	-As equero

2

proof

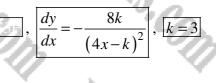
K.C.

Question 67 (***+)

ŀ.C.p

P.C.B.

A curve C has equation


$$y = \frac{4x+k}{4x-k}, \ x \neq \frac{k}{4},$$

where k is a non zero constant.

a) Find a simplified expression for $\frac{dy}{dx}$, in terms k.

The point P lies on C, where x = 3.

b) Given that the gradient at P is $-\frac{8}{27}$, show that one possible value of k is 48 and find the other.

Y.C.B.

2017

R

(অ)	$y = \frac{4a+k}{4a-k}$	$\frac{\mathrm{d} u}{\mathrm{d} x} = \frac{(\mathrm{d} \alpha - \mathrm{b}) x \mathrm{d} - (\mathrm{d} x + \mathrm{b}) x \mathrm{d}}{(\mathrm{d} x - \mathrm{b})^{2 \mathrm{b}}} = \frac{ \mathrm{d}^{2} - \mathrm{d} \mathrm{k} - \mathrm{b} \mathrm{d}^{2} - \mathrm{d} \mathrm{k}}{(\mathrm{d} x - \mathrm{b})^{2}}$
Þ	$\frac{du}{dx}\Big _{x=3} = -\frac{8}{27}$ $\frac{-8\kappa}{(12-\kappa)^2} = -\frac{8}{27}$	$= \frac{-8k}{-8k}$ $\Rightarrow o = (k - 48)(k - 2)$ $\Rightarrow o = (k - 48)(k - 2)$ $\Rightarrow o = k^2 - 3k + 104$ $\Rightarrow o = k^2 - 3k + 104$
r Y	$\binom{k}{(12-k)^2} = \frac{1}{27}$ $27k = k^2 - 24k$	144

I.C.P.

3

Question 68 (***+)

A curve C has equation

$$y = e^{2x} \left(x^2 - 4x - 2 \right), x \in \mathbb{R}$$

a) Show clearly that

 $\frac{dy}{dx} = 2e^{2x}\left(x^2 - 3x - 4\right).$

b) Show further that

Y.C.

P.C.B.

$$\frac{d^2y}{dx^2} = 2e^{2x} \left(2x^2 - 4x - 11 \right).$$

c) Hence find the exact coordinates of the stationary points of C and use $\frac{d^2y}{dx^2}$ to determine their nature.

,
$$\overline{\min\left(4,-2e^{8}\right)}, \overline{\max\left(-1,3e^{-2}\right)}$$

$$(\overset{(\emptyset)}{=} \underbrace{9 \in e^{3}(j+k_{0}-2)}_{\substack{0 \leq k \leq n}}, \underbrace{\max\left(-1,3e^{-2}\right)}_{\substack{0 \leq k \leq n}}$$

$$(\overset{(\emptyset)}{=} \underbrace{9 \in e^{3}(j+k_{0}-2)}_{\substack{0 \leq k \leq n}}, \underbrace{(a_{0})}_{\substack{0 \leq k \geq n}}, \underbrace{(a_{0})}_{\substack{0 \geq k \geq n}}, \underbrace{(a_{0})}_{\substack{0 \leq k \geq n}}, \underbrace{(a_{0})}_{\substack{0 \geq k \geq n}}, \underbrace{(a_{0})}, \underbrace{(a_{0})}, \underbrace{(a$$

F.C.P.

K.G.B.

nadas,

Question 69 (***+)

The curve C has equation given by

$$y = \frac{x}{y^2 + \ln y}, \ y > 0.$$

Show that an equation of the normal to C at the point (1,1) is

$$4x + y = 5$$

Question	70 🚽	(***+)
C		× /

 $f(x) = \frac{1}{4}x^2 - \ln(x-1)^3, x \in \mathbb{R}, x > 1.$

Find the range of values of x for which f(x) is a decreasing function.

1 < x < 3

COM

proof

 $\begin{array}{c} f(\underline{x}) = \frac{1}{2}\lambda - \ln(\chi_1) \\ g(\underline{x}) = \frac{1}{2}\lambda - \frac{3}{2-1} \\ g(\underline{x}) = \frac{1}{2}\lambda - \frac{3}{2}\lambda - \frac{3}{2} \\ g(\underline{x}) = \frac{1}{2}\lambda - \frac{3}{2}\lambda - \frac{3}{2} \\ g(\underline{x}) = \frac{1}{2}\lambda - \frac{3}{2}\lambda - \frac{3}{2} \\ g$

(***+) Question 71

Show clearly that ...

$$\dots \frac{d}{dx} \Big[2x^3 (2x+3)^5 \Big] = 2x^2 (16x+9)(2x+3)^4.$$

$$\dots \frac{d}{dx} \Big[\frac{2x^2+1}{3x^2+1} \Big] = -\frac{2x}{(3x^2+1)^2}.$$

$$\dots \frac{d}{dx} \Big[\ln(\sec x + \tan x) \Big] = \sec x.$$

 $\frac{d}{dx} \left[\frac{2x^2 + 1}{3x^2 + 1} \right] = -\frac{2x}{\left(3x^2 + 1\right)^2}.$ ALASINALIS COM I. Y. C.P. MARIASINALIS COM I.Y. C.P. MARIASINALIS COM I.Y. C.P. MARIASINALIS COM I.Y. C.P. MARIASIN

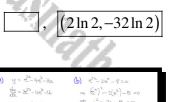
i. ...
$$\frac{d}{dx} \Big[2x^3 (2x+3)^5 \Big] = 2x^2 (16x)^3$$

ii. ... $\frac{d}{dx} \Big[\frac{2x^2+1}{3x^2+1} \Big] = -\frac{2x}{(3x^2+1)^2}$.
iii. ... $\frac{d}{dx} \Big[\ln(\sec x + \tan x) \Big] = \sec x$

ASINALIS COM L.Y.

las

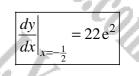
Question 72 (***+)


The curve C has equation

 $y = e^{2x} - 4e^x - 16x.$

a) Show that the x coordinates of the stationary points of C satisfy the equation

 $e^{2x} - 2e^{x} - 8 = 0$.

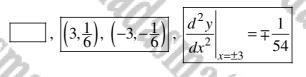

b) Hence determine the exact coordinates of the stationary point of C, giving the answer in terms of $\ln 2$.

Question 73 (***+) Given that

 $y = \left(x^2 + 8x\right)e^{-4x},$

find the exact value of $\frac{dy}{dx}$ at $x = -\frac{1}{2}$.

$\Rightarrow y = (x^2 + B_A)e^{-4\lambda}$	$\int \Rightarrow \frac{du}{dx} = e^{4\chi} (6 - 30\chi - 4\chi^2)$
$\Rightarrow \frac{dy}{dx} = (3x + 8) \frac{e^{-4\chi}}{e^{-4\chi}} + (x + 8x) \frac{e^{-\chi}}{e^{-4\chi}} + (x + 8x) \frac{e^{-\chi}}{e^{-4\chi}} + (x + 8x) \frac{e^{-4\chi}}{e^{-4\chi}} + (x + 8x) e^{-4\chi$	$\Rightarrow \frac{du}{d\lambda} = 2e^{4}(4-15_1-2\lambda^4)$
$= \frac{du_1}{d\Omega} = (2x+6)e^{-4x} - 4(x^2+6x)e^{-4x}$	$\Rightarrow \frac{da}{d\lambda}\Big _{\lambda = \frac{1}{2}} = 2e^{\lambda}\left(4 + \frac{\pi}{2} - \frac{1}{2}\right)$
2 TE = 6 [(THE)- +(1+ON]	$\left \frac{\lambda_{12}}{dt} \right _{\lambda_{1} - \frac{1}{2}} = 22e^{2}$
$\Rightarrow \frac{du_{1}}{d\lambda} = e^{-\frac{4}{2}\lambda} \left(2\lambda + B - 4\lambda^{L} - 32\lambda \right)$	di ang


Question 74 (***+)

The equation of a curve C is

 $y = \frac{x}{x^2 + 9}, x \in \mathbb{R}$.

a) Find the coordinates of the stationary points of C.

b) Evaluate the exact value of $\frac{d^2y}{dx^2}$ at each of these stationary points.

(a) $y = \frac{x}{x^{2+q}}$ $\Rightarrow \frac{dy}{dx} = \frac{(x^{2}+q)x(-x(x))}{(x^{2}+q)^{2}}$	$for T, f = \frac{d_{3}}{d_{3} = 0}$ $q - 2^{2} = 0$ (3 - 3)(242) = 0
$ \frac{dq}{dt} = \frac{t^{2}+q-2t^{2}}{(t^{2}+q)^{2}} $ $ \frac{dq}{dt} = \frac{q-2t^{2}}{(t^{2}+q)^{2}} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} (-j,\frac{t}{2}) \notin (j,\frac{t}{2}) \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
	$\frac{2(3^{2}+q)(42)}{(3^{2}+q)^{2}} = \frac{-2z(3^{2}+q)-4z(q-3^{2})}{(3^{2}+q)^{2}}$
$\frac{\delta_{32}}{d\lambda^2}\Big _{\lambda=3} = \frac{-6 \times 18 - 4 \times 3}{18^3}$	$\frac{60}{100} = -\frac{C_{X}}{100} = -\frac{C_{X}}{100} = -\frac{1}{54}$
$\left. \frac{\partial \beta_{ij}}{\partial x_{i}} \right _{x=3} = \frac{e_{x1B} - 4(-3)_{x}}{(B_{x})}$	$\frac{1}{10} = \frac{162}{C^{\times}16} = \frac{165}{C} = \frac{24}{1}$

Question 75 (***+)

The point A, where x = 2, lies on the curve with equation

 $y = \left(x^2 - 3\right) e^{\frac{1}{2}x}.$

Show that an equation of the tangent to the curve at A is given by

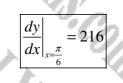
2y = (9x - 16)e.

$ \begin{array}{c} \underset{d_{11}}{d_{21}} = 2xe^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} = \frac{1}{2}e^{\frac{1}{2}h_{1}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{21}} \left(x_{1} + 2x_{2} \right) \\ \underset{d_{21}}{d_{$		
	$\begin{split} & \underbrace{\forall = (\mathbf{x}^{L}, \mathbf{z}) e^{\frac{1}{2}\mathbf{x}}}_{\mathbf{d}\mathbf{x}_{1}^{L}} & = 2\mathbf{x} e^{\frac{1}{2}\mathbf{x}} + (\mathbf{x}_{2}^{L}) e^{\frac{1}{2}\mathbf{x}}_{1}}_{\mathbf{d}\mathbf{x}_{2}^{L}} & \underbrace{d\mathbf{x}}_{2} = 2\mathbf{x} e^{\frac{1}{2}\mathbf{x}} + (\mathbf{x}_{2}^{L}) e^{\frac{1}{2}\mathbf{x}}_{1}}_{\mathbf{d}\mathbf{x}_{2}^{L}} & \underbrace{d\mathbf{x}}_{2} = \frac{1}{2} e^{\frac{1}{2}\mathbf{x}} + (\mathbf{x}_{2}^{L}) e^{\frac{1}{2}\mathbf{x}}_{1}}_{\mathbf{d}\mathbf{x}_{2}^{L}} & \underbrace{d\mathbf{x}}_{2} = \frac{1}{2} e^{\frac{1}{2}\mathbf{x}} + (\mathbf{x}_{2}^{L}) e^{\frac{1}{2}\mathbf{x}}_{1}}_{\mathbf{d}\mathbf{x}_{2}^{L}} & \underbrace{d\mathbf{x}}_{2} = \frac{1}{2} e^{\frac{1}{2}\mathbf{x}} + \mathbf{x}^{R} = \frac{1}{2} e^{\frac{1}{2}\mathbf{x}} & \underbrace{d\mathbf{x}}_{2} = \frac{1}{2} e^{\frac{1}{2}\mathbf{x}} + \mathbf{x}^{R} = \frac{1}{2} e^{\frac{1}{2}\mathbf{x}} & \underbrace{d\mathbf{x}}_{2} $	$equation of the form M \subseteq \frac{1}{2}e^{-\frac{1}{2}}\frac{1}{2}-\frac{1}{2}e^{-\frac{1}{2}}(2-2a)\frac{1}{2}\frac{1}{2}-\frac{1}{2}e^{-\frac{1}{2}}(2-2a)\frac{1}{2}\frac{1}{2}-\frac{1}{2}e^{-\frac{1}{2}}(2a-1)e^{-\frac{1}{2}}\frac{1}{2}\frac{1}{2}e^{-\frac{1}{2}}(2a-1)e^{-\frac{1}{2}}$

proof

Question 76 (***+)

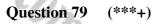
Differentiate each of the following expressions with respect to x, simplifying the final answer as far as possible.


- a) $y = \sec^2 x$.
- **b**) $y = x(1-2x)^6$.
- $\mathbf{c}) \quad y = \frac{\sin x}{2 \cos x}.$
 - $\frac{dy}{dx} = 2\sec^2 x \tan x, \quad \frac{dy}{dx} = (14x 1)(2x 1)^5 = (1 14x)(1 2x)^5, \quad \frac{dy}{dx} = \frac{2\cos x 1}{(2 \cos x)^2}$

Question 77 (***+) Given that

 $y = 3\tan^3 2x$

find the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{6}$


y = 3 tay 322	$\frac{dy}{dt} = \frac{18 \pm u^2}{\cos^3 \frac{1}{5}}$
dy = 9tay 22 Stc 22 ×2	3-4-
da = 18 tay 22 Stc22	$= \frac{18 \times (\sqrt{3}^{-1})^2}{(\frac{1}{2})^2}$
dh - to un phistic the	C .
$\frac{dy}{dx} = \frac{18 \tan 2x}{\cos^2 2x}$	= <u>18 × 3</u> 4
ch cos ² 22	= 216
	//

Question 78 (***+)

The following trigonometric identity is given

 $\sin 3x \equiv 3\sin x - 4\sin^3 x \,.$

By differentiating both sides of the above trigonometric identity with respect to x, find the corresponding identity for $\cos 3x$ in terms of $\cos x$.

 $f(x) = 8x^2 + 8x + \ln x, \ x > 0 \ .$

a) Show clearly that

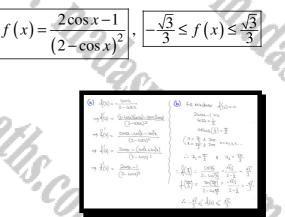
$$f'(x) = \frac{\left(ax+b\right)^2}{x},$$

where a and b are integers.

b) Hence show that f(x) is an increasing function.

F.h.	<u> </u>
$ \begin{array}{l} (\mathbf{Q}) \int_{\mathbf{Q}} (\mathbf{x}) = \mathbf{B}_{\mathbf{x}}^{1} + \mathbf{B}_{\mathbf{x}} + \mathbf{I}_{\mathbf{N}} \\ \stackrel{\text{sys}}{\rightarrow} \int_{\mathbf{Q}} (\mathbf{x}) = - \mathbf{I} (\mathbf{x} + \mathbf{B}_{\mathbf{x}} + \mathbf{I} \\ \stackrel{\text{sys}}{\rightarrow} \int_{\mathbf{Q}} (\mathbf{x}) = - \frac{\mathbf{I} (\mathbf{x}^{2} + \mathbf{B}_{\mathbf{x}} + \mathbf{I})}{\mathbf{x}} \\ \stackrel{\text{sys}}{\rightarrow} \int_{\mathbf{Q}} (\mathbf{x}) = - \frac{(\mathbf{A} + \mathbf{A} + \mathbf{I})^{2}}{\mathbf{x}} \end{array} $	 <u>NUMEROZ</u> LI PORTUR AS A SAMELO QUASTINY <u>STEREMANE</u> LI PORTUR J.2>0 f(0)>0 FE AL A AXEMENIC FAUTUR

a = 4, b = 1


 $\cos 3x = 4\cos^3 x - 3\cos x$

Question 80 (***+)

$$f(x) = \frac{\sin x}{2 - \cos x}, \ 0 \le x < 2\pi$$
.

- **a**) Find a simplified expression for f'(x).
- **b**) Hence find the minimum and maximum value of f(x).

20

Question 81 (***+)

$$f(x) = x^2 \sqrt{2x+1}, \ x \ge -\frac{1}{2}$$

Show clearly that

Ĉ.

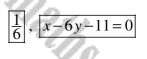
$$f'(x) = \frac{x(5x+2)}{\sqrt{2x+1}}$$

proof

2017

$\begin{aligned} & = \frac{1}{2} \left(\widehat{\beta} = \frac{1}{2} \left(2x + i \right)^{\frac{1}{2}} \\ & = \frac{1}{2} \left(\widehat{\beta} = 2x \left(2x + i \right)^{\frac{1}{2}} + \frac{1}{2} \left(2x + i \right)^{\frac{1}{2}} \\ & = \frac{1}{2} \left(\widehat{\beta} = 2x \left(2x + i \right)^{\frac{1}{2}} + \frac{1}{2} \left(2x + i \right)^{\frac{1}{2}} \\ & = \frac{1}{2} \left(\widehat{\beta} = 2x \left(2x + i \right)^{\frac{1}{2}} - \frac{1}{2} \left(2x + i \right)^{\frac{1}{2}} \right) \end{aligned}$	$ \begin{cases} \Rightarrow \frac{1}{2} (s) = \frac{1}{2} (S_{2k+1})^{\frac{1}{2}} (S_{2k+2}) \\ \Rightarrow \frac{1}{2} (s) = \frac{S_{2k+2}}{\frac{1}{2} (S_{2k+1})^{\frac{1}{2}}} \\ \Rightarrow \frac{1}{2} (s) = \frac{1}{2} (S_{2k+1})^{\frac{1}{2}} \\ \Rightarrow \frac{1}{2} (s) = \frac{1}{2} (S_{2k+1})^{\frac{1}{2}$

Question 82 (***+)


The curve C has equation

$$y = \frac{x+13}{(x-2)(x+3)}, x \neq -3, 2.$$

The point A lies on C and has x = -1.

a) Find the value of $\frac{dy}{dx}$ at A.

b) Find an equation of the tangent to C at A, giving the final answer in the form ax+by+c=0, where a, b and c are integers.

(9)	$\bigcup_{\alpha} \left(\frac{\alpha + 13}{(2 - 2)(\alpha + 3)} = \frac{\alpha + 13}{2^2 + 2 - 6} \right)$	(b)	White a = -1
	$\frac{du}{d\lambda} = \frac{(\lambda^2 + \chi - \zeta_0) \times (- (\chi + 13)(2\chi + 1))}{(\chi^2 + \chi - \zeta_0)^2}$		$\mathfrak{Y} = \frac{-1+\mathfrak{Y}}{\left(-(-2)\left(\mathfrak{f}+\mathfrak{f}\right)\right)} = \frac{\mathfrak{f}_{2}}{\left(-\mathfrak{f}_{3}\right)\left(\mathfrak{f}_{2}\right)} = -\mathfrak{f}_{2}$
	$\frac{dy}{dx} = \frac{x_{x} + \chi - \xi - (21_x + 3)}{(x_x + x - 6)_x}$		14 (-1,-2) Thirtest
	$\frac{du}{d\lambda} = \frac{3^{2}u\chi - 4 - 3\lambda^{2} - 7\lambda - 13}{(3^{2} + 3 - 6)^{2}}$		$y - y_{e} = m(x - x)$ $y + z = \pm (x + 1)$
	$\frac{dq}{d\lambda} = \frac{-\lambda^2 - 26\lambda - 19}{(\lambda^3 + \lambda - \zeta)^2}$		$69 + 12 = \infty + 1$
	$\frac{dq}{d\lambda}_{2^{n-1}} = \frac{-1+2\xi-10}{(1-1-6)^{2}} = \frac{\xi}{36} = \frac{1}{6}$		6y-x+11=0 0R x-6y-11=0
	~~~		4

Question 83 (***+)

 $y = e^{-x} \sin\left(\sqrt{3}x\right), \ x \in \mathbb{R}.$ 

Find the exact value of each of the constants R and  $\alpha$  so that

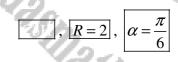
$$\frac{dy}{dx} = R e^{-x} \cos\left(\sqrt{3}x + \alpha\right),$$

12.50

2017

.V.G.P.

where R > 0 and  $0 < \alpha < \frac{\pi}{2}$ .


20

Ismaths,

I.C.B. Mada

SM3/AS-COM

I.V.G.B



The com

C

115

idasmal

Madası

#### y= e sm (N32)

2017

 $\frac{du}{dt} = -\frac{e^2}{6} Sin \left( \frac{dSu}{dt} \right) + \frac{e^2}{6} \times \frac{dS}{dt} \times \left( \frac{dSu}{dt} \right)$ 

 $\sum_{i=1}^{N} \frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \sum_{i$ 

-SM(Tin) + 15wa (18) = Elas (18x + K) = Elas (18x - Esn (12) - K

 $\equiv (2 \cos \alpha) \cos(\sqrt{6x}) - (2 \sin \alpha \kappa) \sin(\sqrt{6x})$   $R \cos \alpha = \sqrt{3}$ 

 $R_{SIVA} = 1$  )  $\Rightarrow R = \sqrt{(G_1)^2 + 1} = 2$  $q \quad \tan q = \frac{1}{\sqrt{2}} \quad \therefore \quad q = \frac{\pi}{4}$ 

I.C.B.

Created by T. Madas

Question 84 (***+)

A curve has equation

KG

C.B.

$$y = \frac{1}{2} \ln\left(\frac{x}{3}\right), \ x > 0 \ .$$

- a) Find an expression for  $\frac{dy}{dx}$  in terms of x.
- b) By making x the subject of the equation and differentiating the resulting equation, find  $\frac{dx}{dy}$ .

 $\frac{dy}{dx} \times \frac{dx}{dy} = 1$ 

c) Use the results of parts (a) and (b), to deduce that

 $\frac{dx}{dy} = 6e^{2y}$  $\frac{dy}{dx}$ 1  $\overline{2x}$ 

$(\eta) \overline{\partial} = \overline{\gamma} [h(\overline{z})]$	
$\frac{\mathrm{d}g}{\mathrm{d}x} = \frac{1}{2} \times \frac{1}{\frac{x}{3}} \times \frac{1}{3} = \frac{1}{2} \times \frac{3}{x} \times \frac{1}{3} = \frac{1}{2x}$	
(A) $y = \frac{1}{2} \ln \frac{3}{3}$ (c) $\frac{dy}{dx} \times \frac{dx}{dy} = \frac{1}{2x} \times 6e^{2y}$	
$z_{4} = \frac{3e^{24}}{2}$	
$\begin{array}{c} 3e^{2y} \\ \frac{3e^{2y}}{2y} = 6e^{2y} \\ \frac{3e^{2y}}{2y} = 1 \end{array}$	

E.P.

2017

Smains.co

G

6

madasmal

naths.com

I.Y.C.B. Madasmatis Madasmaths.Com

n = 5

**Question 85** (***+)

A curve C has equation

 $\mathbf{v} = \mathbf{e}^{\frac{1}{2}x} - x^2, \ x \in \mathbb{R}.$ 

The curve has a single stationary point at  $x = x_0$ , such that  $n < x_0 < n+1$ ,  $n \in \mathbb{N}$ .

ALASINATIS COM I.Y. C.B. MARASINATIS COM Determine the value of n.

I.F.G.B

Created by T. Madas

l.Y.C.P.

**Question 86** (***+) A curve has equation

aths.com

I.V.C.B. Mada

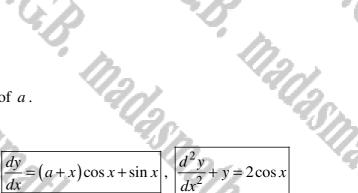
aths com

I.F.G.B.

2

 $y = (x+a)\sin x,$ 

where a is a non zero constant.


**a**) Find an expression for  $\frac{dy}{dx}$ .

**b)** Show that  $\frac{d^2y}{dx^2} + y$  is independent of *a*.

I.Y.G.B.

1.1.

^COM



I.V.G.B.

nadasmans.com

l.Y.C.

I.F.G.B.

the com

I.C.

6

20250

COM

17.202SI

Nasm

arns.

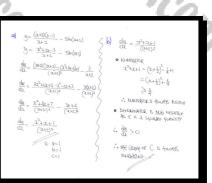
I.F.G.B.

#### **Question 87** (***+)

I.C.B.

i.C.p.

The curve C has equation


$$y = \frac{(x+3)(x-1)}{x+2} - 3\ln(x+2), \ x > -2.$$

a) Show clearly that

 $\frac{dy}{dx} = \frac{ax^2 + bx + c}{\left(x+2\right)^2},$ 

where a, b and c are constants to be found.

**b**) Deduce that the graph of C is increasing for all allowable values of x.



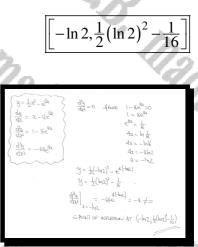
a=1, b=1, c=1

I.C.B.

I.C.P.

2017

1120/281


Question 88 (***+)

The curve C has equation

 $y = \frac{1}{2}x^2 - e^{4x}.$ 

Show clearly that C has a point of inflection, determining its exact coordinates.

nadas,



Is.com

Question 89 (***+)

21hs.

I.F.G.B.

 $=\frac{x+1}{(x-2)(2x-1)}, x \neq 2, x \neq \frac{1}{2}.$ 

Find the value of  $\frac{dy}{dx}$  at x = 1.

R.



Question 90 (***+)

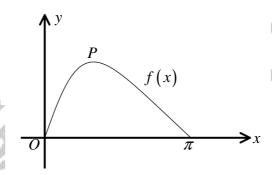
A curve C has equation

 $y = \frac{1}{4}e^{2x} + 3, \ x \in \mathbb{R}.$ 

The point *P* lies on *C* where  $x = \ln 2$ .

a) Show that the equation of the tangent to the curve at the point P is

 $2x - y + 4 = \ln 4.$ 


This tangent meets the x axis at the point A, and the normal to the curve at the point P meets the x axis at the point B.

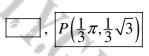
**b**) Show that the area of the triangle *APB* is 20 square units.

3) y= 1/e+3	(b) • When y=0 2x+4 = 144 2x+4 = 2142
$\Theta \frac{dy}{dt} = \frac{1}{2} \frac{2x}{2}$	5 2+2=142
$\frac{dy}{dx}\Big _{\substack{\lambda=b_{12}\\\lambda=b_{12}}} = \frac{1}{2}e^{2y\lambda} = \frac{1}{2}e^{b_{1}y} = 2,$	$\left\{ \begin{array}{c} 2 = -24 \ln 2 \\ 4 \left(-24 \ln 2_{10}\right) \end{array} \right\}$
	< « GRUAFTION OF NORMAL
· when a= ly2.	$\int y - y_o = w_0(x - x_o)$
9= 2e +3 = 2x++3=+	$9 - 4 = -\frac{1}{2}(x - \ln 2)$
(+PC142-14)	} when y=0 -4 = -1(0,-102)
$q - \dot{q} = w(z - z)$	8 = -1/2
4-4=2 (x-142)	Z 2= 8+ W2
9-4 = 22 - 2mz	B(8+142,0)
1n4 = 22-y+4	> PC1+2++)
1+ 22-4+4=144	1
	A IO B
	-2+h2 8+1h2

proof

Question 91 (***+)



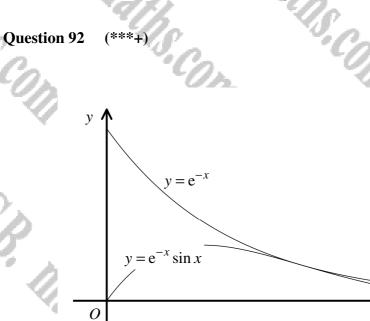

The figure above shows the graph of the curve with equation

$$f(x) = \frac{\sin x}{2 - \cos x}, \ 0 \le x \le \pi \ .$$

The curve has a stationary point at P.

Determine the exact coordinates of P.

KC,



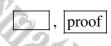

C.5.

m

12012.8m

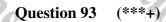
$f(a) = \frac{SMX}{2-\cos a} \implies f'(a) = \frac{(2-\cos)(\cos a)-(\sin a)}{(2-\cos b)}$
$\Rightarrow f'(a) = \frac{2\omega s_a - \omega s_a - s_a r_a}{(2 - \omega s_a)^2}$
$\implies f(x) = \frac{2i\omega_{2x} - (\omega_{x}^{2} + \omega_{x}^{2})}{(2 - \omega_{0})^{2}}$
$\Rightarrow f(a) = \frac{2\log - 1}{(2 - \cos a)^2}$
$\frac{2\omega_{W}}{2\omega_{N-1}} = \frac{2\omega_{W}}{2} = \frac{2\omega_{W}}{2} = \frac{2\omega_{W}}{2} = \frac{2\omega_{W}}{2}$
$\mathcal{L} = \underbrace{\mathcal{L}}_{\mathcal{L}} \left( 0 < \mathcal{L} < \pi \right) $

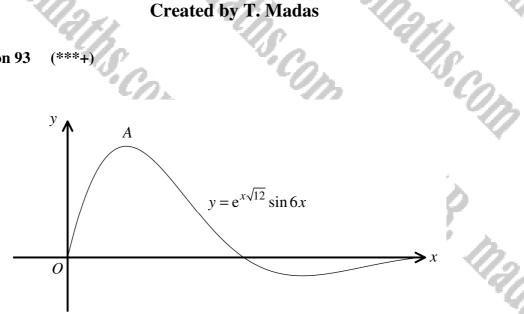



The figure above shows the graph of

 $y = e^{-x}$  and  $y = e^{-x} \sin x$ ,  $0 \le x \le \pi$ .

The curve with equation  $y = e^{-x} \sin x$  has a local maximum at the point where  $x = x_1$ .


The curves touch each other at the point where  $x = x_2$ .


Show clearly that



The Con

$\begin{array}{ccc} y_{2} \in \widehat{e}^{2nn} \\ y_{3} \in \widehat{e}^{2nn} \\ \Rightarrow e^{2nn} - e^{2} = 0 \\ \Rightarrow e^{2}(snn - 1) = 0 \end{array}$	$\begin{cases} y = \hat{e} \hat{s}_{101} \\ \Rightarrow \frac{du}{dt} = -\hat{e} \hat{s}_{101} + \hat{e} \hat{s}_{002} \\ \Rightarrow \frac{du}{dt} = \hat{e} \hat{s}_{102} - \hat{s}_{101} \end{cases}$
Sm=1 (e===)	STULL FOR ZAND
emsm(i) = Ŧ	$\langle \neg e^{-2} (\log 2 - S(N)) = 0$
· 0.2 = 7	(⇒ wsz-sinz=0 ê≠0
	=> Cost Cost
	=> 1 - turzer
	.α,= <u>F</u>
h co a	-2, = = == == == = = = = = = = == == == ==
-mult d ₂ .	-21 = 芝 军 = 军 // & Bauleng





The figure above shows the graph of the curve with equation

 $y = e^{x\sqrt{12}} \sin 6x, \ 0 \le x \le x$ 

The curve has a local maximum at the point A.

Find, in terms of  $\pi$ , the x coordinate of A

à)	y = e sinta	⇒ Anthony Gal =C
	dy = 12 = sm62 + 62 00562	$=$ $+ \log_2 c_a = -\frac{c_a}{k_{12}}$
	$\frac{dy}{da} = e^{2\sqrt{a}} \left[ \sqrt{a} \sin 6a + 6\cos 6a \right]$	$ and the (-\frac{c}{\sqrt{12}}) = -\frac{\pi}{3}$
5)	SOLLE FOR ZEMA	7463 GX= - I = MT N=011,2,
	= NESMER+ 600562=0 (2NE +0) )	0 = − ₩ = ₩T
	=) NIZSIMAL = - GLOSEAL	2= IT FIRST ASSTUA
	$\Rightarrow \sqrt{12} \frac{SnGL}{COSGL} = -\frac{6 \log GL}{COSGL}$	FIRST JUSITUA-

 $\frac{\pi}{9}$ 

Question 94 (***+)

$$f(x) = \frac{6x - 13}{(x+2)(x-3)}, x \in \mathbb{R}, x \neq -2, 3.$$

**a**) Show clearly that

$$f(x) = \frac{A}{(x+2)} + \frac{B}{(x-3)}$$

where A and B are integers.

**b**) Hence show further that f(x) is a decreasing function.

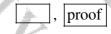
(9) $f(s) = \frac{A}{3u_{2}} + \frac{B}{3u_{3}} = \frac{A(s-s) + B(u_{2}s)}{(2u_{3}(2u_{3}))} = \frac{A_{2} - sA + B_{3} + 2B}{(2u_{3}(2u_{3}))}$ $= \frac{(A+b) + (2B-30)}{(4u_{3}(2u_{3}))}$ Genet + He $sc = 1$ $2A + 3B + B}{(2u_{3}(2u_{3}))}$ $= \frac{(A+b) + (2B-30)}{(4u_{3}(2u_{3}))}$ Genet + He $sc = 1$ $2A + 3B + B}{(2u_{3}(2u_{3}))}$ $= \frac{(A+b) + (2B-30)}{(4u_{3}(2u_{3}))}$ $= \frac{(A+b) + (2B-30)}{(4u_{3}(2u_{3}))}$ = (A+b) + (A+		11 A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(9)	= (2+15)(2+(28-54)) = EPUATE 4+B=G 1 34+3R=18	2,
$\begin{split} f(\alpha) &= -\frac{1}{(2+2)^2} - \frac{1}{(2-2)^2} \\ f(\dot{\alpha}) &= -\frac{1}{(2+2)^2} - \frac{1}{(2-3)^2} \\ \hline (\alpha) &= -\frac{1}{(2+2)^2} \\ \hline (\alpha) &$		$\therefore f(x) = \frac{5}{2+2} + \frac{1}{2-3}$ Bei a A = 5	
		$\begin{split} f(g) &= -\frac{(2+3)^2}{5} - \frac{(1-3)^2}{1} \\ f(g) &= -\frac{(2+3)^2}{5} - \frac{(1-3)^2}{1} \\ (g) &= -\frac{(2+3)^2}{5} - \frac{(1-3)^2}{5} \\ (g) &= -\frac{(2+3)^2}{5} - \frac{(1-3)^2}{5} \\ (g) &= -\frac{(1-3)^2}{5} - \frac{(1-3)^2}{5} - \frac{(1-3)^2}{5} \\ (g) &= -\frac{(1-3)^2}{5} - \frac{(1-3)^2}{5} - \frac{(1-3)^2}{5} \\ (g) &= -\frac{(1-3)^2}{5} - \frac{(1-3)^2}{5} - $	

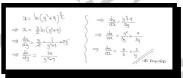
i G.B.

nn

mada

A = 5, B = 1


120,


Question 95 (***+)

$$x = \ln\left(y^2 + 9\right)^{\frac{3}{2}}.$$

Show clearly that

. C.P.  $\frac{dy}{dx} = \frac{y}{3} + \frac{3}{y}.$ 





**Question 96** (****)

The curve C has equation

 $y = 12x^2 - 2x + \sin^2 2x \,.$ 

Show clearly that C has no points of inflection.

proof

	1000
$y = 12\chi^2 - 2\chi + s_1\chi^2 2\chi$ (b) $bT$ (6)	\$ 34 5 32
$\frac{du}{d\lambda} = 24\lambda - 2 + 4 \text{SM}2(\cos 2\lambda) \qquad \qquad$	z #0
$\frac{dy}{dq} = 24a - 2 + 2sm4a$	NO PONUTS
$\frac{\partial^2 q}{\partial a^2} = 24 - 8 \cos \theta_2$	OF INFLECTION

Question 97 (****)

 $y = a^x, a > 0, a \neq 1.$ 

a) Show clearly that

 $\frac{dy}{dx} = a^x \ln a \,.$ 

A curve has equation

 $y = (\ln x)^2 - 12(0.5)^x, x > 0.$ 

**b**) Show that at the point of the curve where x = 2, the gradient is  $4 \ln 2$ .

(a)  $y = a^{x}$   $\Rightarrow hy = hya^{x}$   $\Rightarrow hy = xhaa$   $\Rightarrow \frac{hy}{y} = xhaa$   $\Rightarrow \frac{dy}{dx} = yhaa$   $\Rightarrow \frac{dy}{dx} = xhya + haa$   $\Rightarrow \frac{dy}{dx} = yhaa$   $\Rightarrow \frac{dy}{dx} = xhya + haa$   $\Rightarrow \frac{dy}{dx} = xhya + haa$  $\Rightarrow \frac{dy}{dx} = xhya +$ 

proof

#### Question 98 (****)

20

ISMaths.

I.C.B.

I.C.B.

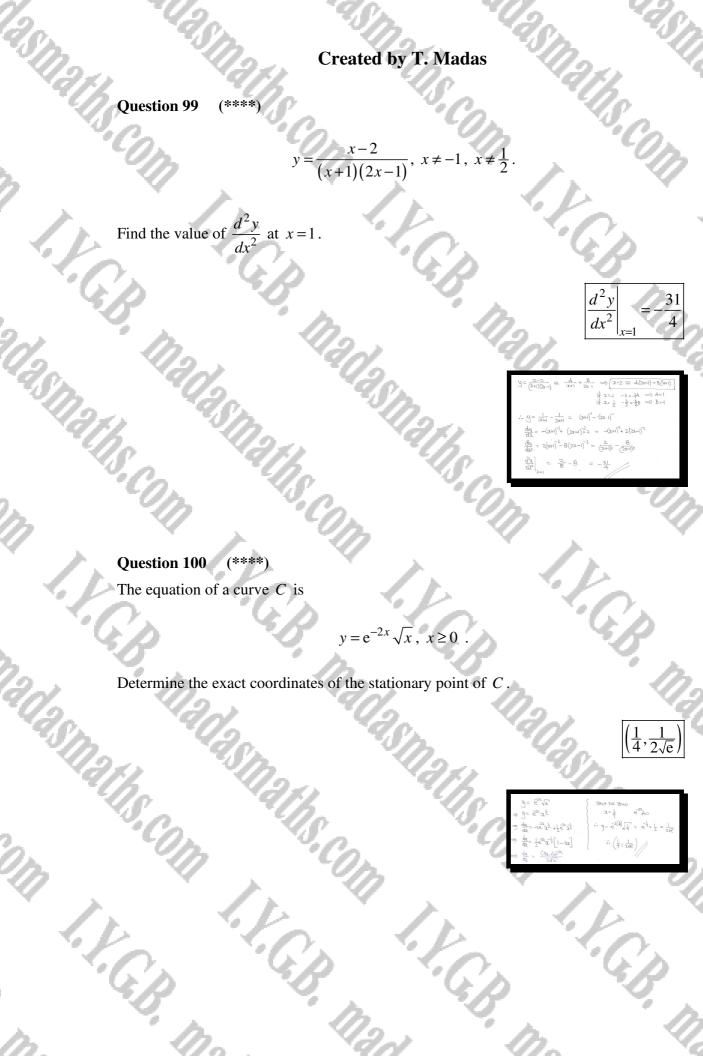
The curve C has equation

$$y = \frac{2x^2 - 1 - 2\ln x^x}{x}, x > 0.$$

The curve has a point of inflection at P

Show that the straight line with equation y = x is a tangent to C at P.

THE EPOATEON BEFORE DIATED THAT ON DETRUMINE THE GRADWST AT (1,1)  $y = \frac{2x^2 - 1 - 2\ln x^2}{x} = \frac{2x^2 - 1 - 2x \ln x}{x}$  $\frac{du}{dz} = 2 + \overline{z}^2 - 2\overline{z}^{-1} = 2 + \frac{1}{z^2} - \frac{2}{z}$  $y = \frac{2n^2}{3} - \frac{1}{3} - \frac{2x \ln x}{3} = 2x - x^{-1} - 2 \ln x$ dy da = 2+l-2=l RESPECT TO IL, TWICE EQUATION OF THE TANOBUT HAS GRUADIANT I & PASSES 2+2-22  $2+x^2-\frac{2}{7}$ THEOUSE CIT -2x 3+22  $m(x-x_0)$ y - I = I (x - I) ROR -POINTS OF INFLEXION BY y-1 = x-1 + 222 = 0 y=2 AS ELQUIERD y= 2-1-2/1 = 1 (I.I) THRU


10

I.C.B.

nada.

COM

proof



#### Question 101 (****)

The curve C has equation

$$x = y\sqrt{1-4y} , \ y \le \frac{1}{4}.$$

a) Show clearly that

M2(12)

b

i.G.p.

I.C.p

$$\frac{dy}{dx} = \frac{\sqrt{1-4y}}{1-6y} \quad .$$

**b**) Show further that an equation of the tangent to C at the point where y = -2 is

$$3x - 13y - 8 = 0$$

nn

proof

COM

200

madas,

۹)	$x = y (1 - Uy)^{\frac{1}{2}}$	(b) when y==2
	$\frac{dx}{dy} = 1 \times (1 - 4y)^{\frac{1}{2}} + y \times \frac{1}{2}(1 - 4y)^{\frac{1}{2}}(-4)$	
	$\frac{dx}{dy} = (1-4y)^{\frac{1}{2}} - 2y(1-4y)^{\frac{1}{2}}$	$\frac{dy}{dx}\Big _{y=2} = \frac{\sqrt{1-4(-2)}}{1-6(-2)}$
	$\frac{dx}{dy} = (1 - 4y)^{\frac{1}{2}} \left[ (1 - 4y)^{1} - 2y \right]$	$=\frac{3}{13}$
	$\frac{d\lambda_{i}}{dy} = \frac{1-6y}{(1-4y)^{N_{i}}} = \frac{1-6y}{\sqrt{1-4y^{2}}}$	S= 1423 (-61-2)
	du July	
	of I-cy to equeso	$\Rightarrow 0 = 3a - 13y - 8$ $\Rightarrow 3a - 13y - 8 = 0$
	1	-> == 13y-8=0

Ċ.Ŗ

200

Y.G.h

#### Question 102 (****)

Differentiate each the following expressions with respect to x, simplifying the final answers as far as possible.

(Fractional answers must not involve double fractions)

- $a) \quad y = \sin^3 2x \,.$
- **b**)  $y = x \tan 4x$ .

c)  $y = \ln\left(\frac{x+1}{x}\right)$ .

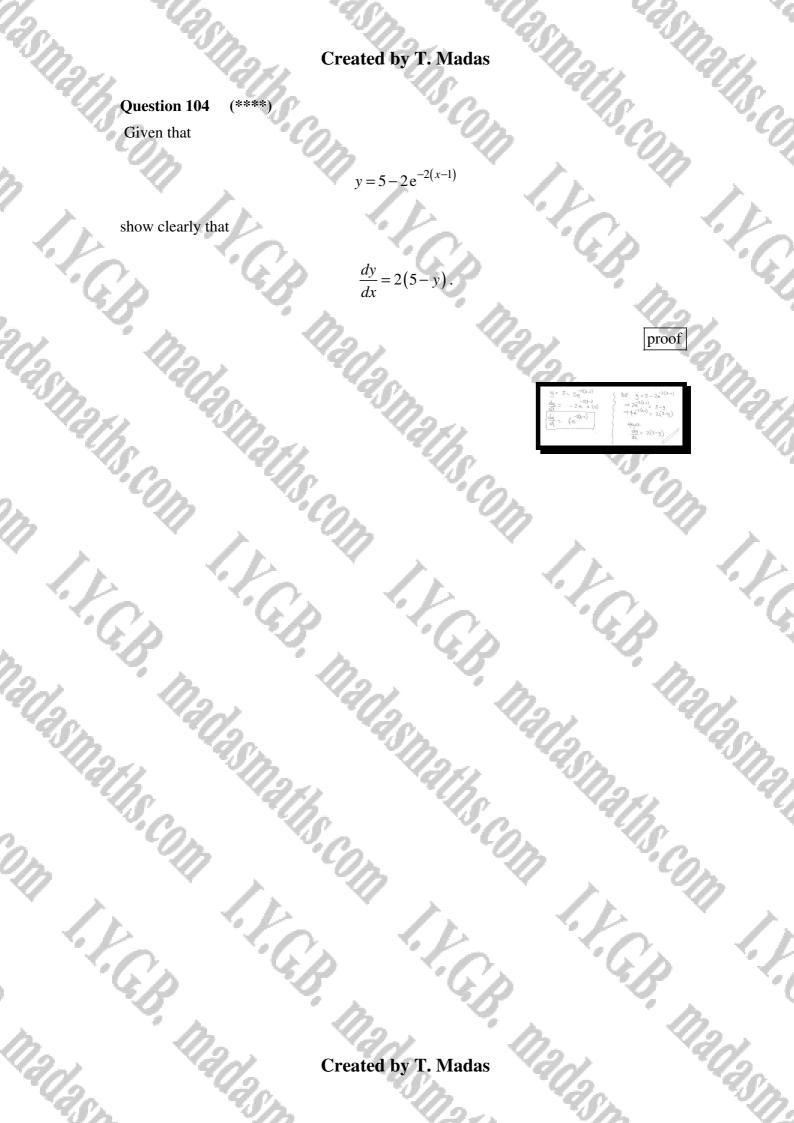
 $\frac{dy}{dx} = 6\sin^2 2x\cos 2x, \quad \frac{dy}{dx} = \tan 4x + 4x\sec^2 4x$ 

(a) y = sn ³ 2	(b) y= xtauta
$y = (3n2n)^3$	dy = (1×ton/4)+ (x× 45624x)
$\frac{d_{A}}{dt} = \frac{d_{A}}{dt} \left( dW^{2} \right) \left( \frac{dW^{2}}{dt} \right)$	dy = tanta i lasecha
$\frac{du}{dt} = 6 \sin^2 2u \cos^2 t$	$ (c)  y = \ln\left(\frac{\alpha_{H}}{\infty}\right) = \ln(\alpha_{H}) - \ln \alpha $
4	$\frac{du}{d\lambda} = \frac{1}{2H} - \frac{1}{2}$
	$\left(=\frac{3-(3+i)}{3(3+i)}=-\frac{1}{3(3+i)}\right)$

dy

1

 $\overline{x^2 + x}$ 


Question 103 (****

$$f(x) = e^{-2x} + \frac{\ln 2}{x}, x \in \mathbb{R}, x > \ln 4.$$

- a) Show that f(x) in a decreasing function.
- **b**) Hence find the range of f(x).

 $f(x) \in \mathbb{R}, f(x) < \frac{9}{16}$ 

(c) $\frac{1}{2}(0) = c^{-2k} + \frac{1}{2k_{-2}},  x \ge 2k_{+}$ $\Rightarrow \frac{1}{2}(0) = c^{-2k} + \frac{1}{2k_{-2}},  x \ge 2k_{+}$ $\Rightarrow \frac{1}{2}(0) = -2c^{-2k_{+}}(k_{+})(-k_{+}),  x \ge 2k_{+},  x \ge 2k_$	$ \begin{cases} \textbf{(b)} & \textbf{(b)} $
f(d)<0 ." Decembrat Forkard	



(****) Question 105

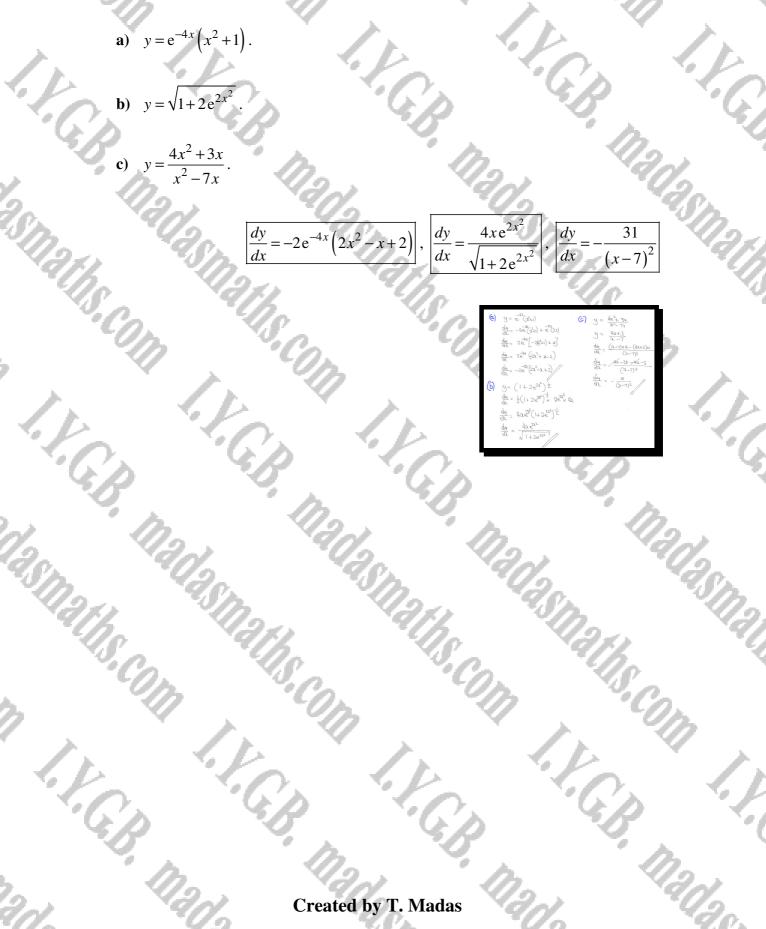
estion 105 (****)  

$$f(x) = x\sqrt{9-4x^2}, \ 0 \le x \le \frac{3}{2}.$$
a) Find an expression for  $f'(x)$ .  
b) Show further that

2

$$f'(x) = \frac{9 - 8x^2}{\sqrt{9 - 4x^2}}.$$

in the second se	$f'(x) = \frac{9 - 8x^2}{\sqrt{9 - 4x^2}}.$
	ect coordinates of the stationary point of C.
Mars asm	$f'(x) = \left(9 - 4x^2\right)^{\frac{1}{2}} - 4x^2\left(9 - 4x^2\right)^{-\frac{1}{2}},  \left(\frac{3\sqrt{2}}{4}, \frac{9}{4}\right)$
S.C. Alls	S.C. Co
	(a) $\frac{1}{2}(b) = \alpha \left(q - p_{1}\right)^{\frac{1}{2}}$ $\rightarrow \frac{1}{2}(b) = \alpha \left(q - p_{1}\right)^{\frac{1}{2}} \left(q - p_{1}\right)$
In the	$ \begin{array}{c} (\mathbf{a}) & \operatorname{Person}_{\mathcal{H}} \\ (\mathbf{b}) & \operatorname{Person}_{\mathcal{H}} \\ \rightarrow \delta(\mathbf{b}) = (\mathbf{q} - \mathbf{q})^2 \begin{bmatrix} (\mathbf{q} - \mathbf{q}) + \mathbf{q} + \mathbf{q} \\ (\mathbf{q} - \mathbf{q}) + \mathbf{q} + \mathbf{q} \\ (\mathbf{q} - \mathbf{q})^2 \begin{bmatrix} (\mathbf{q} - \mathbf{q}) + \mathbf{q} + \mathbf{q} \\ (\mathbf{q} - \mathbf{q}) + \mathbf{q} \\ (\mathbf{q} - \mathbf{q})^2 \end{bmatrix} \\ \rightarrow \delta(\mathbf{q}) = (\mathbf{q} - \mathbf{q})^2 \begin{bmatrix} (\mathbf{q} - \mathbf{q}) + \mathbf{q} + \mathbf{q} \\ (\mathbf{q} - \mathbf{q}) \end{bmatrix} \\ \rightarrow \delta(\mathbf{q}) = (\mathbf{q} - \mathbf{q})^2 \begin{bmatrix} (\mathbf{q} - \mathbf{q}) + \mathbf{q} + \mathbf{q} \\ (\mathbf{q} - \mathbf{q}) \end{bmatrix} \\ \rightarrow \delta(\mathbf{q}) = (\mathbf{q} - \mathbf{q})^2 \begin{bmatrix} (\mathbf{q} - \mathbf{q}) + \mathbf{q} \\ (\mathbf{q} - \mathbf{q}) \end{bmatrix} \\ \rightarrow \delta(\mathbf{q}) = (\mathbf{q} - \mathbf{q})^2 \begin{bmatrix} (\mathbf{q} - \mathbf{q}) + \mathbf{q} \\ (\mathbf{q} - \mathbf{q}) \end{bmatrix} \\ \rightarrow \delta(\mathbf{q}) = (\mathbf{q} - \mathbf{q})^2 \begin{bmatrix} (\mathbf{q} - \mathbf{q}) + \mathbf{q} \\ (\mathbf{q} - \mathbf{q}) \end{bmatrix} \\ \rightarrow \delta(\mathbf{q}) = (\mathbf{q} - \mathbf{q})^2 \\ \rightarrow \delta(\mathbf{q} - \mathbf{q}) \end{bmatrix} \\ \rightarrow \delta(\mathbf{q}) = \frac{\mathbf{q} - \mathbf{q}}{\mathbf{q} - \mathbf{q}} \\ \rightarrow \delta(\mathbf{q} - \mathbf{q}) \\ \rightarrow \delta(\mathbf{q} - \mathbf{q}) \end{bmatrix} \\ \rightarrow \delta(\mathbf{q} - \mathbf{q}) $
Gp GB	Co GB
	and in the
asm ada	asp ada adas
Allo Mari	Allo Shar Al
Con US.C	Con User
it iton	1. Ko. (1)
CB S	n Ch Ch .
	eated by T. Madas
and the second	asing asing asing


Smains.co

I.V.G.

Whs.com

#### Question 106 (****)

Differentiate each of the following expressions with respect to x, simplifying the answers as far as possible.



(****) **Question 107** A curve has equation

20

2smaths.com

I.V.C.B. Madasm

Smaths.com

I.F.G.p

 $y = e^{-2x} + ax e^{-2x}$ 

where a is a non zero constant.

nadasmaths,

I.F.C.B.

1.1.

Show that the value of  $\frac{d^2y}{dx^2}$  at the stationary point of the curve is  $-2ae^{\frac{2}{a}}$ 

adasm

101 -	,	proof
40.		
90.		
EMPIN THE FILLT TWO INCLUMENTS		
y= e ⁻²² + aze ⁻²²		
$\frac{du}{d\lambda} = -2e^{-2\lambda} + \alpha e^{-2\lambda} + \alpha e^{-2\lambda}$		2az.)
$\frac{d\hat{q}}{d\hat{x}^2} = -2\hat{e}^{2k}(a-2-2a\lambda) + e^{2k}$ $= -2\hat{e}^{2k}[a-2-2a\lambda + q]$	(-2a)	
$= -2e \left[ -2a_{2} - 2a_{3} - 2 \right]$ = $-2e^{2x} (2a - 2a_{3} - 2)$		
$= 4e^{2\lambda}(\alpha x - \alpha + i)$		
-STATIONARY MANES \$=0		
$\Rightarrow e^{23}(-2+9-2n\lambda) = 0$		
-2+q -2a2 =0	(e ^{-2x} ≠0)	
-, a-2-202		
$=0 \lambda = \frac{a-2}{2q}$		
$\frac{\frac{d^2 j}{dx^2}}{\frac{d^2 j}{dx^2}} = 4 e^{-2\left(\frac{q-2}{2q}\right)} \left[ -2 e^{\frac{q-2}{2q}} \right]$	<u>a=2</u> - + + i	
$u_{1}^{-1} \frac{a^{-2}}{24} = 4e^{-\frac{a^{-2}}{4}} \left[ \frac{4-2}{2} \right]$		
= +e [ a = 4e ²⁻⁴ [ 4-1-		
$= 4e^{\frac{2}{4}-1} \left[-\frac{a}{2}\right]$	~~	
= - 2a e ^{2 -1}		
AS REQUIENCE	)	

asmaths.com

I.F.G.B.

Madası,

. DD

The Com

18.00

il.

Created by T. Madas

madasmaths,

COM

 $y = \frac{x}{\sqrt{x-2}}, \ x \ge 2.$ 

#### (****) **Question 108**

I.V.C.B. Madasm

ans.com i.v.

I.F.G.B.

The curve C has equation given by

a) Show clearly that ...

- $\cdots \frac{dy}{dx} = \frac{x-4}{2(x-2)^{\frac{3}{2}}}.$ i.
- ii. ...  $\frac{d^2 y}{dx^2} = \frac{8-x}{4(x-2)^{\frac{5}{2}}}$ .

b) Hence find the exact coordinates of the stationary point of C, and determine its nature.

I.V.C.B.

2011

min at  $(4, 2\sqrt{2})$ 

Com

ths.com

1.Y.C.B. 1113/13/1

KG

(a) $4^{-\frac{3}{(n-2)^{\frac{1}{2}}}}$	(b)	$\frac{d^2_{4}}{d^{2^2}} = \frac{2(2\cdot2)^3_{k -}(2\cdot4)_{13(\frac{1}{2},0)}^{\frac{1}{2}}}{4(2\cdot2)^3} -$
$\Rightarrow \frac{du}{d\lambda} = \frac{(2-2)^{\frac{1}{2}} \kappa \left(-2 - \lambda \frac{1}{2} (2-2)^{\frac{1}{2}}}{((2-2)^{\frac{1}{2}})^2}$		$\frac{d^{\frac{1}{2}}q}{dx^{2}} = \frac{2(3-2)^{\frac{1}{2}} - 3(3-2)^{\frac{1}{2}}(3-2)}{4(3-2)^{\frac{3}{2}}}$
$\Rightarrow \frac{dy}{dt} = \frac{(2-2)^2 - \frac{1}{2}2(2-2)^2}{2-2}$		dy = (2-0)2 [2(2-2)-3(2-0]
$\Rightarrow \frac{dy}{d\lambda} = \frac{2(2-2)^{\frac{1}{2}} - 2(2-2)^{-\frac{1}{2}}}{2(2-2)}$		$\frac{d^{2}\varphi}{d\lambda^{2}} = \frac{(\lambda \cdot 2)^{3}}{4(\lambda - 2)^{3}}$
$\Rightarrow \frac{dy}{dt} = \frac{(2-2)^{\frac{1}{2}} [2(2-2)-2]}{2(3-2)}$		$\frac{\partial L^2}{\partial t^2} = \frac{8 - \lambda}{4(\lambda - 2)^{\frac{1}{2}}}$
$\Rightarrow \frac{dy}{d\lambda} = \frac{(3-2)^{\frac{1}{2}}(22-4-\lambda)}{2(\lambda-2)}$		drz 4(a-2)32 43 espurso
$\rightarrow \frac{d_{4}}{dL} = \frac{2-4}{2(2-2)\frac{3}{2}}$		. eduro
and		

Created by T. Madas

I.Y.C.

Question 109 (****)

The curve C has equation

$$y = \frac{2\ln x - 1}{2\ln x + 1}$$
,  $x > 0$ .

a) Show clearly that

Ka

C.P.

$$\frac{dy}{dx} = \frac{4}{x(2\ln x + 1)^2}.$$

b) Show that the equation of the normal at the point where the curve crosses the x axis is given by

 $y + x\sqrt{e} = e$ .

proof

Question 110 (****)

$$f(x) = \frac{2x}{\sqrt{1-x}}, \ x < 1 \ .$$

- **a**) Find an expression for f'(x).
- **b**) Show further that

$$f'(x) = \frac{2-x}{(1-x)^{\frac{3}{2}}}.$$

c) Hence calculate that the exact value of  $f'(\frac{1}{2})$ .

I.C.B.

I.G.B.

2017

ŀ.G.p.

 $2(1-x)^{\frac{1}{2}} + x(1-x)^{-\frac{1}{2}}$  $f'\left(\frac{1}{2}\right) = 3\sqrt{2}$ f'(x) =1-x

20

 $\frac{1}{2}(x) = \frac{2x}{\sqrt{1-x^2}}$  $\begin{pmatrix} \mathbf{b} \end{pmatrix} \quad \begin{array}{c} \frac{1}{2} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \end{pmatrix} = \frac{1}{1-\infty} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \end{pmatrix}$ = 2-1 (c)  $f(t) = \frac{2-\frac{1}{2}}{(1-\frac{1}{2})\frac{3}{2}} = \frac{\frac{3}{2}}{(\frac{1}{2})\frac{3}{2}} = \frac{3\times 2^{\frac{1}{2}}}{(\frac{1}{2})\frac{3}{2}}$ 

:011

112/251

COM

I.C.B

I.F.G.B.

Created by T. Madas

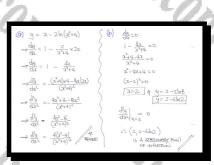
D

Question 111 (****)

A curve C has equation

$$y = x - 2\ln\left(x^2 + 4\right), \ x \in \mathbb{R}.$$

a) Show clearly that


KR,

Ĉ.Ŗ

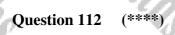
$$\frac{d^2 y}{dx^2} = \frac{4(x^2 - 4)}{(x^2 + 4)^2}.$$

The curve has a single stationary point.

**b**) Find its exact coordinates and determine its nature.



(C.b.


20

point of inflection at  $(2, 2-6 \ln 2)$ 

i.G.B.

inn

madasn.



75	~(2)	982 40	5. 420.	
asp.	Sp.	Created by T. Madas	Sp. V	2.
121	: ¹ 90		All "	The.
	Question 112 (****)	S.C. Con	5.00	· C
	On	$y = x - \sqrt{\sin x} , \ 0 < x < \frac{\pi}{2} .$	, On	
5	× .	· · · · · · · · · · · · · · · · · · ·	1. V. Y	1.
Ir.	Show clearly that when	$\sin x = \frac{1}{4}$ , the value of $\frac{d^2 y}{dx^2}$ is $\frac{17}{8}$ .	S.C.	1
1	$\gamma$ $\epsilon$	D 42	- Invert	- G
્ય	8		proof	, ×
1	in.		$ \begin{array}{c} -(m_2)^{\frac{1}{2}} \\ = i - \frac{1}{2} (sm_1^2)^{\frac{1}{2}} \\ = i - \frac{1}{2} (sm_1^2)^{$	20
2Sm	Adds.		$\begin{array}{cccc} 2 - (2M2)^{\frac{1}{2}} & \left\langle -\frac{4}{7}K \in U_{0}[A_{0} + SM_{0} - \frac{1}{4}C_{0}] \\ = 1 - \frac{1}{2}(SM2)^{\frac{1}{2}}(SM2) & \left\langle -\frac{4}{7}K + \frac{1}{2}(SM2)^{\frac{1}{2}}(SM2) \\ = \frac{1}{2}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2) & \left\langle -\frac{1}{7}K + \frac{1}{2}(SM2)^{\frac{1}{2}}(SM2) \\ = \frac{1}{2}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2) \\ = \frac{1}{4}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2) \\ = \frac{1}{4}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2) \\ = \frac{1}{4}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2) \\ = \frac{1}{4}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2) \\ = \frac{1}{4}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2) \\ = \frac{1}{4}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}{2}}(SM2)^{\frac{1}$	2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 Sp		$= \frac{1}{4} \left[ \frac{(9\alpha)^{\frac{1}{2}}}{1 - (9\alpha)^{\frac{1}{2}}} \left[ 1 - \frac{(9\alpha)^{\frac{1}{2}}}{1 - (9\alpha)^{\frac{1}{2}}} \right] \right]$	- All
2	S. Ya	the the	S	×.
	10m	"S.C. "CO.	"Op	
7.	· · · · ·		· · · · · · · · · · · · · · · · · · ·	2.
1.	, SP		1.1.	5.J
1	$\mathcal{O}_{\mathbf{x}} \mathcal{O}_{\mathbf{x}}$	p Kn	*G.5	
	S.S.	V A VB		
20/2	no.	1201 1	, Q2	
	* do 2	-438 h	20. 20	20.
	11 11		"ISM	
	15 4	the 's	121%	Y.
2.	"Op	N.C. 10)	n "So	
9	station of the second s			3
	to S.	- In	S.F.	
	C. '	4p 1.0.	·6'D	1
	48	V., 48	· · · · ·	
3	" Da	122 1	$b_{a} = Q_{a}$	2.
120	Adds.	Created by T. Madas	120. "	420.
1982	-75	2 12-	980	0

(****) Question 113

20

$$f(x) = e^{3x} - 4e^{-3x}, x \in \mathbb{R}$$
.

a) Show that the inequalities

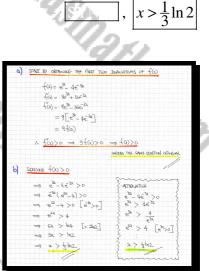
$$f(x) > 0$$
 and $f''(x) > 0$

have the same solution interval.

I.C.P.

1. C.B. Madası

COM


ŀG.p.

Smaths,

b) Determine, in exact form, the common solution interval. asmaths,

:0₁

na_{da}

asmaths,

I.C.p

Madası

20

·C.B.

nathe,

9

The Com

Question 114 (****)

The equation of the curve C is

 $y = (x+2)^2 e^{1-x}, x \in \mathbb{R}.$

- **a**) Show clearly that ...
 - **i.** ... $\frac{dy}{dx} = -x(x+2)e^{1-x}$.
 - **ii.** ... $\frac{d^2 y}{dx^2} = (x^2 2)e^{1-x}$.
- **b**) Find an equation of the normal to C at the point (1,9).

The curve has two stationary points at P and Q.

c) Find the exact coordinates of P and Q, further determining the nature of these stationary points.

x-3y+26=0, max at (0,4e), min at (-2,0)

(a) (1) y = (2+2) ² e) -2
$\frac{dq}{dx} = 2(2A_2)e^{1-2} - (2A_2)e^{1-2} = (2A_2)e^{1-2} \left[2 - (2A_2)\right]$
$\frac{dy}{dx} = -\Im(3+7)e^{1-\chi}$ As $2I_{AV}R_{LD}$
$(\mathbf{I}) \frac{dx}{dy} = -(x^{2}+2x)e^{t-2}$
$\frac{d^2_{32}}{dx^2} = -(2x+2)e^{1-x} + (x^2+2x)e^{1-x} = e^{1-x} \left[-(2x+2) + x^2+2x \right]$
$\frac{d^2}{d\Omega^2} = (\alpha^2 - 2)e^{-2} + \epsilon \epsilon \theta \partial \theta \partial \theta$
$ \begin{array}{c} \underbrace{b} \\ \underbrace{dy} \\$
$9-9_{0}=w(\alpha-x_{0})$ $y = < 6$
$\begin{array}{c} \left \begin{array}{c} -q \\ = \frac{1}{2} Q_{-1} \right \\ \hline \\ 3q \\ -21 \\ = x \\ -1 \end{array} \qquad $
34 - x - 26 = 0
$x = 3y + 26 = 0$ $\frac{dy}{dx^2} = 28 > 0$ $\therefore (-2, 0)$ M(x)

C.p.

Question 115 (****) The equation of the curve *C* is given by

 $y = x\sqrt{x^3 + 1} , \ x \ge -1.$

- **a**) Find an expression for $\frac{dy}{dx}$.
- **b**) Show further that $\frac{dy}{dx}$ can be simplified to

I.C.B.

I.C.B.

I.F.G.B.

 $\frac{dy}{dx} = \frac{5x^3 + 2}{2\sqrt{x^3 + 1}}.$

c) Hence show that an equation of the normal to C at the point where x = 1 is

$$7y + 2x\sqrt{2} = 9\sqrt{2} \; .$$

 $\frac{dy}{dx} = \left(x^3 + 1\right)^{\frac{1}{2}} + \frac{3}{2}x^3\left(x^3 + 1\right)^{-\frac{1}{2}}$

I.G.B.

COM

madasm

A.G.

(a)	$\mathfrak{Y} = \mathfrak{L}(\mathfrak{Z}^{3}+1)^{\frac{1}{2}}$
	$\frac{dy}{dy^{1}} = \int (2_{2}^{j}t_{1})_{\frac{1}{r}}^{j} + \mathcal{J}^{j}x^{\frac{1}{2}}(2_{r}^{j}t_{1})_{\frac{1}{r}}^{j}2^{j}2^{j}x_{2}^{j} = (2_{r}^{j}t_{1})_{\frac{1}{r}}^{j} + \frac{3}{2}d_{2}^{j}(2_{r}^{j}t_{1})_{\frac{1}{r}}^{j}$
G)	$\frac{\mathrm{d} y}{\mathrm{d} \chi} = \frac{1}{2} \left(\chi^{2}_{+1} \right)^{\frac{1}{2}} \left[-2 \left(\chi^{2}_{+1} \right)^{1} + 3 \chi^{2} \right] = \frac{1}{2} \left(\chi^{2}_{+1} \right)^{\frac{1}{2}} \left(2 \chi^{3}_{+} + 2 + 3 \chi^{2}_{-} \right)$
	$\delta_{0} = \frac{dy_{1}}{d\lambda} = \frac{S\lambda^{3} + 2}{2\sqrt{\lambda^{3} + 1}}$
(1)	with $x = 1$ $y = \sqrt{2}$ $\frac{dy}{dx} = \frac{7}{2\sqrt{2}}$
	NORMAL GRADINGT - ZIE, HONCE Y-VED-21/2 (2-1)
	=0 74-712 = -2122 + 212
	> Ty +242 a = 945 41 REDUCT

I.C.B.

20

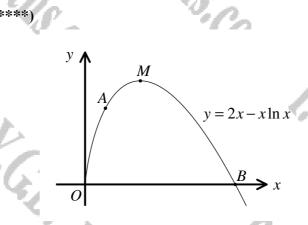
Question 116 (****) It is given that

 $\frac{d}{dx}(\sec x) = \sec x \tan x \,.$

a) Prove the validity of the above result by writing $\sec x$ as $\frac{1}{\cos x}$

The curve C has equation

 $y = e^{3x} \sec 2x, \ -\frac{\pi}{4} < x < \frac{\pi}{4}.$


b) Find an equation of the tangent to C at the point where C crosses the y axis.

The curve has a single stationary point at P.

c) Find the x coordinate of P, correct to 3 significant figures.

y = 3x + 1, $x \approx -0.491$

લ		$\frac{d}{dt} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = - (1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} $
	$ \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ & \end{array} \\ & \end{array} \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \end{array} \end{array} \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	(c) $F(T_{1}^{0}, \frac{1}{22} = 0)$ $T_{1}^{0}(2_{1}^{0}) = 0$ $T_{1}^{0}(2_{1}^{0}) = 0$ $T_{2}^{0}(2_{1}^{0}) =$
	** y= 8x+1	

The diagram above shows the graph of a curve C with equation

 $y = 2x - x \ln x, \ x > 0.$

The curve has a maximum at M.

Question 117

a) Find the exact coordinates of M.

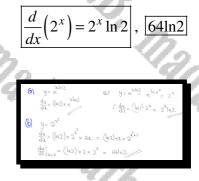
The point A lies on C where x = 1.

The curve crosses the x axis at the point B.

- **b**) Determine the coordinates of A and the exact coordinates B.
- c) Show that the tangents to the curve at A and B are perpendicular to each other.

d) Show that these tangents intersect at the point $Q\left(\frac{e^2-1}{2}, \frac{e^2+1}{2}\right)$

M(e,e), A(1,2), $B(e^2,0)$


(9) $y = 2x - x \ln x$ $\frac{du}{dx} = 2 - \left[1 \ln x + 2x \frac{1}{2}\right]$ $\frac{du}{dx} = 2 - \ln x - 1$	(c) $\frac{du}{dx}\Big _{x=1} = 1 - \int dx = 1$ $\frac{du}{dx}\Big _{x=0} = 1 - \int dx = 1$ $\frac{du}{dx}\Big _{x=0} = 1 - \int dx = 1 - \int dx = 1$
$\frac{da}{d\lambda} = 1 - lu\lambda$	GRADINSTS ARE NEGTIVE RECORDERING OF GARAFONDER
Solut fil zhuo L-liya =0	". PERMICIALINA THACENTS
$\cdot h\eta x = 1$	(d) GROATICALE OF TANGERS
a=e g= 2e-eme=2e-e=e	$\frac{y-2=1(2-1)}{y-0=-1(2-e^2)}$
.: M(e,e)	y = 2 = x - 1 $y = e^2 - x$
(b) • y = 22-2/42 0 = 2(2-1/42)	y= 2+1 y= e-2)
⊃≠ o	Add county
hare B(eto)	2y = 2+1 y = 2+1 2
• and y=2-letat	$2 = 4 - 1 = \frac{2^2 + 1}{2} - 1$
	$= \frac{e^2 + 1 - 2}{2}$ $= \frac{e^2 - 1}{2}$
	$\cdot \left(\frac{e^2-1}{2}, \frac{e^2+1}{2}\right)$

Question 118 (****)

a) By differentiating $y = e^{x \ln 2}$, find the derivative of $y = 2^x$.

02

b) Hence find the exact value of the gradient on the curve with equation $y = 2^{x^2}$ at the point where x = 2.

Question 119 (****)

 $y = \arctan\left(\frac{1}{2}x\right), x \in \mathbb{R}.$

By writing $y = \arctan\left(\frac{1}{2}x\right)$ as x = f(y), show that

 $\frac{dy}{dx} = \frac{2}{x^2 + 4}.$

, proof

Phalees toolDay to the

Question 120

Prove that ...

19

testion 120 (****)
eve that ...

$$\frac{d}{dx} \left(x^4 \sqrt{4x-1} \right) = \frac{2x^3(9x-2)}{\sqrt{4x-1}}$$

$$\dots \frac{d}{dx} \left(\frac{3x^2 + 6x - 5}{(x+1)^2} \right) = \frac{16}{(x+1)^3}$$

lasinarins.com I. K.

Question 121 (****)

The curve C has equation

 $f(x) = e^{2x} \sin 2x, \quad 0 \le x \le \pi.$

- **a**) Find an expression for f'(x).
- **b**) Show clearly that

 $f''(x) = 8e^{2x}\cos 2x.$

c) Hence find the exact coordinates of the stationary points of C and determine their nature.

$f'(x) = 2e^{2x}(\sin 2x + \cos 2x),$	$\boxed{\max\left(\frac{3}{8}\pi, \frac{\sqrt{2}}{2}e^{\frac{3\pi}{4}}\right)}, \text{ min}$	$\left(\frac{\frac{7}{8}\pi,-\frac{\sqrt{2}}{2}e^{\frac{7\pi}{4}}\right)$
13.COM	(a) + 23 (2006 + 2000 +	λ_{2} , λ_{2} , λ_{2} , λ_{3} , λ

MIN (3-207

Question 122 (****)

The curve C has equation given by

$$y = x\sqrt{1-2x} , \ x \le \frac{1}{2}$$

a) Show clearly that

$$\frac{dy}{dx} = \frac{1 - 3x}{\sqrt{1 - 2x}} \,.$$

b) Show further that

KR

C.B.

$$\frac{d^2y}{dx^2} = \frac{3x-2}{(1-2x)^2}$$

c) Hence find the exact coordinates of the stationary point of C, and determine its nature.

max at $\left(\frac{1}{3}, \frac{1}{9}\sqrt{3}\right)$

9=	J.(1-22) ²	
· dy =	$1(1-2a)^{\frac{1}{2}}+2a^{\frac{1}{2}}(1-2a)^{-\frac{1}{2}}(1-2a)^{$	$=(1-2x)^{\frac{1}{2}}-\infty(1-2x)^{\frac{1}{2}}$

			1	
= (1-2a) Z	C1-22) - 2	$=(1-2\alpha)$	(1 - 3x) =	1-32
	[C1-22) - 2	1		JI-22 //
				1 ks

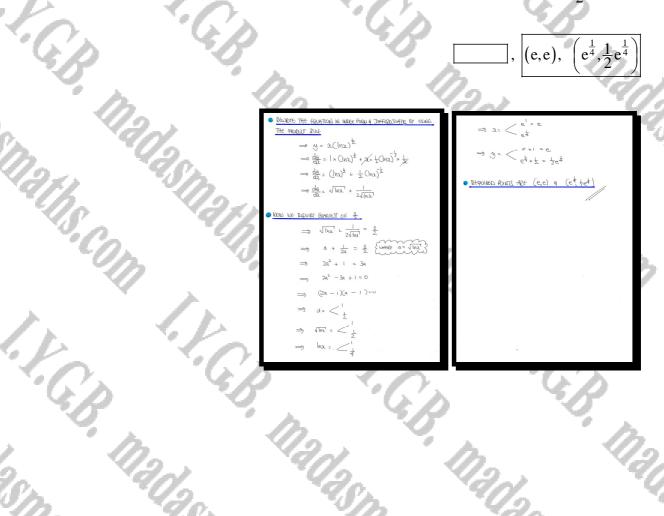
14

nadasn.

- $\begin{array}{c} (\mathbf{u}) \quad \frac{d_{1}}{dx} = \frac{1-3x}{(1-2x)^{1/2}} \\ \frac{$
- $\frac{\partial f_1}{\partial t_2} = \frac{(1-2t)^2 (-3)^2 (1-3t) f_2^2 (1-2t)^2 (-3)}{(1-2t)^2 (-3t)^2 (1-2t)^2 (-3t)} = \frac{-3(1-2t)^2 (1-3t) f_2(1-2t)}{(1-2t)^2 (1-2t)^2 (1-2t)^2 (-3t)^2 (-3t)$
 - $= \frac{3_{1-2}}{(1-2a)^{3/2}} + \frac{1-2a}{(1-2a)(1-2a)(1-2a)(1-2a)}$
 - $\frac{dq}{dt} = 0$ 1 - 3x = 0
 - $\begin{array}{c} \eta_{1} = \frac{1}{2} \left(\eta_{2} \frac{1}{2} \right)_{\overline{q}} = \frac{1$

Question 123 (****)

A curve has equation


 $y = x\sqrt{\ln x}$, $x \in \mathbb{R}$, x > 0.

Ins.com

1120,

na

Find the exact coordinates of the two points on the curve which have gradient $\frac{3}{2}$.

0

I.C.B.

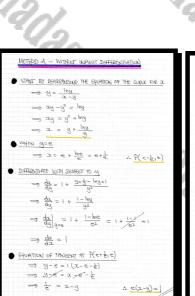
Created by T. Madas

.C.4

ŀ.C.B.

Question 124 (****)

I.Y.C.B. May


I.C.B.

The curve C has equation

 $y = \frac{\ln y}{x - y}, \ y > 0.$

e(x-y)=1.

Show that the equation of the tangent to C at the point where y = e can be written as

METHOR B - BY IMPLIAT DIF	AREANTI ATION
• THETLY WHIN 14=e	
- y= mu 2-4	
$= e = \frac{\ln e}{2 - e}$	
$= e = \frac{1}{2e^{\theta}}$	
> 2-e = +	
= 2= e+ +	r. P(e+ t, e)
	ACROSS AND DIAFREASINATE W.E.T :
$= ya - y^2 = lmy$	
$\Rightarrow \frac{d}{dx}(y_{2} - y^{2}) = \frac{d}{dx}(1)$	ny)
= 2 dy + y - 2y dy	$= \frac{1}{4} \frac{dy}{dx}$
· GIAWATE THE ABOUE EXPERS	S(0) AT P(e++ a)
$\rightarrow \left(e + \frac{1}{e}\right) \frac{du}{dx}_{p} + e - 2e$	or b - f or b
$\Rightarrow e = \left(\frac{1}{e} + 2e - e\right)$	$-\frac{1}{c}$) $\frac{dy}{dx}$
=) e = e dul	~

I.C.B.

ns.com

proof

Creat	ed by	T. N	Madas

Y.C.B.

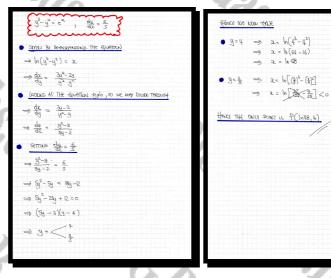
Question 125 (****)

At the point P, which lies on the curve with equation

 $y^3 - y^2 = e^x,$

COM

 $P(\ln 48, 4)$

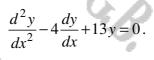

I.C.B.

the gradient is $\frac{6}{5}$.

I.C.B.

I.C.p

Determine the possible coordinates of P.



Question 126 (****)

A curve has equation

 $y = e^{2x} \left(2\cos 3x - \sin 3x \right).$

Show that

, proof
20.
$\begin{split} & y = e^{\infty} \left[2 \cos 2 a - \cos 2 a \right] \\ & y = e^{\infty} \left[2 \cos 2 a - \sin 2 a \right] + e^{0} \left[- \sin 2 a - 2 \cos 2 a \right] = -e^{0} \left[4 \sin 2 a - 2 \sin 2 a - 4 \sin 2 a - 2 \sin 2 a \right] \\ & = e^{\infty} \left[(\cos 2 a - \sin 2 a) \right] \\ & = y = 2 \cos 2 a - 2 \sin 2 a \right] + \frac{1}{2} \left[- 2 \sin 2 a \right] \\ & = e^{\infty} \left[- 1 \sin 2 a - 2 \sin 2 a \right] \\ & = e^{\infty} \left[-1 \sin 2 a - 2 \sin 2 a \right] \end{split}$
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $

Question 127 (****)

P.C.B.

Find, in exact form where appropriate, the solutions of the equation

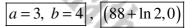
 $\frac{d}{dx}\left(\frac{4}{3-\mathrm{e}^x}\right)=1.$

 $x = 0, \ x = \ln 9$

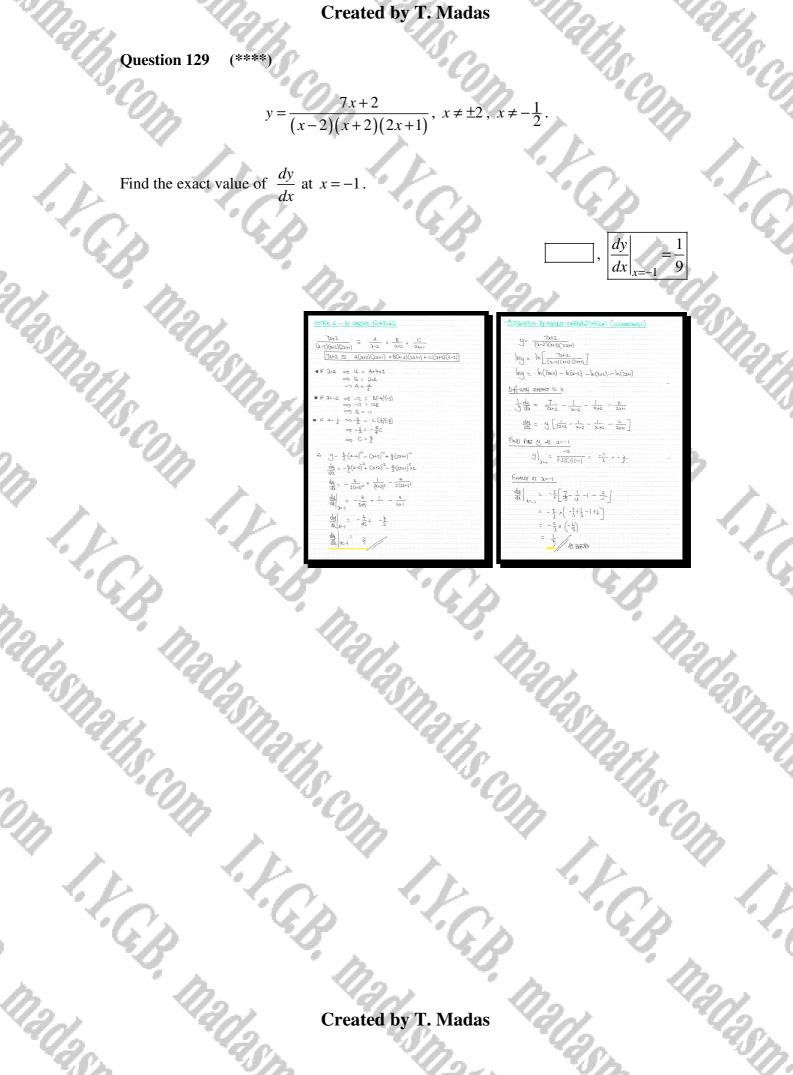
20.	
$\begin{array}{c} \frac{d}{dt}\left(\frac{d}{3-e^{2t}}\right) = 1\\ m \frac{d}{dt}\left(\frac{d}{3-e^{2t}}\right) = 1\\ m \frac{d}{dt}\left[\frac{d}{3-e^{2t}}\right] = 1\\ m - e^{t}_{t}\left(\frac{d}{3-e^{2t}}\right) = 1\\ m - e^{t}_{t}\left($	$\left\{\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \left(\lambda_{1}^{ 1 } \\ \left(0\right)^{-} & \left(0\right)^{-} + \right) \leq 0 \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \left(\lambda_{1}^{ 1 } \\ \left(-\lambda_{1}^{-}\right)^{-} & \left(\lambda_{1}^{-}\right)^{-} + \right) \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

Question 128 (****)

The point $P(\ln 2, 5b - 3a)$ lies on the curve with equation


 $y = a + b e^x,$

where a and b are non zero constants.


The gradient at P is 8.

a) Find the value of a and the value of b.

b) Find the exact coordinates of the point where the normal to the curve at *P* crosses the *x* axis.

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
(a) P(1n2 sb -3a)	(b) NORMAL GRADINT IS -1
• y= a+bex	EquIPTION OF NORMAL
Sb-3a = a + be 12	(9- yo = m(2-2.)
Sb - 3a = a + bx2	$y = (50-3a) = -\frac{1}{2}(x - 1n2)$
5b-3q = a+2b 3b = 4a	y- (20-9)= -== (2-142)
	$(y-1) = -\frac{1}{2}(x-h_{12})$
· dr = be + de = 8	butun y=0
8 = 6 e ^{lm2} 31=1m2	$\int -4 = -\frac{1}{2}(2 - \frac{1}{2})$
8 = 26	$-88 = -\infty + \ln 2$
b=4	2 = 88+42
a=3	(+ (88+h12,0)
//	(vo+m2,0)

Question 130 (****)

The curve C has equation

 $y = \left(\frac{1-x}{1+x}\right)^{\frac{1}{2}} (2x+1), \ -1 < x \le 1.$

By taking logarithms on both sides of this equation, or otherwise, show that at the point on C where $x = \frac{1}{2}$, the gradient is $-\frac{2}{9}\sqrt{3}$.

$ \begin{array}{c} U = \left(\begin{array}{c} U = U \\ U $	205	, <u>proor</u>
	$ \begin{array}{c} \longrightarrow \left\ \eta_{ij} = \left. h_{ij} \left[\frac{(-2)k_{i2x,ij}}{(2+3)!} \right] \right. \\ \\ \implies \left. h_{ij} = \frac{1}{2} h_{ij} \left(-2, +h_{ij} \left(2x_{i} \right) - \frac{1}{2} h_{i} \left(1x_{i} \right) \right) \right. \\ \\ \implies \left. \frac{1}{2} \frac{1}{2} \frac{d_{ij}}{d_{ij}} - \frac{1}{2(z_{i})_{i}} + \frac{2}{2z_{i}} - \frac{1}{2(2x_{i})_{i}} \right. \\ \\ \\ \qquad $	$ \begin{split} & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{2}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} - \frac{L}{2} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} - \frac{L}{2} \right] \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} - \frac{L}{2} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} - \frac{L}{2} \right] \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2} \right] \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2} \right] \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{2}{3} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{L}{2(-\lambda)} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{L}{2(-\lambda)} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{L}{2(-\lambda)} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{L}{2(-\lambda)} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{L}{2(-\lambda)} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{L}{2(-\lambda)} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{L}{2(-\lambda)} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{2(-\lambda)} \right] \\ & \underset{\substack{\chi = \frac{L}{2}}{\text{d} \mu} = \frac{L}{2(-\lambda)} \left[2 \left[-\frac{L}{2(-\lambda)} + \frac{L}{2(-\lambda)} - \frac{L}{$

Question 131 (****)

The curve C has equation

 $y = \arcsin(2x-1), \ 0 \le x \le 1.$

Find the coordinates of the point on C, whose gradient is 2

9= arcsm(2x-1)	Now $\frac{1}{\sqrt{3-\chi^2}} = 2$
$\frac{dy}{dx} = \frac{1}{\sqrt{1 - (2x-1)^2}} \times 2$	$\rightarrow \frac{1}{2-x^{2}} = 4$
$\frac{d\mu}{d\lambda_{-}} = \frac{2}{\sqrt{1 - (4\lambda_{-}^2 - 4\lambda_{+})}}$	$\Rightarrow \lambda - \lambda^{2} = \frac{1}{4}$
$\frac{dy}{d2} = \frac{2}{\sqrt{42-42^2}}$	$\Rightarrow 4x - 4x^2 = 1$ $\Rightarrow -4x^2 + 4x - 1 = 0$
	=) -42-12+1=0
$\frac{d\lambda}{du} = \frac{1}{\sqrt{2-\chi_1}}$	$\implies (2\lambda - 1)^{\lambda} = 0$
5	$\Rightarrow \lambda \sim \frac{1}{2}$
2	& y = ansino = 0
)	$\therefore \left(\frac{1}{2} 0\right)$

(****) **Question 132**

A curve C has equation

$$x = y\sqrt{9-4y^2}, |y| \le \frac{3}{2}.$$

a) Show clearly that

$$\frac{dy}{dx} = \frac{\sqrt{9 - 4y^2}}{9 - 8y^2}.$$

F.G.B.

b) Find the exact coordinates of the two points on C, with infinite gradient.

2017

Mada

.F.G.B.

1. C.B. 113/331

2017

ŀG.B.

	"Cho
(a) a= y (9-4y2) =	$\left(\bigcup_{n=1}^{\infty} \frac{dy_{n}}{dx_{n}} \infty \right) = q_{-8y_{n}^{2}=0}$
$\frac{da}{dy} = x(q-ly^2)^{\frac{1}{2}} + yx(-ly)(q-ly^2)^{\frac{1}{2}}$	2 9 - By2 4 - By2
$\frac{du}{dy} = (q - 4y^2)^{-\frac{1}{2}} \left[(q - 4y^2)^{1} - 4y^2 \right]$	y=±======
$\frac{d_{1}}{dy} = \frac{9 - 8y^{2}}{(9 - 4y^{2})^{\frac{1}{2}}}$	$\sum \therefore x = \pm \frac{3}{4}\sqrt{2} \left(q - 4 \times \frac{q}{4} \right)^{\frac{1}{2}}$
	2 = + \$ [] [] [] [] [] [] [] [] [] [] [] [] []
$\frac{dy}{dt} = \frac{\sqrt{9-4y^2}}{9-8y^2}$	$\begin{array}{c} & & \\$
to effunctio	(414 - 1 9 (41 4/ 1

1135112

I.C.p

?0₁₇

 $\left(\frac{9}{4},\frac{3}{4}\sqrt{2}\right), \left(-\frac{9}{4},-\frac{3}{4}\sqrt{2}\right)$

I.Y.G.B.

COM

nadasm

Com

mada.

Question 133 (****)

Given that

 $y = 3\cos(\ln x) + 2\sin(\ln x), x > 0,$

show clearly that

 $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = Ay,$

stating the value of the constant A.

10	
DIFFECTUATING WITH RECEPT TO a	
$\frac{du}{dX} = -3 \sin(hx) \times \frac{1}{L} + 2\cos(hx) \times \frac{1}{L}$ $\frac{du}{dX} = -\frac{1}{L} \left[-\frac{2\cos(hx)}{2} - \frac{3}{2} \sin(hx) \right]$	
DIFFERSTATINGS ONDE HORE	
$\frac{d\hat{y}}{dx^{2}} = -\frac{1}{2\kappa} \left[2\omega \alpha (\ln x) - 2\omega \alpha (\ln x) \right] + \frac{1}{\kappa} \left[-2\omega \alpha (\ln x) \times \frac{1}{\kappa} - 2\omega \alpha (\ln x) \right]$	0-27
$\frac{d\xi_{1}}{d\xi^{2}} = -\frac{1}{3^{2}} \left[2\cos(\theta_{HX}) - 3\sin(\theta_{HX}) \right] - \frac{1}{3^{2}} \left[2\sin(\theta_{HX}) + 3\cos(\theta_{HX}) \right]$	1
$\frac{d \lambda_{a}}{d \lambda^{2}} = -\frac{1}{\lambda^{a}} \left[2 \cos \left(\frac{3}{2} \sin \left(\frac{1}{2} \sin $	
$\frac{d^{3}g}{dx^{2}} = -\frac{1}{x^{2}} \left[Scas(ly_{1x}) + sm(ly_{2x}) \right]$	
hundred me there	
$ \frac{d^2 dy}{dx^2} + \frac{d}{dx} = \frac{1}{2} \times \frac{\frac{d}{\lambda^2}}{\lambda^2} \left[Soc(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} + \frac{1}{2} \left[2c_0(\eta_0) - 3s} - \frac{1}{2} \left[Sc_0(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} + \frac{1}{2} \left[2c_0(\eta_0) - 3s} - \frac{1}{2} \left[Sc_0(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} \left[2c_0(\eta_0) - Sn(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} \left[2c_0(\eta_0) - Sn(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} \left[2c_0(\eta_0) - Sn(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} \left[2c_0(\eta_0) - Sn(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} \left[2c_0(\eta_0) - Sn(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} \left[2c_0(\eta_0) - Sn(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} \left[2c_0(\eta_0) - Sn(\eta_0) - Sn(\eta_0) - Sn(\eta_0) \right] + \frac{1}{2} \left[2c_0(\eta_0) - Sn(\eta_0) - Sn(\eta$	1
= - 5 cas (ba) + sin (ba) + 265(ba) - 35m (ba	2
$\simeq -3(m_{\rm e}(1m_{\rm e}) - 2\sin(1m_{\rm e}))$	
= - [3605(Upz) + 25m(Upz]	

and the second s
AUTERNATIVE APPRACE
y= 3008(m2)+25m(4x)
$\frac{dy}{dt} = -3\cos(\ln x) \sim \frac{1}{x} + 2\cos(\ln x) \sim \frac{1}{x}$
WITH HTO & ACLOSE & DATABATING LAND A RATION
$(k_{\rm H})_{203} = -\frac{g_{\rm H}}{\chi} = -\frac{g_{\rm H}}{\chi}$
$\frac{d}{d\lambda} \left[x \frac{dy}{d\lambda} \right] = \frac{d}{d\lambda} \left[-3SW_1(l_{M\lambda}) + 2cos(l_{M\lambda}) \right]$
$1 \times \frac{dy}{d\lambda} + 2 \frac{d\hat{d}_1}{d\lambda^2} \approx -3(a_1(m_2) \times \frac{1}{\lambda} - 2sin(m_2) \times \frac{1}{\lambda}$
$\frac{\partial du}{\partial x^2} + \frac{\partial u}{\partial x} = -\frac{1}{x} \left[3\cos(hx) + 2\sin(hx) \right]$
$\alpha^{2} \frac{d^{2}y}{d\lambda^{2}} + \alpha \frac{dy}{d\lambda} = -\left[3\iota_{0}\Omega(M\chi) + 2\iota_{M}(M\chi)\right]$
$a_{y} \frac{\partial a_{y}}{\partial \Sigma} + \lambda \frac{\partial a_{y}}{\partial \Sigma} = -y$
It An-I
98 86564

, A = -1

Question	134	(***

The equation of a curve C is

 $y = \frac{x}{1+2\ln x}, x \in \mathbb{R}, x > 0$

The curve has a single turning point at P.

a) Show that the coordinates of *P* are $\left(\sqrt{e}, \frac{1}{2}\sqrt{e}\right)$.

b) Evaluate the exact value of $\frac{d^2y}{dx^2}$ at *P* and hence determine its nature.

$$\begin{split} & \underbrace{\mathcal{G}} = \frac{2}{1+2\ln 2}, \\ & \underbrace{\mathrm{d}}_{\mathbf{U}} = \frac{(1+2\ln)(\mathbf{x}_1 - \mathbf{x}_1(\frac{\mathbf{x}_1}{2}))}{(1+2\ln 2)^2} = \frac{(1+2\ln 2 - 2)}{(1+2\ln 2)^2} = \frac{2\ln 2 - 1}{(2\ln 2 + 1)^2}, \\ & \underbrace{\mathrm{d}}_{\mathbf{U}} = \mathbf{x}_1 + \frac{1}{(2\ln 2 + 1)^2}, \\ & \underbrace{\mathrm{d}}_{\mathbf{U}} = \mathbf{x}_2 + \frac{1}{(1+2\ln 2)^2}, \\ & \underbrace{\mathrm{d}}_{\mathbf{U}} = \mathbf{x}_2 + \frac{1}{(1+2\ln 2)^2}, \\ & \underbrace{\mathrm{d}}_{\mathbf{U}} = \frac{1}{(1+2\ln 2)^2}, \\ & \underbrace{\mathrm{d}}_{\mathbf{U}} =$$

		10
6)	$\frac{d\tilde{h}}{d\tilde{h}} = \frac{(2m_1+1)^2(\frac{1}{2}, -(2m_2-1)\times \frac{1}{2}(2m_1+1)\times \frac{1}{2})}{(2m_2+1)^4}$ $\frac{d\tilde{h}}{(2m_2+1)^4} = \frac{\frac{2}{2}(2m_1+1)^4}{(2m_2+1)^4}$ $\frac{d\tilde{h}}{(2m_2+1)^4} = \frac{\frac{2}{2}(2m_2+1)^4}{(2m_2+1)^4}$ $\frac{d\tilde{h}}{(2m_2+1)^4} = \frac{2}{2m_2^2}(m_1) - \frac{1}{2m_2^2}(m_2)$ $\frac{d\tilde{h}}{(2m_2+1)^4} = \frac{2}{2m_2^2}(m_1) - \frac{1}{2m_2^2}(m_2)$	(2/m/c ¹ = 2/m/c ²) = 1/m/c

 $\frac{d^2 y}{dx^2} = \frac{1}{2\sqrt{e}} > 0, \text{ so minimum}$

I.C.B.

Question 135 (****) Show that if $x = \sec 2y$, then

I.C.p

 $\frac{dy}{dx} = \pm \frac{1}{2x\sqrt{x^2}}$

proof

(nn

2

iac = sec2y	
dy = zeeczytowzy	
dy = 1 dx = 2402y tay2y	thuce
1+ tay 24 = SEE 24	$\frac{dM}{dh} = \frac{1}{2\chi \left[\pm \sqrt{\chi^2 - 1}\right]}$
{ ton 2 2y= ster 2g-1 }	$\frac{du_1}{d\lambda} = \frac{1}{\pm 2\chi \sqrt{\lambda^3}}$
$tay 2y = \pm \sqrt{3n^2y} - 1$ $tay 2y = \pm \sqrt{3n^2-1}$	ts BEQUIRES
min	

Question 136 (****)

A curve has equation given by

$$y = x\sqrt{x+1} , \ x \ge -1.$$

a) Show clearly that

$$\frac{dy}{dx} = \frac{1}{2}(3x+2)(x+1)^{-\frac{1}{2}}$$

The function f is defined as

$$f(x) = x\sqrt{x+1}\sin 2x, \ x \ge 1$$

b) Show further that

Maria,

I.G.B.

ŀG.p.

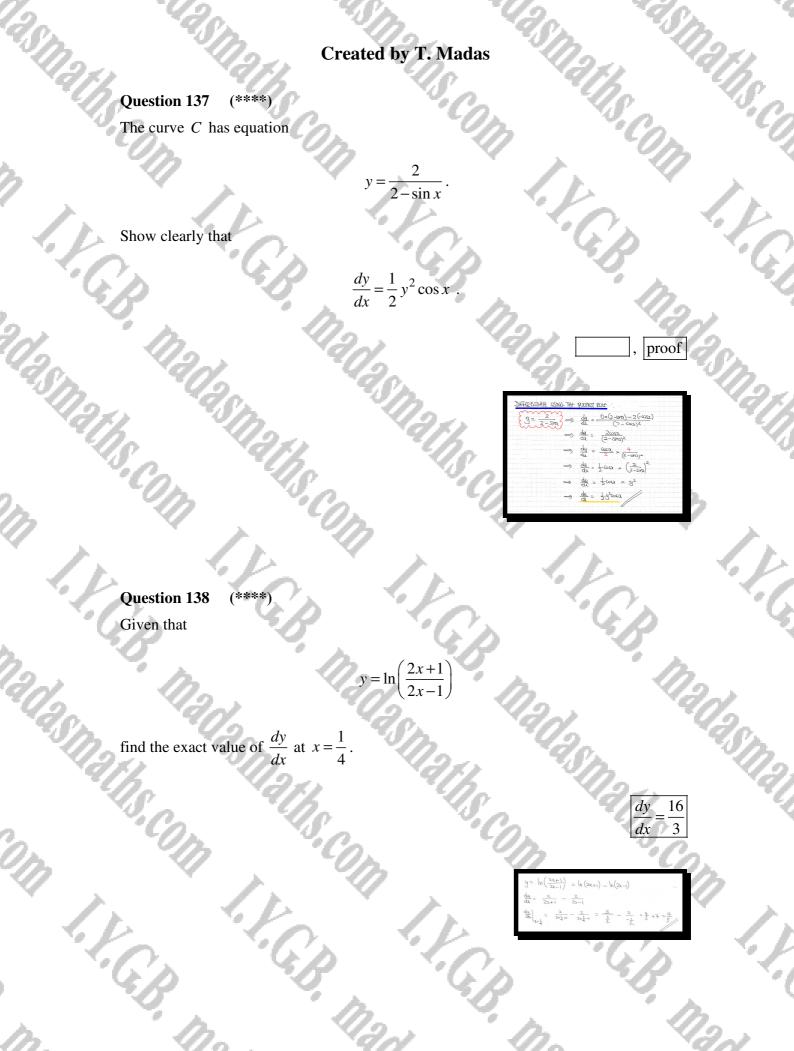
 $f'\left(\frac{\pi}{2}\right) = -\pi\sqrt{\frac{\pi}{2}+1} \ .$

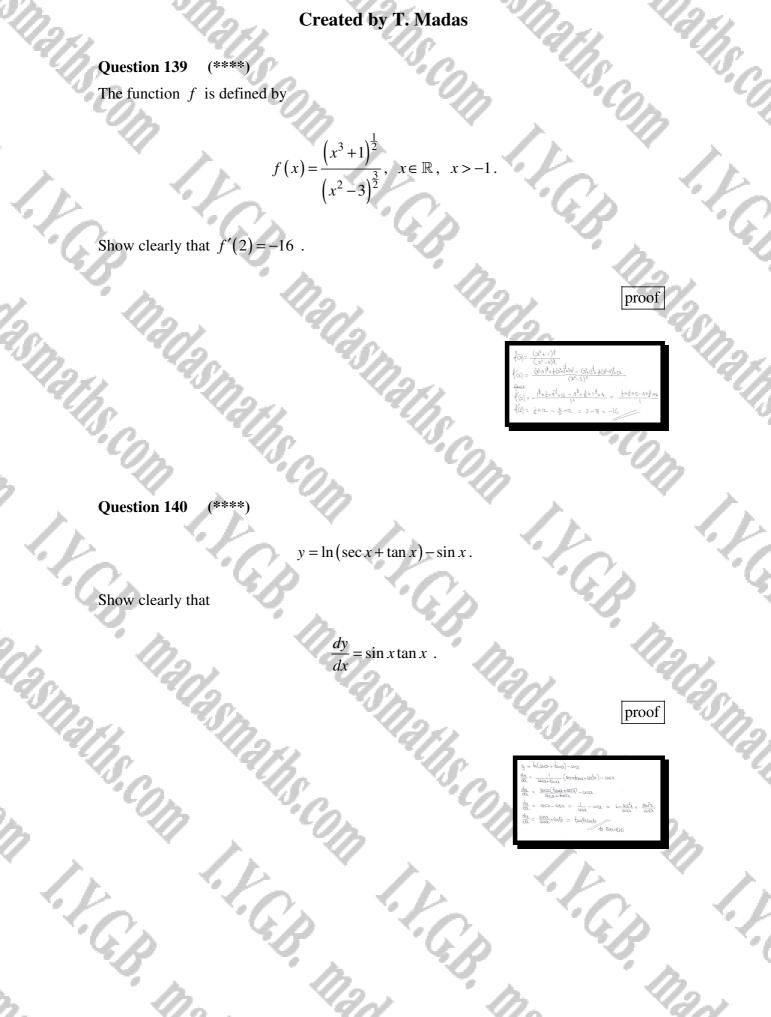
F.G.B.

Madas,

is.com

F.G.B.


lasma


2

madasm.

$\begin{aligned} y &= x \sqrt{2\alpha_0} \\ y &= x (2x+1)^{\frac{1}{2}} \\ \frac{dy}{dx} &= x (2x_0)^{\frac{1}{2}} + x x \frac{1}{2} (2x_0)^{\frac{1}{2}} \end{aligned}$	(b) $f(\alpha) = \frac{1}{2\sqrt{2}+1} \frac{1}{2\sqrt{2}} \frac{1}{2} \frac{1}{2}$
$\begin{aligned} \frac{dy}{d\lambda} &= (x_{i+1})^{\frac{1}{2}} + \frac{1}{2}x(x_{i+1})^{\frac{1}{2}} \\ \frac{dy}{d\lambda} &= \frac{1}{2}(x_{i+1})^{\frac{1}{2}} \left[2(x_{i+1})^{1} + \alpha \right] \end{aligned}$	+ 26522 • NO NHO TO SIMPLIFY • Styl(2× <u>X</u>)=0
$\frac{dy}{dt} = \frac{1}{2} \left(x_{+1} \right)^{\frac{1}{4}} \left(3 \alpha_{+2} \right)$	$\begin{array}{c} c_{OS}\left(2\times \frac{\pi}{2}\right) = -(\\ \downarrow_{PN} \leftarrow \\ \downarrow\left(\frac{\pi}{2}\right) = \frac{\pi}{2}\sqrt{\frac{\pi}{2}+1}\times (-2) \end{array}$
	$\approx -\pi \sqrt{\frac{\eta}{2}} + 1$

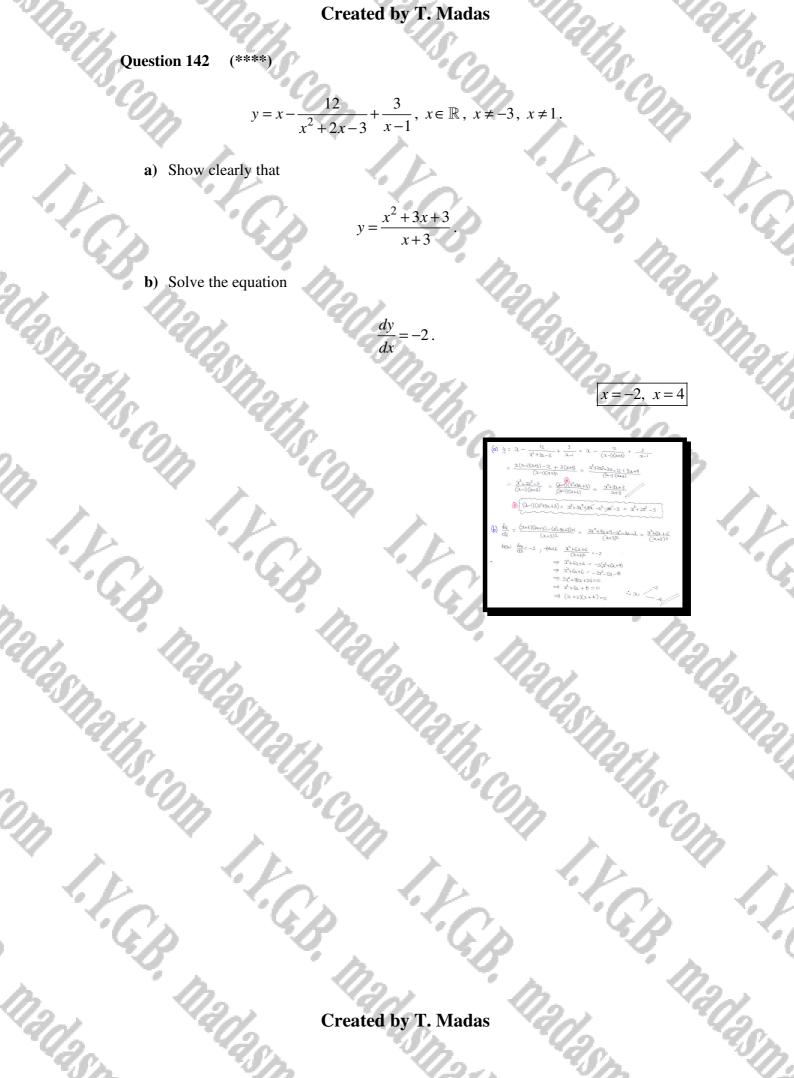
2017

Question 141 (****)

It is given that

 $\frac{d}{dx}(\tan 2x) = 2\sec^2 2x \,.$

a) Prove the validity of the above result by considering the derivatives of $\sin 2x$ and $\cos 2x$.


A curve has equation

 $y = 6x \tan 2x, x \in \mathbb{R}$.

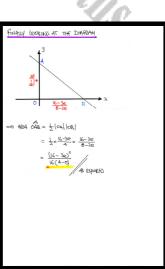
b) Show that the tangent to the curve at the point where $x = \frac{1}{8}\pi$ meets the y axis at the point with coordinates $(0, -\frac{3}{8}\pi^2)$.

a) $\frac{d}{dx}\left(\tan(2x)\right) = \frac{d}{dx}\left(\frac{\sin(2x)}{(\cos(2x))}\right) = \frac{\cos(2x)(2\cos(2x)) - (\sin(2x))(-2\sin(2x))}{\cos^2(2x)}$	
$= \frac{2\cos^{2}x_{1} + 2sm^{2}x_{1}}{\cos^{2}x_{1}} = \frac{2(sm^{2}x_{1}+\omega^{2}x_{2})}{\cos^{2}x_{1}}.$	
= 2 6222 = 29422	
(b) y= 62 tonyoz 5 = TAXEBT # (7, 34), 14= 6+37	
$\Rightarrow \frac{dy}{dz} = 6tay 2z + 6a \left(2atc2z\right) \left(2 - \frac{y}{2} - \frac{y}{2} - \frac{y}{2}\right)$	
$\Rightarrow \frac{d_{\mu}}{dt} = 6 \frac{d_{\mu}}{dt} 2x + 122 \frac{c^2}{2} \frac{y - \frac{w}{2}}{\omega \ln m} \frac{(c + \frac{w}{2})(z - \frac{w}{2})}{\omega \ln m}$	
$\Rightarrow \frac{dy}{dt} = 6 \tan \frac{\pi}{2} + 12 \pi \frac{\pi}{3} \operatorname{sk}^2 \frac{\pi}{4} \qquad \qquad y - \frac{3\pi}{4} = (6+3\pi)(-\frac{\pi}{2})$	
$\Rightarrow \frac{dy}{dx}\Big _{x=\frac{p}{2}} = 6 + 12x\frac{p}{2}x2$ $\qquad \qquad $	
$= \frac{dq}{dq} \int_{a} \frac{1}{q} = 6 + 3q^{2}$	
where a=the	
y= 6×F×tm == 3+T	

proof

Question 143 (****)

A curve has equation


 $y = \frac{1}{4}e^{2x-3} - 4\ln\left(\frac{1}{2}x\right), \quad x > 0.$

The tangent to the curve, at the point where x = 2, crosses the coordinate axes at the points A and B.

Show that the area of the triangle OAB, where O is the origin, is given by

 $\frac{(16-3e)^2}{16(4-e)}$

STAR BY DARRESTIATION		
$y = \frac{1}{4}e^{2x-3} \frac{1}{4}\ln(\frac{x}{2}) = \frac{1}{4}e^{2x-3} \frac{1}{4}(\ln x - \ln 2)$		
$\frac{du}{dx} = \frac{1}{2}e^{2x-3} - \frac{4}{x}$		
$\frac{dg}{dx}\Big _{\substack{z=2\\z=2}} = \frac{1}{2}e^{-2} = \frac{1}{2}e^{-2}$	2	
FIND THE EQUATION OF THE THATENT - FIND THE Y CO. ORDINATE		
OF THE POINT OF THUGBUCY		
2=2, y= te'-light 16 (2, te)		
\implies $y_{-}y_{0} = m(x_{-}x_{0})$		
\Rightarrow y - $4e = (2e-2)(\alpha-2)$		
NEXT FIND THE CO-DEDINATIS OF A. & B.		
• with 2=0	when y=0	
- y- te = (te-2)(-2) -	0- te = (te-2)(2-2)	
→9-4e=-e+4 =	$-\frac{1}{2}e = (\frac{1}{2}e-2)x - 2(\frac{1}{2}e-2)$	
→y=4-34e ⇒	$-\frac{1}{4}e = 4 - e + (\frac{1}{4}e - 2)x$	
$\Rightarrow y = \frac{16 - 3e}{4} \Rightarrow$	$\frac{3}{4}e - 4 = \left(\frac{1}{2}e - 2\right)a$	
	$\frac{3e}{4}e - 4 = \left(\frac{1}{2}e - 2\right)x$ $3e - 46 = \left(2e - 8\right)x$ $+ 4$	
	$x = \frac{3e - 16}{2e - 8} = \frac{16 - 3e}{8 - 3e}$	

proof

(****) **Question 144**

Show clearly that

Y.C.

 $\frac{d}{dx}\left(2e^{-3x}(2x+1)^{\frac{3}{2}}\right) = -12xe^{-3x}(2x+1)^{\frac{1}{2}}.$

(****) **Question 145**

Differentiate each of the following expressions with respect to x.

202

L.C.B.

a) $y = (2x + \ln x)^3$.

b)
$$y = \frac{x^2}{3x - 1}$$
.
c) $y = \sin^4 3x$.

F.C.B.

$$\frac{dy}{dx} = 3(2x + \ln x)^2 \left(2 + \frac{1}{x}\right), \quad \frac{dy}{dx} = \frac{3x^2 - 2x}{(3x - 1)^2}, \quad \frac{dy}{dx} = 12\sin^3 3x \cos 3x$$

 $\frac{d\mu}{d\lambda} = 3(2x + \ln x)^2 \times (2 + \frac{1}{2}) = 3(2 + \frac{1}{2})(2x + \ln x)^2$ $\frac{dy}{dx} = \frac{(3x-1)x(2x) - x^2x3}{(2x-1)^2} = \frac{6x^2-2x-3x^2}{(2x-1)^2}$ dy = 4(9432)x

2.00

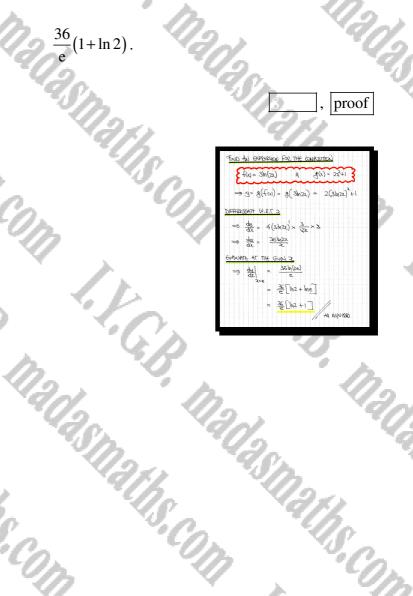
Question 146 (****) The functions *f* and *g* are defined by

I.C.B.

I.V.G.B. May

arns

I.F.G.B.


COM

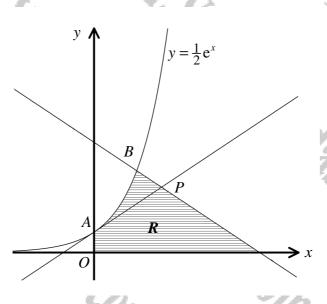
20

$$f(x) = 3\ln 2x, \ x \in \mathbb{R}, \ x > 0$$

 $g(x) = 2x^2 + 1, \ x \in \mathbb{R}.$

Show that the value of the gradient on the curve y = gf(x) at the point where x = e is

I.F.C.P.


Madası

The Com

2

Question 147 (****)

The graph of the curve with equation $y = \frac{1}{2}e^x$ is shown below.

The points A and B lie on the curve, where x = 0 and $x = \ln 4$, respectively.

a) Show that the equation of the tangent to the curve at the point A is

2y - x - 1 = 0.

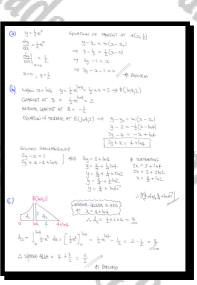
This tangent meets the normal to the curve at the point B at the point P.

b) Show that the coordinates of P are given by

 $\left(\frac{3}{2} + \ln 2, \frac{5}{4} + \ln \sqrt{2}\right).$

[continues overleaf]

202.51

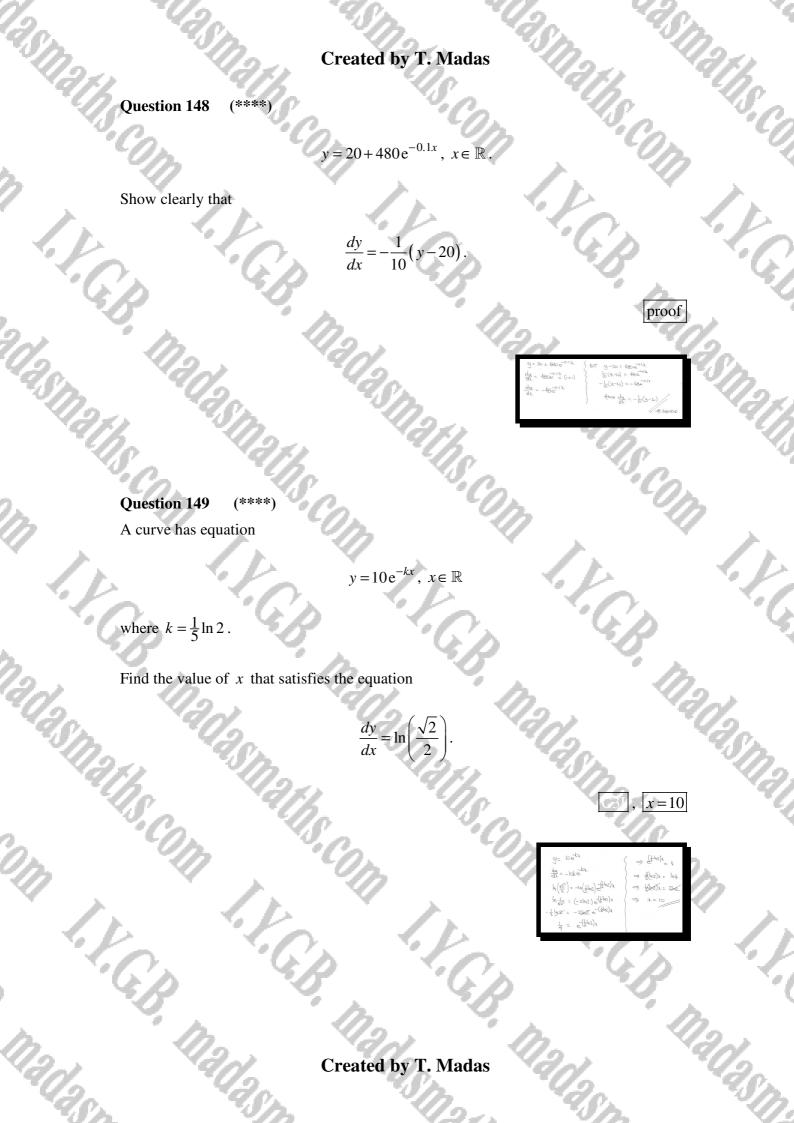

[continued from overleaf]

K.C.

F.G.B.

The region R bounded by the curve, the normal to the curve at B and coordinate axes is shown shaded in the diagram above.

c) Show that the area of R is $\frac{11}{2}$ square units.


F.G.B.

proof

200

21/2.5

2

Question 150 (****)

A curve C has equation

 $y = \frac{1}{2}e^{2x} - 4x + 1, x \in \mathbb{R}.$

The point P lies on C where $x = \ln 4$.

a) Show that the equation of the tangent to the curve at the point P is

 $y = 12x + 9 - 32 \ln 2$.

The point Q lies on C where $x = \ln 2$.

The normal to the curve at the point Q meets the tangent to the curve at the point P, at the point R.

b) Show that the coordinates of R are

 $(\ln 2, 9 - 20 \ln 2).$

proof

9	y= 2e2-4x+1	5 TANEAR (2142, 9-0142)
	$\frac{du}{d\lambda} = \frac{d\lambda}{e^{-1}} + $	$ \begin{array}{l} \Rightarrow & (q-8h(2) = 1/2 (q-2h_2) \\ \Rightarrow & (q-8h(2) = 1/2 (q-2h_2) \\ \Rightarrow & (q-1/2 + q) - 3/2 h(2) \\ \end{array} $
	$\begin{split} & \underset{i}{\overset{\text{dia}}}{\overset{\text{dia}}{\overset{\text{dia}}{\overset{\text{dia}}}}{\overset{\text{dia}}{\overset{\text{dia}}}}}}}}}}}}}}}}}}}}}}}}}}}} \\ $	$\begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ \\ & \end{array}{} \\ & \end{array}{} \\ & \end{array}{} \\ \\ \\ & \end{array}{} \\ \\ \\ \\ & \end{array}{} \\ \\ \\ \\ & \end{array}{} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} $ \\ \\ \\ \\

Question 151 (****)

A curve C has equation

$$y = (x+1)^2 e^{2x}, x \in \mathbb{R}.$$

- **a**) Show that
 - i. $\frac{dy}{dx} = 2(x+1)(x+2)e^{2x}$.

ii.
$$\frac{d^2 y}{dx^2} = 2(2x^2 + 8x + 7)e^{2x}$$
.

b) Hence, or otherwise, find the exact coordinates of the stationary points of C and determine their nature.

P	1. J.	$\left , \min(-1,0)\right , \max(-2,e^{-4})\right $
l	20. 40	b
a) B	y THE ADDOUT RULE	b) 301100 - 20 =0
τ	y= Cartler	$\implies 2(x+1)(x+1)e^{2x} = 0$
	$\frac{du}{dk} = 2(3kH)e^{2k} + (3kH)^2 e^{2k}_{-k,2}$	$ \rightarrow \exists z < \stackrel{-1}{\sim} (e^{z_k} \neq_0) $
	$\frac{dy}{dx} = 2e^{2x}(x_{H}) + 2e^{2x}(x_{H})^{2}$ $\frac{dy}{dx} = 2e^{2x}(x_{H}) \left[1 + (x_{H}) \right]$ Filting 2e^{2x}(x_{H})	
	$\frac{du}{dt} = 2e^{2}(x_{H})\left[1 + (x_{H})\right] + \frac{1}{400002} e^{2e(x_{H})}$	FIND THE Y G. ORDINATHS
	$\frac{da}{dk} = \sum e^{2\pi} (x_{k+1}) (x_{k+2})$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	$\mathcal{G}^{(1)} = 0$ is $\mathcal{G}^{(2)} \in (-1)^{2} e^{-\psi} = e^{-\psi}$
T)	TS LEPUILOS DIFFERENTIATE AFFUN "AFTUR REGEDENUN"	$\begin{pmatrix} -l_1 \circ \end{pmatrix}$ $\begin{pmatrix} -2_7 \frac{1}{27} \end{pmatrix}$
	$\frac{du}{dt} = 2e^{2\lambda}(u^2 + 3u + t)$	CHCCC THE MANNER
	04 110 (2) (2) (2) (1)	$\frac{d_{L_{2}}^{V}}{dt^{2}}\bigg _{2^{n-1}} = 2(2^{n}+6^{n}-6^{n}+6^{n}-6^{n}$
	$\frac{dt}{dt} = 2e^{2t} \left[2(2^{2}+3x+2) + (2x+3) \right]$ (ACOUSE $2e^{2t}$	Officer Course for a Contraction
		$\left.\frac{d^2 y}{d \lambda^2}\right _{\chi_{1-\chi_{1}}} = 2\left(8 - 16 + 7\right) \overline{e}^{-4} = -\frac{2}{e^{-4}} < o \qquad \underbrace{\left(2_1 \frac{1}{d_{1}}\right)}_{\text{IMAMALON}} = \frac{1}{1000}$
	$\frac{du}{dt} = 2e^{2t} \left[2t^2 + (u + u + 2t + 3) \right]$	OTEL 21-5 Et MARKING
	The second secon	· · · · · · · · · · · · · · · · · · ·
Ę	- AUTHUR be a (#)	and the second second second second
ŝ	$\frac{du}{dt} = 2e^{2t}(\pi H)(\pi + 2) \Leftrightarrow Tight + how Tight - how Tight + how Ti$	(1,2,2,2,3) , the set of the s
2	「「「 4 (x+1)(hz) + 3 (x+2) + 3 (x+	
-	$\begin{cases} 2e^{2t} \left[(2\pi)(0hz) + 2e^{-\chi/\chi}(2hz) + 2e^{-\chi/\chi}(2hz$	
	harman	

N.

(****) **Question 152**

A curve C is defined by the equation

I.Y.G.B.

1.1.6.5

^CO_D

I.F.G.B.

$$x = \sec\left(\frac{y}{2}\right), \ 0 \le y < \pi$$

a) Show clearly that

$$\sec\left(\frac{y}{2}\right), \ 0 \le y < \pi.$$
$$\frac{dy}{dx} = \frac{2}{x\sqrt{x^2 - 1}}.$$

b) Hence find the exact coordinates of the point of C, where $\frac{dy}{dx} = \sqrt{2}$.

$x = str(\frac{y}{2})$ $x = sr(\frac{y}{2})$	b) NOW du = 12
du = 2 src 2 ton 2	$\rightarrow \frac{2}{2\sqrt{\lambda^2-1}} = \sqrt{2}$
du = z	$\Rightarrow \frac{4}{\chi^2(g^2-1)} = 2$
	$\implies 4 = 2\alpha^2(x^2-1)$
(NOW) $1 + \log \frac{2y}{2} = \operatorname{Set}^{2} \frac{y}{2}$	$\implies 2 = \alpha^k - \alpha^2$
ζ ton == ± vset =-1 ζζ	⇒ 0= x ^y -a ¹ -2
SBOT OSYST ??	$\implies \circ = (\pi^2 + 1)(\pi^2 - 2)$
> 04% <e>></e>	$ \Rightarrow a^{1} = < \overset{\sim}{}$
$\left\langle i \int u_1 \frac{u}{2} = + \sqrt{\operatorname{Str}^2 \frac{u}{2} - 1} \right\rangle$	=) a = ± 12
di 2	SN2= SHC \$ 5 - N2 = SHC \$ 5
$\frac{d_{M}}{dk} = \frac{2}{\frac{2}{see\frac{W}{2}\sqrt{see\frac{2W}{2}-1}}}$	$\left\{ \begin{array}{c} \omega_{S} \frac{U}{2} = \frac{1}{42}, \\ \frac{U}{2} = \frac{U}{2} 2 \omega_{S} \right\} = -\frac{1}{42}, \\ \end{array} \right\}$
$\frac{du}{d\lambda} = \frac{2}{2\sqrt{32-1}} \frac{45}{24901800}$	(茶= 売すのய) (茶= 売すのu) (茶= 売まのu) (茶= อออu) (कออu) (कออu)) (कออu
	(9= 聖= 4m) 9= 聖= 4m
	ONLY SOUTION IS TE
	(尼,王)

20

I.C.P.

COM

 $\sqrt{2}, \frac{\pi}{2}$

ing,

I.F.G.B.

K.G.

1.

Created by T. Madas

I.Y.C.

Smains.co

aths com

Question 153 (****)

 $f(x) = -\frac{1}{2}x + \sin x \cos x, \ 0 \le x < 2\pi.$

Use differentiation to find the range of values of x for which f(x) is increasing.

K.G.B. $< x < \frac{7\pi}{\pi}$ 11π 5π $0 \le x <$ $< x < 2\pi$ 6 6 6 adasmaths.com madasm. madasmaths.com 문, 문, 관, 반 I.F.G.B. I.F.G.B. I.V.G.B. 6 Madasmaths.com 11303SM2 Madasmans.com Smaths.com COM I.Y.C.B. Madasa I.V.C.B Created by T. Madas

Question 154 (****)

A curve has equation

$$y = \arcsin 2x, \ -\frac{1}{2} \le x \le \frac{1}{2}, \ -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

a) By finding $\frac{dx}{dy}$ and using an appropriate trigonometric identity show that

$$\frac{dy}{dx} = \frac{2}{\sqrt{1-4x^2}} \,.$$

math

b) Show further that ...

C.B.

i.
$$\dots \frac{d^2 y}{dx^2} = \frac{Ax}{\left(1 - 4x^2\right)^{\frac{3}{2}}},$$

ii. $\dots \frac{d^3 y}{dx^3} = \frac{Bx^2 + C}{\left(1 - 4x^2\right)^{\frac{5}{2}}},$

where A, B and C are constants to be found.

- 1		1.0
٩	$\begin{array}{l} \underline{g} = nc_{\text{SUN} 2x} \\ \underline{g}_{\text{SUV}} = 2x \\ \lambda = \pm s_{\text{SUV}} \\ \underline{g}_{\text{SUV}} = \pm c_{\text{SUV}} \\ \underline{g}_{\text{SUV}} = \pm c_{\text{SUV}} \\ \underline{g}_{\text{SUV}} = \pm \frac{1}{\pm c_{\text{SUV}}} \end{array}$	
	NOW Codd + udd = 1 $Codd = -udd = 1$ $Codd = -udd = 0$	
	$\Rightarrow \frac{du}{db} = \frac{1}{\frac{1}{2\sqrt{1-2d_0}}}$ But song = 22. $\Rightarrow \frac{du}{da} = \frac{2}{\sqrt{1-2d_0^2}}$	
-	$\frac{du}{d\lambda} = \frac{2}{\sqrt{1-4\lambda^2}}$	

<u></u>		<u> </u>
7	where is differentiated by $\frac{2}{4} = \frac{2}{\sqrt{1-4x^2}} = 2 \cdot (1-4x^2)^{-\frac{1}{2}}$ $\frac{dy}{dx^2} = -\frac{1}{2} \times 2 \cdot (1-4x^2)^{-\frac{1}{2}} \cdot (1-4x^2)^{-\frac{1}{2}}$ $\frac{dy}{dx^2} = -\frac{1}{2} \times 2 \cdot (1-4x^2)^{-\frac{1}{2}}$	
9 Dif	FERENTIATE BY THE QUOTIN	
	$\frac{d\overline{d}}{d\overline{a}^{2}} = \frac{(1-bz^{2})^{\frac{1}{2}} + B - (1-bz^{2})^{\frac{1}{2}} + B - (1-bz^{2})^{\frac{1}{2}}}{\left[(1-bz^{2})^{\frac{1}{2}} + B - (1-bz^{2})^{\frac{1}{2}} + $	Bz× <u>≩((-42²)×(-62)</u> ≥)≹] ²
ŋ	$\frac{\partial^2 g}{\partial x^3} = \frac{8(1-4x^2)^{\frac{1}{2}} + 9}{(1-4x^2)^{\frac{1}{2}}}$	762 ² (1-42 ²)± 2) ³
⇒	$\frac{d^{3}y_{1}}{dx^{3}} = \frac{8(1-4x^{2})^{\frac{1}{2}}}{(1-4x^{2})^{\frac{1}{2}}}$	
⇒	$\frac{dR_{ij}}{d\lambda^3} = \frac{\Theta(1-4\lambda^2)^2(1+\lambda^2)^2}{(1-4\lambda^2)^{2\alpha}}$	
-	$\frac{d^{2}y}{dx^{2}} = \frac{8(1+8x^{2})}{(1-4x^{2})^{\frac{2}{2}}}$	
ŗ	$\frac{d^{3}q}{d\lambda^{3}} = \frac{64x^{2} + 8}{(1 - 4x^{2})^{\frac{6}{2}}}$	B = 64 C = 19


proof

Question 155 (****)

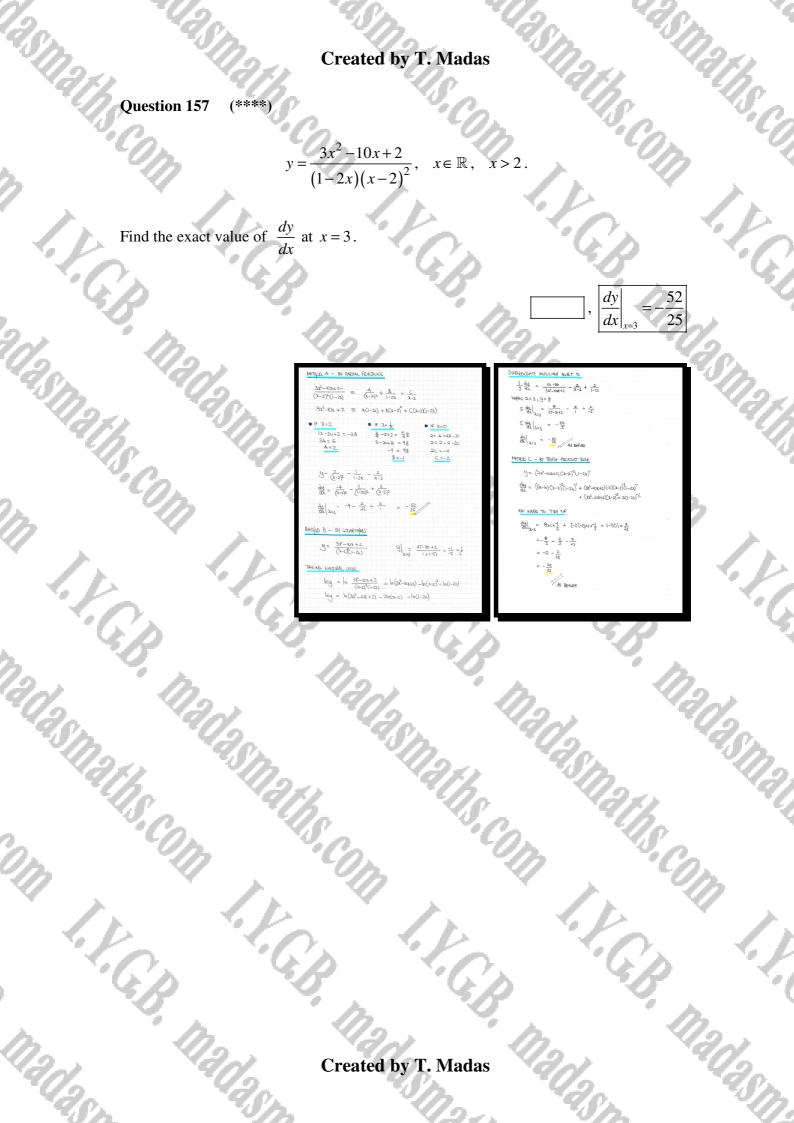
Show, with detailed workings, that

a) $\frac{d}{dx}(\cos 2x \tan 2x) = 2\cos 2x$.

 $\frac{d}{dx}$ $\left|\frac{x^2}{\left(3x-1\right)^2}\right| = \frac{1}{2}$ $\frac{2x}{\left(3x-1\right)^3}$ b)

proof

Question 156(****)A curve C has equation


P.C.P.

 $y = 2 + 2e^{-2x} - e^{-3x}, x \in \mathbb{R}.$

Find the exact coordinates of the stationary point of C and determine its nature.

 $\max\left(\ln\left(\frac{3}{4}\right)\right)$

• $\underline{O} = 2 + 2e^{2\lambda} - e^{3\lambda}$ • $\frac{d\underline{O}}{d\underline{O}} = -4e^{3\lambda} + 3e^{-3\lambda}$ • $\frac{d\underline{O}}{d\underline{O}} = -8e^{-2\lambda} - 9e^{-3\lambda}$	$ \overrightarrow{)} 3e^{2x} = 4e^{3x} $ $ \overrightarrow{)} \frac{3}{4} - \frac{e^{3x}}{e^{2x}} $ $ \overrightarrow{)} e^{2x} = \frac{3}{4} $ $ \overrightarrow{)} e^{2x} = \frac{3}{4} $ $ \overrightarrow{)} a = b(\frac{3}{4}) $	$\frac{1}{2} \frac{U(0)}{U(0)} = \frac{1}{2} \frac{\frac{1}{2} \frac{1}{2}}{\frac{1}{2}}$
$\begin{aligned} & \text{for } T_{P} = \frac{d_{1}}{d_{1}} = 0 \\ \Rightarrow & -te^{-2t} + 3e^{-2t} = 0 \\ \Rightarrow & \frac{3}{e^{2t}} = \frac{4}{e^{2t}} \end{aligned}$	$\vec{e}^{2} = \frac{4}{3}$ $\vec{e}^{2\lambda} = \frac{16}{9}, \vec{e}^{2\lambda} = \frac{49}{27}$ $\vec{e}^{2\lambda} = \frac{16}{9}, \vec{e}^{2\lambda} = \frac{49}{27}$ $\vec{e}^{2\lambda} = \frac{16}{27} = \frac{16}{27}$	$\frac{1}{2\pi} \ln \frac{1}{4}$ $= -\frac{24}{9} < 0$ $\therefore 4 \text{ MAXIMUM}$

(****) **Question 158**

20

asmaths.com

131/15.COM

I.V.G.B.

A curve C has equation

202.50

 $y = \frac{x^2}{\ln x}, \ x \in \mathbb{R}, \ x > 0.$

The Com

y = 2e

y= - 22

nadasm.

??*]*]

2

L.G.

6

nadasn.

mada

aths

I.V.G.B

Find, in exact form, the equation of the tangent to C at the point where $x = \sqrt{e}$.

nadasn

COM

I.F.G.B.

nadasmaths,

COM

I.F.G.B.

1.1.6.1

Created by T. Madas

l.Y.C.

Question 159(****)The function f is given by

 $f(x) \equiv e^{mx}(x^2+x), x \in \mathbb{R},$

where m is a non zero constant.

I.C.B.

I.C.B.

Show that f has two stationary points, for all non zero values of m.

, proof
DIFFERENTIATE WITH ELEPTET TO I BY THE PRODUCT RULE
$\begin{aligned} -& \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left(\chi_{1}^{2} + \chi \right) \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left(\chi_{1}^{2} + \chi \right) + e^{i \omega_{1}} \left(2x_{1} + 1 \right) \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right) + \left(2x_{1} + 1 \right) \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right) + \left(2x_{1} + 1 \right) \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right) + \left(2x_{1} + 1 \right) \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1} \right] \\ & \left\{ \begin{matrix} \dot{U} \end{matrix} \right\} = e^{i \Omega_{1}} \left[w_{1} \chi_{1}^{2} \chi_{1}$
SOLUNG BY ERED FOR STATIONARY POINTS
$\begin{split} & \mathcal{C}_{\text{RV}} \left[-\omega U_{2} + i\partial U + 5\nabla^{+1} - \mathcal{O} \\ & -\omega U_{2} + i\partial U + 2\nabla^{+1} - \mathcal{O} \\ & -\partial U_{2} + i\partial U + 1 - \mathcal{O} \\ & -\partial U_{2} + i\partial U + 2\nabla^{+1} - \mathcal{O}$
USING THE DISCRIMUNT b2- Lac
$(\mu_{M,S}) - f^* (m \times i) = m_{g} + i$ = $m_{g} + i$ > c
Werks Aways Two BAL 2017

3

I.C.B.

15.COM

102.51

(****) **Question 160**

 $y = \cot x , \ 0 < x < \frac{\pi}{2} .$

I.V.G.B.

Show, with detailed workings, that

- **a)** $\frac{d^2 y}{dx^2} = 2y(y^2+1).$

1.Y.C.B. III.

Smarns.co.

aths.com i.v.

Question 161 (****) The curve *C* has equation

~m

$$x = \sec^2 y + \tan y, \ 0 \le y < \frac{\pi}{2}$$

a) Show that

1.C.

F.C.B.

$$\frac{dy}{dx} = \frac{\cos^2 y}{2\tan y + 1},$$

b) Hence show that the equation of the normal to C at the point where $y = \frac{\pi}{4}$ is

 $4y + 24x = \pi + 72.$

	9
a) DIFFEEDTIATE LAUND THE INVILLE RULE	
a = secy +tony	
the = 25th (steey bury) + steey	
de = zeciy bung + seciy	
die = secie (2buy+1)	
$\frac{\partial u}{\partial y} = \frac{2 \tan(y+1)}{\cos y}$	
du = Gaty du = Juny +1 45 2440220	
b) OBTAN 2 CO-DENIATH AND FRASHAT	
a = sec= + ton= = 2+1=3	
$ \frac{\partial \mathcal{A}}{\partial z} = \frac{1}{2} = \frac{1}{2$	
(2NG GOADINJ7 -6 8 (3,1%)	
\rightarrow $y - y_0 = m(x - x_0)$ \rightarrow $y - F = -4(x - 3)$	
$\Rightarrow 9-\mp z - 6z + 12$	
$\Rightarrow 4y - \pi = -24z + 72$ $\Rightarrow 4y + 24z = \pi + 72$	
ts REPUBLIC	

, proof

·Ci,

Question 162 (****)

 $y = \arcsin x, \ -\frac{1}{2} \le x \le \frac{1}{2}, \ -\frac{\pi}{2} \le y \le \frac{\pi}{2}.$

a) By finding $\frac{dx}{dy}$ and using an appropriate trigonometric identity show that

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \, .$$

A curve C has equation

I.V.G.B. Mada

aths com

I.F.G.B.

$$y = x \arcsin 2x$$
, $-\frac{1}{2} \le x \le \frac{1}{2}$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

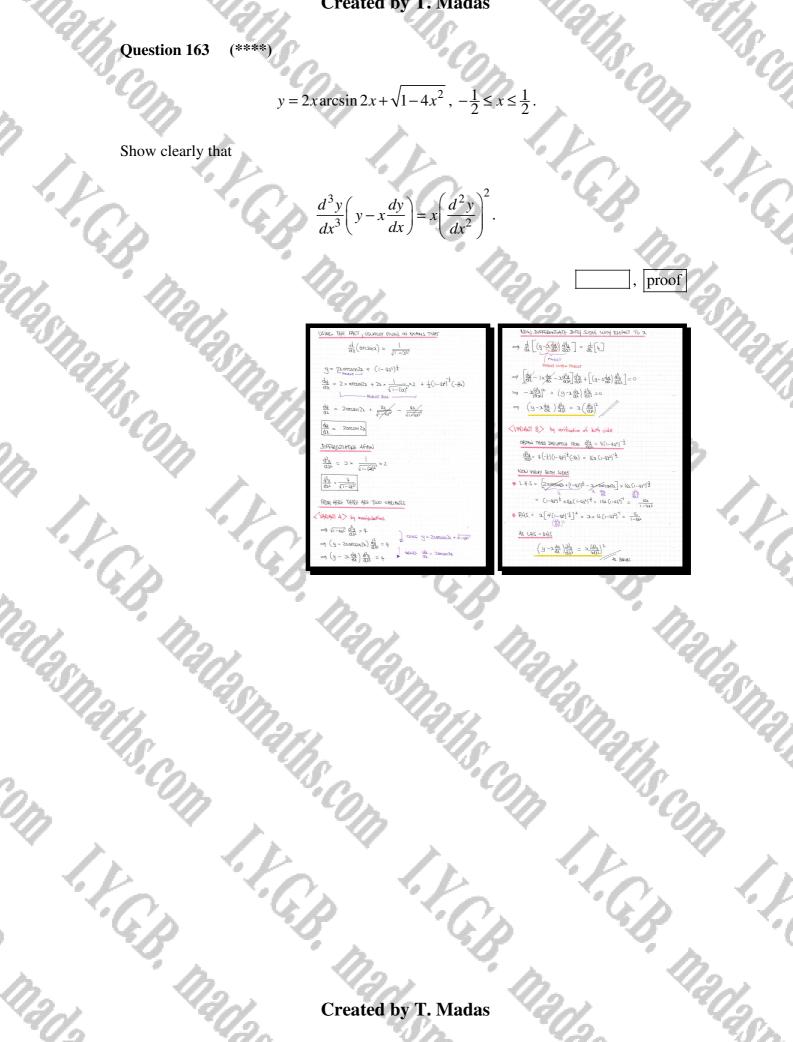
b) Find the exact value of $\frac{dy}{dx}$ at the point on *C* where $x = \frac{1}{4}$.

Y.C.B.

1.1.6.1

	$\frac{1}{6}(\pi + 2\sqrt{3})$
	1
BY THE INUMOSE BLUE	
⇒ y= arcamz ⇒ sany = a ⇒ a= sany	
$ \Rightarrow \frac{dg}{dy} = \log g $ $ \Rightarrow \frac{dg}{dy} = \frac{\log g}{1 + \sqrt{1 - 2m_1^2}} $ BU $ - \frac{1}{2} \leq y \leq \frac{1}{2} $	$\frac{1}{2}$ ∞ $0 \le \cos(1 = 0 \frac{1}{2} = 1/1 - \sin^2 \frac{1}{2}$
$ \begin{array}{c} \Rightarrow \frac{dx}{dy} = \sqrt{1 - xu_{y}^{2}} \\ \Rightarrow \frac{dx}{dy} = \sqrt{1 - x^{2}} \\ \Rightarrow \frac{dy}{dy} = \sqrt{1 - x^{2}} \\ \Rightarrow \frac{dy}{dy} = \sqrt{1 - x^{2}} \end{array} $	- AS SUNY=X
DIFFEENTIATION BY TH	E PRODUCT DULE ROM 22
y = watcawia	$\Rightarrow \frac{dy}{d\lambda} = 1 \times \operatorname{ancut} \lambda + 2 \times \frac{1}{\sqrt{1-q^2}} \times 2$ $\Rightarrow \frac{dy}{d\lambda} = 1 \times \operatorname{ancut} \lambda + 2 \times \frac{1}{\sqrt{1-q^2}} \times 2$ $\Rightarrow \frac{dy}{d\lambda} = \operatorname{ancut} \lambda + \frac{1}{\sqrt{1-q^2}} \times \frac{1}{\sqrt{1-q^2}}$
NOW WHEN 2= \$	
dula=4 = arcsm2	$+\frac{2x\frac{1}{4}}{\sqrt{1-4\frac{1}{4}}^2} = \frac{1}{6} + \frac{1}{\sqrt{2}} = \frac{1}{6} + \frac{1}{\sqrt{3}}$

Ĉ.B.


nana,

ths.com

A.G.

6

nadasn,

Question 164(****+)The curve C has equation

 $y = x\sqrt{\ln x} , \ x > 0 .$

The equation of the tangent to C at the point where x = a is

4y = bx - a,

where a and b are non zero constants.

Determine the exact value of a.

S.C.

START BY OBTAINING THE SCADINGT FINISTICAN
$\Rightarrow y = x C \ln x)^{\frac{1}{2}}$
$ \frac{du}{dx} = 1 \times (\ln z)^{\frac{1}{2}} + x \times \frac{1}{2} (\ln z)^{\frac{1}{2}} \times \frac{1}{x} $
$\Rightarrow \frac{du}{du} = (\ln x)^{\frac{1}{2}} + \frac{1}{2} (\ln x)^{\frac{1}{2}}$
ai – – – .
$\implies \frac{du}{dx} = \sqrt{\ln x^{\dagger}} + \frac{1}{2\sqrt{\ln x^{\dagger}}}$
NOW WE ARE GOINS THAT THE EXCATION OF THE TANGET, AT
THE POINT WHERE a= a is 44 = ba - a
ZLADTRAUGH OUT OF 20141 ZIHT
• $P(\alpha_1, \alpha \sqrt{\log \alpha})$ Must satisfy the cody: AND the physicity • $\frac{d\alpha}{d\alpha}\Big _{\frac{1}{2\alpha}} = \sqrt{\log \alpha} + \frac{1}{2\sqrt{\log \alpha}}$
all _{X=0} 2V Ma
• THE GRADING OF THE TRIVERNI IL L (BY INSPECTION)
scrift and suffit
$\sqrt{\ln a} + \frac{1}{2\sqrt{\ln a}} = \frac{b}{4} + \frac{1}{4\sqrt{\ln a}} = \frac{b}{4\sqrt{\ln a}} - \frac{1}{4\sqrt{\ln a}}$
GENOINS AT P GONOIGHT 41 MA = b - 1 OF TAXESD VIDO = b

 $\frac{b}{4} = \frac{1}{4} + \sqrt{\ln a}$

$\frac{g\gamma}{2\sqrt{50}} \frac{g}{100} \frac{g}{100} \frac{g}{100} = \frac{1}{4} + \sqrt{100}$ $\implies 2\sqrt{100} = \frac{1}{4} + \sqrt{100}$
$\rightarrow \sqrt{\ln a^{\dagger}} = 2$
⇒ lha = 4
⇒ a = e ^t
1

Ĉŀ.

2017

 $a = e^4$

(****+) Question 165

 $y = \arccos x$, $-1 \le x \le 1$, $0 \le y \le \pi$.

a) Prove that

 $\frac{1}{\sqrt{1-x^2}}.$ $\frac{dy}{dx}$

The curve C has equation given by

aths com

I.V.G.B

$$y = \arccos 4x , \ -\frac{1}{4} \le x \le \frac{1}{4}.$$

N.G.B. Madasm **b**) Show that an equation of the tangent to C where $x = \frac{1}{8}$, is given by

ろ

COM

Y.C.B. Mada

I.V.C.

$$3y + 8\sqrt{3}x = \pi + \sqrt{3}$$

proof

hs.com

Madası

I.C.B.

ths.com

he.c.

i.G.

(a) y = ancosa	(b) y= arccas (h)
$\Rightarrow \cos(anx \cos)$	$\frac{du}{d\lambda} = -\frac{1}{\sqrt{1-(4a)^2}} \times 4.$
=> cosy = a	
== = cosy *	$\frac{du}{dx} = \frac{-4}{\sqrt{1-16x^2}}$
⇒ du - smy	(@ When x= \$ 1 y= = (\$ 1 F)
=) dy =- 1 or = sing	$\int \frac{dJ}{dd} = -\frac{3}{8}\sqrt{3}$
-in-	Therefore
1= u 2 u 2 u 2 u 2 u 2 u 2 u 2 u 2 u 2 u	(J-====================================
$\left. \begin{array}{c} Shyy = 1 - coly \\ Shyy = + \sqrt{1 - coly} \end{array} \right $	$3g = \pi = -845^{\circ}(x - \frac{1}{4})$
and and	3y-TT = -BV32 + N3
=) du = - 1 do sy sta	$3y + BN3\alpha = TT + N3^T$
$=) \frac{du}{dx} = -\frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} d$	-15 EliştinBilo

Created by T. Madas

Smaths,

COM

Question 166 (****+)

2

 $f(x) \equiv \frac{\sqrt{1+6\sin^2 x}}{(1+\tan x)^2}, \ \tan x \neq -1.$

By using logarithmic differentiation, or otherwise, determine the value of $f'\left(\frac{\pi}{4}\right)$

202.81

20


F.G.B.

D

I.C.B.

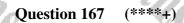
I.C.B.

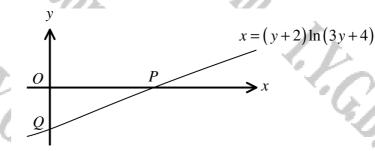
I.G.p.

 π

4

8


211281


COM

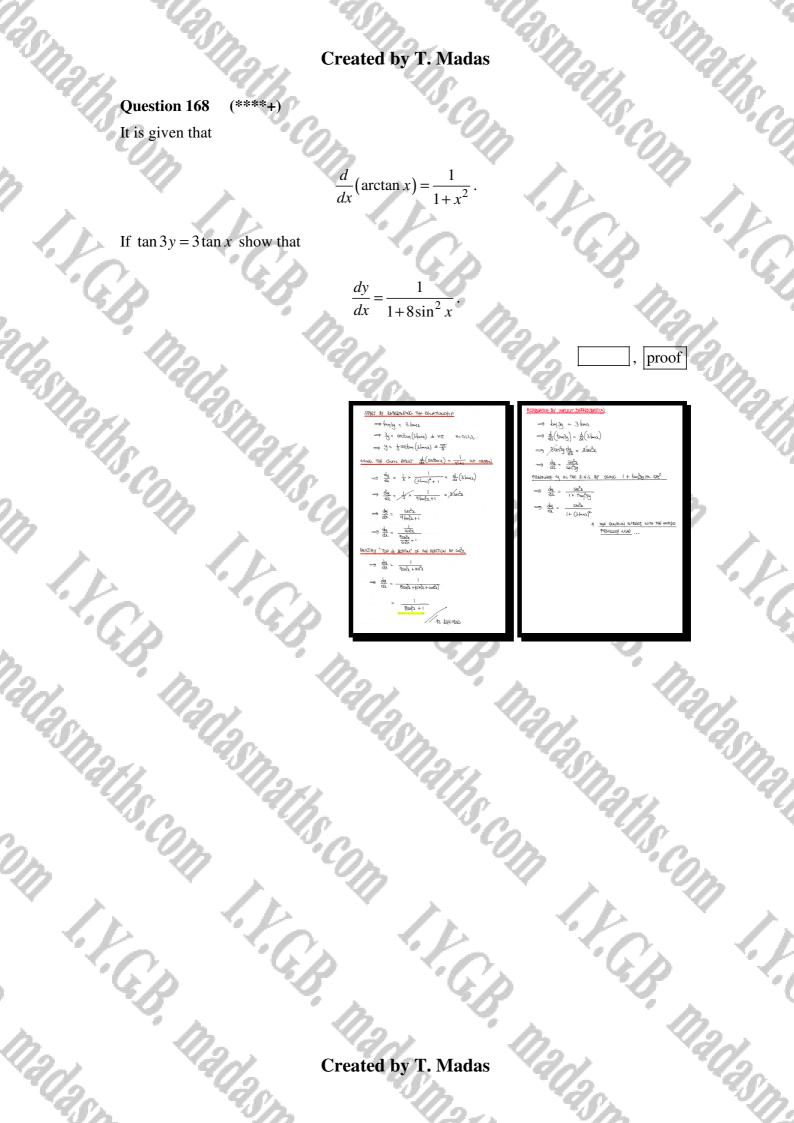
DIFFRENTIAR (X) WITH RESPECT T

$$\begin{split} & \frac{1}{4(1)} \frac{1}{4} \frac{f(x)}{x} = \frac{1}{x} \times \frac{1}{1+G(x)} \wedge \frac{1}{2} \wedge \frac{1}{1+G(x)} \wedge \frac{1}{1+G(x)} \wedge \frac{1}{2} \wedge \frac{1}{1+G(x)} \wedge \frac{1}{2} \wedge \frac{1}{2}$$

I.C.p

The figure above shows the graph of the curve with equation

$$x = (y+2)\ln(3y+4).$$


The curve meets the coordinate axes at the point P and at the point Q.

Determine the gradient, in exact from where appropriate, at P and at Q.

120

FIRSTLY OBTAIN) THE INTRECEPTS WITH THE AVES	
• $\lambda = 0$ $(y + \lambda) \ln(3y + \psi) = 0$ $\xi = \lambda$ $\xi = \psi$ $\lambda = \psi$	
Infreenhart a with essifier to y , unio the	labut pult
$ \Rightarrow dy = \ln(3g+4) + \frac{3g+4}{3g+4} \times 3 $ $ \Rightarrow dy = \ln(3g+4) + \frac{3(y+1)}{3g+4} \times 3 $	
SUMWATING & DECIPIOCATING AFTIN	1 2
a second for some of a first of the second	$=\frac{1}{2l_{n2}+\frac{3}{2}}=\frac{2}{4l_{n2}+3}$
$\frac{du}{dy}\Big _{y=-1} = \frac{1}{M} + 3$ $\frac{du}{dx}\Big _{q}$	

Question 169 (****+)

The curve C has equation

$$y = 4e^{-x} - 2e^{-2x} - e^{-3x}, x \in \mathbb{R}.$$

a) Show clearly that ...

I.C.B.

L.C.B.

i. ... $\frac{dy}{dx} = -e^{\alpha x} (4e^{2x} - 4e^x - 3),$

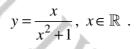
ii. ... $\frac{d^2 y}{dx^2} = e^{\alpha x} (4e^{2x} - 8e^x - 9),$

where α is a constant to be found.

b) Hence find the exact coordinates of the stationary point of C and determine its nature.

 $\max\left(\ln\left(\frac{3}{2}\right), \frac{40}{27}\right)$

madas,


$(a) (1) \lambda = f e_{x} - 5 e_{y} - 6 e_{y} = e_{y}$
$\frac{dy}{dz} = -4e^{2t} + 4e^{2t} + 3e^{-2t}$
$\frac{dy}{dt} = -e^{-2x} \left[4e^{2x} - 4e^{2} - 3 \right]$
$(\mathbf{I}) \frac{d^2y}{d\Omega^2} = 4e^{\lambda} - 3e^{2\lambda} - 9e^{2\lambda}$
$\frac{d^{2} q}{d Q^{2}} = e^{-2\alpha} \left[4 \mathcal{C} - \mathcal{B} \mathcal{C} - q^{2} \right] $ $4 \operatorname{tryon} \mathcal{C} \omega \mathcal{D}$
(b) $\frac{du}{d\lambda} = 0$
-e3x [de2- 4e2-3]=0 e \$=0.
4e2 - 4e2 - 3 =0
$(2e^{2}+1)(2e^{3}-3)=0$
e=
2 - 1
$x = \ln \frac{3}{2}$ $\frac{a^2}{3}$
دي. 2. م 2. م 2. م 2. م 2. م
· 9= 4e ² - 2e ⁻²² = e ⁻³⁴
$= 4 \times \frac{2}{3} - 2 \times \frac{4}{3} - \frac{8}{27}$
$= \frac{4\circ}{27} \qquad \text{if} \left(\ln \frac{3}{2} + \frac{4\circ}{27}\right)$
("2 22)
$\frac{d_{23}^2}{dx^2} = \frac{1}{4} \times \frac{2}{3} - 8 \times \frac{1}{9} - 9 \times \frac{2}{27} = -\frac{32}{3} < 0$
2011 - 113 - 11 - 12 - 3 <0 x= h=
1. UAX

Y.G.B.

2

(****+) **Question 170**

The curve C has equation

a) Show that there is no point on C where the gradient is -1.

2017

I.G.B.

I.Y.G.B.

1.C.B. 1113/331

COM

I.F.G.B.

b) Find the coordinates of the points on C where the gradient is $\frac{12}{25}$.

$\left \frac{1}{2} \right $	$(\frac{2}{5}), (-\frac{1}{2}, -\frac{2}{5})$
$\begin{array}{l} \begin{array}{c} \begin{array}{c} \underline{q} = \frac{\chi}{\chi^2 + 1} \\ \underline{q} = \frac{\chi}{\chi^2 + 1} \\ \underline{q} = \frac{dg}{\partial \chi} = \frac{dg}{(\chi^2 + 1)\chi} \\ \end{array}$	$\begin{array}{c} \begin{array}{c} \underline{l}_{2} \\ \underline{l}_{2} \\ \underline{l}_{3} \end{array} = \begin{array}{c} \underline{l} - \underline{\alpha}^{2} \\ \underline{\alpha}^{4} + \underline{\alpha}^{2} + \underline{l} \\ \underline{\alpha}^{4} + \underline{\alpha}^{2} + \underline{l} \end{array}$
$\Rightarrow \frac{\partial U}{\partial \lambda} = \frac{(\lambda^2 + i)\lambda}{(\lambda^2 + i)\lambda^2}$ $\Rightarrow \frac{d h}{d \lambda} = \frac{(\lambda^2 + i)\lambda^2}{(\lambda^2 + i)\lambda^2}$ $\int \frac{d h}{d \lambda} = \frac{(\lambda - \alpha)^2}{(\lambda^2 + i)\lambda^2}$ $\Rightarrow -1 = \frac{(\lambda - \alpha)^2}{(\lambda^2 + i)\lambda^2}$	$ \Rightarrow \frac{1}{124} + 24b_1^{2} + 12 = 25 - 25b_1^{2} $ $ \Rightarrow \frac{1}{124} + 4b_2^{2} - 13 = 0 $ $ \bullet \frac{1}{99000207(16)} + \frac{1}{2} + \frac{1}$
$\begin{array}{c} \neg \ \underline{x}^{4} + \underline{\lambda}^{2} + = \underline{x}^{2} - \\ \Rightarrow \ \underline{x}^{4} + \underline{x}^{3} + 2 = 0 \\ b^{3} - t_{4}c_{c} for propagation \\ (N) \ \underline{x}^{3}_{c} \\ \Rightarrow \ ^{2} - \frac{t_{1}x_{1}}{t_{1}x_{2}} = -7 < 0 \\ \Rightarrow \ No \ 3cutton \ \underline{d}\underline{w}_{c} + - \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

5.

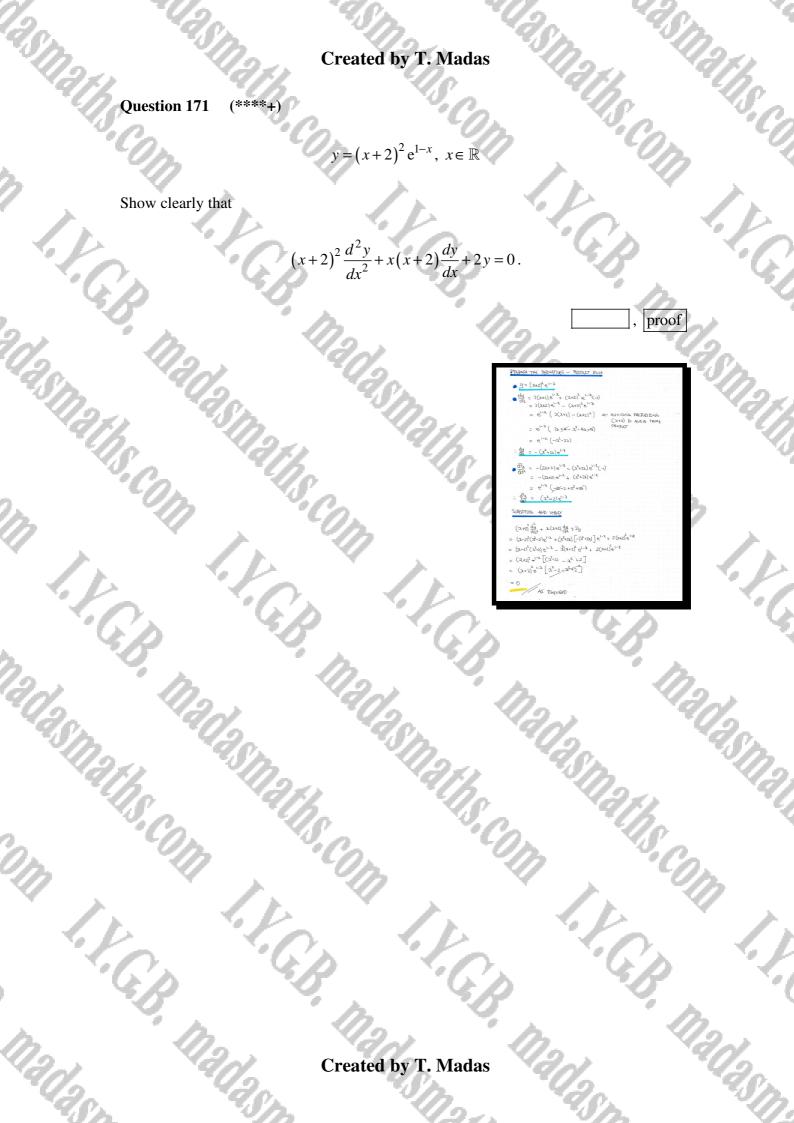
I.C.B.

nadasm

COM

:1

Madasm


2011

18.COM

R

Created by T. Madas

Madasmath

Question 172 (****+)

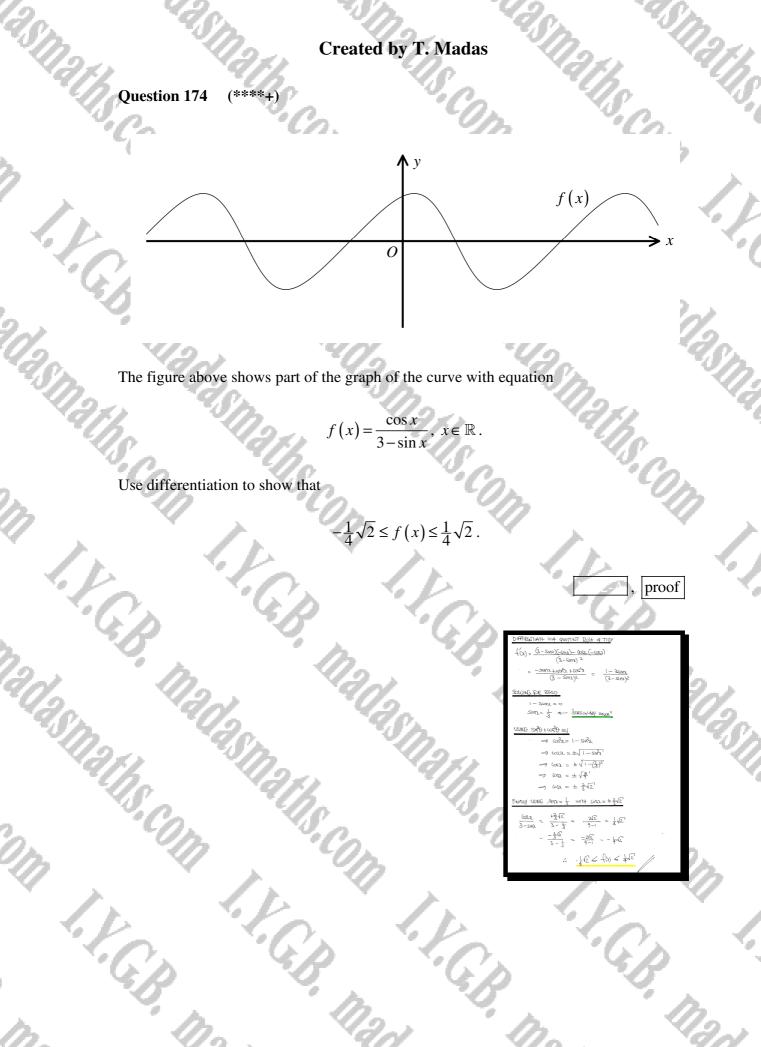
A curve has equation

 $y = 4e^{2-x} - e^{4-2x}, x \in \mathbb{R}.$

Use differentiation to find the exact coordinates of the stationary point of the curve, and further determine its nature.

	,	$\max\left(2-\ln 2,4\right)$
2		
$\begin{array}{c} \left(\begin{array}{c} 1 \\ g \in \left\{\frac{2 - 4}{6}, -\frac{4 - 2}{6}\right\} \\ \left(\frac{2 - 4}{6}, -\frac{2 - 4}{6}, -\frac{4 - 2}{6}\right) \\ \left(\frac{2 - 4}{6}, -\frac{2 - 4}{6}, -\frac{4 - 2}{6}\right) \\ \left(\frac{2 - 4}{6}, -\frac{4 - 2}{6}, -\frac{4 - 2}{6}\right) \\ \left(\frac{2 - 4}{6}, -\frac{4 - 2}{6}, -\frac{2 - 4}{6}, -\frac{2 - 4 - 4 - 4 - 4}{6}, -\frac{2 - 4 - 4 - 4 - 4}{6}, -\frac{2 - 4 - 4 - 4 - 4}{6}, -\frac{2 - 4 - 4 - 4 - 4 - 4}{6}, -\frac{2 - 4 - 4 - 4 - 4 - 4 - 4}{6}, -2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - $	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c} \overrightarrow{\qquad} e^{2\pi A} \left(\begin{array}{c} e^{2\pi A} \\ e^{2\pi A} - 2 \end{array} \right) = 0 \\ \overrightarrow{\qquad} e^{2\pi A} = 2 e^{2\pi A} e^{2\pi A} \\ \overrightarrow{\qquad} 2 = 2 - 2 \ln 2 \\ \overrightarrow{\qquad} 2 = 2 - 2 \ln 2 \\ \overrightarrow{\qquad} 2 = 2 - 2 \ln 2 \\ \overrightarrow{\qquad} 3 = 2 - 2 \ln 2 \\ \overrightarrow{\qquad} 3 = 2 - 2 \ln 2 \\ \overrightarrow{\qquad} 3 = 2 - 2 \ln 2 \\ \overrightarrow{\qquad} 3 = 2 - 2 \ln 2 \\ \overrightarrow{\qquad} 3 = 2 + 2 \ln 2 \\ \overrightarrow{\qquad} 4 = 2 + 2 \ln 2 + 2 \ln 2 \\ \overrightarrow{\qquad} 4 = 2 + 2 + 2 \ln 2 + 2 \ln 2 \\ \overrightarrow{\qquad} 4 = 2 + 2 + 2 \ln 2 + 2 + 2 \ln 2 + 2 + 2 + 2 +$

Question 173 (****+)


The point P lies on the curve with equation

 $y = x\sqrt{\ln x} , \ x > 1 .$

Determine the two possible sets of coordinates of P given further that the gradient of the curve at P is $\frac{3}{2}$.

 $\bigcup P(e,e)$

START BY DIAPARATIATING MANG THAT PRODUCT RUL
$\Rightarrow y = \alpha (h\alpha)^{\frac{1}{2}}$
$\Rightarrow \frac{dy}{dt} = 1 \times (\ln x)^{\frac{1}{2}} + x \times \frac{1}{2} (\ln x)^{\frac{1}{2}} \pm \frac{1}{2}$
$\Rightarrow \frac{dy}{dt} = (\ln a)^{\frac{1}{2}} + \frac{1}{2}(\ln a)^{\frac{1}{2}}$
$\rightarrow \frac{du}{d\lambda} = \sqrt{\ln \lambda} + \frac{1}{2\sqrt{\ln \lambda}}$
Now we explore $\frac{dy}{dx} = \frac{2}{2}$
$=$ $\sqrt{\ln 2} + \frac{1}{2\sqrt{\ln 2}} = \frac{3}{2}$
$\Rightarrow A + \frac{1}{2A} = \frac{3}{2} \left\{ A = \sqrt{Ma_1^2} \right\}$
\Rightarrow 2A + $\frac{1}{A}$ = 3
$\Rightarrow 2\lambda^2 + 1 = 3A$
$\implies 2A^{2} - 3 + 1 = 0$
$\Rightarrow (2A-1)(A-1)=0$
$\Rightarrow 4 < \frac{1}{2}$
$\rightarrow \sqrt{\ln^2} = \frac{12}{2}$
\implies line = $< \frac{14}{3}$
$\neg u = < e^{i\frac{1}{4}} g^{\pm} < e^{\frac{1}{4}x\frac{1}{2}} e^{i\frac{1}{4}x\frac{1}{2}}$
$\therefore \left(e^{\ddagger}, \frac{1}{2} e^{\ddagger} \right) q \left(e_{i} e \right)$

Question 175 (****+)

The curve C has equation given by

$$y = \frac{e^x}{\sin x}, \quad 0 < x < \pi$$

a) Show clearly that

$$\frac{dy}{dx} = y(1 - \cot x) \,.$$

b) Show further that

$$\frac{d^2 y}{dx^2} = \frac{dy}{dx} (1 - \cot x) + y \csc^2 x.$$

c) Use the above results to find the exact coordinates of the turning point of C, and determine its nature.

(a) $\begin{array}{l} (1 + \frac{1}{2}) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left($	$\begin{array}{c} \underline{(x_1)_{k}} & \mbox{The SEQUE Lifeworks} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
b) <u>Sufferentiation</u> the shear of part (a) with elever to a $\rightarrow \frac{d}{dx} \left(\frac{d}{dx} \right) = \frac{d}{dx} \left[\frac{1}{\sqrt{(1-\omega t_0)}} \right] \qquad $	
$ \begin{array}{rcl} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ \end{array} \end{array} \xrightarrow{d_1} \begin{array}{c} & & & & \\ & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ \end{array} \xrightarrow{d_1} \begin{array}{d} & & \\ \end{array} \xrightarrow{d_1} \begin{array}{c} & & & \\ \end{array} \xrightarrow{d_1}$	
$\rightarrow g(1-u_{\lambda}) = 0$ $\rightarrow 1-u_{\lambda} = 0$ $g(t+u_{\lambda}) = 1$ $\rightarrow bu_{\lambda} = 1$ $\rightarrow bu_{\lambda} = 1$ $(avy south) 0 < x < t$	
$f(y) = \frac{e^{\frac{\pi}{3}}}{\sin \frac{\pi}{3}} = \frac{e^{\frac{\pi}{3}}}{\frac{\sqrt{2}}{2}} \approx \sqrt{\frac{2e^{\frac{\pi}{3}}}{\sqrt{2}}}$	

21120

 $\frac{\pi}{4}, \sqrt{2}e^{\frac{\pi}{4}}$

min at

Question 176 (****+) The curve *C* has equation

KG

 $y = e^{-\frac{1}{2}x}, x \in \mathbb{R}.$

The normal to the curve at the point P where x = p passes through the origin.

2017

Show that x = p is a solution of the equation

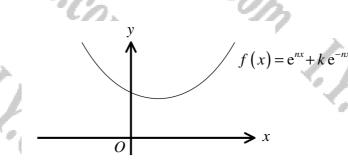
 $2xe^x - 1 = 0.$

10	n
$\begin{split} y_{\pm} &= e^{\frac{1}{2}x} \\ & y_{\pm} &= -\frac{1}{2}e^{\frac{1}{2}x} \\ & hon & x p \mid y = \frac{1}{2}e^{\frac{1}{2}x} \\ & hon & hon \\ & hon & hon \\ & -\frac{1}{-\frac{1}{2}e^{\frac{1}{2}x}} = \frac{2}{e^{\frac{1}{2}x}} = 2e^{\frac{1}{2}x} \end{split}$	$\begin{array}{l} \operatorname{constraint}_{(0)} \operatorname{constraint}_{(0)}$

21/2.51

C.H.

200


18.COM

proof

madasn.

mana.

(****+) Question 177

The figure above shows the graph of the curve with equation

 $f(x) = e^{nx} + k e^{-nx}, x \in \mathbb{R}, k > 1, n > 0.$

Find the range of f(x) in exact form.

9

200

I.V.G.B. Mag

ŀG.p.

LOCATE THE LO. ORDINARTES OF	THE MINIMUM BY DIFFRENTIATION
f(x) = e"x + ke"x	
(a) = nenz-nkenz	
$cw \in f(a) = 0$	
→ ne ^{nz} -nkē ^{nz} =0	
=> e N7 - Feyz =0	n≠o
$\rightarrow e^{n_1} = \lambda e^{n_2}$	
$\Rightarrow e^{ii\lambda} = \frac{k}{e^{iix}}$	
$\rightarrow (e^{n_k})^k = k$	
$\rightarrow e_{N\mathcal{F}} = + \sqrt{F_{I}}$	e ^{nx} > 0
EXT WE CAN FIND THE IS 10.0	eonivate - we bait require a
= q= e"+ + te"	
= y= en + k	
$\Rightarrow y = \sqrt{k} + \frac{k}{\sqrt{k}}$	
⇒y= Vk + vE	
⇒y= 2√k	
. THE ENGE IS fa);	> 2NE
1019	

F.G.P.

1121/2.51

 $f(x) \ge 2\sqrt{k}$

:0₀

nadasm

Question 178 (****+)

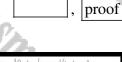
A curve has equation

 $\Big|, \text{ where } \tan\left(x + \frac{\pi}{4}\right) > 0.$ $y = \ln \left| \tan \left(x + \frac{\pi}{4} \right) \right|$

Show that

2ths.com

I.F.G.p


adasmaths.com

 $\frac{dy}{dx} = 2\sec 2x \ .$

2017

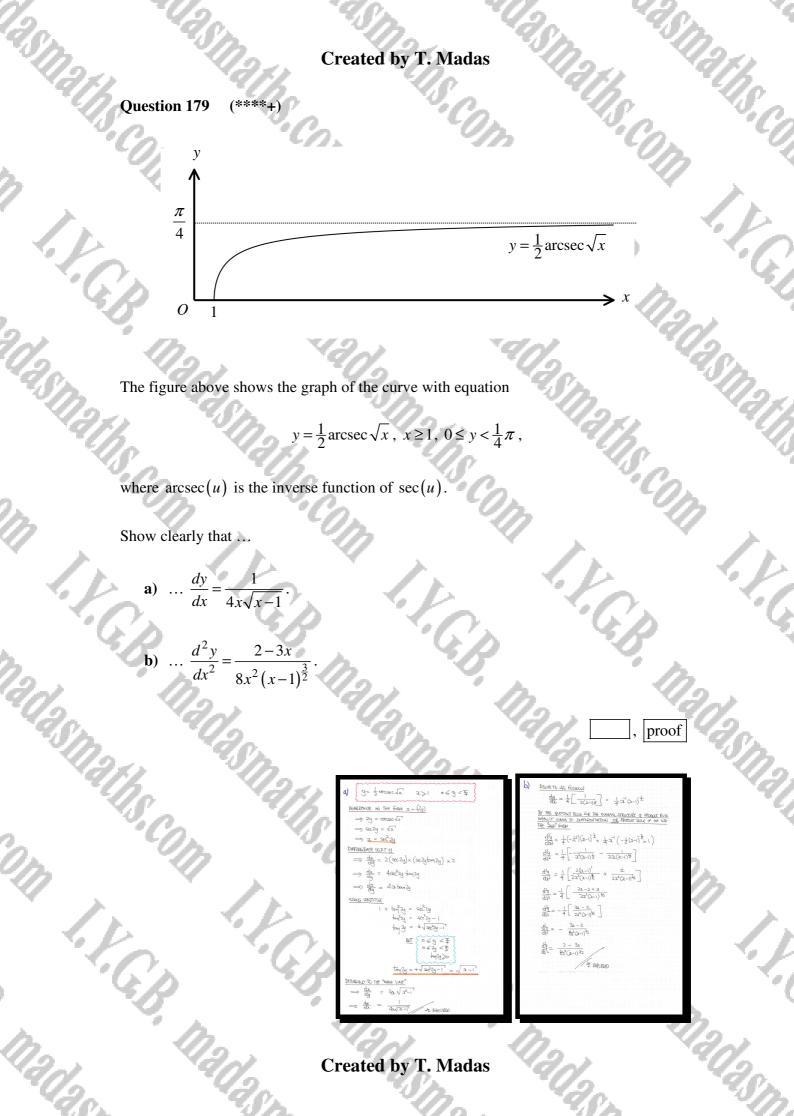
I.F.G.B.

K.C.A

he.

mada

I.F.C.B.


ths.com

 $\Delta t = (t_1, t_2) = \frac{1}{t_2}$ $\dot{p} = \frac{1}{t_2} = (x_1 t_1) \frac{1}{t_2}$ THE JUITON TRAITERED THE

K.C.B.

- $$\begin{split} y &= \ln \left[t_{sy} \left(x + \frac{T}{T} \right) \right] \\ \frac{dy}{dx} &= \frac{1}{+ t_{sy} \left(x + \frac{T}{T} \right)} \times \sec^2 \left(x + \frac{T}{T} \right) \end{split}$$
- $\frac{d_{4}}{d\lambda} = \frac{1}{\frac{8}{100} (x+1) 200} \times \frac{1}{(x+1) 200}$
- $\frac{dy}{dt} = \frac{1}{-5\pi(z+\frac{\pi}{2})\cos(z+\frac{\pi}{2})}$
- XPANO UNICO THE COMPOUND of
- 22 = [SM2cozy + coszcer][cazer# SM2SMF]
- $\frac{1}{2} = \frac{1}{\left(\frac{1}{2} 3n\alpha + \frac{1}{2} \cos_2\right) \left(\frac{1}{2} \cos_2 \frac{1}{2} \cos_2\right)} \qquad \begin{cases} \cos \frac{1}{2} \frac{1}{2} \cos \frac{1}{2} + \frac{1}{2} & \frac{1}{2} \\ \sin \frac{1}{2} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} & \frac{1}{2} \\ \cos \frac{1}{2} & \cos \frac{1}{2} \\ \cos \frac{1}{2} \\$
- $\frac{dy}{dx} = \frac{1}{\frac{1}{2}\cos x \frac{1}{2}ayx}$ $\frac{dy}{dx} = \frac{2}{\cos x \frac{1}{2}ayx}$
- $dy_{\lambda} = \frac{2}{c_{0}2_{\lambda}}$
- da = 256(2). By = 256(2). Ho Reparedo

2017

(****+) Question 180

Differentiate the following expressions with respect to x, fully simplifying the a) answers.

 $y = (4x - 1)e^{-x}$. i.

 $ii. \quad y = 4\sin^3 2x \, .$

b) Prove that

I.V.C.B. Madasm

COM

arns

I.F.G.B.

Smaths.

 $\frac{d}{dx}\left(\frac{x-1}{\sqrt{x}+1}\right) = \frac{1}{2\sqrt{x}}.$

COM

I.V.G.B.

I.Y.C.J

 $\frac{dy}{dx} = \mathrm{e}^{-x} (5 - 4x) \, ,$

	~	(a) (1) y= (42-1)e-2	(II) y= 4s14 ³ zx = 4(s14 zx) ³
11		$\Rightarrow \frac{du}{dx} = 4e^{x} + (4x-1)(-4)$	e^{λ} $\Rightarrow \frac{d\mu}{d\lambda} = 12 \sin^2 2\lambda (2(\mu s, 2))$
Son -		$\Rightarrow \frac{dy}{dt} = e^{2} \left(4 - (4x-1)\right)$	
		$= \frac{dy}{dx} = e^{2}(z-4x)$	
	<u>}</u>	(b) $\frac{dx}{dx}\left(\frac{x-i}{xx+i}\right) = \frac{\sqrt{x}+i}{\sqrt{x}+i}$	$\frac{(2-i)\frac{1}{2}\lambda^{\frac{1}{2}}}{(\sqrt{\lambda^2}+i)^2} = \frac{2\lambda^{\frac{1}{2}}+i-\frac{1}{2}\lambda^{\frac{1}{2}}+\frac{1}{2}\lambda^{\frac{1}{2}}}{(\sqrt{\lambda^2}+i)^2}$
	· .	$=\frac{\frac{1}{2}\Omega^{\frac{1}{2}}+1}{(\sqrt{\chi^{2}+1})}$	$\frac{\frac{1}{2}\chi^{-\frac{1}{2}}}{2} = \frac{\frac{1}{2}\chi^{\frac{1}{2}}(\chi + 2\chi^{\frac{1}{2}} + 1)}{(\sqrt{2} + 1)^2}$
		$= \frac{\frac{1}{2}x^{\frac{1}{2}}(\alpha, \lambda)}{(\alpha + \alpha)}$	$\frac{2\sqrt{\chi^2+1}}{2\sqrt{\chi^2+1}} = \frac{1}{2\sqrt{\chi^2}} = \frac{1}{2\sqrt{\chi^2}} + \frac{1}{4\pi} \frac{1}{2\sqrt{\chi^2}}$
	50	AUTOMATINE	$\frac{1}{1} - (i\overline{x}^{2}+1) = \frac{1}{c\overline{x}} \left[\sqrt{x^{2}-1} \right]$
	11.12		$=\frac{1}{2}\lambda^{\frac{1}{2}}=\frac{1}{2N\lambda^{\frac{1}{2}}}$
	- 514		43 240186D
125	0		
10 .			
"IN		In -	
- 00		X9.,	
- <i>G</i>	D.	-901	
	<i>n</i>	- G.S.	
1	10.	1 1 A	P ₁
	di		
b	16		
			011
0	- YO	0	*(D_
1		<i>.</i>	10
6 <i>11 1</i>		7 <i>1</i> k.	

dasmaths.

I.V.G.B.

Madası

2017

 $\frac{dy}{dx} = 24\sin^2 2x\cos 2x$

F.C.B.

R

11.

madasm.

Created by T. Madas

I.C.

Question 181 (****+) The curve *C* has equation

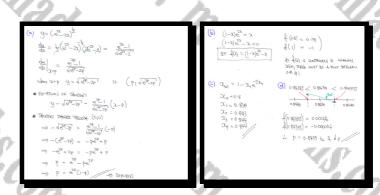
 $y = \sqrt{e^{2x} - 2x}$, $e^{2x} > 2x$.

 $(1-x)e^{2x} = x.$

The tangent to the curve at the point P where x = p passes through the origin.

a) Show that x = p is a solution of the equation

b) Show that the equation $(1-x)e^{2x} = x$ has root between 0.8 and 1.


The iterative formula

 $x_{n+1} = 1 - x_n e^{-2x_n}$

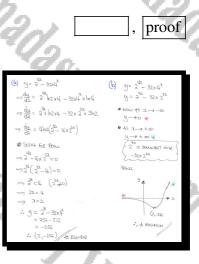
with $x_0 = 0.8$ is used to find this root.

c) Find, to 3 decimal places, the value of x_1 , x_2 , x_3 and x_4 .

d) Hence show that the value of p is 0.8439, correct to 4 decimal places.

 $|, |x_1 = 0.838, x_2 = 0.843, x_3 = 0.844, x_4 = 0.844$

Question 182 (****+)


·C,

C.P.

The curve C has equation

 $y = 2^{4x} - 32 \times 4^x, \ x \ge 0$.

- **a**) Show that C has a turning point at (2, -256).
- **b**) Without further differentiation explain why this turning point must be a minimum.

17281

Is.con

2

Question 183 (****+) The curve *C* has equation

I.C.B.

. G.B. $y = 4 \times 8^{x+1} - 2^{x+1}$

Show that an equation of the tangent to the curve, at the point where C crosses the x axis is given by

 $\boldsymbol{y} = (x+2) \ln 2.$

200

I.C.B.

12/12

Question 184 (****+)

 $y = \arccos x, \ -1 \le x \le 1, \ 0 \le y \le \pi.$

hs.com

madasn,

proof

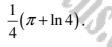
C.B.

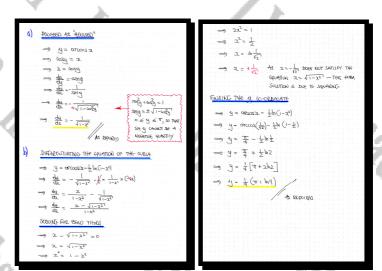
12/12

C.4.

a) By writing $y = \arccos x$ as $x = \cos y$, show that

$$\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}} \,.$$


The curve C has equation


I.G.B.

i.C.B.

$$y = \arccos x - \frac{1}{2} \ln (1 - x^2), \ x > 0.$$

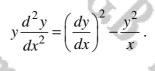
b) Show that the y coordinate of the stationary point of C is

(****+) **Question 186**

A curve C has equation

nadasm

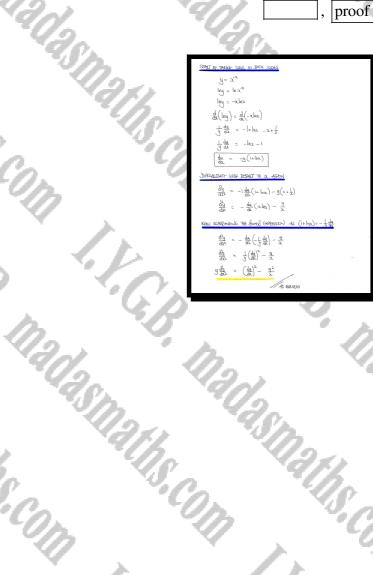
I.V.C.B. Madasm


Smaths.com

I.C.B.

adasmaths.com

 $= x^{-x}, \ x \in \mathbb{R}, \ x > 0.$


Show that y is a solution of the equation

the com

I.C.B.

I.Y.G.B.

asmaths.com

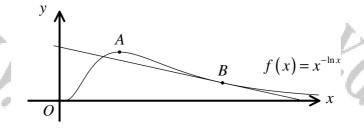
I.F.C.B.

F.G.B.

131/1S.CO

112sm

Madası


ths.com

Created by T. Madas

Y.G.B.

COM

Question 187 (****+)

The figure above shows that the graph of

 $f(x) = x^{-\ln x}, x \in \mathbb{R}, x > 0.$

The curve has a turning point at A.

i C.P.

a) Find the coordinates of A.

The point *B* lies on the curve where x = e.

b) Show that the equation of the tangent to the curve at B is given by

 $e^2 y + 2x = 3e.$

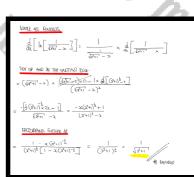
,	A(1,1)

nadası

m

nadasm.

Com.	00	S.C.
	1.1	I.Y.
) Jh	·G.B	G.P.


Question 188 (****+)

1. C.

Show, with a detailed method, that

$$\frac{d}{dx}\left[\ln\left(\frac{1}{\sqrt{x^2+1}-x}\right)\right] = \frac{1}{\sqrt{x^2+1}}.$$

Mada.

proof

Question 189 (****+)

A curve C has equation

. C.P. $y = x^{-\sqrt{x}}, \ x \in \mathbb{R}, \ x > 0.$

Show that the coordinates of turning point of C are $\left(\frac{1}{e^2}, e^{\frac{2}{e}}\right)$

proof

y = x 2	• Role T.P dy =0
$\ln y = \ln(\pi^{-\chi^2})$	2+hx=0 (x=2+0)
lny = -22/nz	(a 70)
$\frac{1}{y}\frac{d4}{dx} = -\frac{1}{z}x^{\frac{1}{2}}mx - x\frac{1}{x}\frac{1}{x}$	$\Rightarrow h_{2=-2}$ $\lambda = e^{-2}$
$\frac{1}{y}\frac{dy}{d\lambda} = -\frac{1}{2}x^{2}[y_{x} - x^{2}]$	$\lambda = \frac{1}{e^2}$ $\Rightarrow g = (e^2)^{-\sqrt{e^{-2^2}}}$
$\frac{1}{5} \frac{dy}{dx} = -\frac{1}{2} \overline{x}^{\frac{1}{2}} [hx+2]$	y = (e ²) ^{ne}
$\frac{du}{d\lambda} = 9 \times \left[\frac{1}{2} \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \sqrt{1 + 2} \right) \right]$	y = e ^{2e⁻¹} y = e ²
$\frac{dy}{d\lambda} = -\frac{1}{2} \overline{a}^{\frac{1}{2}} \overline{a}^{\frac{1}{2}} (2+hx)$. (to e e

(****+) **Question 190**

A curve C has equation

 $y = x^{\frac{1}{x}}, \ x \in \mathbb{R}, \ x > 0.$

Show clearly that ...

Mis.com

naths.co

l.K.G

	$= x^{\frac{1}{x}-2} (1-\ln x).$	GB	S.B.	Č.
b) the c	oordinates of turning poir	at of <i>C</i> are $\left(e, e^{\frac{1}{e}}\right)$.	7 ?s.	asm.
Alla the	Sinary "	13/10 (a 9- a*	proof	
	, "S.COM		$ \begin{array}{c} x_{1}^{\frac{1}{2}} \\ x_{1}^{\frac{1}{2}} \\ x_{2}^{\frac{1}{2}} $	· / .
I.C.p	GB	1. y. G. p	Cop .	
	130			120
alls.co.	maths	Alls.Co.	asinarine	
	1.1		1.1.	n .
·Gp	·GB m	C.B.	· G.B.	
Madas Ma	Created	l by T. Madas	20/28m	201 ₂₈₁₀ ,

(****+) Question 191

A curve C has equation

 $y = (\operatorname{cosec} x)^x, x \in \mathbb{R}, x > 0.$

a) Show that

I.F.G.B.

ŀ.G.B.

 $= \left[\ln(\operatorname{cosec} x) - x \cot x \right] (\operatorname{cosec} x)^{x}.$ dx

b) Find the equation of the tangent to C at the point where $x = \frac{\pi}{2}$

노행 2) - 2ata [br(weex)-xatz]y Bor y= (oseca) x : dy = [m(usex)-reitz](weex)2 45 Elevier $\text{ when } \mathfrak{d} = \overline{\mathbb{T}}_{1} \quad \mathfrak{g} = \left(\text{cose}_{\mathbb{Z}}^{\underline{\mathrm{T}}} \right)^{\underline{\mathrm{T}}_{2}} = \left(\overline{\mathbb{T}} = 1 \right) \quad \therefore \quad \left(\overline{\mathbb{T}}_{1} \right)$ $\left[b_1(\operatorname{teste}_{\mathbb{Z}}^{\mathbb{T}}) - \mathbb{T} \operatorname{act}_{\mathbb{Z}}\right] (\operatorname{teste}_{\mathbb{Z}}^{\mathbb{T}})^{\frac{T}{2}}$ dy all 2.5

F.C.P.

m

y = 1

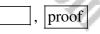
Question 192 (****+)

 $y = \arctan x, x \in \mathbb{R}.$

a) By writing the above equation in the from x = g(y), show that

 $\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$

The function f is defined as


 $f(x) = \arctan \sqrt{x}, x \in \mathbb{R}, x \ge 0.$

b) Show further that

I.G.B.

F.C.B.

 $f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}(3x+1)(x+1)^{-2}.$

nadas,

- $= \int (x) = \frac{1}{1 + (x x)^2} \times \frac{1}{2} x^{\frac{1}{2}} = \frac{\frac{1}{2} x^{-\frac{1}{2}}}{1 + \alpha} = \frac{1}{2} x^{\frac{1}{2}} (1 + \alpha)^{-1}$ DIFFRENTATE NOTA THE PRODUCT 2016
- $\Rightarrow \left(\left(\frac{1}{2} \right)_{2} \frac{1}{2} \frac{1}{2} \left(1 + \chi \right)^{2} + \frac{1}{2} \frac{1}{2} \times \left(\frac{1}{2} \right) \left(1 + \chi \right)^{2}$
- $\implies f_{\alpha}'' = -\frac{1}{4} \hat{x}_{C_{1}+\alpha}^{\dagger} \frac{1}{2} \hat{x}_{C_{1}+\alpha}^{\dagger} \frac$
- $\Rightarrow f(\alpha) = -\frac{1}{2}\alpha^{\frac{1}{2}}(1+2)^{\frac{1}{2}}\left[(1+2)+2\alpha\right]$ $\Rightarrow f(\alpha) = -\frac{1}{2}\alpha^{\frac{1}{2}}(1+2)^{\frac{1}{2}}(1+\alpha)$

6

to spored action (action)

i C.B.

Question 193 (****+)

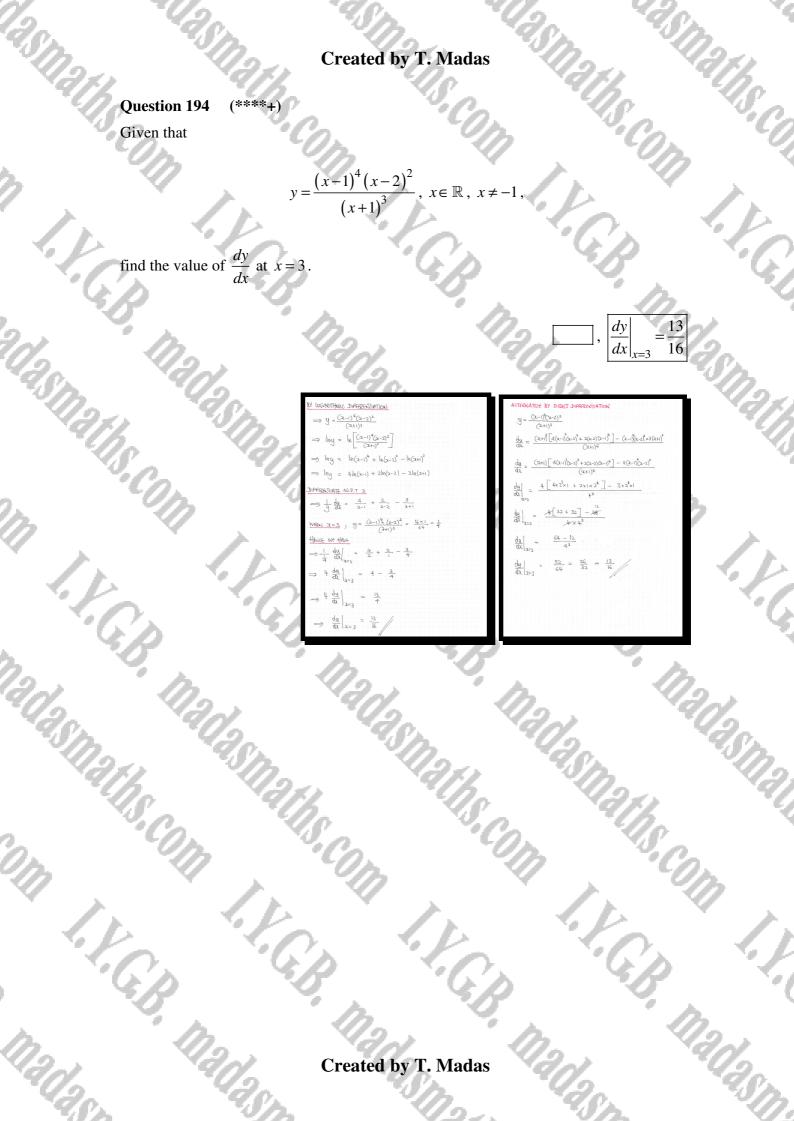
The function f is defined as

$$f(x) = x^x e^{-2x}, x \in \mathbb{R}, x > 0.$$

- **a**) Find an expression for f'(x).
- **b**) Show clearly that

$$f''(x) = f'(x)(\ln x - 1) + \frac{f(x)}{x}.$$

c) Show that the value of f''(x) at the turning point of the function is


 $\overline{e^{e+1}}$.

 $f'(x) = x^{x} e^{-2x} (\ln x - 1)$

21/2.51

(a) $\int (b) = \alpha^{-1} e^{-2b} = e^{-b/2} e^{-2b} = e^{-b/2} e^{-2b} = e^{-2b/2} e^{-2b}$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2 + (bb_{2} + 3c_{2} + b_{2}) \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2 + (bb_{2} + 3c_{2} + b_{2}) \right]$ $\int (a) = \alpha^{-1} e^{-2b} \left[-2 + (bb_{2} + 3c_{2} + b_{2}) \right]$ $\int (a) = \alpha^{-1} e^{-2b} \left[-2 + (bb_{2} + b_{2}) \right]$ $\int (a) = \alpha^{-1} e^{-2b} \left[-2 + bb_{2} + b_{2} \right]$ $\int (a) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (a) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (a) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} + b_{2} + b_{2} \right]$ $\int (b) = \alpha^{-1} e^{-2b} \left[-2b + bb_{2} + b_{2} + b$

A PLON

(****+) **Question 195**

 $=x^x$, x > 0

a) Show by using logarithms that

$$\frac{dy}{dx} = (1 + \ln x) x^x.$$

A curve C has equation

i i C.B. Madasman

Smarins com trees

I.F.G.B.

2

 $y = \left(\frac{x}{e}\right)^x, \ x > 0 \ .$

K.C.B. Madasmi **b**) Show that at the point on *C* where $x = \frac{1}{2}$, the gradient is $-\frac{\ln 2}{\sqrt{2e}}$ 115.CO

	· · Co)	2	"On		proof
1.	G.p.	1.1	- du .	$ \begin{array}{c c} \ln z \\ ab \mu z \\ = k h \mu z + a x \frac{1}{2} \\ \vdots & b n z + 1 \\ (1 + h n_{2}) y \\ = (1 + h n_{2}) x^{n} \\ = (1 + h n_{2}) x^{n} \\ \end{array} $	$\left(\frac{1}{2}\right)^{n} = \frac{1}{2} \times e^{\frac{1}{2}}$ $\left[\frac{1}{2}\right]^{n} e^{\frac{1}{2}} - e^{\frac{1}{2}} \frac{1}{2}$ $\frac{1}{2} e^{\frac{1}{2}} \left[1 + \ln n - 1\right]$ $\frac{1}{2} e^{\frac{1}{2}} \left[\ln \frac{1}{2}\right]$ $\left(\frac{1}{2} e^{\frac{1}{2}} \left(-\ln 2\right)\right)$ $\left(\frac{1}{2} e^{\frac{1}{2}} e^{-\frac{1}{2}} \left(-\ln 2\right)\right)$ $\left(\frac{1}{2} e^{-\frac{1}{2}} e^{-\frac{1}{2}} \left(-\ln 2\right)\right)$ $\left(\frac{1}{2} e^{-\frac{1}{2}} e^{-\frac{1}{2}} \left(-\ln 2\right)\right)$
		adasm.		adas n	- <u>hoz</u> Vez Veven
, ,	aths.C				hs.C
6	En la		12	1.1	<u>.</u>

'smaths.com

ths.co

N.G.

The COM

Created by T. Madas

I.V.G.B

(****+) **Question 196**

1:0

Alasmaths Com I.Y. C.B.

ISMATHS COM INC.

I.V.G.B.

 $y = 2\left\{e^{2x} + 3\ln\left[x + (e^{x} + 1)^{2}\right]\right\}^{2}$.

Madasn.

the com

Show that the value of $\frac{dy}{dx}$ at x = 0 is $23(1+6\ln 2)$

I.V.G.B proof

1.61

1

nadasn.

Ins.

COM

The Com

 $y = 2 \left\{ e^{2x} + 3h \left[x + (e^{x} + 1)^{2} \right] \right\}^{2}$ $\frac{dy}{dx} = 4 \left\{ e^{2x} + 3 \ln \left[x + (e^x_{+1})^2 \right] \right\}^{1} \times \frac{d}{dx} \left\{ e^{2x} + 3 \ln \left[x + (e^x_{+1})^2 \right] \right\}$ $\frac{dy}{dx} = 4 \left\{ \frac{2x}{e^2 + 3h\left[x + \left(e^2 + 1\right)^2\right]} \right\} \times \left\{ 2e^{2x} + 3\frac{d}{dx} \left\{ h\left[x + \left(e^2 + 1\right)^2\right] \right\} \right\}$ $\frac{du}{d\lambda} = \frac{1}{2} \left\{ e^{2\lambda} + \frac{1}{2} h \left[1 + (e^{2\lambda} + 1)^{2} \right] \right\} \times \left\{ 2e^{2\lambda} + \frac{3}{2e^{2}(e^{2\lambda} + 1)^{2}} \times \frac{1}{2e^{2}} \left\{ x + (e^{2\lambda} + 1)^{2} \right\} \right\}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 4 \left\{ e^{2A} + 3 \mathrm{d}y \left[1 + \left(e^{A} + i\right)^{2} \right] \right\} \times \left\{ 2 e^{2A} + \frac{3}{x + \left(e^{A} + i\right)^{2}} \right\} \times \left\{ 1 + \frac{1}{44} \left(e^{A} + i\right)^{2} \right\} \right\}$ $\frac{d_{4}}{d_{1}} = 4 \left\{ \frac{2^{2}}{e^{2}} + 3h_{1} \left[x + (e^{2}h_{1})^{2} \right] \right\} \times \left\{ 2e^{2h} + \frac{3}{2 + (e^{2}h_{1})^{2}} \times \left\{ 1 + 2(e^{2h}_{1})^{2} x \frac{d}{d_{1}} e^{2} \right\} \right\}$ $\frac{dy}{dx} = 4 \left\{ e^{3t} + 3h \left[3t \left(e^{3t} h \right)^2 \right] \right\} \left\{ 2e^{3t} + \frac{3}{x + (e^{3t} h)^2} \times \left\{ 1 + 2e^{3t} \left(e^{3t} h \right)^2 \right\} \right\}$ $4 \left\{ 1 + 3 \ln \left[0 + 2^2 \right] \right\} X \left\{ 2 + \frac{3}{0 + 2^2} X \left\{ 1 + 2 \times 2 \right\} \right\}$ $\left[1+3\ln 4\right] \times \left[2+\frac{3}{4}\times 5\right]$ I.F.C.B.

nadasm

Created by T. Madas

Madasmana Mans. Om

I.F.C.P.

Question 197 (****+)

A curve has equation

Y.C.

I.C.P.

 $9yx^2 - 6x(y+1) + y + 1 = 0, x \in \mathbb{R}, x \neq \frac{1}{3}$

Find, in exact form where appropriate, the three solutions of the equation

 $2\frac{d^2y}{dx^2} = 6x + 1,$

 $\frac{1}{3}(1\pm\sqrt{6})$

I.C.B.

x = -

 $2\left[\frac{18(6x+1)}{(3\alpha-1)4}\right]$

where $\frac{d^2 y}{dx^2}$ represents the second derivative of the above equation.

$\{ y_{2}^{2} - G_{x}(y_{+1}) + y_{+1} = 0 \}$
WI ZARAGA Y TAHT JUTULAN HTWIZARAM TRUZARAMULAN SU
$\rightarrow g = \frac{g_{\pi}-1}{q_{\pi}^2-G^{1+1}}$
$\implies \Im = \frac{\Im - 1}{(\Im - 1)^2}$
DIFFALMINATE W.D.T 2.
$\implies \frac{d_{\mathfrak{A}}}{d\mathfrak{X}} = \frac{(\mathfrak{Z}_{n-1})^2 \times 6 - (\mathfrak{Q}_{n-1}) \times 2(\mathfrak{Z}_{n-1}) \times 3}{(\mathfrak{Z}_{n-1})^4}$
$\longrightarrow \frac{du}{dx} = \frac{6(3x-1) - 6(6x-1)}{(3x-1)^2}$
$\Longrightarrow \frac{dy}{zz} = \frac{zz}{zz}$
O DIFFAGENSIATE AGAINS
$\implies \frac{d_{k,l}^{2}}{dk^{2}} = \frac{(3\lambda_{-1})^{2} \times (-k) + 18\alpha_{k} \times 9(3\lambda_{-1})^{2}}{(3\lambda_{-1})^{2}}$
$\implies \frac{d^2 U}{d \lambda^2} = \frac{-i\theta(32-i) + i\delta 2.x_{-}}{(3x-i)^4}$
$\implies \frac{d_{2a}^{a}}{dt^{2a}} = \frac{162a - xida + 18}{(3a - 1)^{4a}}$

(****+) **Question 198**

The point P, with x coordinate $\frac{\sqrt{6}-\sqrt{2}}{4}$, lies on the curve with equation I.C.B.

 $x = \sin\left(2y + \frac{\pi}{4}\right), \ 0 \le y \le \frac{\pi}{2}.$

Show that the value of the gradient at *P* is $\frac{\sqrt{2}-\sqrt{6}}{2}$.

1.1	Show that the value of the grad	lient at P is $\frac{\sqrt{2}-\sqrt{6}}{2}$.	, C.B.	G.
20/20	nan i	7202	proc	<u>r</u> T
NI AL	he asings	Snath	$ \begin{split} & \mathcal{Z} = \sup \left\{ \widehat{\mathcal{Z}}_{1} + \overline{\mathcal{Z}}_{1} \right\} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = 2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{Z}}_{1} \right\} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = 2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{Z}}_{1} \right\} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{Z}}_{1} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{Z}}_{1} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{Z}}_{1} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{1} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{1} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{1} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{1} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & \Rightarrow \frac{d_{2}}{d\lambda} = \frac{1}{2 \operatorname{cod} \left\{ 2\eta + \overline{\mathcal{L}}_{2} \right\}} \\ & $	13/1
m	· Con 19.	Con C	$ \begin{array}{c} \rightarrow & \underbrace{(\overline{\zeta} - \overline{\zeta} - \overline{\zeta} - z)}_{\zeta_{1} - \overline{\zeta} - \overline{\zeta} - z} = \operatorname{Su}_{1} \underbrace{(\overline{z} + \overline{z})}_{\zeta_{1} - \overline{\zeta} - \overline{\zeta} - z} \operatorname{Su}_{1} \underbrace{(z_{1} + \overline{z} - \overline{\zeta} - \overline{z})}_{\zeta_{1} - \overline{\zeta} - \overline{\zeta} - z} \operatorname{Su}_{1} \underbrace{(z_{2} + \overline{z})}_{\zeta_{1} - \overline{\zeta} - \overline{\zeta} - z} \operatorname{Su}_{1} \underbrace{(z_{2} + \overline{z})}_{\zeta_{1} - \overline{\zeta} - \overline{\zeta} - z} \operatorname{Su}_{1} \underbrace{(z_{2} + \overline{z})}_{\zeta_{1} - \overline{\zeta} - \overline{\zeta} - z} \operatorname{Su}_{1} \underbrace{(z_{2} + \overline{z})}_{\zeta_{1} - \zeta_{1} - \overline{\zeta} - \overline{\zeta} - z} \operatorname{Su}_{1} \underbrace{(z_{2} + \overline{z})}_{\zeta_{1} - \zeta_{1} - \zeta_{1} - \zeta} \underbrace{(z_{2} + \overline{z})}_{\zeta_{1} - \zeta} \underbrace{(z_{2} + \overline{z})}_{\zeta_{2} - \zeta} \operatorname{Su}_{1} \underbrace{(z_{2} + \overline{z})}_{\zeta_{2} - \zeta} \operatorname{Su}_{1} \underbrace{(z_{2} + \overline{z})}_{\zeta_{2} - \zeta} \underbrace{(z_{2} + \overline{z})}_{\zeta_{2} - $	2
1.1		1.1	I.F.	1.1
n		n Ch		5. 5.
and and a second second	adasn.	adasm.	12020	adasm
	hs. "all	ally.	Co. "Paths	121
	Gp G	s 'KG	, 'Gp	·
na.	"nan"	Created by T. Madas	na,	nado.
~Q282	-43sp	- Store	-43sp	SD.

Smarns.co

I.V.C.

15.COM

Question 199 (****+)

A curve C_1 has equation

 $y = \ln \sqrt{x} + \sqrt{\ln x} , \ x > 1 .$

a) Differentiate y with respect to x, simplifying the answer as far as possible.

A different curve C_2 has equation

 $y = (2x+1)^{\frac{1}{2}}(1-4x)^{-\frac{1}{2}}, -\frac{1}{2} \le x < \frac{1}{4}.$

b) Show that C_2 has no turning points.

A third curve C_3 has equation

$$y = \frac{2x-1}{\sqrt{2x+1}}, \ x \ge -\frac{1}{2}$$
.

c) Show that

1.0.

$$\frac{d}{dx}\left(\frac{2x-1}{\sqrt{2x+1}}\right) = \frac{2x+3}{(2x+1)^{\frac{3}{2}}}$$

dy

dx

 $\frac{3(1+x)(1-4x)^2}{3(1+x)(1-4x)^2} = 0$

 $\begin{array}{l} \frac{d}{dt} \begin{bmatrix} \frac{2s-1}{(2s+1)^{\frac{1}{2}}} &=& \frac{(2s+1)^{\frac{1}{2}}s_{2}}{(2s+1)^{\frac{1}{2}}} \\ &=& \frac{2(2s+1)^{\frac{1}{2}}}{(2s+1)} \\ &=& \frac{2(2s+1)^{\frac{1}{2}}}{(2s+1)} \\ &=& \frac{(2s+1)^{\frac{1}{2}}}{(2s+1)^{\frac{1}{2}}} \\ &=& \frac{(2s+1)^{\frac{1}{2}}} \\ &=& \frac{(2s+1)^{\frac{1}{2}}} \\ &=& \frac{(2s+1)^{\frac{1}{2}}} \\ \\ &=& \frac{(2s+1)^{\frac{1}{2}}} \\ &=& \frac{(2s+1)^{\frac{1}{2}}} \\ \\ &=& \frac{(2s+1)^{\frac{1}{2}} \\ \\ \\ &=& \frac{(2s+1)^{\frac{1}{2}} \\$

2x

 $2x \ln \sqrt{x}$

1)
$$\frac{2 \text{Enserts in index network of the Energy is not interval in the energy is the index network is the index$$

- $\frac{dy}{d\lambda} = (2\lambda+i)^{\frac{1}{2}}(1-4\lambda)^{\frac{1}{2}} + 2(2\lambda+i)^{\frac{1}{2}}(1-4\lambda)^{\frac{1}{2}}$
- $\frac{du}{dt} = \left(\hat{a}_{1,i} + 1 \right)^{\frac{1}{2}} \left(-4x_{i} \right)^{-\frac{1}{2}} \left[\left(-4x_{i} + 2 \left(x_{i} + 1 \right) \right)^{-\frac{1}{2}} \right]$
- $\frac{dg}{dt} = (3\alpha_1)^{\frac{1}{2}} (1-4_0)^{\frac{1}{2}} (1-4_0)^{\frac{1}{2}}$ $\frac{dg}{dt} = 3(3\alpha_1)^{\frac{1}{2}} (1-4_0)^{\frac{1}{2}}$
- or 2(2H) (I-H) 2

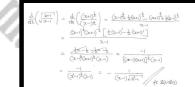
Show clearly that

I.F.G.p.

I.F.G.B.

ŀ.C.p.

2


$$\frac{d}{dx}\left(\sqrt{\frac{x+1}{x-1}}\right) = -\frac{1}{(x-1)\sqrt{x^2-1}}.$$

2

e)

115

Question 201 (****+)

Solve the equation

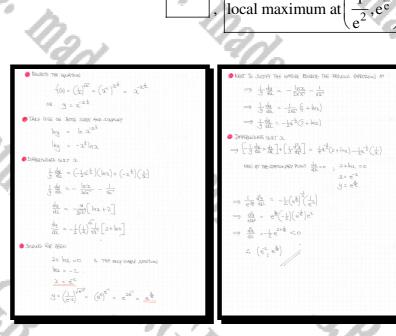
 $\frac{d}{dx}\left(\sqrt{1-\cos 2x}\right) = 1, \ 0 \le x < 2\pi.$

$\frac{d}{dx}\left[\sqrt{1-\cos^2 x}\right] = 1$	S = 12"0052=1
$\frac{1}{2}\left[\sqrt{l-\left(l-2su_{1}^{2}\chi\right)}=1\right]$	> as the
L [N 25192] = 1	$= \frac{1}{4} = \frac{1}{4} 2 \cos \theta$
$\frac{1}{12}(\sqrt{2}sma_{2}) = 1$	$\left\{\begin{array}{c} \mathcal{A} = \frac{\pi}{4} \pm 2n\pi \\ \mathcal{A} = \frac{\pi}{4} \pm 2n\pi \\ \mathcal{A} = \frac{\pi}{4} \pm 2n\pi \end{array}\right.$
$\int_{2}^{\infty} \frac{d}{dx} \left(SWDx \right) = 1$	2=菜1葉

F.G.B.

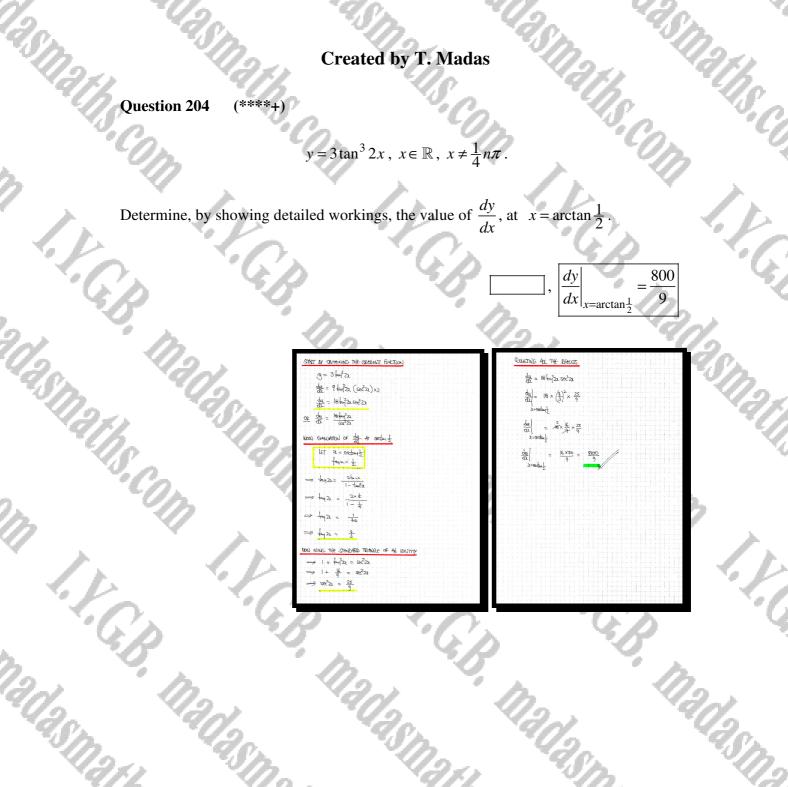
1120231

20	120.	asp a	20. 45	
Do-	. Dars	Created by T. Madas	nas -	1212
~~()	Question 202 (****+)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	-48
	Given that	On Un	"Con	-0
		$P = \frac{5600}{7 + 25 \mathrm{e}^{-0.25t}} ,$	1. 4	5
×.	I.Y.	$7 + 25e^{-0.25t}$	"Ka	64
1. J	show by a detailed method the	hat		1.6
	10 5	$\frac{dP}{dt} = \frac{P(800-P)}{k},$	i In	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		0. 40		1
20	where k is an integer to be f	ound.	12. °	2Sm
20.	420	"Sm	k = 3200	12
~~~ <i>\</i> [	h Das		$\frac{dP}{dt} = \frac{\frac{140}{5} \times \frac{1}{7}}{\frac{5600}{5} \times \frac{5600}{5}} \left(8008 - 7^2\right)$	
	·Co. 10	$P = \frac{5000}{7 + 224} e^{-925\xi}$ Receive the second secon	$\frac{dP}{dt} = \frac{P(B_{00}-P)}{32\omega} \xrightarrow{R} P(qu) P(t)$ I.E. $k = 32\omega$	
		$\Rightarrow \frac{d\rho}{dt} \approx -sco(7t^{31}t^{62} 2t+1)^{54} s_{2}^{1} (\frac{1}{2}t)^{6} 0$ $\Rightarrow \frac{d\rho}{dt} \approx 1600 \times 25 \times \pi^{20} \frac{1}{50t} \frac{1}{(7+2t_{0}^{2}+2t_{0}^{2})^{2}}$	$P = \frac{5600}{7 + 25e^{-0.256}}$	>
×.	IN.	$\Rightarrow \begin{bmatrix} \frac{dP}{dt} = \frac{3s_{000}e^{-0.2t}}{(7+2s_{0}e^{0.2t})^{2}} \end{bmatrix}$ NOT REALINGING THE OLIVIER AND THE ADDARD SPACE	$\frac{\frac{1}{P} = \frac{7 + 2 \varepsilon^{0.22\xi}}{5 \varepsilon 0}}{\frac{2 \varepsilon 0}{2 \varepsilon 0} = 7 + 2 \varepsilon^{0.22\xi}}$ $\bullet Di\frac{D}{M} \text{ with } \xi$	1
6)		$\Rightarrow 7 + x e^{0.2t} = \frac{8200}{p}$ $\Rightarrow x e^{0.2t} = \frac{5000}{p} - 7$ Bergenius to THE treasting fourtain	$\frac{dF}{dF} = \frac{4 \times 26 \omega}{22} F^2 e^{-22\xi}$	1
- ×*	62 40	$ \frac{dP}{dt} \approx \frac{lq_{0,\lambda}}{(\gamma + z_{1} \leqslant^{\log 2})^{2}} $ $ \rightarrow \frac{dP}{dt} \approx \frac{lq_{0,\lambda}}{(\gamma + z_{1} \leqslant^{\log 2})^{2}} $	• Eup $\left[ 25e^{-2kt} - \frac{32e^{-2}}{7} - \frac{7}{7} \right]$ $\frac{dF}{dt} = \frac{1}{4\times 560} P^2 \left( \frac{560}{7} - 7 \right)$	9
		$\frac{c_{-q}^{2}}{dt} = \frac{1}{2} \left( \sum_{q} \frac{\cos \theta}{2} \right) \left( \cos \theta \right) = \frac{q}{dt} $ $\Rightarrow \frac{d\theta}{dt} = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \cos \theta \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) = \frac{1}{2} \left( \frac{\cos \theta}{2} \right) \left( \frac$	$\frac{dP}{dt} = \frac{1}{4}P - \frac{2}{4x\xi_0}P^2$ $\frac{dP}{dt} = \frac{P}{4} - \frac{P^2}{32z_0} = \frac{800P - P^2}{32z_0}$ $\frac{dP}{dt} = \frac{P(800 - P)}{32z_0} + \frac{1}{32z_0}P(80 - P)$	
3	10an		dt 3200 At Since	201
Sh	120	Sin	92.	asm.
×9	the Day	a ath	Sino-	
	1. Co 4	8 5.00	alle.	E,
2		Con U	$b \sim c$	2.
, ,	Strates in the second sec		1.	9
6	V Y	7. S.L.	N.	
	60 4	B SCA	42	
	· 7	In N.		3
3.	122	Created by T. Madas	la.	20
70/20	~ (Jao.	Created by 1. Watas	4020.	des.
- M.M.		12.	100	


Question 203 (****+)

F.G.B.

Ĉ.p.


$$f(x) = \left(\frac{1}{x}\right)^{\sqrt{x}}, x \in \mathbb{R}, x > 0.$$

Determine in exact simplified form the coordinates of the stationary point of f(x), fully justifying its nature.



Con

Ĉ.Ŀ.



.C.4

I.C.p

20

I.F.G.B.

ma.

Question 205 (****+)

1. V. G. B. 11130/381

COM

C.B.

 $y = \frac{1 + \cos x}{1 + \sin x}, \ 0 \le x < 2\pi, \ x \ne \frac{3}{2}\pi.$ 

Determine, with full justification, the coordinates of the minimum point of y.

	-	de.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	OLE.	TO PF
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	= <u>t</u>	-(+ -{c -() -() -() -() -() -() -() -() -() -()
3. I.	C.S.	2

	$(\pi, 0)$
h	· h
⇒ x= <t ₩ 00066.800 ;</t 	AS SHIONINATER IS ZANO
TT=50 JM20	
$Q = \frac{1+\cos \pi}{1+\cos \pi} = \frac{1-1}{1+\cos} = 0$	∴ (π _i 0)
10 attack the Natiozae asia the fina of x≈17. Coll the revaluat fination	STON WHILE IN THE NEUHBOORYOD Cal IN THE STME NEUHBOORYOD
$f(x) = \frac{1 + 0x_{2}x}{1 + Sinx}$	$\underline{\underline{P}} \qquad \bullet  \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \approx \frac{1 + \log 2 + \sin 2}{(1 + \sin 2)^2}$
-{(3.14) ≈ δ·00000126>0 -{(π) = 0	f(3.14) = -0.00 1581
f(3-15) = 0-0000355>0	((7) = 0 ((3,15) = 0.008514
$\checkmark$	-\ /+
34 X 3.R	0
(TO) IS + DOPL MIN	F (Tro) is a coope wind

13.81

I.C.B.

2017

Madasn.

ns.com

Created by T. Madas

211

(****+) **Question 206** 

nadasın,

I.V.C.B. Madasm

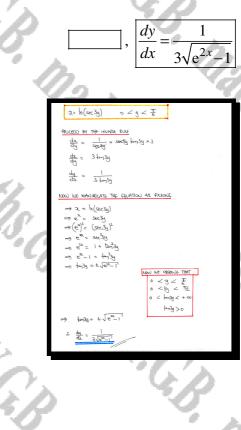
Smaths.com

I.V.G.B.

asmaths.com

20

 $x = \ln\left(\sec 3y\right), \ 0 < y < \frac{1}{6}\pi.$ 


1.1.6.9 Determine, with full justification, an expression for  $\frac{dy}{dx}$ , in terms of x.

GB Madasn

Ths.com

I.G.B.

I.Y.G.B



adasmaths.com

I.F.C.P.

2010

The Com

'arns.co.

203SM2

10202s1

Created by T. Madas

Madasmana Malas

COM

Question 207 (****+)

A curve C has equation

 $y = \frac{x e^{3x}}{2x+k}, \ x \in \mathbb{R}, \ x \neq k,$ 

where k is a non zero constant.

It is given that C has a single turning point at P

Find the exact coordinates of P

I.C.B.

ŀC.p.

 $\frac{1}{2}e^{-1}$ 

·G.B

inn,

$$\begin{split} y_{\pm} &= \frac{2\cdot e^{3x}}{2a + k} \\ \frac{du}{da} &= \frac{(2\pi + k)\left[1 + e^{3x} + 2a + 3e^{3x}\right] - (3e^{3x}) \times 2}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(22 + k\left(1 + 3a\right) - 2x - 2k}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(22 + k\left(1 + 3a\right) - 2x - 2k}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(22 + ka^2 + k + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(22 + ka^2 + k + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(22 + ka^2 + k + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + ka^2 + k + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + ka^2 + k + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + ka^2 + k + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + ka^2 + k + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + ka^2 + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + ka^2 + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + k)^2} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + 2a - 2x\right)} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + 2a - 2x\right)} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + 2a - 2x\right)} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + 2a - 2x\right)} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + 2a - 2x\right)} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a - 2x\right)}{(2x + 2a - 2x\right)} \\ \frac{du}{da} &= \frac{e^{3x}\left(2x + 2a -$$

-X (k+0)



I.C.P.

Maria.

naths.co

160

6

7303SM31

112/251

ths.com

dy

dx

 $=2y\ln y$ 

PACT of ater = ater

adasmaths.com

I.F.G.B.



A curve has equation

 $2^{3e^{2x}}$ ,  $x \in \mathbb{R}$ .

nadasn

Ths.com

LY.G.B.

I.Y.C.B.

Express  $\frac{dy}{dx}$  in terms of y K.C.

nadasm

adasmaths.com

2

Smaths.com

I.V.G.B

Created by T. Madas

COM

·GB

madasmans.com

.F.G.B.

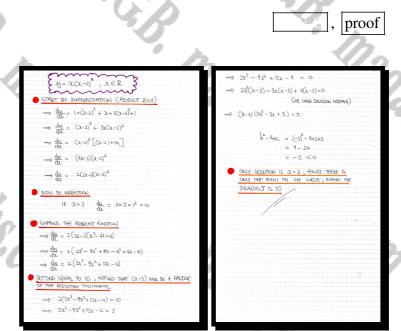
#### Question 209 (****+)

20

ISMAThs.

I.Y.C.B. Mag

21/15


I.G.B.

COM

A quartic curve C has equation

 $y = x(x-2)^3, x \in \mathbb{R}.$ 

Show that there is only one point on C where the gradient is 10.



32

I.C.B.

The l

COM

Madasn.

Mada

**Question 210** (****+) The point *P* lies on the curve with equation

 $xy = e^x$ , xy > 0.

The tangent to the curve at P passes through the origin O.

Determine the coordinates of P.

K.C.

10	-
264886000, DIFFREGUTA $34 = e^2 \implies 2$	TH ULING THE GOOTHEST 2015-
	$\frac{1}{2} = \frac{1}{2} $
4ND 6890107 <u>e^a(a-</u> a2	<u>0</u>
⇒ 74NGENT :	$\begin{array}{l} y = \frac{e^{a}}{a} = \frac{e^{a}(a-1)}{a^{2}}(\chi - a) \\ y = \frac{e^{a}}{a} + \frac{e^{a}(a-1)}{a^{2}}\chi - \frac{e^{a}a(a-1)}{a^{2}} \\ y = \frac{e^{a}}{a} + \frac{e^{a}(a-1)}{a^{2}}\chi - \frac{e^{b}a(a-1)}{a^{2}} \end{array}$
As THE TANGERS PASSES	- 79/WCO+1 0
e ^a .	$=\frac{e^{\alpha}(a-1)}{a}$
	= a-1 ato, eto = 2
	* P(2, 53)

COM

 $2, \frac{1}{2}e$ 

3

F.G.B.

Question 211 (****+)

A curve has equation

 $y = -\log_2[(2-x)\ln 2], x \in \mathbb{R}, x < 2.$ 

202.81

2017

Com

C.I.

2010

Y.G.B.

Mada.

200

I.C.B.

I.F.G.B.

Determine a simplified expression for  $\frac{dy}{dx}$  in terms of y.

$\Box, \frac{dy}{dx} = 1$	2 ^y
$\begin{array}{l} \underline{g}_{\text{exparts}} & \\ \overline{g}_{\text{exparts}} & \\ \overline{g}_{\text{exparts}} & \underline{g}_{\text{exparts}} & \underline{g}_{exparts$	
$\tilde{\Sigma}^{ij} = (2-x_i) \ln 2$ Differentiate with BERFEIT to $x_i$ instruct that $\hat{\mathcal{A}}_{ij}^{(m)}(u^{ij}) = u^{ij} \ln u$ $\hat{\mathcal{A}}^{ij}(u^{ij}) \ln 2 \frac{\partial u}{\partial u} = -\ln 2$ $\tilde{\Sigma}^{ij} \frac{\partial u}{\partial u} = 1$ $\tilde{\Sigma}^{ij} \frac{\partial u}{\partial u} = 1$	
de 29 Actionature & Inter Differentiation	
$\begin{array}{l} \underbrace{d_{3}}{}_{a} = - \log_{a} \left[ (2 - \alpha) \ln 2 \right] \\ \underbrace{d_{3}}{}_{a} = - \frac{\log_{a} \left[ (2 - \alpha) \ln 2 \right]}{\log e^{2}} = - \frac{\ln \left[ (2 - \alpha) \ln 2 \right]}{\ln 2} \\ \underbrace{d_{34}}{}_{abc} = - \frac{\log_{a} \left[ (2 - \alpha) \ln 2 \right]}{\ln 2} \times \left[ 2 \ln 2 \right] \end{array}$	
$\frac{dy}{dt} = \frac{1}{2^3}$	
43 366066	

18.COM

10201

nn

I.C.B.

Question 212 (****+)

$$y = \arccos x, x \in \mathbb{R}, -1 \le x \le 1.$$

COM

, proof

21/201

**a)** By writing the above equation in the from x = f(y), show that

$$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}.$$

A curve has equation

$$y = \arccos\left(1 - x^2\right), \ x \in \mathbb{R}, \ 0 < x \le \sqrt{2}.$$

**b**) Show further that

$$\frac{d^2 y}{dx^2} = \frac{2x}{\left(2 - x^2\right)^{\frac{3}{2}}}.$$

c) Show clearly that

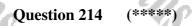
$$16\frac{d^3y}{dx^3} = 4x\frac{d^2y}{dx^2}\left(\frac{dy}{dx}\right)^2 + \left(2+x^2\right)\left(\frac{dy}{dx}\right)^5$$

	of Futuring the subsection Given	CONTRACT CATEGORY BE GOOD THE GOOD AND AND AND THE	AUTRIVATIVE ARRAGH FOR PAPER (C)
	$\Rightarrow \underline{\varphi} = \alpha \cos \alpha x \qquad \Rightarrow \frac{\varphi}{\varphi} = \frac{1}{z \sqrt{1 - \omega \xi^2}}$	$\frac{d_{\text{HM}}}{dt} \frac{\partial t_{\text{C}}}{(2-x)^{3}} = \frac{\sigma_{1}^{2}}{dx^{2}} = \frac{(2-x)^{3} \sqrt{2} - 2x \frac{1}{2} (2-x)^{3} (-2x)}{((2-x)^{3} \sqrt{2} - x)^{3}}$	$\underset{\mathcal{M} \in \mathcal{M}}{\underset{\mathcal{M} \in \mathcal{M}}{\sum}} = \frac{\mathcal{L}}{2} = \frac{\mathcal{L}}{2}$
2.	$\Rightarrow \frac{dy}{dy} = -s_{Hy} \qquad \Rightarrow \frac{dy}{dy} = \frac{1}{\sqrt{1-\sqrt{2}}}$	$\Rightarrow \frac{dS_{i}}{da^{2}} = \frac{22(2-2)^{2}}{(2-2)^{2}}$	$\rightarrow \frac{d_{2}^{2}}{d u^{2}} = \frac{(j-u^{2})^{\frac{1}{2}} \frac{u^{2}}{2} - 2i + \frac{1}{2} \frac{(u^{2}-u^{2})^{\frac{1}{2}} \frac{(u^{2}-u^{2})}{2}}{((u^{2}-u^{2})^{\frac{1}{2}} \frac{1}{2})} = \frac{2(2v-u^{2})^{\frac{1}{2}} + \frac{(u^{2}-u^{2})^{\frac{1}{2}}}{((2v-u^{2})^{\frac{1}{2}}}$
	=> du = STRICTUR DRODAND FUNCTION	=> $\frac{dB_{0}}{d\lambda^{2}} = \frac{\lambda_{2}}{(2-\lambda^{2})/2}$ Is reported	$\Rightarrow \frac{\partial_{k}^{2}}{\partial \lambda^{k}} = \frac{2(2-\lambda^{2})^{\frac{k}{2}} \left[ (2-\lambda^{2}) + 3\lambda^{k} \right]}{(2-\lambda^{2})^{2}}$
90.	$\Rightarrow \frac{dy}{dx} = -\frac{1}{(4\pi)(1-c_{1}^{2})}$	C) Differentiate Aptre rewriting since the a the rewrite	$\Rightarrow \frac{\delta_{ij}^{k}}{dx^{ij}} = \frac{2(2+2x^{2})}{(2-x^{2})^{k}} = \frac{4(x^{i}+i)}{(2-x^{2})^{k}}$
N/	<u> </u>	$\frac{d_{1j}^{2}}{d\lambda^{2}} = \frac{2\lambda}{(2-\chi)^{2}\kappa} = \frac{2}{(2-\chi)^{2}\kappa} \times \frac{\lambda}{2-\chi^{2}} = \frac{d_{1j}}{dk} \left(\frac{\lambda}{2-\chi k}\right)$	$\therefore \left  \left( -\frac{d^{2} q}{d \chi^{2}} \right) \right ^{2} = 64 \left( \chi^{2} + 1 \right) \times \frac{1}{\left( 2 - \chi^{2} \right)} \xi_{2}$
~0	$\int \frac{dq}{dx} \sim -\frac{1}{\sqrt{1+\chi^2}}$	$\Rightarrow \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d}{d$	NOW BY TREETING OF THE 2.4.5 NOTING THAT $k_{AAB}^{(N)} = \frac{G_{R}(Z^{2}+1)}{(2-\chi)R}$
	b) BENARTE AND USE THE OHAMIN DULE & QUOTIEST DUC	PROTECT WITH A GAUGET AT AN AT AT AN AT	$\Rightarrow \left[\left(\frac{\partial^2 y}{\partial x^2}\right)^2 + \left(\frac{\partial^2 y}{\partial x^2}\right)^2 + $
	$\Rightarrow g := arcces (1-2^{-1})$	$\Rightarrow \frac{d_{11}^{2}}{dx^{2}} = \frac{d_{11}^{2}}{dx^{2}} \times \frac{2}{-\chi_{1}} + \frac{d_{11}}{dx} \times \frac{(2-1)^{2}(-1-\chi_{1}^{2}/\chi_{2})}{(2-1)^{2}} \\ \Rightarrow \frac{d_{11}^{2}}{dx^{2}} = \frac{d_{11}^{2}}{dx} \times \frac{1}{\sqrt{2}} (\frac{1}{2-\chi_{1}}) + \frac{d_{11}}{dx} \times \frac{2-\frac{2}{\sqrt{2}}+2^{2}}{(2-2)^{2}} \\ \end{cases}$	$\Rightarrow 16 \frac{2}{40} = 42 \left[ \frac{2}{(2x)^{8}} \right] \left[ \frac{2}{(2-x)^{6}} \right]^{2} + (2+x^{2}) \left[ \frac{2}{(2-x)^{6}} \right]^{2}$
	$=9\frac{dy}{d\lambda}=-\frac{1}{\sqrt{1-(1-d)^2}}\times(-2\lambda)=\frac{-2\lambda}{\sqrt{1-(1+2\lambda^2-2\theta)}}=-\frac{2\lambda}{\sqrt{2\lambda^2-2\theta}}$	$\Rightarrow \frac{\partial q_1}{\partial \lambda_1} = \frac{\partial q_1}{\partial \lambda_1} \times \frac{1}{4} \times \frac{(2-3k)}{(2-3k)} + \frac{\partial q_1}{\partial \lambda_1} \times \frac{2+3k}{(2-3k)k}$	$ \Rightarrow   \frac{\delta_{1}^{2}\delta_{2}}{\delta U} \simeq \frac{2\pi \epsilon_{1}^{2}}{(2-\pi)^{2}} + \frac{(2+2)}{(2-\pi)^{2}} \frac{-3\epsilon_{2}}{\delta U} $ $ \Rightarrow   \frac{\delta_{1}^{2}\delta_{2}}{\delta U} \simeq \frac{2\pi \epsilon_{2}^{2}}{(2-\pi)^{2}} + \frac{\epsilon_{2}}{(2-\pi)^{2}} + \frac{3\epsilon_{2}^{2}}{\delta (2-\pi)^{2}} + \frac{3\epsilon_{2}^{2}}{\delta (2-\pi)^{2}} $
	NOW 45 or is privitive we many There it and of the eadorne, which	$ = \frac{\partial j}{\partial x^2} \xrightarrow{\chi_{2}^{2}} (x^{2}x^{2}) \times \frac{\partial x}{\partial x} + \frac{\partial \chi}{\partial x} (\frac{\partial g}{\partial x})^{2} \xrightarrow{\chi_{2}^{2}} (\frac{\partial g}{\partial x})^{2} \xrightarrow{\chi_{2}^{2}} (\frac{\partial g}{\partial x}) \xrightarrow{\chi_{2}^{2}} (\frac{\partial g}{\partial x})^{2} \xrightarrow{\chi_{2}^{2}} (\frac{\partial g}{\partial x})^{2} \xrightarrow{\chi_{2}^{2}} (\frac{\partial g}{\partial x}) \xrightarrow{\chi_{2}^{2}} (\frac{\partial g}{\partial x})$	$ = \frac{(z-z_{1})z}{(z-z_{1})z} \left( \frac{(z-z_{1})z}{(z-z_{1})z} + \frac{z_{1}}{(z-z_{1})z} \right) $
	$\frac{\partial Q}{\partial x} = \frac{2}{2(2-2)!k}$	$\Rightarrow  \frac{\partial J_{2}}{\partial U}  \approx  \frac{\partial J_{2}}{\partial t^{2}} \times \frac{1}{4} \chi \Big( \frac{\partial J_{2}}{\partial t} \Big)^{\frac{1}{2}} + \frac{1}{16} \Big( 2^{\frac{1}{2}} J_{2}^{\frac{1}{2}} \Big) \frac{\partial J_{1}}{\partial t} \Big[ \frac{2}{(2^{-2} U)^{\frac{1}{2}}} \Big]^{\frac{1}{2}}$	$\implies  _{0} \frac{d^{2} g}{d t^{2}} = \frac{6 (t^{2} t_{2} t_{1})}{(2 - t^{2})^{2} T_{2}}$
1.	$\frac{\partial y}{\partial x} = \frac{2}{(2-x^2)^2}$	$\Rightarrow \frac{d_{3}}{d_{3}} = \frac{1}{4\pi} \frac{d_{3}}{d_{3}} \left( \frac{d_{3}}{d_{3}} + \frac{1}{4\pi} \left( \frac{2}{24\pi^{2}} \right) \frac{d_{3}}{d_{3}} \left( \frac{d_{3}}{d_{3}} \right)^{2}$	the ether is verified
		$\Rightarrow    \frac{dJ_{M}}{dx^{1}} = 4\chi \frac{dJ_{M}}{dx^{2}} (\frac{dg}{dx})^{2} + (2+\pi^{2}) \frac{dg}{dx}  ^{2} + t \text{ Bigwere}$	

Question 213 (*****)

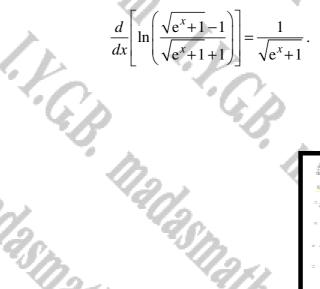
A curve C has equation

 $y = \frac{2x+3}{\sqrt{2x-1}}, x \in \mathbb{R}, x > \frac{1}{2}.$ 


Find the coordinates of the stationary point of C, further determining the nature of this point.

You may not use the product rule, the quotient rule or logarithmic differentiation in this question.

GOULD BE USED HERE, BOT 4 QUICE LUOW (NOTTOFER THE FLAGT OF 24 BE QUICKED + HERE y = 22+3  $y = \frac{(t+1)+3}{\sqrt{t}} = \frac{t+4}{+4} = t^{\frac{1}{2}} + 4t^{-\frac{1}{2}}$  $\frac{dy}{dt} = \frac{1}{2}t^{\frac{1}{2}} - 2t^{-\frac{3}{2}}$ (t/0)


NOT APPECTION	BY THESE TRANS	21ACITALA DO	
dt=	$\frac{1}{2}t^{-\frac{1}{2}} - 2t^{-\frac{1}{2}}$		
$\frac{d^2 u}{dt^2} =$	$-\frac{1}{4}t^{\frac{3}{2}} + 3t^{\frac{5}{2}}$	= <u>i</u> t [£] [12~	t.]
dy dt2	= <u>1</u> ×4 ² ×(1)-4	-) × <u>l</u> 32	हे २ व
	•		
USING t=4	TO GIND THE VAL	UF OF 9 (IN	ot Affectio)
4= -		0	
	*C		
9 =	$\frac{4+4}{\sqrt{4}} = 4$		
teq			
HAT OULDONN	TRANSPORMATION	IN X	
t,	- 2x-1		
	22-1		
2 <	- 22		
2-	- <del>5</del>		
			1.
TWICE THERE	TH HUMINIM A 21	(=++)	/

min  $\left(\frac{5}{2},4\right)$ 



I.F.G.B.

Show with a detailed method that





2ths.com

ISMAINS.CO.

I.C.

ALASTRAINS COM 1. Y. C.B. MARIASTRAINS COM 1. Y. C.B. MARIASTRAINS COM 1. Y. C.B. MARIASTRAINS COM 1. Y. C.B. MARIASTRA

Question 215 (*****)

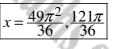
A curve C has equation

 $y = x^x, \ x \in \mathbb{R}, \ x > 0.$ 

Show that y is a solution of the equation

 $\frac{d^2 y}{dx^2} = x^x (1 + \ln x)^2 + x^{x-1}.$ 

	, proof
$y = \alpha^{2}$	
• THENG LOSS $ = \int_{0}^{1} \log_{2} = \ln x^{2} $ $ \Rightarrow \int_{0}^{1} \log_{2} = \lambda \ln x^{2} $ $ \Rightarrow \int_{0}^{1} \log_{2} = \lambda \ln x$ $ \Rightarrow \int_{0}^{1} \frac{d}{dx} = 1 + \ln x$ $ \Rightarrow \frac{1}{2} \frac{d}{dx} = 1 + \ln x$ $ \Rightarrow \frac{1}{2} \frac{d}{dx} = 1 + \ln x$ $ \Rightarrow \frac{d}{dx} = \frac{d}{dx} (1 + \ln x) + \frac{1}{2} (\frac{1}{2})$ $ \Rightarrow \frac{d}{dx} = \frac{d}{dx} (1 + \ln x) + \frac{1}{2} (\frac{1}{2})$ $ \Rightarrow \frac{d}{dx} = \frac{d}{dx} (1 + \ln x) + \frac{1}{2} (\frac{1}{2})$ $ \Rightarrow \frac{d}{dx} = \frac{1}{2} (\ln \ln x) + \frac{1}{2} (\frac{1}{2})$ $ \Rightarrow \frac{d}{dx} = \frac{1}{2} (\ln \ln x) + \frac{1}{2} (\frac{1}{2})$ $ \Rightarrow \frac{d}{dx} = \frac{1}{2} (\ln \ln x) + \frac{1}{2} (\frac{1}{2})$ $ \Rightarrow \frac{d}{dx} = \frac{1}{2} (\ln \ln x) + \frac{1}{2} (\frac{1}{2})$ $ \Rightarrow \frac{d}{dx} = \frac{1}{2} (\ln \ln x) + \ln x^{2} (\frac{1}{2})$	$ \begin{array}{c} \underset{(k) \in \mathcal{M}}{ \underset{(k) \in \mathcal{M}}$
dX2	


C: I

#### Question 216 (*****)

P.C.P.

Find, in terms of  $\pi$ , the solutions of the equation

 $\sqrt{x}\frac{d}{dx}\left(\sqrt{x}+2\cos\sqrt{x}\right)=1, \ 0\le x<4\pi^2.$ 



$x^{\frac{1}{2}} \frac{d}{dt} \left[ a^{\frac{1}{2}} + 2 \cos a^{\frac{1}{2}} \right] = 1$	$\begin{cases} \theta = 3\underline{n} \neq 3nll  j = \sigma(1 s^1)^{j_1}, \\ \theta = -\underline{n} \neq 3nll  j = \sigma(1 s^1)^{j_2}. \end{cases}$
$t^{\frac{1}{2}} \left[ \frac{1}{2} x^{\frac{1}{2}} + 2x \frac{1}{2} x^{\frac{1}{2}} (-2n x^{\frac{1}{2}}) \right] = 0$	S Q= ALT July - MIL
L [±] [ ±ジャ - シュをか コを]=1	く 6=
2 - Sina ² = 1	$\left\langle \mathcal{T}_{\overline{T}}^{-} \cdots \stackrel{\mathcal{L}}{\rightarrow} \stackrel{\mathcal{L}}{\rightarrow} \stackrel{\mathcal{L}}{\rightarrow} \stackrel{\mathcal{L}}{\rightarrow} \stackrel{\mathcal{L}}{\rightarrow} \stackrel{\mathcal{L}}{\rightarrow} \cdots \right\rangle$
$\sin \alpha^{\frac{1}{2}} = -\frac{1}{2}$	$Q = \frac{49\pi^2}{36} \frac{12\pi^2}{36}$
$\sin \theta = -\frac{1}{2}$	
$\alpha r_{CSM}(-\frac{1}{2}) = -\frac{\pi}{6}$	

(**** **Question 217** 

12

I.F.G.B.

1.1.

Given that



show that  $\frac{dy}{dx} = f(y)$ , where f(y) is a function to be determined.

1	show that $\frac{dy}{dx} = f$	f(y), where $f(y)$ is a	i function to be deteri	mined.	)	6
	· B.	1720		f(y) = -	$\frac{(1-y)^3}{2y}$	
"SIDA	18 435	112/2	SIN21/2	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 2 & \text{of JTM} \\ \hline 2 & \text{of JTM} \\ \text{vs} & \text{spin} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	Aut the RAtion of Rationation $\left(\frac{2\pi}{1-C}\right)^{-1}$	20
	"COM	, "S.COM	10.Cl	$ \Rightarrow \sqrt{z} = \frac{y}{-y} $ $ \Rightarrow \frac{1}{(z-y)} \Rightarrow \frac{y}{-y} = \frac{y}{-y} $ $ \Rightarrow \frac{1}{(z-y)} \Rightarrow \frac{y}{-y} = \frac{y}{-y$	$\begin{split} & u_{\lambda} \Sigma \uparrow \mathcal{Q} \\ & = -\frac{1}{2} \mathcal{L}^{\frac{1}{2}} \\ & \frac{1}{2} u_{\lambda}^{2} \mathcal{L}^{\frac{1}{2}} \\ & \frac{1}{2} u_{\lambda}^{2} \mathcal{L}^{\frac{1}{2}} \\ & \frac{1}{2} u_{\lambda}^{2} (\alpha t^{\frac{1}{2}} - \frac{1}{2} - 1) \\ & \kappa \left[ \frac{\alpha t^{\frac{1}{2}} - \frac{1}{2} - 1}{\alpha t^{\frac{1}{2}} - \frac{1}{2} - 1} \right] \\ & g^{2} \left( \frac{1}{2} - 1 \right)^{\frac{1}{2}} \end{split}$	
	Gp ·	GB	I.F.C.D	$ \begin{array}{c} \rightarrow \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \rightarrow \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$= y^2 \frac{\zeta(-y)^3}{y^3}$	-6
nadasm	. nag	, 1124 20.	135.	n202	112020	2
	ils.co.	maths	Walls.C.		18 - 18 -	
⁹ 17 ].		1. K. CO.	,	7)  . j.	S.COM	

I.F.C.B

Madasn

The Com

C.5.

ins.co

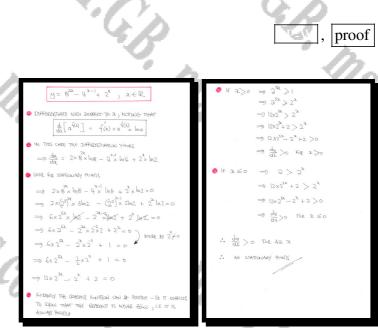
N.C.

Created by T. Madas

ľ.V.G.

Question 218 (*****)

A curve C has equation


I.C.B.

ろ

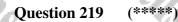
ŀ.G.B.

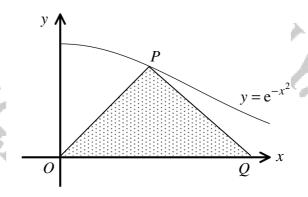
 $y = 8^{2x} - 4^{x-1} + 2^x, x \in \mathbb{R}$ 

Show that C has no stationary points.



っ


I.C.P.


2

Com

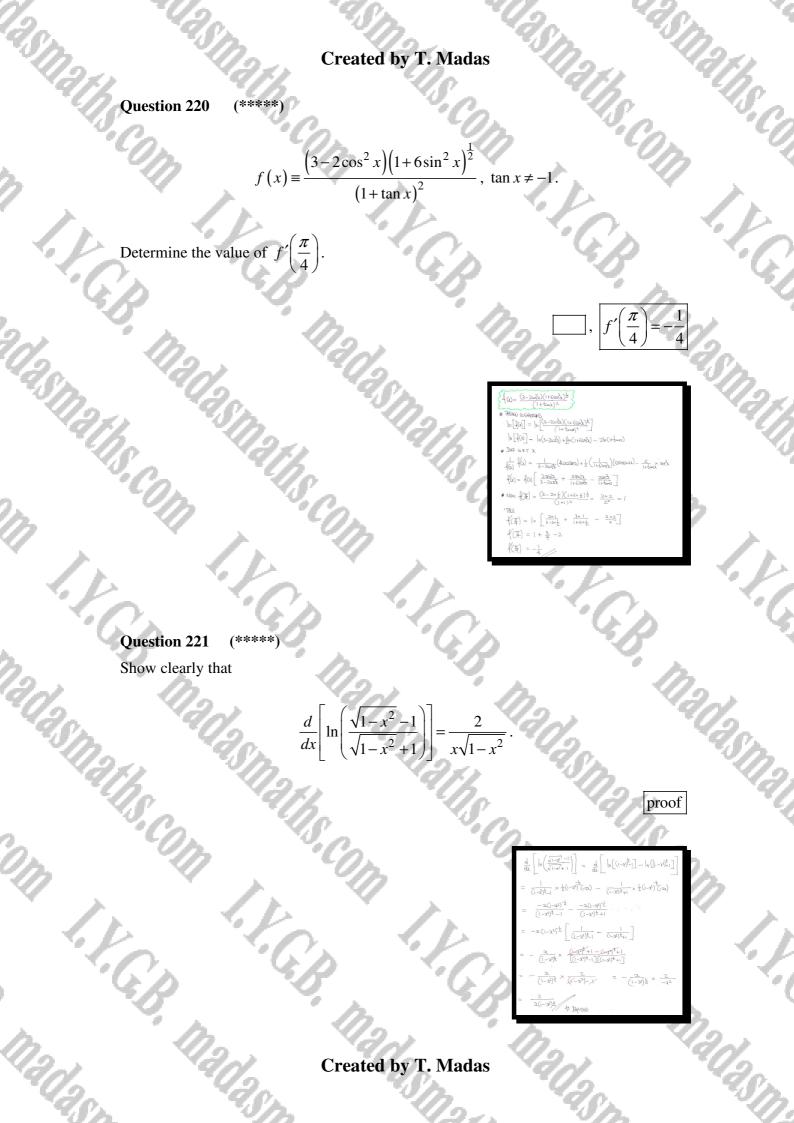
21/2.51

Mana,





The figure above shows the graph of the curve with equation


#### $y = e^{-x^2}, x \ge 0.$

The point P lies on the curve and the point Q lies on the positive x axis so that |OP| = |PQ| where O is the origin.

Show with full justification that the largest area of the triangle *OPQ* is  $\frac{1}{\sqrt{2e}}$ .

 $A(x) = x e^{-x^2}$  $\frac{dA}{dx} = (xe^{-x^{2}} + xe^{-x^{2}}(-x)) = e^{-x^{2}} - xx^{2}e^{-x^{2}} = e^{-x^{2}}(1-2x^{2})$  $\frac{d^{2}\pi}{dx^{2}} = -2xe^{-x^{2}}(1-2x^{2}) + e^{-x^{2}}(-4x) = -2xe^{-x^{2}}(1-2x^{2}+2)$ →쁊  $\Rightarrow A(\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}} e^{\frac{1}{2}}$ a at C => 212=1  $\left( e^{-\chi_{L}^{2}} \neq 0 \right]$ - 22 = 1  $\Rightarrow 3 = \frac{1}{\sqrt{2}}$ 2(+)(3-1)=

proof



#### Question 222 (*****)

A curve is defined over the largest real domain by the equation

Show that

.C.

$$\frac{dy}{dx} = \frac{f(x) e^{-x}}{2x^2(x+1)^{\frac{3}{2}}},$$

 $y = \frac{1}{x e^x \sqrt{x+1}}$ 

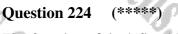
where f(x) is a quadratic expression and hence find, in exact form, the coordinates of any stationary points of the curve.

NOW LOOKING BE STATIONARY POINTS du =0 BY TAKING LOGARITHU (2)2+52+2)e = 1 x 1x+1 es · ln [ Je QHIZ] - (2)2+51+2)E Ina - Ine - In Carol  $-h_{0-} - \alpha - \pm h_{0}(\alpha_{H})$ (24H) (2H2) 2/my = - [2/m2+2+ + ln(211)] 60. R.T. CI  $\Rightarrow \frac{2}{y} \frac{d_{4}}{dx} = -\left[\frac{2}{x} + 2 + \frac{1}{x+1}\right]$ LAUT DHANHO TON 21  $= \frac{2}{y} \frac{dy}{dx} = -\left[\frac{2(2x+1)+2x(3x+1)+3x}{3x(3x+1)}\right]$ i. a = - 1/2.  $y = \frac{1}{-\frac{1}{2}\left(\frac{1}{2}\right)^{\frac{1}{2}}e^{-\frac{1}{2}}}$ ヨ 子母 = - 21+2+23+22+2  $g = -\frac{2e^{\frac{1}{2}}}{\frac{1}{\sqrt{2}}}$  $\implies \frac{2}{y}\frac{dy}{dx} = -\frac{2\lambda^2 + 5x + 2}{\lambda(x+)}$ y = -2€1€  $\frac{dy}{dy} = -\frac{y}{2} \times \frac{2x^2 + 5x + 2}{x(x+1)}$ da Al  $= -\frac{1}{2\pi e^2(x_{H1})^{\frac{1}{2}}} \times \frac{2t^2+5(x_{H2})}{x(x_{H1})}$ : (-1-212e) <u>dy</u> - 22+52+2 22*ex (2+1) 1/2  $-\frac{(2t^2+5x+2)e^2}{2t^2(x+1)^3}$ E f(x)= 22+152+2

 $f(x) = 2x^2 + 5x + 2$ 

2√2e)

#### (***** **Question 223**


Show clearly that

asmaths.com T.Y.C.B. Madasmalls.com T.Y.C.B. Madasmalls.com  $\frac{d}{dx} \left[ \ln \left( x - 2 + \sqrt{x^2 - 4x + 13} \right) \right] = \frac{1}{\sqrt{x^2 - 4x + 13}}.$ 



àsillàins.co

K.G.



ŀ.C.p.

Ĉ.Ŗ

The function f is defined as

 $f(x) = x^{-2x}, x \in \mathbb{R}, x > 0.$ 

 $-2e^{\frac{e+2}{e}}$ 

Show that the value of f''(x) at the stationary point of the function is

-f(x) = x  $\Rightarrow f'(e^{-1}) = -2e f(\frac{1}{e})$  $\Rightarrow f''(e^{-1}) = -2e \times \left(\frac{1}{e}\right)^{-2} \left(\frac{1}{e}\right)$ START DIFFORGENIATING WITH RESPECT for) as rouces  $\Rightarrow +(\alpha) = e^{\ln \alpha^{21}} = e^{2\alpha \ln \alpha}$  $\Rightarrow f''(e^{-1}) = -2e \times (e^{-1})^{\frac{2}{c}}$  $\Rightarrow f(x) = e^{2xlmx} \times \frac{d}{dx} \left[ -2kmx \right]$  $\Rightarrow f(x) = e^{2xlmx} \times \left[ -2kmx - 2x \times \frac{1}{2x} \right]$ × e²  $\Rightarrow \left\{ \left( e^{i} \right) = -2e^{i} \right\}$  $\Rightarrow f'(e^{-1}) = -2e^{\frac{2}{e}+1}$  $\Rightarrow f(x) = e^{-2x \ln x} [-2 \ln x - 2]$  $\Rightarrow f'(e^{-i}) = -2e^{\frac{2+e}{e}}$  $\Rightarrow f(x) = -2(i+b_{1x})e^{-2xb_{1x}}e^{-2xb_{1x}}$ AS REPUIRE REWRITE AS FOUNDED AND DIFFERENTIATE - APAIN  $\Rightarrow f(x) = -2(1+\ln x)f(x)$  $\Rightarrow f_{(x)}^{\ell'} = -2 \left[ \pm f(x) + C + \ln x \right] f_{(x)}^{\prime}$ NOW AND THE VALUE OF IL FOR WHICH - P IS STR fa)=0 =0 1+ha=0 e inx -2x  $\Rightarrow \ln x = e^{-1}$  Finally we gan find -THAT f(e)=0  $\rightarrow f'(e^{-1}) = -2 \left[ \frac{1}{e^{-1}} f(e^{-1}) + 0 \right]$ 

proof

E.P.

(**** **Question 225** 

ASINALIS COM I.Y.C. Created by  $f(x) = \ln\left[\left(x^2 + 1\right)^{\frac{1}{2}} + x\right], x \in \mathbb{R}.$ 

Show clearly that ...

1.1	Show clearly that	C.	60	10
. 6	<b>a</b> ) $f'(x) = \frac{1}{\sqrt{x^2 + 1}}$			
202	<b>b</b> ) $f(x)$ is an odd fu	inction.	20. ×	120.
ash.		"asmo	proo	f lar
	is and		$ \begin{array}{l} \left  \left\{ c_{s,s} + \frac{1}{2} \left[ c_{s} c_{s} \right] \right\} d = \left( c_{s} \right)^{\frac{1}{2}} \left\{ d = \left( c_{s} \right)^{\frac{1}{2}} \left\{ d = \left( c_{s} \right)^{\frac{1}{2}} d = \left( c_{s$	
200	COD VO	COL .	$\Rightarrow f(z) = \frac{(z_{+}(z_{+}n)^{\frac{1}{2}})}{(\overline{z}^{+}n)^{\frac{1}{2}}} \qquad \Rightarrow f(z) = \ln\left[(\overline{z}^{+}n)^{\frac{1}{2}}+z_{-}\right]^{-1}$	3
" ),	1.V		$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	1.1
~ . /.		0 · K.O.	G.D.	×.6
20.		10. 5	x '''	3
"azsn	1202	19028 S.	1.20°	ada.
	16 48102	a Math.	asma.	- ¹ 012)
2	Con I	Is S.C	on alls	2
1		COM .		20
- (.)	E Sty	2. S.F.	NO.	11
1	GB 4		s S	
D.	12	Created by T. Madas	no.	nan -
* 40/20.	Alash	Created by 1. Madas	all as a	asm.

Created by T. Madas (****) **Question 226** COM Show clearly that  $0 \le x \le \alpha \pi$  $-\sin x - \cos x$  $\cos 2x$ d  $\alpha \pi \le x \le \beta \pi$  $\sin x + \cos x$ dx $\sqrt{1+\sin 2x}$  $\beta \pi \le x \le 2\pi$  $-\sin x - \cos x$ where  $\alpha$  and  $\beta$  are constants to be found. proof  $\bigcirc \frac{d}{da} \left[ \frac{\cos 2x}{\sqrt{1+\sin 2x^2}} \right]$  $\frac{g_{M12} - g_{200}}{g_{20} + g_{M12} + g_{200}} \int \frac{b}{xb} =$ ≤ 3∏  $= \frac{d}{dx} \left[ \frac{(x_{M2} - x_{20})(x_{M2} - x_{20})}{\sqrt{(x_{M2} - x_{20})}} \right] = \frac{d}{dx}$  $= \frac{d}{dx} \left[ \frac{(as_2 - sm_2)(as_2 + sm_2)}{(as_2 + sm_2)} \right]$ < 7. NZ ( thicks + the suna) d -cosx + sma = NZ N2 63(2-15) 👂 THUS WE HAVE FOR \$ 2T ₩62 521 I.F.G.B.  $\frac{311}{4} \leq \alpha < \frac{71}{4} \qquad \frac{\cos \alpha + \sin \alpha}{|\cos \alpha + \sin \alpha|}$ 202.8n 200 I.C.p . F.G.B. Mana,

# Created by T. Madas The Com (****) Question 227 Show clearly that ... I.Y.C.P. **i.** ... $\frac{d}{dx}\left(\frac{x-4}{\sqrt{x}+2}\right) = \frac{1}{2\sqrt{x}}$ 1.1.6.8 $\cdot \frac{d}{dx} \left( \frac{4x - 8\sqrt{x} + 3}{\left(\sqrt{x} - 1\right)^2} \right) = \frac{1}{\sqrt{x} \left(\sqrt{x} - 1\right)^3}.$ ii. alasmanis com trops proof a) $\frac{d}{da} \left[ \frac{2-4}{\sqrt{a^2+2}} \right] =$ $\frac{\delta}{\delta \lambda} \left[ \frac{\alpha - 4}{\alpha^2 + 2} \right] = \frac{(\alpha^2 + 2)}{\alpha^2 + 2}$ The Com I. J. $\frac{21+4x^{\frac{1}{2}}-2+4}{2x^{\frac{1}{2}}(2+4x^{\frac{1}{2}+4})} = \frac{2+4x^{\frac{1}{2}+4}}{2x^{\frac{1}{2}}(2+4x^{\frac{1}{2}+4})}$ $b \end{pmatrix} \frac{d}{dt} \begin{bmatrix} \frac{d_{2} - b(\overline{x}^{1} + \overline{x})}{(d\overline{x}^{1} - 1)^{k}} \end{bmatrix} = \frac{d}{dt} \begin{bmatrix} \frac{d_{2} - b(\overline{x}^{1} + \overline{x})}{(2\pi)^{k}} \end{bmatrix} \\ = \frac{(2\pi^{1/2} (\zeta - b_{2})^{2}) - (d_{2} - b(\overline{x}^{1} + \underline{x}) + 2(2\pi^{1} - 1)^{k} + 2\overline{x}^{2})}{(2\pi^{1} - 1)^{k}}$ $=\frac{4(2^{\frac{1}{2}-1})^{2}(1-\chi^{\frac{1}{2}})-\chi^{\frac{1}{2}}(\chi^{\frac{1}{2}-1})(4_{1}-8\chi^{\frac{1}{2}}+3)}{(2^{\frac{1}{2}-1})^{4}}$ $= \frac{4(x_{-1}^{\frac{1}{2}})(1-x_{-1}^{-\frac{1}{2}}) - x^{\frac{1}{2}}(4x-6x_{-+3}^{\frac{1}{2}})}{(x_{-1}^{\frac{1}{2}})^3}$ $=\frac{4\alpha^{\frac{1}{2}}-4\alpha^{-\frac{1}{2}}+4\alpha^{-\frac{1}{2}}-4\alpha^{-\frac{1}{2}}+8-3\alpha^{-\frac{1}{2}}}{(\alpha^{\frac{1}{2}}-1)^{3}}$ $\frac{2\tau^{\frac{1}{2}}}{(2^{\frac{1}{2}}-1)^3} = \frac{1}{2^{\frac{1}{2}}(2^{\frac{1}{2}}-1)^3} = \frac{1}{\sqrt{2^{\frac{1}{2}}(2^{\frac{1}{2}}-1)^3}}$ is there a) de a-4] $=\frac{d}{dx}\left[\frac{(x-4)(4x-2)}{(4x^2+2)(4x^2-2)}\right]=\frac{d}{dx}\left[\frac{(x-4)(4x^2-2)}{(2x-4)}\right]=\frac{d}{dx}\left(x^{\frac{1}{2}}-2\right)$ = 282 Madasmans.com I.Y.C.B. Madasi b) d (42-86+3] = $\frac{\mathrm{d}}{\mathrm{d}x} \begin{bmatrix} 4(\sqrt{x}-2\sqrt{x}^2+1)-1\\ (\sqrt{x}^2-1)^2 \end{bmatrix} = \frac{\mathrm{d}}{\mathrm{d}x} \begin{bmatrix} 4(\sqrt{x}-1)^2-1\\ (\sqrt{x}^2-1)^2 \end{bmatrix}$ Smaths Com I. K. C. B. I.F.G.B.

I.V.

1.

Question 228 (*****

2

 $y = \arctan x + \arctan\left(\frac{1-x}{1+x}\right), x \in \mathbb{R}.$ 

The com Without simplifying the above expression, use differentiation to show that I.F.G.B.

ASIDALIS COM I.Y. C.B. MARASIDALIS COM

Smarps Com Lives

I.F.G.B.

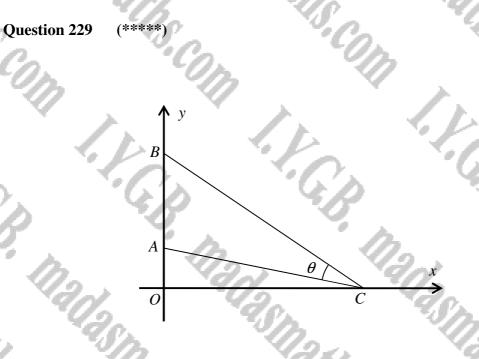
 $\frac{dy}{dx} = 0$ , for all values of x.

madasmaths,

 $\frac{1}{1+2t^2} + \frac{1}{(+\frac{1}{1+2t^2})^2}$ (1+2)2 I.Y.C.B. Madasmarkins.Com

proof

arns.co


il.

6

10.303ST0.3

Created by T. Madas

I.C.P.



The figure above shows the triangle ABC, where  $\measuredangle ACB = \theta$ .

The points A and B have respective coordinates (0,1) and (0,3), while the variable point C(x,0) lies on the positive x axis.

Show that as C varies, the maximum value of  $\theta$  is  $\frac{\pi}{2}$ 

	<u> </u>
$e^{\frac{2}{3}} = 2\pi - 2\pi -$	$\frac{ ON }{ OC } = \frac{ OA }{ OC }$ $\frac{ ON }{ OC } \times \frac{ ON }{ OC }$
$\begin{array}{c} = \frac{3}{2} \cdot \frac{1}{2} \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ \end{array} \begin{array}{c} 0 \\ 0 \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array}$	2x 2+3
• $\left[ \frac{1}{2} + \frac{1}{2} \left\{ \frac{1}{2} \left\{ \frac{1}{2} - \frac{2\pi}{2} \right\} - \frac{2\pi}{2} \right\} - \frac{2\pi}{2} - $	2]
$ \begin{array}{c} \bullet \ \mbox{figure} \bullet \ \ \mbox{figure} \bullet \ \ \mbox{figure} \bullet \ \ \ \mbox{figure} \bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	<del>ر کر</del> ۲۹۹۳ م
NDGD A MANINUM	

, proof

21/20

#### Question 230 (*****)

3

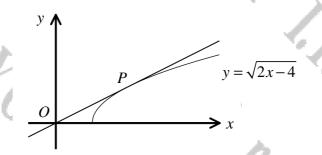
A curve C has equation

 $y = e^{\arctan x}, x \in \mathbb{R}.$ 

a) Show, with detailed workings, that

$$\frac{d^3y}{dx^3} = \frac{\left(6x^2 - 6x - 1\right)e^{\arctan x}}{\left(1 + x^2\right)^3}$$

b) Deduce that C has a point of inflection, stating its coordinates.


URANN THE FORT ORDER DERWATUSE	$\Rightarrow \frac{dy}{dt_{2}} - \frac{(1+\chi^{2})^{2}}{\omega^{2}d\omega_{1}}(\omega^{2}-\omega^{-1})$
$y \in \mathcal{L}^{(1)}$ $\frac{d_{1}}{dJ} = e^{actore} \frac{1}{1+z^{2}}$	
$\frac{dy}{dl} = \frac{\sqrt{2}dt_{act}}{1+2^2}$	b) $\frac{B(k + POINT OF INREXICAN)}{\frac{d^2 u}{dp_2} = 0} \frac{d^2 u}{dp_3} \frac{d^2 u}{dp_3} \neq 0$
AT FIRST CONSILE IT MAY HANGE MORE SANSHELL TO WRITE ENTERING , BOT IT IS	
ACTUALLY FASIL TO PROCESS WITH THE AS IT IN	$ \Rightarrow \frac{e^{\frac{1}{2}(1+\chi^2)^2}}{(1+\chi^2)^2} = 0 $
$\Rightarrow \frac{\partial_{2}}{\partial z} = \frac{(i + z^{2})e^{\frac{i}{2} - \frac{i}{2} - $	⇒ 2.° £ (46 e ^{acto}
$\Rightarrow \frac{dg}{dx^2} = \frac{e^{i\pi t - bu\lambda} (1 - 2x)}{(1 + x^2)^{\lambda}}$	• $\frac{d^3 u}{d\alpha}\Big _{\alpha + \frac{1}{2}} = \frac{e^{\alpha c \tan k}}{(1 + \frac{1}{2})^3} \times (\varepsilon_x + -\varepsilon_x)$
NOW TAKEN LOGE IS AN APTICAL OF SEAL WATE IT AS A "THORE" PRODUCT	~
$\Rightarrow \frac{\partial \Omega_{2}}{\partial \lambda^{2}} = (1-\lambda) e^{\alpha (d + \lambda n)} (1+\lambda^{2})^{-2}$	$= \frac{\frac{1}{22}}{\frac{1}{2}} \times \left(\frac{3}{2} - 2 - 1\right)$
$\{\frac{d}{dt}(+dt) = \{\frac{d}{dt}, \frac{d}{dt} + \frac{d}{dt}\}$	$= \frac{16}{25} o_{antim \frac{1}{2}} \times (-\frac{5}{2})$ $= -\frac{6}{5} e^{antim \frac{1}{2}}$
$\implies \frac{\partial \mathcal{U}_{2}}{\partial \mathcal{U}} = -2 e^{\alpha (2\beta + 2\beta)^{-1} + (j-2\xi)} e^{\alpha (2\beta + 1) - \xi} e^{\alpha (2\beta + 1) - \xi} (i+1)^{\xi} + (j-2\xi) e^{\alpha (2\beta + 2\xi)^{-1} + (j-2\xi)} e^{\alpha (2\beta + 2\xi)^{-1} + (j-2\xi)} e^{\alpha (2\beta + 2\xi)^{-1} + (j-2\xi)^{-1} $	+ 0
$\implies \frac{df_{z}}{dy} = -\frac{(1+2j)r}{-\frac{2\epsilon}{4\alpha_{post}}} + \frac{(1+2j)r}{(1-2j)}e_{uppost} - \frac{(1+2r)r}{\Phi((1+2r)^{2}}e_{uppost}$	$\left(\frac{1}{2}\right) e^{\alpha_{0} q_{0} q_{0} \frac{1}{2}} = v + v$
FAUTURE AND TIDY	
$\implies \frac{dJ_1}{d\xi^{n-1}} = \frac{e_{aupory}}{(1+\chi_2)_4} \left[ -\Sigma(HX_2) + (1-\chi) - H^{n-1}(1-\chi) \right]$	
$\implies \frac{d_{M}^{2}}{d\lambda^{2}} = -\frac{e^{2\pi i \Delta a i \lambda}}{(1+x^{2})^{2}} \left[ -2 - 2\chi^{2} + 1 - \chi - \bar{h}_{0} + 8\chi^{2} \right]$	

,  $e^{\arctan \frac{1}{2}}$ 

2 >0)

int of instrict

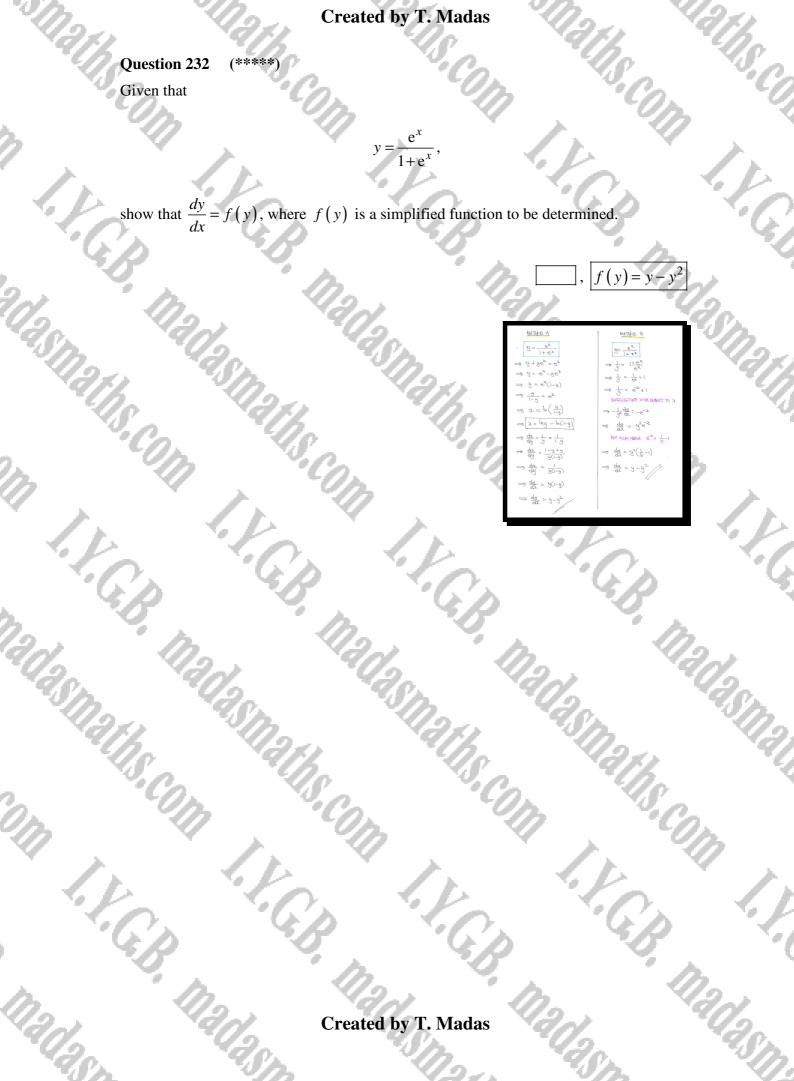
Question 231 (*****)

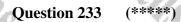


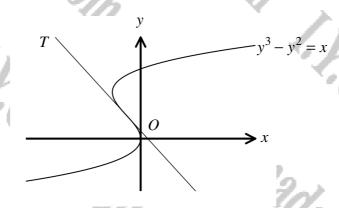
The figure above shows the graph of the curve C with equation

$$y = \sqrt{2x - 4} \ , \ x \ge 2 \ .$$

The point P lies on C, so that the tangent to the curve at the point P passes through the origin O.


Use a calculus method to find the coordinates of P.


 $\overline{P}(4,2)$  $y = \sqrt{2x-4} = (2x-4)^{\frac{1}{2}}$ TIN WUL BE OF THE FORM Y=MX  $\frac{\mathrm{d} u}{\mathrm{d} \mathfrak{F}} = \frac{1}{2} \left( 2 \mathfrak{x} - \mathfrak{q} \right)^{\frac{1}{2}} \times 2 \approx \left( 2 \mathfrak{x} - \mathfrak{q} \right)^{\frac{1}{2}} \approx \frac{1}{\left( 2 \mathfrak{x} - \mathfrak{q} \right)^{\frac{1}{2}}}$ SOLUE SIMULTANEOULY WITH THE EQUATION OF THE CORVE y=ma y= (22-4)± } => Wa = (22-4)2 NOW LET THE I CO ORDINATE OF P BE I = P  $= \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$  $\Longrightarrow \mathbb{b}\big( \stackrel{b^{1}}{\to} \stackrel{(sb-t)_{\overline{T}}}{\to} \big)$  $\implies \boxed{W^2 x^2 - 2x + 4} = 0$  $\Rightarrow \frac{dy}{dx}\Big|_{x=p} = \frac{1}{(2p-4)^{\frac{1}{2}}}$ LOOKING FOR DEPERTED BUTS, (THEORET) 6 b2-llas = THE EQUATION OF THE TANSENT AT P WILL BE  $(2)^2 - 4w_X^2 4 = 1$  $\lambda = (\overline{5}-4)_{\overline{7}} = \frac{1}{(5-4)^{2}}(5x-6)$ BOT THUS THWOGEN PHESES THROUGH THE ORIGIN (0,0)  $W_1^2 = \frac{1}{4}$  $\Rightarrow -(2p-4)^{\frac{1}{2}} = \frac{1}{(2p-4)^{\frac{1}{2}}} (-p)$  $\Rightarrow m = \pm \frac{1}{2}$  (m>0)  $\Rightarrow -(2p-4) = -p$  LEEURNING TO THE QUADRATIC WITH M= 1, AND EXPECT POLECET SILVARE ⇒ 2p - 4 = p  $\Longrightarrow \left(\frac{1}{2}\right)^2 x^2 - 2x + 4 = 0$  $\Rightarrow \frac{1}{4}x^2 - 2x + 4 = 0$ y= v2x-4 = v2p-4 = x2- Bx+16=0 -9 (2 - 4)²=0 y = 2  $: P(4_12)$ AND  $y = \frac{1}{2}x = \frac{1}{2}x \neq =2$ : P(4,2)


Smains.co

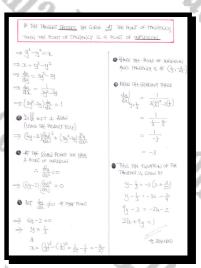
Question 232 (****

Given that








The figure above shows the graph of a curve with equation

$$y^3 - y^2 = x, x \in \mathbb{R}, y \in \mathbb{R}$$
.

There exists a tangent to the curve T, so that this tangent **crosses** the curve at the point of tangency.

Show that an equation of T is

27x + 9y = 1.



proof

120,

Question 234 (*****)

> $f(x) = x \ln \left[ \left( x^2 + 1 \right)^{\frac{1}{2}} + x \right] - \left( x^2 + 1 \right)^{\frac{1}{2}}, x \in \mathbb{R}.$ I.C.B.

Show clearly that ...

I.V.G.B. Madası

Smaths.com

I.V.G.B.

**a**) ...  $f'(x) = \ln\left[\left(x^2 + 1\right)^{\frac{1}{2}} + x\right]$ .

**b**) ... f(x) is an even function.

proof

'21/15.COM

Mada

I.F.G.B.

The Com

$a)  f(x) = \operatorname{alm}\left[ (x_{r+1}^2)^{\frac{1}{2}} + x_{r} \right] - (x_{r+1}^2)^{\frac{1}{2}}$
DIFFICIENTIATING CONGETHE POLOCY DUC ON THE FILLY TRUN
$\longrightarrow -\left\{ (\hat{x}) =  x  \ln \left[ (\hat{x}_{i})^{\frac{1}{2}} + \hat{x}_{i} \right] + x \times \frac{1}{(\hat{x}_{i})^{\frac{1}{2}} + x} \times \left[ x(\hat{x}_{i})^{\frac{1}{2}} + 1 \right] - \hat{x}(\hat{x}_{i})^{\frac{1}{2}} \right]$
$ \Longrightarrow \left( \stackrel{\prime}{\Delta} \right) = \left[ h \left[ \left( \stackrel{\circ}{\partial t} \right)^{\frac{1}{2}} + \chi \right] + \frac{\chi^2 (\chi^2 + 1)^{\frac{1}{2}} + \chi}{(\chi^2 + 1)^{\frac{1}{2}} + \chi} - \chi (\chi^2 + 1)^{\frac{1}{2}} \right] $
$\Longrightarrow f'_{(2)} = b_{\mathbb{I}} \left[ (\chi^2_{1})_{+}^{\frac{1}{2}} \chi \right] + \frac{(\chi^2_{\mathbb{I}} (\chi^2_{1})_{-}^{\frac{1}{2}} \chi)_{\mathbb{I}} \left[ (\chi^2_{1})_{-}^{\frac{1}{2}} \chi \right]}{[(\chi^2_{1})_{\mathbb{I}}^{\frac{1}{2}} \chi] \left[ (\chi^2_{1})_{\mathbb{I}}^{\frac{1}{2}} \chi \right]} - \frac{\chi}{(\chi^2_{1})_{\mathbb{I}}^{\frac{1}{2}}}$
$\Longrightarrow f(\lambda) = \left h\left[(\widehat{\chi}_{H})^{\frac{1}{2}} + \lambda\right] + \frac{\langle\widehat{\chi}_{-\lambda}^{2} - \widehat{\chi}_{\lambda}^{2} \widehat{\chi}_{H}^{-1} - \widehat{\chi}_{+\lambda}^{2} (\widehat{\chi}_{+\lambda}^{2})^{\frac{1}{2}} - \frac{\chi}{(\widehat{\chi}_{+\lambda}^{2})^{\frac{1}{2}}} - \frac{\chi}{(\widehat{\chi}_{+\lambda}^{2})^{\frac{1}{2}}}\right]$
$\Rightarrow \left\{ (\chi) = \frac{1}{ \chi } \left\{ \chi(\chi^{2}_{H}) \right\}_{t,\chi}^{\frac{1}{2}} + \frac{\chi(\chi^{2}_{H})^{\frac{1}{2}} - \chi^{2}(\chi^{2}_{H})^{\frac{1}{2}}}{(\chi^{2}_{H})^{\frac{1}{2}} - (\chi^{2}_{H})^{\frac{1}{2}}} - \frac{\chi}{(\chi^{2}_{H})^{\frac{1}{2}}} \right\}$
$ \rightarrow (\mathcal{A}) = \left[ \mu \left[ (\mathcal{I}_{\mathcal{H}})_{\mathcal{H}}^{\mathcal{H}} \right] + \frac{(\mathcal{I}_{\mathcal{H}})_{\mathcal{H}}^{\mathcal{H}}}{\mathcal{X}(\mathcal{I}_{\mathcal{H}}) - \mathcal{I}_{\mathcal{H}}^{\mathcal{H}} - x} \right] $
$\Rightarrow \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} = \left[ h \left[ (\lambda^2 + 1)^{\frac{1}{2}} + \lambda \right] + \underbrace{\lambda^2 + \lambda - \lambda^2 - \lambda}_{(\lambda^2 + 1)^{\frac{1}{2}}} \right]$
$\Rightarrow -f(\alpha) = h_{n}[(\alpha^{2}n)^{\frac{1}{2}} + \lambda]$
b) NOW $\left\{ (-x) = \ln \left[ \left( (-x)^2 + 1 \right)^{\frac{1}{2}} + (-y) \right] \right\}$
$= \mu \left[ \left( 2^{\frac{1}{2}+1} \right)^{\frac{1}{2}} - 2c \right]$
$= -b_1 \left[ \frac{(\chi^2 \lambda_1)^{\frac{1}{2}} - \chi}{2} \right]$

The COM

 $= -\ln \left[ \frac{(\chi^2 t)^{\frac{1}{2}} + \chi}{(\chi^3 t) - \chi^2} \right]$  $-l_{H}\left[\frac{\left(2^{2}H\right)^{\frac{1}{2}}+\chi}{2^{3}H(-2)^{\frac{1}{2}}}\right]$ -In (G2+1)2+2

 $\ln \left\lfloor \boxed{(2^{2}+1)^{\frac{1}{2}}-x} \boxed{(2^{2}+1)^{\frac{1}{2}}+x} \right\rfloor$ 

#### Question 235 (*****)

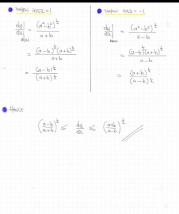
I.V.C.B. III,

I.F.G.B.

A curve is defined in its largest real domain by the equation

 $y = \arccos\left[\frac{a\cos x + b}{a + b\cos x}\right],$ 

where a and b are constants such a > b > 0.


Show that y increases with x at a rate which lies between

 $\sqrt{\frac{a-b}{a+b}}$  and  $\sqrt{\frac{a+b}{a-b}}$ .

You may assume that  $\frac{d}{dx}[\arccos x] = -\frac{1}{\sqrt{1-x^2}}$ .

I.C.A

1.	$ \{ q = \operatorname{caccoc}\left(\frac{\operatorname{alog} x + b}{q + \operatorname{bacc}}\right),  a > b $	
/ h.	DIFFERRATING Wint 2157805 TO a	1
· Ja	$ \underset{dz}{ \underset{dz}{ =} \frac{1}{\sqrt{1 - \left(\frac{\alpha_{\text{exc}}}{\alpha + b_{\text{exc}}}\right)^2}} \times \frac{(a + b_{\text{exc}})(-a_{\text{exc}})}{(a + b_{\text{exc}})^2} } $	
16	$\Longrightarrow \frac{\mathrm{d} a}{\mathrm{d} x} = \frac{-1}{\sqrt{\frac{(a+b\omega\alpha x)^2}{(a+b\omega\alpha x)^2}}} \times \frac{-a^2\omega_{12}-ab\omega\alpha x \delta\omega_1 + ab\omega\alpha x \delta\omega_2 + b^2\omega_1}{(a+b\omega\alpha x)^2}.$	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$ \underset{d_{\mathcal{L}}}{\overset{d_{\mathcal{L}}}{=}} \frac{d_{\mathcal{L}}}{\frac{1}{(a+2)}b^{m_{\mathcal{L}}} + b^{m_{\mathcal{L}}} - b^{m_{\mathcal{L}}} - b^{m_{\mathcal{L}}}}{(a+b_{m_{\mathcal{L}}})^{2}} \times \frac{(a+b_{m_{\mathcal{L}}})^{2}}{(a+b_{m_{\mathcal{L}}})^{2}} $	1
	$\Longrightarrow \frac{dy}{dx} = \frac{\int_{a+bic(x)}^{b} (a^{x} - b^{2}) f_{WX}}{\sqrt{(a^{2} - b^{2}) - (a^{x} - b^{2}) \cos^{2}x^{1}}} \times \frac{1}{(a + bic(x))^{2}}$	
	$ \longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(a^{2}-b^{2})_{*} x_{\mathrm{H},\mathrm{X}}}{(a^{2}-b^{2})_{*}^{2} \sqrt{(a+b_{\mathrm{CM}})_{*}}} \times \frac{1}{(a+b_{\mathrm{CM}})} $	1
2	$\Rightarrow \frac{dy}{dx} = \frac{(a^2 - b^2)^{\frac{1}{2}}}{a + biolx}$	
20.	• NOW UNCLUSE AT THE SUPPLIFIE RELEASE APPLICATION APPLICIES AND ADDED THE GRADUST IS LANTIMOUS AS $(a+b\cos 2)\neq o$ of ADARSEL II ORIGAN	1

I.C.B.

I.C.p

COM

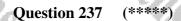
Inadasn.

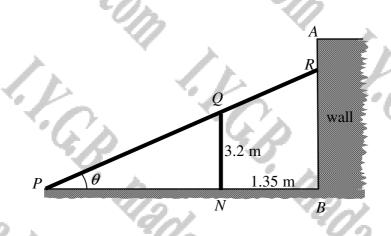
, proof

R

Question 236 (*****)

The function f is defined, in terms of the real constant k, by


 $f(x) \equiv x^3 + kx^2 + x + 1, \ x \in \mathbb{R}.$

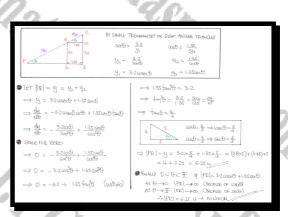

Investigate the number of turning points of f for different values of k, distinguishing further which ones are stationary

, investigation	
	0
$\begin{cases} f(\hat{a}) = \alpha^3 + b\alpha^2 + \alpha + 1 & \alpha \in \mathbb{R} \\ f(\hat{a}) = \alpha^3 + b\alpha + 1 & \alpha \in \mathbb{R} \\ f(\hat{a}) = 3\alpha^2 + 2b\alpha + 1 \end{cases}$	Ş
$\begin{split} & f_{1}^{\prime}(\alpha)=6\infty+2k\\ & f_{2}^{\prime}(\alpha)=6 \end{split} $ $ & \bullet AS \left\{f_{2}^{\prime}(\alpha)\neq0 \text{for an value of } \chi_{1} the CMDAR that A Poull of Inference Understand Understand for the A - 2000 for the A - $	
• LOOKING- RUL STATIONARY POINTS $32^2+3x_2+1=0$	
$ \begin{array}{c} b_{2} - b_{4C} \\ = & c \\ c \\ c \\ = & c \\ c$	>
$\begin{array}{c c} & (k < -\sqrt{3} & \underline{b} (k > \sqrt{3}) & \overline{b} (k > \sqrt{3}) \\ & (k < +\sqrt{3}) & (k < \sqrt{3}) & (k < \sqrt{3}) & (k < \sqrt{3}) \\ & (k < \sqrt{3}) \\ & (k < \sqrt{3}) & (k < \sqrt{3}) & (k < \sqrt{3}) & (k < \sqrt{3}) \\ & (k < \sqrt{3}) \\ & (k < \sqrt{3}) \\ & (k < \sqrt{3}) & (k < \sqrt{3})$	

Con.

20,

The figure above shows the wall AB of a certain structure, which is supported by a straight rigid beam PR, where P is on level ground and R is at some point on the wall.


In order to increase the rigidity of the support, the beam is rested on a steady pole NQ, of height 3.2 metres.

The pole is placed at a distance of 1.35 metres from the bottom of the wall B.

The beam *PR* is forming an acute angle θ with the horizontal ground *PNB*.

The angle θ is chosen so that the length of the beam *PR*, is least.

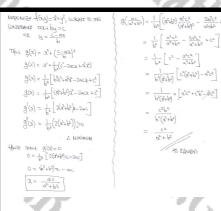
Determine the least value for the length of the beam PR, assuming that R lies on the wall, fully justifying that this is indeed the minimum value.

6.25

Question 238 (*****)

K.C.

ŀ.G.B.


The variables x and y are such so that

ax+by=c,

 $\frac{c^2}{a^2+b^2}.$

where a, b and c are non zero constants.

Show that the minimum value of $x^2 + y^2$ is

ACTHENATIVE BY GOODWATH BEOMHTED en sty = DISTANCE OF & POINT (x,y) (ay) ue an THE I

Y.G.B.

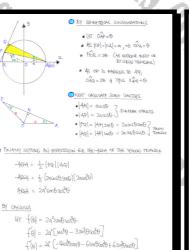
proof

GA

AND $y = \frac{b}{a} \times \frac{ac}{a^2 + b^2} \Rightarrow y = \frac{bc}{a^2 + b^2}$

 $\frac{c^2(a^2+b^2)}{(a^2+b^2)^2} = \frac{c^8}{a^2+b^2}$

Question 239 (*****)


The point A(a,0) lies on the circle with Cartesian equation

 $x^2 + y^2 = a^2.$

The point P is also on the same circle, and the point Q lies on the tangent to the circle through P, so that AQP is a right angle.

Use a calculus method to show that for all possible positions of P, the largest area of the triangle AQP is

 $\frac{3\sqrt{3}}{8}a^2$

Genia

-f(0)=0 $2a^2\cos^2\theta \left(\cos^2\theta - 3\sin^2\theta\right) = 0$ 0= 820) 99<u>419</u> - 3sm20 = ĐĘ $f_{200} = \Theta^{c}_{m2E}$ $\frac{33w_{10}^{20}}{\cos^{2}\theta} = \frac{\cos^{2}\theta}{\cos^{2}\theta}$ GA THE 3taufo = (tano = f $tau\theta = \pm \frac{1}{\sqrt{3}}$ $- \left\{ a_{11} \Theta = + \frac{1}{\sqrt{3}} \right\}$ (ONLY PHYS 0= ₹ C Riwhury affect that the YILLES A LOOK MAX f("F)= 4a2smFlacF[3s1b2F-5lacF] = 40²×±×£[3×+ -5×₹] = a²x3 (-3) WIDEED MAX AS f(0) IS RO = -3/3 a2 <0 ARFA CAN NOW BE FOUND ARA = +(=) (13)

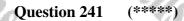
proof

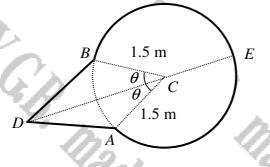
Question 240 (*****)

A curve has equation

 $y = 2kx^{\frac{3}{2}} - \frac{25}{16}\ln kx, \ x \in \mathbb{R}, \ x > 0.$

where k is a positive constant.


The point A lies on the curve, where $x = \frac{1}{k}$.


Given that the normal to the curve at A passes through the origin O, find an equation of the normal to the curve at A.

3=222 = - 25 h kx 2>0, k>0
FIRSTLY FIND THE CO-ORINATES OF A
$ \bigcup_{k=1}^{n} \mathcal{D}_{k} \left(\frac{1}{k} \right)^{\frac{1}{2}} - \frac{25}{16} b_{k} \left(kx \frac{1}{k} \right) = \mathcal{D}_{k} x \frac{1}{k^{\frac{1}{2}}} - \frac{25}{16} k^{\frac{1}{2}} = \frac{2}{k^{\frac{1}{2}}} $
$\left(\frac{1}{\kappa} \right) = \left(\frac{1}{\kappa} \left(\frac{1}{\kappa} \right) \right)$
NEXT WE OBTION THE GRADINIT AT A
$\frac{du}{dx} = 3kx^{\frac{1}{2}} - \frac{2t}{6x}$
$ \frac{\partial u}{\partial x} \bigg _{x \in \frac{1}{k}} = \frac{2k \left(\frac{1}{k} \right)^{\frac{1}{k}} - \frac{2k}{k \cdot \frac{1}{k}}}{\frac{d u}{k} \left(\frac{1}{k} \right)^{\frac{1}{k}} - \frac{2k}{k}} = \frac{d u}{k \cdot \frac{1}{k}} + \frac{d u}{k} \left(\frac{1}{k} \right)^{\frac{1}{k}} - \frac{1}{k} - \frac{1}{$
$\frac{\mathrm{d} g}{\mathrm{d} g}\Big _{X \in \frac{L}{2}} = 3k^{\frac{L}{2}} - \frac{3k}{2k}$
$\left.\frac{\mathrm{d} u}{\mathrm{d} \zeta}\right _{2=\frac{1}{k}} = \frac{4\theta k^{\frac{1}{k}} - 2\zeta k}{16} \text{ and } \text{Tration generation at } A$
25K-4862 - NSOWAL GENELET AT A
SETTING THE EQUATION OF THE NORMAL AT A (1 1 20)
THIS MORINAL PASSES TROUGH THE ORIGN, IS IT SATISFIES 200 A YOU
$=9 - \frac{2}{kk} = \frac{16}{25k-48kk} \left(-\frac{1}{k}\right)$
$\begin{array}{rcl} = 9 & -\frac{2}{k^{\frac{1}{2}}} &= \frac{16}{2k^{\frac{1}{2}} - 46k^{\frac{1}{2}}} \begin{pmatrix} -\frac{1}{k^{\frac{1}{2}}} \end{pmatrix} \\ \implies & k^{\frac{1}{2}} &= \frac{6}{2k^{\frac{1}{2}} - 46k^{\frac{1}{2}}} \end{pmatrix} \xrightarrow{\text{MARMY BY } -\frac{k}{2}} \end{array}$

$\implies 25k^{\frac{3}{2}} - 49k = 8$
$\implies 25a^3 - 48a^2 - 8 = 0$ $(a = k^{\frac{1}{2}})$
LOOKING FRE FACOURS
IF α=2. 2ξχ8 - 46χ4 - 6 · = 200 - 192-ξ = 0
$\implies 25a^{2}(a-2) + 2a(a-2) + 4(a-2) = 0$
$\implies (\sigma - 5)(52a_5 + 5a + ff) = 0$
R 3 ² - 4AC= 2 ² - 4×25×4 <d< p=""></d<>
only southon
a=2 = kt=2
FINALLY WE HAVE THE EXCEPTION OF THE NORMAL
$\overline{A} = \frac{F_{\frac{2}{2}}}{S} = \frac{18}{16} \left(x - \frac{F}{T} \right)$
$y = \frac{2}{4h} = \frac{16}{h_{D} - 48 \times 2} (x - \frac{1}{4})$
$b_{1} = \frac{16}{4} = \frac{16}{4} (x - \frac{1}{4})$
$y - 1 = 4(x - \frac{1}{4})$
y - 1 = 4x - 1
3 = 42
11

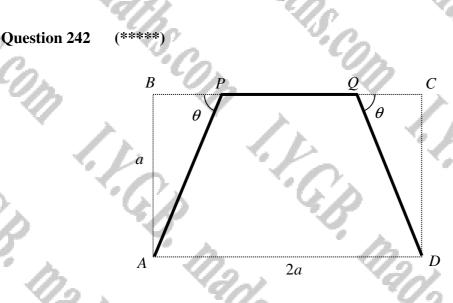
y = 4x

The figure above shows a circle with centre at C and radius 1.5 metres.

The points A and B lie on the circle so that $\measuredangle BCA = 2\theta$, $0 < \theta < \pi$.

The point D lies outside the circle so that the line segments BD and AD are equal in length and the length of DC is 3 metres. The point E lies on the circle so that DCE is a straight line segment of length 4.5 metres.

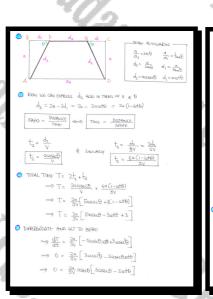
The total length of the line segment BD, the line segment AD and the circular arc \widehat{AEB} denoted by L.

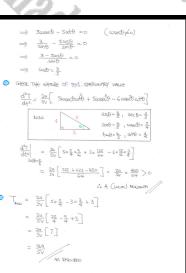

Given that θ varies, show that L has a stationary value when $\theta = \frac{\pi}{3}$ and determine further the value L and the nature of this stationary value.

	20	,	1111	lect
	100			
B IS IS IS IS IS IS IS IS IS IS	$\begin{array}{l} \widehat{dS} \ \mbox{ in } \mb$		Now	di a -
$\frac{dL}{d\theta} = -3 + (11\cdot25 - 900\theta)^{-\frac{1}{2}}$				$\frac{\partial L}{\partial \theta^2} =$
$\begin{array}{l} & \text{max} & \text{max} & \text{max} \\ \Rightarrow & \frac{9 \text{max} + 9}{2(\text{max} + 2\text{s} + 1)} \Rightarrow 3 \\ \Rightarrow & \frac{9 \text{max} + 2\text{s} + 1}{2(\text{max} + 2\text{s} + 1)} \\ \Rightarrow & \frac{1}{2(\text{max} + 2\text{s} + 1)} \Rightarrow 3 \\ \end{array}$	$\begin{array}{c} \operatorname{Gun} P - \operatorname{ISI} I = \left(\operatorname{IS}_{23} - \operatorname{O} \right) P \in \\ \operatorname{Gam} P - \operatorname{ISI} I = \left(\operatorname{IS}_{23} P - \operatorname{O} \right) P \in \\ \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $			$\frac{d^2 L}{d\theta^2} =$

 $(\pi, 2\pi + 3\sqrt{3})$ tion at

 $3 + \frac{9 m \theta}{(11.25 - 9 \omega \theta)^2}$


- $\frac{d^2 L}{dc} = \underbrace{(1\!\cdot\!2\!\cdot\!9\omega s\theta)^{\frac{1}{2}}(q_{\omega s\theta}) \frac{1}{2} \times q_{sm}\theta(j_{1}\cdot z_{-} q_{\omega s\theta})^{\frac{1}{2}} q_{sm}\theta(j_{1}\cdot z_{-} q_{\omega s\theta})}_{(1\cdot 2s q_{\omega s\theta})}$
- $\frac{d^{2}}{d\theta^{2}} = \frac{\sqrt[2]{2}}{2} \left[\frac{\sqrt[2]{2}}{2} \left[\frac{\sqrt{2}}{2} \left[\frac{\sqrt$
- $\frac{\frac{10}{21}}{\frac{10}{20}} = \frac{9(22.5 \log \theta 18 \log 2\theta 9 \log \theta)}{2.(11.25 9 \log \theta) \frac{3}{2}}$
- $\frac{P_{1}}{P_{1}} = \frac{q(22.5\times0.5-18\times0.23-9\times0.52)}{2} = 0$
 - = IT IS A POINT OF INFLUETION
- If $B \in \frac{\pi}{3}$, $L = 3\pi 3x\overline{g} + 2((1,25 9x0,5)^{\frac{1}{2}})$ $L = 3\pi - \pi + 2 \times \sqrt{g^{2}}$ $L = 2\pi + 3\sqrt{3}^{2}$



The figure above shows a network APQD inside a rectangle ABCD, where |AB| = aand |BC| = 2a. The endpoints of the network A and D are fixed. The points P and Q are variable so that they always lie on BC with |AP| = |QD|. The angles BPA and CQD are both equal to θ . A particle travels with constant speed v on the sections AP and QD, and with constant speed $\frac{5}{3}v$ on the section PQ.

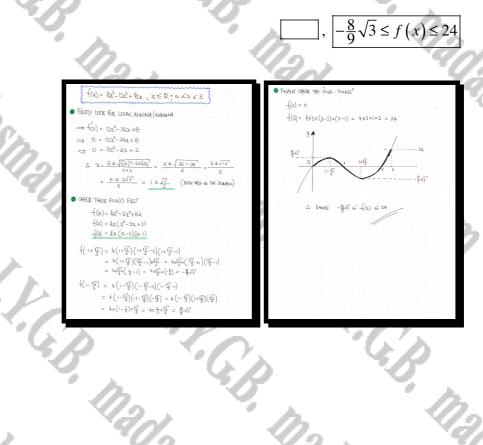
Let T be the total time for the journey APQD.

Given that the positions of the points P and Q can be varied as appropriate, show that the minimum value of T is $\frac{14a}{5v}$, fully justifying that this is the minimum value.

proof

Question 243(*****)The function f is defined as

N.C.


i C.P.

 $f(x) \equiv 4x^3 - 12x^2 + 8x$, $x \in \mathbb{R}$, $0 \le x \le 3$.

Con

C.h.

Find the range of f, and hence sketch its graph, showing clearly the coordinates of any relevant points.

Question 244 (*****)

 $y = \arccos x, -1 \le x \le 1.$

a) Show that

 $\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}.$

The Chebyshev polynomials of the first kind $T_n(x)$ is a family of functions defined as

 $T_n(x) = \cos(n \arccos x), \ -1 \le x \le 1, \ n \in \mathbb{N}.$

b) Show further that

I.C.P.

F.C.B.

 $\frac{d}{dx}\left[\left(1-x^2\right)^{\frac{1}{2}}\frac{d}{dx}\left[T_n(x)\right]\right] = \frac{-n^2 T_n(x)}{\sqrt{1-x^2}}.$

a) $y = ancasa -1 \le a \le 1, 0 \le y \le T$
$\cos y = \infty$
$y_{2}\alpha = x$
$\frac{dx}{dy} = -smy$
4.5 1 . 1 . 1
$\frac{dy}{dx} = -\frac{1}{\sin y} = -\frac{1}{\sqrt{1-\cos^2 y}} = -\frac{1}{\sqrt{1-x^2}}$
A Sing≥o (F o≤ g ≤ π
24636 14 02 3 2 1
b) Now we show it THE PRODUCT DULE
$\frac{d}{dx}\left[\left(1-x^{2}\right)^{\frac{1}{2}}\frac{d}{dx}\left[T_{n}(y)\right]^{\frac{1}{2}} = -x(1-x^{2})^{\frac{1}{2}}\frac{d}{dx} + (1-x^{2})^{\frac{1}{2}}\frac{d}{dx^{2}}$
$= \left(\left[1-\chi^2\right]^{-\frac{1}{2}} \left[\left(\left[1-\chi^2\right]^{\frac{1}{2}} \frac{d^2\Gamma}{d\chi^2} - \chi \frac{d\Gamma}{d\chi}\right]\right]$
NOW OBJAN THE FIRST & SERVICE TERMATENES OF T, (3) SERVICENTLY
$\Rightarrow T_n(x) = \cos(n \operatorname{arcosc})$

 $(x) \times \left[-x(1-x^2)^{\frac{1}{2}}\right]$ atcoss + Na. (1-32) + Con (ne $z^{2} \int_{x}^{\frac{1}{2}} \left[\zeta_{1-2} z \right] \frac{d^{2} \tau}{dz^{2}} - z \frac{d\tau}{dz} \int_{x}^{\infty} \frac{d\tau}{dz}$ $= (1-x^2)^{\frac{1}{2}} \left[(1-x^2) \left[\frac{-v^2 \Gamma_{\theta}(x)}{(v-x^2)^2} + \frac{vx \leq v_1 \leq$ (220 $= (1 - \chi)^{\frac{1}{2}} (x - I) =$ $\frac{-\eta^2}{\sqrt{1-3^{k+1}}} T_{\eta}(x)$

F.G.B.

proof

Question 245 (*****)

Y.C.

Y.G.B.

The real functions f and g have a common domain $0 \le x \le 4$, and defined as

 $f(x) \equiv (x-1)(x-2)(x-3)$ and $g(x) \equiv \int_0^x f(t) dt$.

Use a detailed algebraic method to determine the range of g.

06264 f(x) = (x-1)(x-2)(x-3) $g(x) = \int_{-\infty}^{\infty} f(t) dt$ 05254 Firsty They fai $\frac{\varphi(z)}{\varphi(z)} = \frac{\varphi(z)}{\varphi(z)} = \frac{\varphi(z)}{\varphi(z)$ of OF THE FUNKT AT ITS 610Poulo f(t) dt = 0 $\mathcal{G}^{(4)} = \int_{0}^{4} f(\theta) d\theta = \int_{0}^{4} t^{3} - 6t^{2} + 1|t - 6 d\theta$ = $\left[\frac{1}{2}t^{4} - 2t^{3} + \frac{11}{2}t^{2} - 6t\right]_{0}^{4}$ $= \left(\frac{1}{4}x\psi^{4} - 2x\psi^{3} + \frac{11}{2}x\frac{4}{5} - 6x\psi\right) - c$ 4³- 2×4³ + 88 - 24

·. g(0) = g(4) = 0

STALLOG YSAKADITATE SOL JOOL THEY POINTS g'(x) = f(x)STATIONARY AT 2= 2 $\therefore \ \Im(1) = \left[\frac{1}{4}t^4 - 2t^3 + \frac{1}{4}t^2 - 6t\right]_{1}^{1}$ $=\left(\frac{1}{4}-2+\frac{11}{2}-6\right)-0=\frac{1-8+22-24}{4}=-\frac{1}{4}$ $A(2) = \left[\frac{1}{4} t^4 - 2t^3 + \frac{11}{2} t^2 - 6t \right]^2$ = (4-16+22-12)-0 = -2 $\delta(3) = \left[\frac{1}{4}t^{4}-2t^{3}+\frac{1}{2}t^{2}-6t\right]_{0}^{3}$ $= \left(\frac{81}{4} - 54 + \frac{99}{2} - 18\right) - 0 = \frac{81 - 216 + 198 - 72}{4} = -\frac{9}{4}$ AC at TONDARICE the po to solution that Sutounian 21 60A DETRUINE THE PANOE ··- 4 ≤ 800 ≤ 0 ALTERNATIVELY DETERMINE THE NATURE VIA CAUNILY g''(x) = f(x) = (x-2)(x-3) + (x-1)(x-3) + (x-1)(x-2)g"(1) = (-1)(-2) = 2>0 - -

I.C.B.

201 = 1 30

 $\frac{9}{4} \le g(x) \le 0$

Question 246 (*****)

 $y = \frac{1}{\sqrt{ax+b}}, \ x \ge 0,$

where a and b are positive constants.

I.F.G.B.

.C.1

I.V.G.B. Ma

I.F.G.B.

Show, by a detailed method, that

 $\frac{d^n y}{dx^n} = \frac{\left(-1\right)^n y(2n)!}{n!} \left(\frac{a}{4(ax+b)}\right)^n.$

____, proof

2017

$y = \frac{1}{\sqrt{ac+b^3}} = (az+b)^{-\frac{1}{2}}$

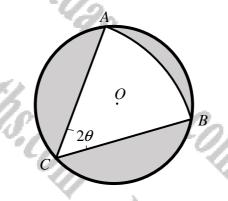
- KUNTE EXPRESSIONS FOR THE REST FO
- $\frac{d_{y}}{dx} = -\frac{1}{2}a(az+b)^{-\frac{\lambda}{2}}$
- $\cdot \frac{d^2y}{dx^2} = -\frac{1}{2} \left(-\frac{y}{2}\right) a^2 \left(ax_b\right)^{-\frac{y}{2}}$

I.C.B.

- $\frac{d^3g}{d\alpha^3} = -\frac{1}{2} \left(-\frac{\alpha}{2}\right) \left(-\frac{\alpha}{2}\right)^3 \left(\alpha + b\right)^{-\frac{1}{2}}$
- $\frac{d^{N}g}{d\chi^{N}} = -\frac{1}{2}(-\frac{k}{2})(\frac{k}{2}) (\frac{2N-1}{2})\alpha^{N}(ax+b)$
- TIDYING-OP THE EXPLISION
- $\longrightarrow \frac{d\chi_{\theta}}{d\xi} = \langle c_{\theta} \rangle^{k} \times \frac{2^{k}}{(1 + \delta \times (2 \times \dots \times (2n-5) (2n-1))} \times \alpha^{k} \times (a \chi + b)}{(2 + n)}$

I.F.G.B.

- $\Rightarrow \frac{d_{ij}^{N}}{dM} = \langle c_{i} \rangle^{N} \times \frac{\frac{2\pi (2n+1)(2n+1)(2n+3)\dots \times k \in X \times k \times 3 \times 2 \times n)}{2\pi (2n+2)(2n+3)\dots \times k \in Y \times 4 \times 3 \times 2 \times n)} \times \left(\frac{Q}{2} \right)^{N} (kx+b)^{-(k+\frac{1}{2})}$
- $\Rightarrow \frac{d^{\frac{1}{2}}}{d\Omega^{-}} = \langle -i \rangle^{\frac{N}{2}} \frac{(2\eta)^{\frac{1}{2}}}{2^{\frac{N}{2}} [\pi^{N}(t+1)(s-2) \dots \chi M 2 \pi]} \left(\frac{a}{2} \right)^{\frac{N}{2}} (at_{1}b)^{-(\eta+\frac{1}{2})}$ $\Rightarrow \frac{d^{\frac{N}{2}}}{d\Omega^{-}} = \langle -i \rangle^{\frac{N}{2}} \frac{(2\eta)^{\frac{N}{2}}}{(\eta+\frac{1}{2})} (\frac{a}{2})^{\frac{N}{2}} (at_{1}b)^{-(\eta+\frac{1}{2})}$
- $\Rightarrow \frac{dg}{dz_{n}} = (-1)^{h} \frac{(2h)!}{n!} \left(\frac{a}{4}\right)^{h} (hx+b)^{-\frac{1}{2}} (ax+b)^{n}$ $\Rightarrow \frac{dh}{du^{n}} = (-1)^{h} \frac{(2h)!}{n!} \left(\frac{a}{4}\right)^{h} (hx+b)^{-\frac{1}{2}} (ax+b)^{n}$
- $= \frac{d_{3}^{2}}{dX^{4}} = (-1)^{9} \left[\frac{a}{4(a1+b)} \right]^{9} \left(\frac{2a}{b1} \right)^{9}$


E.

Question 247 (*****)

 $2x \tan x = 1, \ x \neq \frac{1}{2}n\pi, \ n \in \mathbb{N}$

- a) Show that the above equation has a solution in the interval (0.6, 0.7).
- **b**) Use the Newton Raphson method to find the solution of this equation, correct to 5 decimal places.

The figure below shows a circle, centre at O. The points A, B and C lie on the circumference of this circle. A circular sector ABC, subtending an angle of 2θ at C, is inscribed in this circle.

c) Determine the greatest proportion of the area of the circle, which can be covered by this sector.

 $x \approx 0.65327$, ≈ 52.45

You may give the answer as a percentage, correct to two decimal places

4-PGL ZANO IN FULTION NOTATION = [OmzOS - GROJ GROJ + 6060 - 285m0 = 0 -fa)=22 bus - $\Theta = I$ $20 \text{sm}\theta = \cos\theta$ = Ricate < 6 < 3 (200) - OM205 5< ... 605 PT 1.0 + = (7.0) -} r= 286050 201000 = 1 AREA OF THE CIELLE II TER2 APLA OF THE SECTOR THIS QUATION tHAS SOUTHON &= D.65827 PREMARING TO THE THE NEWTON - RAPHISON METLOD WITH 34 = 0.65 $\frac{1}{2}\Gamma^{2}(2\theta) = \Gamma^{2}\theta = (2\Re\omega_{1}\theta)^{2}\theta = 4R^{2}\theta\omega_{1}\theta$ => f(a) = 2 bus + 2250 cz THE PROPORTION COUNCED BY THE SECTOR IS $\theta^2_{20}\theta \frac{\mu}{11} = [\theta]V$ $\frac{420\omega^2\theta}{\pi D^2} = \frac{4}{\pi} \theta \omega^2 \theta$ $\mathcal{X}_{n_{1}} = \mathcal{X}_{n} - \frac{f(\mathbf{x}_{n})}{f(\mathbf{x}_{n})} = \mathcal{X}_{n}$
$$\begin{split} \mathfrak{I}_{\mathbf{k}} &= \frac{2 \epsilon | \mathfrak{s}_{\mathbf{k}} \mathfrak{s}_{\mathbf{k}} - 1}{2 | \mathfrak{s}_{\mathbf{k}} \mathfrak{s}_{\mathbf{k}} + 2 \mathfrak{t}_{\mathbf{k}} \mathfrak{s} \mathfrak{s} \mathfrak{t} \mathfrak{t}_{\mathbf{k}}} \\ \mathfrak{I}_{\mathbf{k}} &= \frac{2 \mathfrak{s} \mathfrak{s} \mathfrak{n} \mathfrak{t}_{\mathbf{k}} \mathfrak{t} \mathfrak{s} \mathfrak{s}_{\mathbf{k}}}{2 \mathfrak{s} \mathfrak{s} \mathfrak{n} \mathfrak{t}_{\mathbf{k}} \mathfrak{t} \mathfrak{s} \mathfrak{s}_{\mathbf{k}}} + 2 \mathfrak{t}_{\mathbf{k}} \end{split}$$
 $V(0.65327) = \frac{1}{\pi}(0.15527) \cos^2(0.65327) = 0.52451$ USING-CAUDUS : MAX PERCENDAGE IN $V(\Theta) = \frac{U}{\pi} \Theta \cos^2 \Theta$ $\frac{2\pi \sin 2\pi_{\rm H} - \cos^2 \pi_{\rm H}}{\sin 2\pi_{\rm H} + 2\pi_{\rm H}}$ $\int (\Theta_{M2} -) \Theta_{2005} \times \Theta + \Theta_{200} \times |] \frac{y}{11} = (\Theta_{1})^{1/2} V$. J2 = 0.6532853557 $V'(\theta) = \frac{\theta}{\pi} \left[(\alpha^2 \theta - 2\theta (\alpha s \theta s m \theta) \right]$ · Ja = 0.6532711874 $V^{I}(\theta) = \frac{\mu}{\pi} = \cos\left(\frac{1}{2} - \frac{1}{2} -$ 0.6532711871 ∴ Q= 0.65327 (5.4.p)

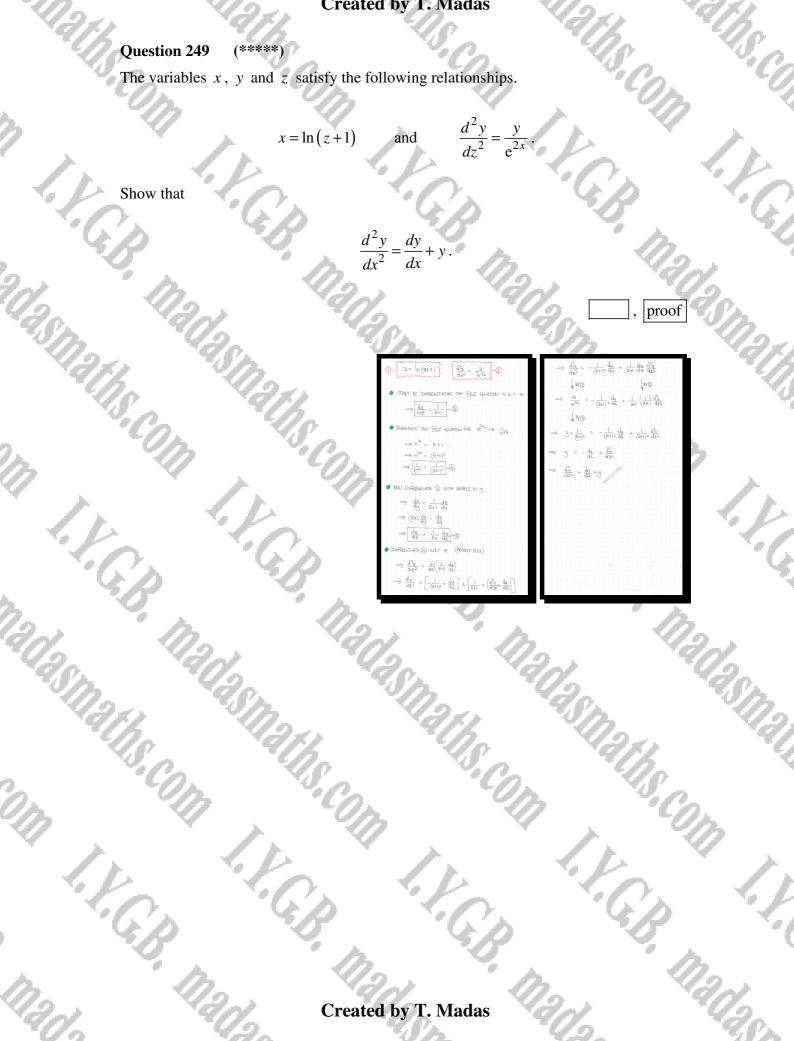
Question 248 (*****)

A lump of metal, of volume 76 cubic units is **moulded** into the shape of a cuboidal box, with a square base, rectangular sided and no lid.

All the faces of the box are 1 unit thick.

All the metal is moulded in the construction of this box, and the construction it has maximum capacity.

If the internal width of the box is x, find the value of x which maximises the capacity of he box, and hence determine this maximum capacity.


 $C_{\rm max} = 38\frac{2}{5}$

, x = 4

 $\frac{dc}{dx} = 1$ = (2+2)(x-4)(x+6)=0 $\implies \frac{2}{x_{1}} + \frac{2x + 4}{x_{1}^{2} + 9x - 72} - \frac{1}{x + 1} = 0$ $\lambda = -\frac{2}{4}$ $= \frac{2(x+i)(x^{2}+(x-72) + x(2x-4)(x+i) - x(x^{2}+i)x-72)}{x(x+i)(x^{2}+(x-72)} = 0$ $\mathcal{L} = \frac{1}{4} \alpha^2 \left(\frac{72 - 4\lambda - \lambda^2}{\alpha + 1} \right)$ \rightarrow (2x+2)(x²+4x-72) + (x+1)(2x²+4x) - x³-4x²+72x = 0 - GERN ARTHM AD JUNOUON $C_{M4x} = \frac{1}{4} x 4^2 x \frac{72 - 4x4 - 4^2}{4 + 1}$ $\int 2x^3 + 8x^2 - 100x \\ 2x^2 + 8x - 1004$ $(a)(x)(1) + 4 \times (x_{H}) \times 1 \times g$ C= axa×(y-1) C_MAX = 4 × 72-6-16 $x^2 + 4(x+1)y = 76$ $C = x^2(y-1)$ 213 + 42² 21² + 42 4y(x+1) = 76-x $C = \alpha^2 \left[\frac{76 - \alpha^2}{4(\alpha + 1)} - 1 \right]$ $\frac{4}{7} \times \frac{4}{7}$ -23 -42 +72 $y = \frac{76 - \chi^2}{4(30+1)}$ $C = \frac{\chi^2}{4} \left[\frac{\chi - \chi^2}{32^{4/2}} - 4 \right]$ $C_{\text{MAX}} = \frac{192}{5} = 38\frac{2}{5}$ 333+1212-602 -1411 =0 $C = \frac{1}{4} x^2 \left[\frac{16 - x^2 - 4x - 4}{x + 1} \right]$ $\mathcal{X}^3 \leftarrow \mathrm{I} \mathrm{D}_{\mathcal{X}}^2 - \mathrm{2} \mathrm{O} \mathcal{X} - \mathrm{E} \mathrm{B} = \mathrm{O}$ $C = \frac{1}{4} x^2 \left(\frac{72 - 4x - x^2}{x + 1} \right)$ LOOK RAR INTERER SOUTHOUS BY INSPECTION \Rightarrow C = $\frac{1}{4} a^2 \left(\frac{72 - 4y - 3^2}{3+1} \right)$ $\implies \ln(z = -\ln 4 + \ln 2^2 + \ln(12 - 4z - 2^2) - \ln(2z + 1))$: (XHZ) IS A FATTOR \implies ln C = 2lnx + ln (72-42-22) - ln(x+1) - ln4 MANIPULATE FUETHER $\Rightarrow \quad \hat{\mathcal{A}}(\hat{x}+2) + 2\hat{x}(\hat{x}+2) - 2\hat{t}(\hat{x}+2) = 0 \\ \Rightarrow \quad (\hat{x}+2)(\hat{x}^2+2\hat{x}-2\hat{t}) = 0$ 유는숙

(****) Question 249

The variables x, y and z satisfy the following relationships.

Question 250 (****

20

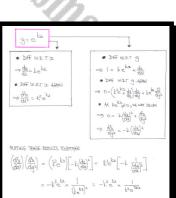
'ssnaths.com

I.V.C.B. Madasm

Smaths.com

I.V.G.B

 $y = e^{kx}, \ k \neq 0.$


Find a simplified expression for

$$\left[\frac{d^2y}{dx^2}\right] \left[\frac{d^2x}{dy^2}\right],$$

COM

I.G.B.

giving the answer in terms of k and e^{kx} .

asmaths.com

1. C.B. 111.21/2.S.I

2011

.Y.G.B.

Smarns.co

20251121

The Com

proof

Created by T. Madas

madasmaths,

Com

21/15.CO

3

Question 251 (*****)

(g

2

asmaths

I.C.B.

21/15.

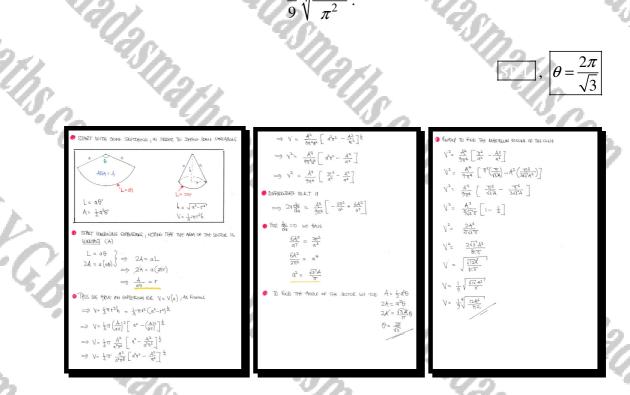
I.C.P.

00

9

 $0.6^x + 0.8^x = 1, x \in \mathbb{R}$.

Find the only solution of the above equation, fully justifying the fact that it is the only solution.


Question 252 (*****)

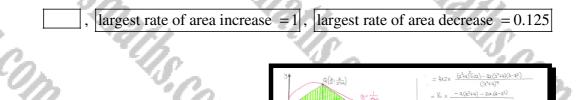
From a thin sheet of metal, a circular sector of area A is removed.

The circular sector is folded without any overlapping into the curved surface of a right circular cone of volume V.

The measurements of the circular sector are such so that V is maximum.

Find the angle subtended by the circular sector at its centre and show further that the maximum value of V is

Question 253 (*****)


The variable point P lies on the positive x axis and the variable point Q lies on the curve with equation

$$y = \frac{1}{x^2 + 4}, x \in \mathbb{R}, x \ge 0.$$

The x coordinate Q is always half the x coordinate of P.

The point P starts at the origin O and begins to move in the positive x direction at constant rate.

Determine the largest rate of area increase and the largest rate of area decrease of the triangle OPQ, as P is moving away from O.

THE AREA OF THE TRIANDLE OUP IS ±2(2+4)

We define the neutrinois of $\frac{1}{4}$ (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (c)

 $=4\frac{dx}{dt} \times \frac{d}{dt} \left[\frac{4-x^2}{(x^2+y^2)^2} \right]$

LET $E(x) = \frac{2x}{x^2 + 4}$

 $= |\mathcal{L} \times \frac{-\chi^3 - 4\chi - 8\chi + 2\chi^3}{(\chi^2 + 4)^3}$

 $= \frac{(6(x^3 - 12x))}{(x^2 + 9)^3}$

 $-\left(\left(\frac{1}{2}\right) = \frac{4(4-12)}{(12+4)^2} \in$

: LADGEST LATE OF

COLUNG FOR ZE

Question 254 (*****)

 $x^3 + px + q = 0, \ x \in \mathbb{R}$

The cubic equation above is given in terms of the real constants, p and q.

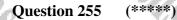
Use differentiation to determine the conditions that p and q must satisfy so that the above equation has ...

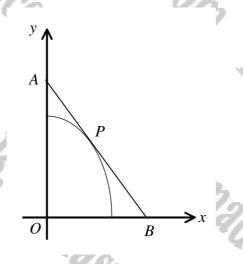
- ... one real root.
- ... three real roots, of which one is repeated.
- ... three distinct real roots.

 $p < 0 \cap q^2 - \frac{4p^3}{27} > 0$ $p \ge 0 \cup$

= 32²+p = 33²+ F X = ±. = 9-22 21

$\bullet \text{ IF } \mathfrak{p} < \circ \mathfrak{a} \qquad \mathfrak{q}^2 - \frac{\mathfrak{h} \mathfrak{p}^3}{27} \geqslant \circ$
BOTH Y GOORDS OF THE STATIONARY POINDS ARE ADDITUTE OR BUTH NEGATIVE, SO GULY I REAL POOT
• IF $P < 0$ of $q^2 - \frac{M^3}{2T} < 0$
THE Y COORDINATE OF THE ITATIONARY POINTS HAVE OPPOSITE INVIS IN THE WAX RESULT THE I AVIC IN I PLACES I SO II EAR POOTS (CONTINCT)
• IF $P < 0$ & $q^2 - \frac{4P^3}{27} = 0$
ONE OF THE Y CO-ORDINATES OF THE STATIONARY POINT (2 ZEAR) SO .3 REAL ROOTS (1 REPEARDS)
Finally IF p>0
TOOR SHALL I KNO OS I STAND YARANTATZ OUN


 $p < 0 \cap q^2$


 $p < 0 \cap q$

 $\frac{4p^3}{2} = 0$

< 0

2 ³ .	+ px+	q=0
١F	0 < 9	1 REAL ROOT (2. COMPLEX)
11	p<0	1 REAL ROOT IF d2-架>0
		3 REAL ROOD IF 92- 403 =0 (ONE REARTIN)
		3 AUSTINUT RIME BOOLS IF 92-423<0

The figure above shows the curve C with equation

 $y = \frac{b}{a}\sqrt{a^2 - x^2} , \ x \ge 0 ,$

where a and b are constants such that b > a > 0.

The point P lies on C and the tangent to C at P meets the coordinate axes at the points A and B, as shown in the figure.

Show with full justification that the minimum area of the triangle AOB, where O is the origin, is ab.

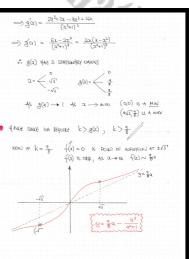
proof

 $= \frac{1}{2} \frac{b}{a} \left[\frac{a^{*} \times 2 + \chi^{2}}{\sqrt{a^{2} - \chi^{2}}} \times \frac{\chi^{2} + a^{2} - \chi^{2}}{\times} \right]$ $\times d^{\epsilon} n \leq \epsilon + 2$ AND MUMMIN ZULT $\bigcirc y = \frac{b}{a}\sqrt{a^2 - x^2}$ as $\frac{a}{\sqrt{2}}\sqrt{a^2-\frac{a^2}{2}}$ $y = \frac{b}{a} (a^2 - x^2)$ $= \frac{1}{2a} \left[\frac{a^2}{\sqrt{a^2 - x^2}} \times \frac{a^2}{x} \right]$ $= \frac{1}{2}q^{3}b \times \frac{1}{\frac{q}{\sqrt{2}}\sqrt{\frac{q}{2}}}$ $\frac{dy}{dx} = -\frac{bx}{a}(a^2 - x^2)^{-\frac{1}{2}}$ $\frac{1}{2}a^{3}b\left[\frac{1}{\sqrt{a^{2}-\chi^{2}}}\right]$ $\frac{dy}{dx} = \frac{-bx}{a\sqrt{a^2 - x^2}}$ $= \frac{1}{2} a^3 b \times \frac{1}{\frac{a}{\sqrt{2}} \sqrt{2}}$ IGNORING THE CONSTRUCTS AT THE FRONT AT P(X,Y) $f(X) = \frac{1}{\sqrt{a^2 - x^2}} = \frac{1}{\sqrt{(a^2 - X^2)^2}}$ $= \frac{1}{2} \alpha^3 b \times \frac{1}{\frac{a^2}{a^2}}$ $y - Y = \frac{-b \times}{a \sqrt{a^2 - x^2}} (x - X)$ $-\left(X\right) = \frac{X(a^2-X^2)^{\frac{1}{2}} \times 0 - 1 \times \left[1(a^2-X^2)^{\frac{1}{2}} + X^2(a^2-X^2)^{\frac{1}{2}} + X^2(a^2-X^2)^{\frac{1}{2}}\right]}{X^2(a^2-X^2)}$ = 1 a3b x 2 O=P; CAHW () SETTING F(X)=0 (ONLY THE NUMERATOR $y - \gamma = \frac{b\chi^2}{a\sqrt{a^2 - \chi^2}}$ $- = \frac{-b \times}{a \sqrt{a^2 - \chi^2}} (z - \times)$ $\implies (\alpha^2 - \chi^2)^{\frac{1}{2}} - \chi^2 (\alpha^2 - \chi^2)^{-\frac{1}{2}} = 0$ $y = \gamma + \frac{b\chi^2}{a\sqrt{a^2 - \chi^2}}$ $\frac{a \bigvee \sqrt{a^2 - \chi^2}}{b \bigvee} = - \chi - \chi$ $\implies (a^2 - x^2)^{-\frac{1}{2}} \left[(a^2 - x^2)^{-1} - x^2 \right] = 0$ CHANDITATE SHAT YARZUTS OT OBSERVES THAT THE AR ar X+ ay ar X $\implies \frac{q^2 - 2\chi^2}{\sqrt{a^2 - \chi^2}} = 0$ O -ACLA of the triangle oab = $\frac{1}{2} |OA| |OB|$ $\implies a^2 - 2x^2 = 0$ AS & -ar $\implies 2x^2 = a^2$ $= \frac{1}{2} \left[Y + \frac{bX^2}{a\sqrt{a^2 - X^2}} \right] \left[X + \frac{aY\sqrt{a^2 - X^2}}{bX} \right]$ ABA ATT LADON STAR ! $\implies X^2 = \frac{a^2}{2}$ HET OZ MUJOR ON LAN $=\frac{1}{2}\left[\frac{b}{a}\sqrt{a^{2}-\chi^{2}}+\frac{b\chi}{a\sqrt{a^{2}-\chi^{2}}}\right]\left[\chi+\frac{a\sqrt{a^{2}-\chi^{2}}}{b\chi}\times\frac{b}{a^{2}}\sqrt{a^{2}-\chi^{2}}\right]$ STATIONARY VAULT MUST $X = + \frac{q}{\sqrt{2}}$ PRODUCE A NIN $= \frac{1}{2} \frac{b}{a} \left[\sqrt{a^2 - \chi^2} + \frac{\chi^2}{\sqrt{a^2 - \chi^2}} \right] \left[\chi + \frac{a^2 - \chi^2}{\chi} \right]$

Question 256 (*****)

The function f is defined as

$$f(x) \equiv kx - \frac{x^3}{x^2 + 1}, \ x \in \mathbb{R},$$


where k is a positive constant.

K.C.

Given that f is increasing for $x \in \mathbb{R}$, show that $k > \frac{9}{8}$ and hence sketch the graph of f, showing clearly the behaviour of f at $\pm \sqrt{2}$.

graph

 $f(x) = kx - \frac{x^3}{x^2 + 1}$, $x \in \mathbb{R}$ DIFFERENTIATE WITH RESPECT TO SL AFTER MANING $\Rightarrow f(x) = kx - \frac{x(x^2+1) - x}{x^2+1}$ $\Rightarrow f(i) = ki - \left[a - \frac{x_{i+1}}{x} \right]$ $\Longrightarrow f(\mathfrak{d}) = (k-1)_{\mathfrak{X}} + \frac{\mathfrak{X}}{\mathfrak{X}^2+1}$ $\Longrightarrow f'(i) = k-1 + \frac{(\hat{x}^2+i)\times(-\hat{x}(2i))}{(\hat{x}^2+i)^2}$ $\Rightarrow f(a) = k_{-1} + \frac{1-2^2}{(1+\chi^2)^2}$ • FOR "INCREMENTS" WE REPURE fin >0 \implies k-l + $\frac{l-x^2}{(l+x^2)^2} > 0$ \implies k > 1 + $\frac{3^{2}-1}{(5^{2}+1)^{2}}$ WE NEED K > g(x) meters g(x) = 1 + of g(z) g(2) is even, continuos, g(0) =0 , $\implies \vartheta(a) = \frac{(2^2 + 1)^2(2a) - (2^2 - 1) \times 2(2^2 + 1) \times 2a}{(2^2 + 1)^4}$ $\beta(\alpha) = \frac{2\chi(\chi^2_{+1}) - 4\chi(\chi^2_{-1})}{(\chi^2_{+1})^3}$

Y.C.A.

(****) Question 257

2

I.F.G.B.

I.C.B.

The function f is defined as

 $f(x) = \frac{\left(1 + 4\sin^2 x\right)^{\frac{1}{2}} \left(8 + \sec^2 x\right)^{\frac{3}{2}}}{\tan^3 x}$ $x \neq \frac{1}{2}n\pi$ $x \in \mathbb{R}$,

Find in exact simplified form the value of $f'(\frac{1}{3}\pi)$.

42.
200.
$ \begin{cases} f(x) = \frac{(1+4\alpha x^2)^2 (8+xc^2 x)^{\frac{1}{2}}}{4m^2}, & 2\neq \frac{1}{2} n\pi \end{cases} $
$\frac{\mathrm{fighty}}{\mathrm{f}(\underline{\pi})} \stackrel{\text{def}}{=} \frac{\left[\overline{i} + 4(\underline{\pi})^{2}\right]^{\frac{1}{2}} \left[8 + 2^{2}\right]^{\frac{1}{2}}}{(V_{\mathrm{T}})^{\frac{1}{2}}} = \frac{\left(\overline{i} + 4x_{\mathrm{T}}^{2}\right)^{\frac{1}{2}} \times 12^{\frac{1}{2}}}{34^{2}}$
$=\frac{-\frac{4}{3}\frac{1}{3}\times12\times\sqrt{12}}{3\sqrt{12}}=-\frac{2\pi12}{3}\times\frac{\sqrt{12}}{\sqrt{2}}=8\times2=16$
$\implies \ln \left[f(u)\right] = \ln \left[\frac{C + 4 \tan^3 2 \lambda^2 (6 + 5c_{c}^2 \lambda)^{\frac{1}{2}}}{4 \tan^3 \lambda}\right]$ $\implies \ln \left[f(u)\right] = \ln (1 + 4 \tan^3 \lambda)^{\frac{1}{2}} + \ln (8 + 5c_{c}^2 \lambda)^{\frac{1}{2}} - \ln(5c_{c}^4 \lambda)$
$\implies \ln \left(f(x) \right) = \frac{1}{2} \ln \left(C_{1} + 4 \sin^{2} x \right) + \frac{2}{2} \ln \left(\delta + 4 \sin^{2} x \right) - 3 \ln \left(\tan x \right)$
$\frac{\text{MITERNIT(AT: 60:0.7.2)}}{4(4)} = \frac{3 \text{cmiss}_2}{2(1+4\text{cm}^2)} + \frac{3(2\text{ced}+\omega_{12})}{2(9+3\text{c}^2)} - \frac{3\text{ced}_2}{4\omega_{12}}$
$= f(x) = f(x) \left[\frac{28m2x}{1+48m2x} + \frac{38e^2x}{8+xe^2x} - \frac{38e^2x}{8mx} \right]$
$\Rightarrow \left\{ \left(\frac{\pi}{4} \right) \circ \left\{ \left(\frac{\pi}{4} \right) \right \left[- \frac{1 + 4 \varepsilon m_{\overline{4}}^2}{2 \pi m_{\overline{4}}^2} + \frac{2 \varepsilon \kappa_{\overline{4}} \varepsilon}{3 \varepsilon \kappa_{\overline{4}} \varepsilon} - \frac{1 \varepsilon \kappa_{\overline{4}} \varepsilon}{2 \varepsilon \kappa_{\overline{4}} \varepsilon} \right] \right]$

ろ

I.C.B.

100

 $f'\left(\frac{1}{3}\pi\right)$

nn,

Question 258 (*****)

. C.P.

The curve C has equation

x+1

COM

nadasn.

2019

F.C.B.

Find the coordinates of the stationary point of C and determine its nature.

40		,	point of inflexion at (1,3)
	× 1	~ 0	
inaths.	$\begin{split} \underbrace{ \begin{array}{l} & \underline{M}_{P} A^{C} A^{C} \underline{C} \underline{C} A^{C} A^{C} \underline{C} \underline{C} A^{C} A^{C$	$ \begin{array}{l} \Longrightarrow (2-1) \left[x^2(\chi_{-1}) + 2(\chi_{-1}) \right] = 0 \\ \Longrightarrow (\chi_{-1}) \left[(\chi_{-1})(\chi^2 + \chi_{-1}) \right] = 0 \\ \Longrightarrow (\chi_{-1})^2 (\zeta^2 + \chi_{-1}) = 0 \\ \Longrightarrow (\chi_{-1})^2 (\zeta^2 + \chi_{-1}) = 0 \\ \end{array} \\ \begin{array}{l} \Longrightarrow (\chi_{-1})^2 (\zeta^2 + \chi_{-1}) = 0 \\ \vdots & \underbrace{(\chi_{-1})^2 (\zeta^2 + \chi_{-1})}_{(\chi_{-1}) = \chi_{-1}} \left(\begin{array}{c} \text{(Brown)} \\ \text{(Brown)} \\ \text{(Brown)} \\ \end{array} \right) \\ \end{array} \\ \begin{array}{l} \hline \begin{array}{c} \hline \\ \hline $	$ \begin{array}{c} \left. \frac{d u}{d t^2} \right _{t=1} = 0 \\ & \begin{array}{c} \vdots & \end{array} & \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \right) \\ \hline \begin{array}{c} \begin{array}c & \begin{array}c & \vdots & \end{array} \\ \hline \end{array} \\ \hline \begin{array}c & \end{array} \\ \hline \end{array} \\ \hline \begin{array}c & \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \hline \begin{array}c & \end{array} \\ \end{array}$
1. C.S. 2.S.D.2.L.S.	madasmark		

Question 259 (*****)

A curve C is defined in the largest real domain by the equation

 $y = \log_x 2$.

a) Sketch a detailed graph of C.

The point P, where x = 2 lies on C.

The normal to C at P meets C again at the point Q.

b) Show that the x coordinate of Q is a solution of the equation

 $[1 + x \ln 4 - \ln 16] \ln x = \ln 2.$

c) Use an iterative formula of the form $x_{n+1} = e^{f(x_n)}$, with a suitable starting value, to find the coordinates of Q, correct to 3 decimal places.

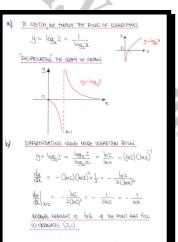
Q(0.518, -1.054)

 $g = \frac{\ln 2}{\ln(0.518)}$

y ~ -1.054

* Q(0.518,-1.054)

0.526168


J3 = 0.514549

 $\lambda_4 = 0.519774$ $\lambda_5 = 0.517437$

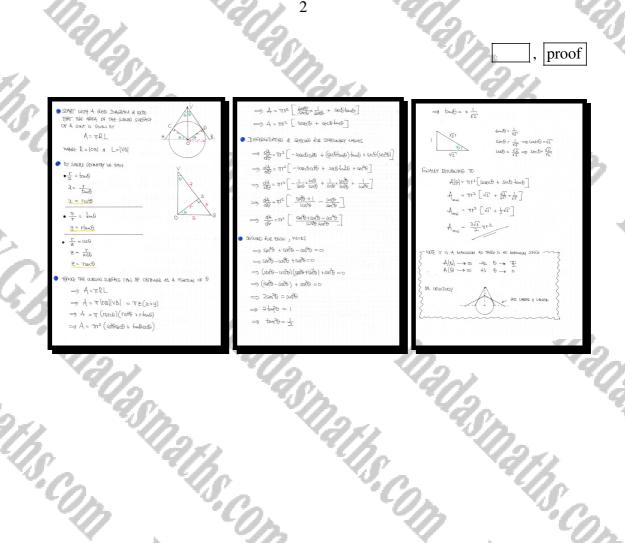
 $\mathfrak{X}_{\mathbf{G}} = 0.518485$ $\mathfrak{X}_{7} = 0.518016$

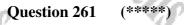
= 0-518226

X~ 0.518

 $\ln x = \frac{\ln 2}{1 + x \ln 4 - \ln 16}$ e 1+2/44-1116 = e 1+2,64-66 DATTING SAY WOH 36

Question 260 (*****)


A sphere of radius r, whose centre is at O, is fixed on a horizontal plane.


A thin right circular conical shell, without a base is placed over the sphere.

The axis of the conical shell is vertical and passes through O. The circumference of the missing base of the conical shell is at the same horizontal level as O.

 $3\sqrt{3}\pi r^2$

Show that the minimum value of the outer surface area of the conical shell is

The function y = f(x) satisfies the following relationship.

$$4x\frac{d^2y}{dx^2} + 4x\left(\frac{dy}{dx}\right)^2 + 2\frac{dy}{dx} - 1 = 0.$$

 $\frac{d^2v}{dt^2}$

= v.

It is further given that $x = t^2$ and $y = \ln v$.

Show that

6

I.C.B.

I.C.p

2

	14.85	and the second second
$\Rightarrow \frac{dy}{dt^2} + \left(\frac{dy}{dt}\right)^2 - 1 = 0$]	
Ned Wt are		
Differentiate wart t		
$\begin{array}{c} \underline{\text{Differsionate ward, 4 environments}}\\ \underline{\text{Big}}_{\text{H}^2} = \left(-\frac{1}{\sqrt{2}}\underbrace{\underbrace{\underline{\theta}}}_{\text{H}^2}\right)\underbrace{\underbrace{\underline{\theta}}}_{\text{H}^2} + \frac{1}{\sqrt{2}}\underbrace{\underbrace{\underline{\theta}}}_{\text{H}^2}\\ \underline{\underline{\theta}}_{\text{H}^2} = \frac{1}{\sqrt{2}}\underbrace{\underbrace{\underline{\theta}}}_{\text{H}^2} - \frac{1}{\sqrt{2}}\underbrace{\underbrace{\underline{\theta}}}_{\text{H}^2}\right)^2 \end{array}$		
Finally substituting with the $\frac{d^2 V}{dt^2} - \frac{1}{V^2} \left(\frac{dV}{dt} \right)^2 + \left(\frac{1}{V} \right)^2$	$-\frac{\partial f}{\partial h}\Big _{S}^{2} - 1 = 0$	
$\Rightarrow \frac{1}{\sqrt{q_{12}}} \frac{q_{11}}{q_{12}} - \frac{1}{\sqrt{q_{12}}} \left(\frac{q_{11}}{q_{11}}\right)^2 + \frac{1}{\sqrt{q_{12}}}$	()) ⁴ - 1 = 0	
$\Rightarrow \frac{d^2 V}{dt^2} = V$		

I.C.B.

20

nn,

21/2.5

, proof

Question 262 (*****)

The point P(x, y) lies on a circle with centre at (1, 0) and radius 1.

Find, in exact surd form, the greatest value of x + y, for all the possible positions of the point *P*.

The grantinal of A CHRIE WITH CARTER (1,0) have $2hau_{\chi} + u_{\chi}^{2}$ $(\chi - 1)^{2} + y^{2} = 1$	
(CH3)	
CHONOTY THE GRAPHERT UNIVE OF 2+4	
$\frac{Q_{1} \otimes Q_{2}}{\Pi H} \frac{Q_{1} \otimes Q_{2}}{(M + M_{1})^{2}} \frac{(m + Q_{1}) \otimes Q_{2}}{(M + Q_{2})^{2}} \frac{(m + Q_{2}) \otimes Q_{2}}{(M + Q_{2})^{2}} $ $(m) \qquad (m) \qquad (m)$	
$\Rightarrow y^{2} = 1 - x^{2} + \alpha - 1$	2
$\implies \mathcal{Y}^{a} + (2r-2^{a})^{\frac{1}{2}} 4 - \text{construct}$	tr
NOW LOODING AT THE SAPPLESSON TO be MAXIMIZED. $\Rightarrow f(2y) = x + y$	+
$\Rightarrow f(x) = x + (2x - x^{k})^{\frac{k}{2}}$	
DIFFICULTURE AND SAUCE FOR ZERO	
$\Rightarrow f(\alpha) = 1 + \frac{1}{2}(z_{1}-z_{2})(z_{2}-z_{1})^{-\frac{1}{2}}$ $\Rightarrow 0 = 1 + (1-z)(z_{2}-z_{1})^{-\frac{1}{2}}$	
$\sum_{\substack{x=1\\x \neq x}} \frac{1}{ x-x_x ^2} + 1 = 0 \iff \frac{1}{ x ^2}$	
$\Rightarrow 0 = (2x - x)^{\frac{1}{2}} + 1 - x,$	
$\Rightarrow 2 - 1 = (22 - 2^{2})^{\frac{1}{2}}$ $\Rightarrow 2^{2} + 1 = (22 - 2^{2})^{\frac{1}{2}}$	
$\Rightarrow 3^2 - 2x + 1 = 2x - 2^2 \qquad \qquad$	

 $2a^2 - 4x + 1 = a$ $0 = \frac{4 \pm \sqrt{16 - 4 \times 2 \times 1}}{2 \times 2} = \frac{4 \pm \sqrt{8}}{4} = \frac{4 \pm 2 \sqrt{2}}{4} = 1 \pm \frac{1}{2} \sqrt{2}$ HE HATTRE TOU LOCE GOLLON JUTROON JH $x - 1 = (2x - x^2)^{\frac{1}{2}}$ to $-\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}$ $\mathcal{K} = 1 + \frac{1}{2}\sqrt{2}$ NGE WE ONN FIND FRAX (D AND 2+y=0 AT $\left(\left(1+\frac{1}{2}\sqrt{2}\right)^{2}\right)=\left(1+\frac{1}{2}\sqrt{2}\right)+\left(2\left(1+\frac{1}{2}\sqrt{2}\right)-\left(1+\frac{1}{2}\sqrt{2}\right)^{2}\right)^{\frac{1}{2}}$ $= 1 + \frac{1}{2}\sqrt{2} + (2 + \sqrt{2} - 1 - \sqrt{2} - \frac{1}{2})^{\frac{1}{2}}$ $= 1 + \frac{1}{2}\sqrt{2}^{1} + (\frac{1}{2})^{\frac{1}{2}}$ $= (+\frac{1}{2}\sqrt{2} + \frac{\sqrt{2}}{2})$

 $|1+\sqrt{2}|$

 $e^{\pi} > \pi^e$.

(****) **Question 263**

adasmaths.com

Assuming that $\pi \approx 3.14$ and $e \approx 2.7$, show without any calculating aid that

You must show a detailed method in this question.

madasmaths.com

L.C.B. Madasman

Smarns.com i v.c.g

l.y. G.B.

ow a detailed method in th	is question.	SO.
S.A.	10x	50
40	515	, proof
	· · · ·	n
n.		$\frac{S(MT-M-DHN(NG+f(M)))}{M(M+M)} = \frac{M^{T}}{m^{T}} + ANO(T-MODE) SAFE(T) - SAFE(TO) + (CT) > 1$
		$\frac{\sum_{i=1}^{n} \frac{\partial e^{i}}{\partial x_{i}} - \partial e^$
7. 4	20.	(1)
TSn.	n.	$ \Rightarrow 1 - ex^{1} = 0 \qquad \text{ wath there is a - an or j for) \rightarrow +\infty \Rightarrow 1 = e \qquad \text{ so there is a - series for if it is } $
12.	dr.	
""Ch	- 18	$\underline{B}\overline{\alpha}, \pi > e$ And \underline{b} is solarly increasing in $\underline{b} = \pi > e$ $\Rightarrow \pi > e$
18	° Cn	$ \Rightarrow \frac{f(t)}{t^{\alpha}} > \frac{f(t)}{t^{\alpha}} > 1 $
· · · Op	<u> </u>	$ \xrightarrow{\pi^{e}} e^{\pi} > \pi^{e} $
1. 1		
Self in		6.12
Ch.	61	SO.
513	10x	40
· · ·	513	
12		5 M
2. 4	75 3	79. Y
42.	Sh	405 ·
The second	121	Sh.
1311	13/hs.C	121
· · · · ·		· · · · · ·
- Co	-9	in Via
	2	9.0
Sinarias Col		
S. J.	/ Y.	s.J.

Madasmaths.com

1.1.6.9

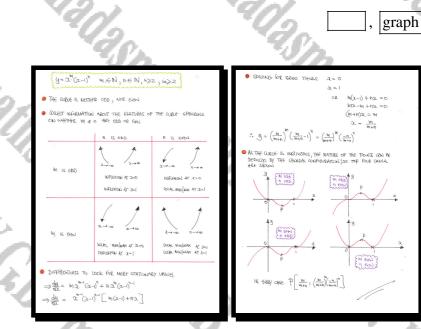
N.G.

6

Inadasma

madasn

Question 264(*****)A general curveC has equation


KRI

 $y = x^m (x-1)^n,$

where $x \in \mathbb{R}$, $m \in \mathbb{N}$, $m \ge 2$, $n \in \mathbb{N}$, $n \ge 2$

Sketch in four separate of axes, the 4 separate shapes which C can take, $m \ge 2$.

The sketches must contain the coordinates of any stationary points.

Created by T. Madas

i.C.p.

nana.

Question 265 (*****)

I.C.B. Ma

I.C.B.

The point P lies on the curve C with equation

 $y = \frac{1}{1+x^2}, \quad x \in \mathbb{R}, \quad x \ge 0.$

The straight line L is the tangent to the C at P.

I.Y.C.F

Determine an equation for L, given further that L meets C at the point (0,1).

2y + x = 2BY SKETOTHNG-THE QUELE y= 1/1+22, 220 • (0,1) • (0,1) • As o : ETTHER P(01) OR P(11) ● Thus THE GRADING AT P IS: -2×1 (1+1)² = -1/2 BE P(t t) t≥o $\rightarrow \frac{dy}{dx} = \frac{-2t}{(t+t^2)^2}$ -2t (1++2) (2-+)

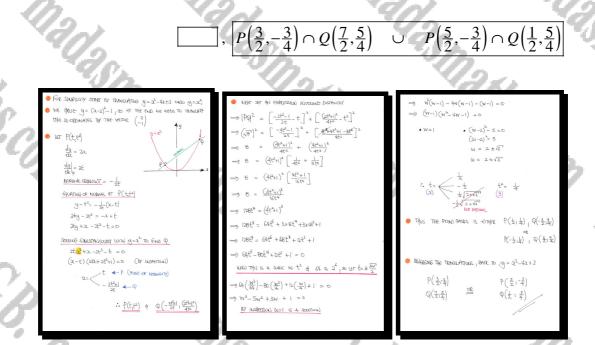
200

I.V.G.B.

na

COM

Question 266 (*****)


The point P has rational coordinates and lies on the curve C with equation

 $y = x^2 - 4x + 3, \quad x \in \mathbb{R}.$

The straight line L is the normal to the C at P.

L meets the curve again at the point Q.

Given that $|PQ| = \sqrt{8}$, determine the possible coordinates of P and Q.

Question 267 (*****)

Leibniz rule states that the n^{th} derivative of the product of the functions f(x) and g(x) satisfies

 $\left[f(x) g(x)\right]^{n} = \sum_{r=0}^{n} \left[\binom{n}{r} \left[\left[f(x)\right]^{(r)} \left[f(x)\right]^{(n-r)}\right]\right],$

where
$$f^{0}(x) = f(x)$$
, $f^{1}(x) = f'(x)$, $f^{2}(x) = f''(x)$, ..., $f^{k}(x) = \frac{d^{k}}{dx^{k}} [f(x)].$

Show, by a detailed method, that

$$\frac{d^n}{dx^n} \left[x^4 \ln x \right] = n! x^{4-n} \sum_{r=0}^4 \left[\binom{4}{r} f(n,r) \right],$$

where f(n,r) is a function to be found.

Y.C.

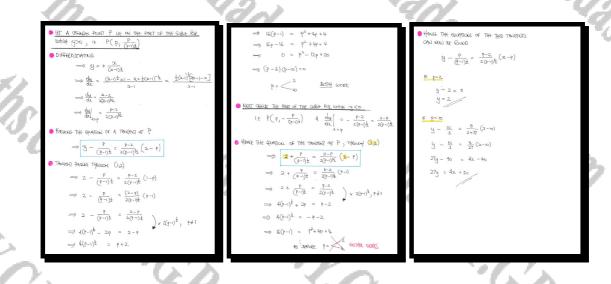
 $(-1)^{n-r-1}$ $\frac{d^n}{dx^n} \left[x^4 \ln x \right] = n! x^{4}$

- $$\begin{split} & \rightarrow \frac{dy}{dx} = (\xi_{1}^{(n)} \chi_{1}^{(k)} \chi_{2}^{(k)} (k_{0}) + (\xi_{1}^{(n)} \chi_{2}^{(k)} (k_{0}) + (\xi_{1}^{(k)} \chi_{2}$$
- $\Rightarrow \frac{\partial t_{ij}}{\partial t_i} = x^{4n} \left[(e_i)^{i_i} (0_{i-1})_i + (e_i)^{i_i-3} A_{ii}(u_{i-2})_i + (e_i)^{i_i-3} B_{ij}(u_{i-1})(e_{i+3})_i \right]$ $+ (e_i)^{i_i} A_{ij}(u_{i-1})(e_{i+3})_i + (e_i)^{i_i-3} A_{ij}(u_{i-2})(e_{i+3})_i + (e_i)^{i_i-3} A_{ij}(u_{i-3})(e_{i+3})_i \right]$ $\Rightarrow \frac{d t_{ij}}{d t_i} = z^{4n} \left[\frac{(e_i)^{i_i} A_{ij}(u_{i-1})_i}{u_i} + \frac{(e_i)^{i_i-4} A_{ij}(u_{i-3})(e_{i+3})_i}{u_{i-1}} + \frac{(e_i)^{i_i-4} A_{ij}(u_{i-3})(e_{i+3})_i}{u_{i-1}} + \frac{(e_i)^{i_i-4} A_{ij}(u_{i-3})(e_{i+3})_i}{u_{i-1}} \right]$ $+ \frac{(e_i)^{i_i-4} A_{ij}(u_{i-3})(e_{i+3})_i}{u_{i-1}} + \frac{(e_i)^{i_i-4} A_{ij}(u_{i-3})(e_{i+3})_i}{u_{i-1}} + \frac{(e_i)^{i_i-4} A_{ij}(u_{i-3})(e_{i+3})_i}{u_{i-1}} \right]$

$$\begin{split} \hat{c}_{1}^{k} &= \hat{\sigma}_{\tau}^{t+n} \left[\frac{(\hat{c}_{1}^{k})_{n}^{k}}{n} + \frac{(\hat{c}_{1}^{k})_{n}^{k$$

Question 268 (*****)

A curve C has equation


F.G.B.

 $y^2 = \frac{x^2}{x-1}, \quad x \in \mathbb{R}, \quad x > 1.$

Show that there exist exactly two tangents to C which pass through the point (1,2), and find their equations.

y = 2, 27y = 4x + 50

I.C.B.

(*****) **Question 269**

I.V.G.B. Mal

I.V.G.B

20

A curve C has equation

 $y = \frac{3|x|-1}{2x^2+2-|x+2|}, \quad x \in \mathbb{R}, \quad x \neq 0, \quad x \neq \frac{1}{2}.$

Ins.com

 $y = 7 - 2\sqrt{10}$

I.C.B.

11251

Maria

Find, in exact simplified surd form, the y coordinate of the stationary point of C.

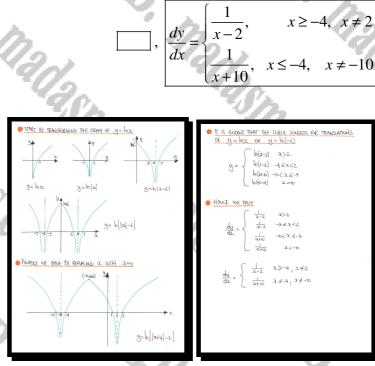
<u> </u>	Villa de la compañía
$ \begin{array}{c c} \hline \begin{array}{c} \underbrace{ \begin{array}{c} \displaystyle \underbrace{ bl. \ Tht. \ Shell \ of \ \ Shell \ tay \ (algorithmath{n}) \ tr \ (algorithmath{n}) \ tr \ (algorithmath{n}) \ tr \ (algorithmath{n}) \ tay \ \ \ tay \ \ tay \ \ \ tay \ \ \ tay \ \ \ tay \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} (T+\frac{1}{2})_{z} & \frac{1}{20}\\ T+\frac{1}{2} & z & \frac{1}{20}\\ T+\frac{1}{2} & z & \frac{1}{20}\\ T+\frac{1}{20} & z $
• So it the quarks) is left of the rate while means, we earning $\langle 0 \rangle = \frac{3 x - 1}{2x^2 + 2 - x 2 }$ with callede values $x_* < \stackrel{\circ}{\sim}_{-2}$	AS THERE IS A SUBJE TATIONARY PUT OF LARD NOT DOR IN THE RENGE a <- 2 DEFINE THE OF COORDINATE FINALLY FOR -2<20
$\frac{d_{21}}{d\lambda} = \frac{\left[2\lambda_{1}^{2}\lambda_{2} - [x+\lambda_{2}]\right]\left[3S_{1}q_{1}(\lambda_{1}) - [3\lambda_{1} - 1]\right]\left[4\lambda_{2} - S_{1}q_{1}(\lambda_{1}+\lambda_{2})\right]}{\left(2\lambda_{1}^{2}\lambda_{2} - [x+\lambda_{2}]\right]^{2}}$	$\implies 0 = \frac{3 b_1 - 1}{2t^4 + 2 - x_1 z_1 } = \frac{-3t - 1}{2t^4 + 2 - (3x_1)} = \frac{-3t - 1}{2x^2 - x} = \frac{3t + 1}{2 - 2t^2}$
DOCKING FOR STATIONARY POINTS. BY CONSIDERING THE NOUMRATOR ONLY	$ = g = \frac{3(-\frac{1}{2} - \frac{1}{6}\sqrt{6}) + 1}{-\frac{1}{2} - \frac{1}{6}\sqrt{6} - 2(-\frac{1}{2} - \frac{1}{6}\sqrt{6})^2} = \frac{-1}{-\frac{1}{2} - \frac{1}{6}\sqrt{6} - 2(\frac{1}{4} + \frac{1}{4}\sqrt{6} + \frac{5}{6})} $
$\frac{ f_{\alpha} = \alpha}{ \alpha_{\alpha+1} = \alpha+2}$	$\Longrightarrow \bigcup_{i=1}^{n} = \frac{-\frac{1}{2}\sqrt{n}}{-\frac{1}{2}\sqrt{n}\sqrt{n}} - \frac{2}{3} - \frac{2}{3}\sqrt{n} - \frac{2}{3}\sqrt{n}} \frac{2}{\sqrt{n}} \frac{2}{\sqrt{n}} - \frac{2}{\sqrt{n}}\sqrt{n}}{\sqrt{n}} \frac{-4\sqrt{n}}{\sqrt{n}} - 4\sqrt{n}$
$ \begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = 1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = 1} \\ \hline \\ \begin{array}{c} \mathcal{D}_{1}^{1} \mathcal{L}_{-}(\mathcal{X} \mathcal{L}) \\ \end{array} \\ \end{array} \right] \left[\mathcal{D}_{1}^{1} \mathcal{L}_{-}(\mathcal{X} \mathcal{L}) \\ \end{array} \right] \left[\mathcal{M}_{1}^{1} - [\tilde{\mathcal{M}}_{-}] \right] \left[\mathcal{M}_{-} \right] = 0 \\ \end{array} \right] \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x}}) = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \end{array} \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \left[\begin{array}{c} \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \underset{\mathcal{M}}{\operatorname{sign}(\tilde{\mathbf{x})} = -1} \\ \mathcal{M$	$\Longrightarrow \underset{-2D}{\underbrace{\forall z}} = \frac{-4\sqrt{D}}{-2D} = \frac{4\sqrt{D}}{2D} = \frac{4\sqrt{D}}{2D} = \frac{4\sqrt{D}}{(2D+7\sqrt{D})(2D-7\sqrt{D})}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\implies \underbrace{\bigcup}_{i} = \frac{q_{i} \underbrace{\varphi_{i}}_{i} (\underline{x}_{0} - \gamma_{i} \underbrace{\varphi_{i}}_{i})}{4 \underbrace{\varphi_{0}}_{i} - \underbrace{q_{i}}_{i} \underbrace{\varphi_{0}}_{i} = \frac{q_{i} \underbrace{\varphi_{0}}_{i} (\underline{x}_{0} - \gamma_{i} \underbrace{\varphi_{0}}_{i})}{-q_{0}} = \frac{\sqrt{c} \left(-\underline{x}_{0} + \gamma_{i} \underbrace{\varphi_{0}}_{i}\right)}{c_{0}}$
$\begin{array}{c} \uparrow \\ b^{2} + 4\alpha c = -\frac{1}{6} - c \\ b^{2} - 4\alpha c = -\frac{1}{6} - \frac{1}{6} - c \\ (2x + \frac{1}{2})^{2} - \frac{1}{2} - \frac{1}{6} = c \end{array}$	$ = \frac{1}{10} = \frac{-20\sqrt{10} + 10}{10} = -2\sqrt{10} + 7 $
$= -\mathcal{E} < 0 \qquad \left(2 \pm \frac{1}{6} \right)^2 \approx -\frac{1}{9} \pm \frac{1}{6}$ 100 SORTANNY POING IN $\left(2 \pm \frac{1}{3} \right)^2 \approx -\frac{4 \pm 6}{36}$ THAS, Pointing	* y = 7- 2.110 As EXPUREND

Created by T. Madas

.

2017

Question 270 (*****)


I.F.G.B.

ŀG.p.

A curve, defined in the largest real domain, has equation

$$y = \ln ||x+4|-6|$$
.

Determine, in its simplest form, an expression for $\frac{dy}{dx}$

ろ

I.C.p

Madası

2

COM

(*****) Question 271

Show that

adasmaths.com

adasmaths.com

1. V. C. B. 111.21/2.8

0

Created by T. Madas
*****)
$$\frac{d}{dx} \left[\ln \left(1 + \frac{8}{x} + \frac{4}{x} \sqrt{x^2 + x + 4} \right) \right] = \frac{A}{x\sqrt{x^2 + x + 4}},$$

14

where A is a non zero constant.

nadasmaths.com

às III à IIS.CO

A = -2

1.61

6

Madasmal

Created by T. Madas

COM

I.V.C.B

madasmans.com

I.Y.C.P.

Question 272 (*****

 $f(x) \equiv \frac{x \sin x + \cos x}{x \cos x - \sin x}, \ x \in (0, \pi].$

Show that

I.C.B.

. G.B. $f'(x) = g(x)\sec^2[x + \operatorname{arccot} x],$

200

where g(x) is a rational function to be found.

Ģ

 $g\left(x\right) = \frac{x^2}{x^2 + 1}$

The.

ŀ.G.p.

nanas,

hs.com

3

DIFFERENTIATE NOWLEATER & INVOLUMENTER SEAMPAIRLY TO USE IN THE QUOTINIT	$f'_{(\lambda)} = \frac{x^2}{(x \omega z_{\lambda} - s m_{\lambda})}$
da[asuna + cosa] = 1xsuna + ax cosa - suna = acosa	
ENIER- = SAN-(ENIE) E + SANXI = [SANE-EOUE] ED	$\binom{i}{G_1} = \begin{bmatrix} \sqrt{27+1} \cos(\alpha + \operatorname{ascosta}) \end{bmatrix}^2$
BY THE QUOTING PULL	$\frac{1}{2}(x) = \frac{2^2}{(x^2+1)\cos^2(x+\alpha)\cos(2x)}$
$\Rightarrow f'(x) = \frac{f(x) - f(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)}{(x)(x) - f(x)(x)^{2}}$	$f'(x) = \frac{x^2}{x^2+1} \text{ Set}^2(x+ \text{ or cast } x)$
	$(t g(x) = \frac{x^2}{x^2+1}$
$\frac{205642x + 4902x + 2902x - 28032}{x(m2 - c80x)} = (0)^{+} \leftarrow$	10 July - 23+1
$\Rightarrow -\frac{1}{(2)} = \frac{2^2(2g^2 + 2g^2)}{(2gg - 5gg)^2}$	
$(2\log - 2\ln x)^2$	
1/1) 22	
$\rightarrow f'(z) = \frac{z^2}{(pn)z - 2nox^2}$	
(remor-zhul) s	a mana manana mana manana na kanana a kanana a ama a manana kanana manana kanana kanana kanana kanana kanana k
	the state is a state to be a set of the state of the stat
NOW BY the "R" TRANSFORMATION	
2000 END = ROUS(x+x)	
JUNIZ ZNAZ Z ROSZ(K+~) JUNIZ ZNAZ Z ROSZ(K+~)	
$condr = 200^\circ \Rightarrow 80025(000 = 870022100)$	
Proven D	
$\frac{2\log_{\alpha} = 2}{2 \log_{\alpha} = 1} \xrightarrow{2} \qquad \qquad$	
tadd=1 J	
ather = 2	
1. In the second of a first of the second	
- 2 ws2 - sinx = Jati as(2+ariatz)	

2017

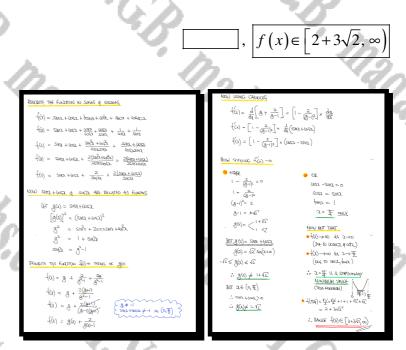
Question 273 (*****)

I.C.B.

21/15

I.C.p

The function f is defined as


 $f(x) \equiv \sin x + \cos x + \tan x + \cot x + \sec x + \csc x,$

 $x \! \in \! \left(0, \frac{1}{2} \pi \right)$.

2112.51

I.C.B.

Determine with full justification the range of f

 $3^{\pi} > \pi^3.$

madasn

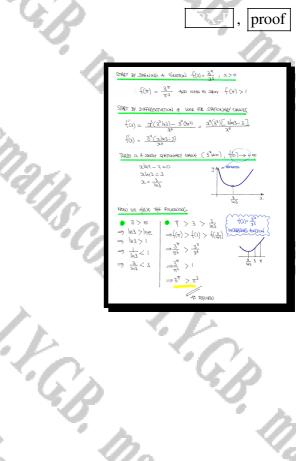
COM

Question 274 (****)

adasmaths.com

I.V.C.B. Madasm

Smaths.com


I.F.G.B.

Assuming that $\pi \approx 3.14$, show without any calculating aid that

You must show a detailed method in this question.

nadasmaths.

I.F.G.B.

nadasmaths.com

1.Y.C.B. Madası

The Com

Mains.co

N.C.

nadasmal

Created by T. Madas

00

Madasmana Mans.com

Question 275 (*****)

The function f is defined in the largest possible real domain, contained in the interval $(-2\pi, 2\pi)$, and its equation is

$$f(x) \equiv \ln\left[\tan\left(\frac{1}{8}\pi - \frac{1}{2}x\right)\right]$$

a) Find the domain of f.

I.C.P.

b) Show that $f'(x) \equiv \frac{k}{\sqrt{1 - \sin 2x}}$, for some constant k.

a)	FOR THE FUNCTION TO BE	SHEWED, THE ARGO	WHOI OF THE WEAPENHU
	NWAT BE NON NEGATIVE -	HT TH ANDON	FRAPH OF town.
	tana>o ⇒	$0 < \alpha_{\rm c} < \frac{\pi}{2}$	$-\pi < \alpha < -\frac{\pi}{2}$
		$\pi < \alpha < \frac{\omega \pi}{2}$	$-2\pi < \alpha_{-} < -\frac{3\pi}{2}$
	CONTINUES OF AND TOURS		
	$x \mapsto x + \overline{x}$	$a \mapsto \frac{1}{2}a$	x ⊷→ -x
		$-u\tau - \frac{u}{4} < \alpha_{-} < -\overline{s\tau} - \frac{1}{4}$	〒 37+〒<2<47+戸
	-π-≌<2<-≟-≜	-217-\$<<2<-17-\$	$\overline{(1+\frac{1}{2})} \le x \le 2\pi \sqrt{2}$
	0-휸 < 1 < 쥰-욘	०-क् <×<π~∄	
	1- 춘<7 < 윷-훈	$\Im \pi - \frac{\pi \pi}{4} < z < 35$	
	+an(x+F)	ter (In T)	ham (- fa + FE)
	· · · · (44 · B)	+a*(=*==)	tor(. Irt. R)
	CHIR CLUB THE LOS		
	SIMPLIPY NG. THERE DAY	790	
			()
	-m 🐨 🕾	(H)	ΣΩΓ 21Γ
	. DONAN IS (-	∞	10(55.5.)
		-1 + 10 (414	10(4111)

b) CARRY OUT THE DIFF

6PA

-T+=< 2 <0+= -37+=< 2 <0+=	$= \frac{1}{\sqrt{\frac{1}{2}} - \frac{1}{2}\cos(\frac{\pi}{2} - 2t)} =$	$\frac{1}{\sqrt{2}}\sqrt{1-\cos(\frac{\pi}{2}-2z)}$
fam(-Fa+E)	$=\frac{2\sqrt{2}}{\sqrt{1-\cos((\frac{\pi}{2}-2\lambda)^{2})}}$	
	$\underline{307}$ (as $(\underline{F} - \underline{A}) = \underline{sin}$	A
211"	$=\frac{24\overline{2}}{\sqrt{1-\sin^2 2}}$	
F _{12n})	ts Begun	un)
$\frac{1}{2} = \frac{1}{2} r$		
1 〒-±23)		

K.C.

 $\left(-2\pi,-\frac{7}{4}\pi\right)\cup\left(-\frac{3}{4}\pi,\frac{1}{4}\pi\right)\cup\left(\frac{5}{4}\pi,2\pi\right)$

ŀ.C.p.

(****) **Question 276**

A curve has equation

 $y = x^{x^{-1}}, x \in \mathbb{R}$.

The com

i.G.

nadasm.

, proof

 $\frac{dy}{d\lambda} = y\left(\frac{1-\ln x}{x^2}\right)$

 $\frac{du}{d\lambda} = e^{\frac{1}{2}} \left(\frac{1 - \ln e}{e^2} \right) = 0$

x(1-lux) dy + (3-2hx) y=0 4= et, dy=0 0 + (3-240)xet =0

I.F.C.B.

madası

3 43

a) Show that y is a solution of the following differential equation.

 $\frac{d^2y}{dx^2}$

 $e^{3} \frac{d^{2} y}{dx^{2}} - x(1 - \ln x)\frac{dy}{dx} + (3 - 2\ln x)y = 0.$

b) Show further that asmaths,

I.V.C.B. Mada

Smaths.com

I.Y.G.B.

20

MARY DO KN - 2 HTOW SO SOULD THE A OTHER TELL
a = 2x1 = emilian = Equis = equi
DIFFERENTIATE WITH ENERGY TO 2
$\frac{d\lambda}{d\lambda} = e^{\frac{\lambda}{\lambda}} \times \frac{2x\frac{\lambda}{\lambda} - \ln x}{2x^2} = e^{\frac{\lambda}{\lambda}} \left(\frac{2x}{\lambda^2} \right)$
$\frac{\mathrm{d}x}{\mathrm{d}x} = \sqrt[4]{\left(\frac{1-\ln x}{2}\right)}$
DIFFRENTIATE ONCE AFAINS , CAINS THE PEORLET ROLL
$\Longrightarrow \frac{d^2 g}{d\chi^2} = \frac{dg}{d\lambda} \times \left(\frac{1 - \log_2}{\lambda^2} \right) + \left(g \times \frac{d}{\Delta L} \left[\frac{1 - \log_2}{\lambda^2} \right] \right)$
$\longrightarrow \frac{\partial J_{1}^{2}}{\partial J_{2}^{2}} = \frac{\partial J_{2}}{\partial M} \left(\frac{1 - \beta N_{2}}{2} \right) + \overline{\beta} \left[\frac{3}{2s_{1}(-\frac{1}{2}) - 3s_{1}(-\beta N_{2})}{2s_{1}(-\beta N_{2})} \right]$
$\Longrightarrow \frac{du_{z}}{dz} = \frac{du}{dz} \left[\frac{z - h_{z}}{1 - h_{z}} \right] + \hat{g} \left[\frac{z - z_{z}}{z - z_{z} - z_{z} (z - h_{0})} \right]$
$\Longrightarrow \frac{q \beta_{z}}{q \beta_{z}} = \frac{q \beta_{z}}{q \beta_{z}} \left[\frac{\beta_{z}}{1 - \beta_{z}} \right] - \vec{\beta} \left[\frac{\beta_{z}}{\sigma + \beta_{z} (1 - \beta_{z})} \right]$
$\Longrightarrow \frac{d^2_{2j}}{d\chi_2} = \frac{du}{d\chi} \left[\frac{1 - \ln \chi}{\chi^2} \right] - \zeta \left[\frac{1 + 2\zeta_1 - \ln \chi}{\chi_3} \right]$
$\Rightarrow \frac{d^3 y}{d \lambda^2} = \frac{d y}{d \lambda} \left(\frac{1 - l \omega \lambda}{\lambda^2} \right) - \frac{1}{2} \left(\frac{3 - 2 l \omega \lambda}{\lambda^2} \right)$
$\Longrightarrow \mathcal{I}^{\frac{1}{2}} \frac{dy_{1}}{dy_{1}} = \mathcal{I}(1 - \ln \alpha) \frac{d\mu}{dx} - (\beta - 2\ln \alpha) \frac{d\mu}{dx} = 0$
$\Rightarrow 2^{\lambda} \frac{d_{3y}}{d1^{2}} - \chi(1-\ln n) \frac{dy}{d\lambda} + (3-2\ln n) \frac{dy}{d\lambda} = 0$
一 在 REPUISIO

	"On	
12		1.
-6	2	1
~	5	
a .	12	2 T
0.	Created	by T. Madas

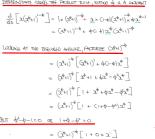
ŀ.G.B.

Question 277 (*****)

The positive solution of the quadratic equation $x^2 - x - 1 = 0$ is denoted by ϕ , and is commonly known as the golden section or golden number.

 $\frac{d}{dx}\left[x\left(x^{\phi}+1\right)^{1-\phi}\right] = \left(x^{\phi}+1\right)^{-\phi}$

This implies that $\phi^2 - \phi - 1 = 0$, $\phi = \frac{1}{2} (1 + \sqrt{5}) \approx 1.62$.


I.C.B

I.C.B.

P.C.B.

Show, with a detailed method, that

, proof

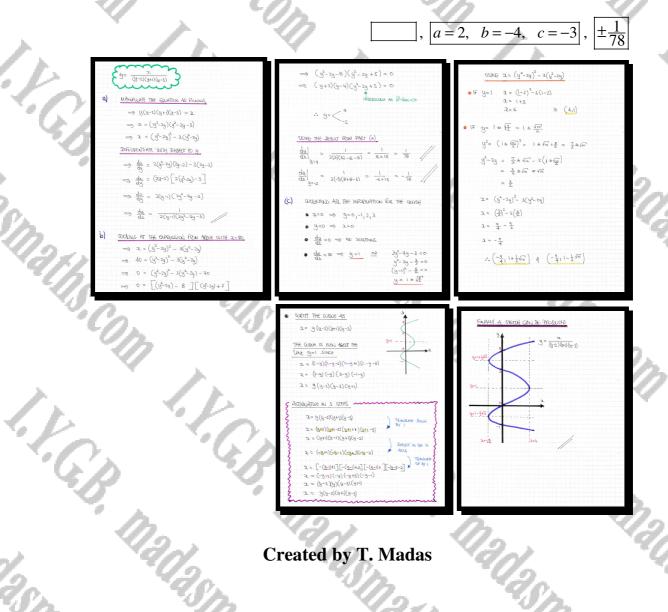
I.F.G.B.

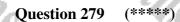
20

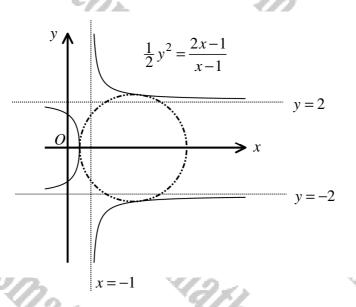
Question 278 (*****)

The curve C is defined in the greatest real domain by the equation

$$=\frac{x}{(y-2)(y+1)(y-3)}$$

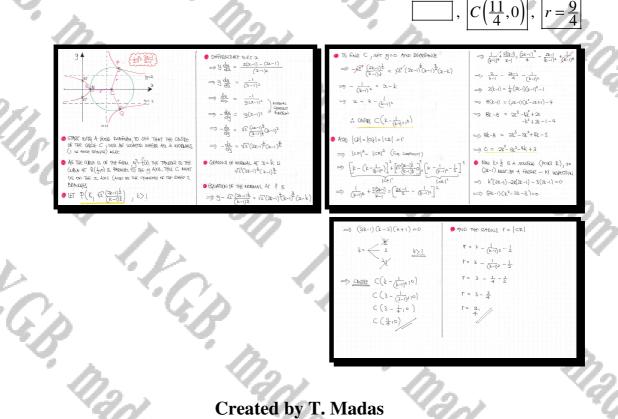

a) Show that


$$\frac{dy}{dx} = \frac{1}{2(y-1)(ay^2+by+c)},$$


where a, b and c are integers to be found.

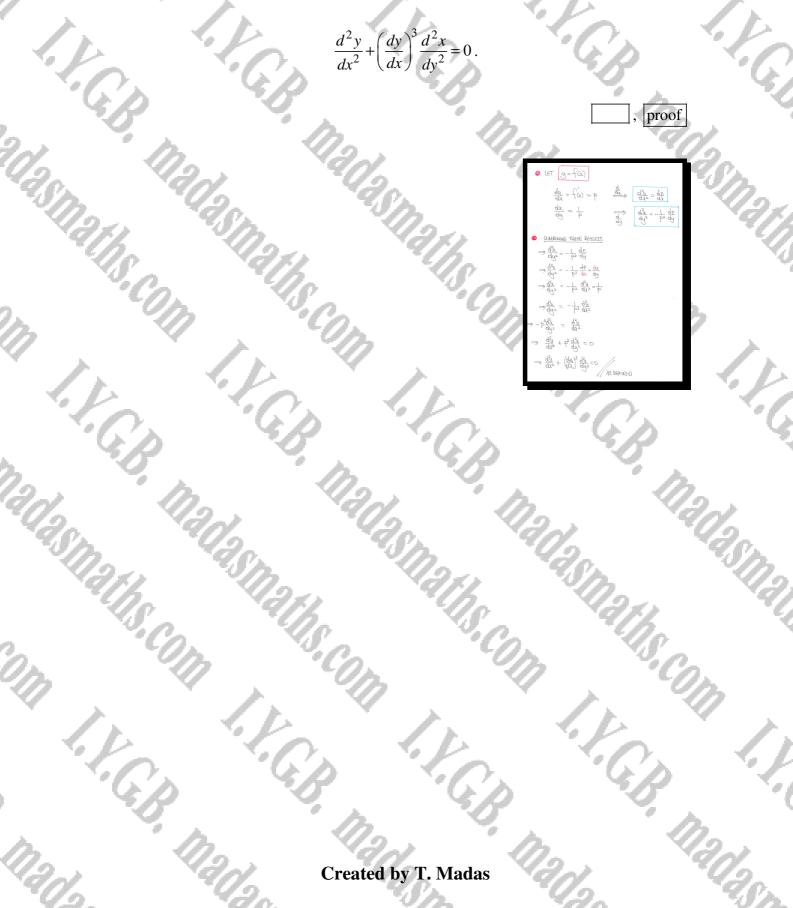
- **b**) Determine the exact value of the gradient at the points on C, where x = 40.
- c) Sketch the graph of C.

The sketch must include the coordinates of any points where C meets the coordinate axes, the coordinates of the points of infinite gradient. You must also find, with a full algebraic method, the line of symmetry of C.



The figure above shows the curve with equation $\frac{1}{2}y^2 = \frac{2x-1}{x-1}$, whose three asymptotes are marked with dotted lines.

A circle centred at the point C and of radius r is drawn, so that it touches all three branches of the curve, as shown in the figure.


Determine the coordinates of C and the value of r

Question 280 (*****)

The function with equation y = f(x) has smooth first and second derivatives.

Show that

