CURVE SKETCHING

EXAM QUESTIONS

Question 1 (**)
Created by T. Madas

$$
f(x)=x^{2}+6 x+10, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form

$$
f(x)=(x+a)^{2}+b
$$

where a and b are integers.
b) Describe geometrically the transformations which map the graph of x^{2} onto the graph of $f(x)$.

Created by T. Madas

Question 2 (**+)

The curve C has equation

$$
y=(x-a)^{2}+b
$$

where a, b are positive constants.

By considering the two transformations that map the graph of $y=x^{2}$ onto the graph of C, or otherwise, sketch the graph of C.

The sketch must include the coordinates, in terms of a, b, of \ldots

- ... all the points where the curve meets the coordinate axes.
- ... the maximum point of the curve.

Question 3 (***)

$$
f(x)=\sqrt{x}, x \in \mathbb{R}, x \geq 0
$$

The graph of $f(x)$ is translated by 3 units in the negative x direction, followed by a reflection in the y axis, forming the graph of $g(x)$.
a) Find the equation of $g(x)$.
b) Sketch the graph of $g(x)$.

The sketch must include the coordinates of all the points where the curve meets the coordinate axes.

Question 4 (***)
The curve C has equation
a) Sketch the graph of C.
b) Hence sketch on a separate diagram the graph of

$$
y=(x+2)^{3}-9(x+2)
$$

Both sketches must include the coordinates of all the points where each of the curves meets the coordinate axes.

Created by T. Madas

Question 5 (***)
A curve is defined by the equation

$$
f(x)=(x-a)(x-b)^{2}(x-c)^{3}, x \in \mathbb{R}
$$

where a, b and c are constants.

Sketch the graph of $f(x)$ in each of the following cases.
a) $0<a<b<c$
b) $0<a<c<b$.

Each sketch must clearly show any intercepts with the coordinate axes, in terms of a, b and c, where appropriate.

Question 6 (***+)

$$
f(x)=x^{2}-2 x-8, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $f(x)=(x+a)^{2}+b$, where a and b are integers.
b) Sketch the graph of $f(x)$.
a) By considering a series of three geometrical transformations, sketch the graph of $y=-3 f(x-2)$.

Both sketches must include the coordinates of ...

- ... all the points where the curves meets the coordinate axes.
- ... the minimum or maximum points of the curves.

$$
a=-1, b=-9
$$

Ancourtut: $-3 x(x-2)=-3\left[(x-2)^{2}-2(x-2)-8\right]$ $=-3\left[x^{2}-4 x+1 x^{\prime}-2 x+4 x-18\right]$ $=-3[x-6 x]$

Question 7 (***+)
The curve C has equation

$$
y=9-(x-2)^{2} .
$$

a) Describe geometrically the three transformations that map the graph of $y=x^{2}$ onto the graph of C.
b) Hence, sketch the graph of C.

The sketch must include the coordinates of

- ... all the points where the curve meets the coordinate axes.
- ... the maximum point of the curve.

Question 8 (***+)
The curve C has equation
a) Show clearly that

Created by T. Madas

$$
y=\frac{2 x+3}{x-2}, x \in \mathbb{R}, x \neq 2
$$

$$
\frac{2 x+3}{x-2} \equiv 2+\frac{7}{x-2} .
$$

b) Find the coordinates of the points where C meets the coordinate axes.
c) Sketch the graph of C showing clearly the equations of any asymptotes.

Created by T. Madas

Question $9 \quad(* * *+)$

$$
\begin{aligned}
& f(x)=\frac{1}{x}, x \in \mathbb{R}, x \neq 0 . \\
& g(x)=\frac{1}{x+2}+2, x \in \mathbb{R}, x \neq-2 .
\end{aligned}
$$

a) Describe mathematically the two transformations that map the graph of $f(x)$ onto the graph of $g(x)$.
b) Sketch the graph of $g(x)$.

The sketch must include

- ... the coordinates of all the points where the curve meets the coordinate axes.
- the equations of any asymptotes of the curve.
translation "left" by 2 units, followed by translation "upwards" by 2 unit

Question 10 (***+)
The curve C has equation

$$
y=x^{4}-6 x^{3}+4 x^{2}+24 x-32
$$

a) Express y as the product of four linear factors.
b) Hence the graph of C, showing clearly the coordinates of any points where the graph of C meets the coordinate axes.

$$
y=(x+2)(x-4)(x-2)^{2}
$$

Created by T. Madas

Question 11 (****)

$$
f(x)=\frac{x-2}{x-3}, x \in \mathbb{R}, x \neq 3
$$

b) Express $f(x)$ in the form
where a and b are integers.
c) By considering a series of transformations which map the graph of $\frac{1}{x}$ onto the graph of $f(x)$, sketch the graph of $f(x)$.

The sketch must include .

- ... the coordinates of all the points where the curve meets the coordinate iil axes.
- ... the equations of the two asymptotes of the curve.

$$
a=1, b=-3
$$

Question 12 (****)
A cubic curve C has equation
a) Sketch the graph of C.

The sketch must include any points where the graph meets the coordinate axes.
b) Sketch in separate diagrams the graph of ...
i. $\quad \ldots y=(3-2 x)(4+2 x)^{2}$.
ii. $. . y=(3+x)(4-x)^{2}$.
iii. ... $y=(2-x)(5+x)^{2}$.

The sketches must include any points where each of the graphs meets the coordinate axes.

Created by T. Madas

Question 13 (****)
The curve C has equation $y=f(x)$ given by

$$
f(x)=\frac{x-4}{(x-5)(x-8)}, x \in \mathbb{R}, x \neq 5, x \neq 8 .
$$

Sketch the graph of C.

Indicate clearly in the sketch ...

- ... the equations of the asymptotes
- ... the coordinates of any intersections of C with the coordinate axes.
- ... the coordinates of any turning points of C.

Created by T. Madas

Question 14 (*****)

By considering a sequence of four transformations, or otherwise, sketch the graph of

$$
y=-\left||x-2|^{2}-4\right| x-2|-5| .
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.

$$
(-3,0),(7,0),(0,-9),(2,-5)
$$

Question 15 (*****)

By considering the graphs of two separate curves, or otherwise, sketch the graph of

$$
y=x|x-4| .
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.

Created by T. Madas

Question 16 (******)
By considering the graphs of three separate lines, or otherwise, sketch the graph of

$$
y=|x-4|+|x+1|
$$

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.

