CURVE SKETCHING EXAM QUESTIONS

Question 1 (**)

$$f(x) = x^2 + 6x + 10, \ x \in \mathbb{R}.$$

a) Express f(x) in the form

$$f(x) = (x+a)^2 + b,$$

where a and b are integers.

b) Describe geometrically the transformations which map the graph of x^2 onto the graph of f(x).

Question 2 (**+)

The curve C has equation

 $y=\left(x-a\right)^2+b\,,$

where a, b are positive constants.

By considering the two transformations that map the graph of $y = x^2$ onto the graph of *C*, or otherwise, sketch the graph of *C*.

The sketch must include the coordinates, in terms of a, b, of ...

- ... all the points where the curve meets the coordinate axes.
- ... the maximum point of the curve.

Question 3 (***)

 $f(x) = \sqrt{x}, x \in \mathbb{R}, x \ge 0.$

The graph of f(x) is translated by 3 units in the negative x direction, followed by a reflection in the y axis, forming the graph of g(x).

- **a**) Find the equation of g(x).
- **b**) Sketch the graph of g(x).

The sketch must include the coordinates of all the points where the curve meets the coordinate axes.

Question 4 (***)

The curve C has equation

 $y = x^3 - 9x \, .$

a) Sketch the graph of C.

b) Hence sketch on a separate diagram the graph of

 $y = (x+2)^3 - 9(x+2).$

Both sketches must include the coordinates of all the points where each of the curves meets the coordinate axes.

graph

Question 5 (***) A curve is defined by the equation

$$f(x) = (x-a)(x-b)^2(x-c)^3, x \in \mathbb{R},$$

where a, b and c are constants.

Sketch the graph of f(x) in each of the following cases.

- **a**) 0 < a < b < c
- **b**) 0 < a < c < b.

Each sketch must clearly show any intercepts with the coordinate axes, in terms of a, b and c, where appropriate.

graph

Question 6 (***+)

 $f(x) = x^2 - 2x - 8, x \in \mathbb{R}.$

- **a**) Express f(x) in the form $f(x) = (x+a)^2 + b$, where a and b are integers.
- **b**) Sketch the graph of f(x).
- a) By considering a series of three geometrical transformations, sketch the graph of y = -3f(x-2).

Both sketches must include the coordinates of ...

- ... all the points where the curves meets the coordinate axes.
- ... the minimum or maximum points of the curves.

a = -1, b = -9

Question 7 (***+)

The curve C has equation

 $y=9-\left(x-2\right) ^{2}.$

- a) Describe geometrically the three transformations that map the graph of $y = x^2$ onto the graph of *C*.
- **b**) Hence, sketch the graph of C.

The sketch must include the coordinates of

- ... all the points where the curve meets the coordinate axes.
- ... the maximum point of the curve.

reflection in the x axis, translation "right" by 2 units

translation "upwards" by 9 units

Question 8 (***+)

The curve C has equation

$$y = \frac{2x+3}{x-2}, x \in \mathbb{R}, x \neq 2.$$

a) Show clearly that

 $\frac{2x+3}{x-2} \equiv 2 + \frac{7}{x-2}.$

b) Find the coordinates of the points where C meets the coordinate axes.

c) Sketch the graph of C showing clearly the equations of any asymptotes.

 $y = \frac{2(x-z)+7}{(x-z)} = \frac{2(x-z)}{x-z} + \frac{7}{x-z} =$ $g = 2 + \frac{7}{x-2} = \frac{2(x-2)}{(x-2)} + \frac{7}{x-2} = \frac{2x-4}{x-2} + \frac{7}{x-2}$ 16 THE ANDING

 $\left(0,-\frac{3}{2}\right),\left(-\frac{3}{2},0\right)$

Question 9 (***+)

$$f(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0.$$

$$g(x) = \frac{1}{x+2} + 2, x \in \mathbb{R}, x \neq -2.$$

- a) Describe mathematically the two transformations that map the graph of f(x) onto the graph of g(x).
- **b**) Sketch the graph of g(x).

The sketch must include ..

- ... the coordinates of all the points where the curve meets the coordinate axes.
- ... the equations of any asymptotes of the curve.

translation "left" by 2 units, followed by translation "upwards" by 2 unit

Question 10 (***+)

The curve C has equation

 $y = x^4 - 6x^3 + 4x^2 + 24x - 32.$

- a) Express y as the product of four linear factors.
- **b**) Hence the graph of C, showing clearly the coordinates of any points where the graph of C meets the coordinate axes.

a) $y = a^4 - 6a^3 + 1a^2 + 2aa - 6a^2 \iff \pm 1$ ± 2 ± 4 err	$\begin{cases} (2.42)(22) = 2^2 - 4 \\ This shunch for grave - 4 \end{cases}$
$\begin{array}{l} ({\rm fr} - \int_{t} Q_{1}) = 2^{k} - Q_{2}^{k} + I_{1} 2^{k}_{1} + 24 a_{1} - s2 \\ & = \int_{t}^{t} Q_{1}) = 1 + 6 + 4 + 24 - 32 = -4^{k} \neq 0 \\ & = \int_{t}^{t} (a_{1}) = 1 + 6 + 4 - 24 - 32 = -45 \neq 0 \\ & = \int_{t}^{t} Q_{1} = 1 - (a_{1} + B + 16 + 4B - 32 = 0 \\ & = \int_{t}^{t} Q_{2} + 1 - (a_{1} + B + 16 + 4B - 32 = 0 \\ & = \int_{t}^{t} Q_{2} + 1 - (a_{1} + B + 16 + 4B - 32 = 0 \\ & = 0 \end{array}$	$\begin{pmatrix} 3^{2} - 6, \frac{(2^{2} - 6, 3^{2} + 12^{2} + 29, -32)}{(2^{2} - 6^{2} + 12^{2} + 29, -32)} \\ -\frac{3^{3} + 42^{2}}{(-6^{3} + 16^{3} + 29_{1} - 2)} \\ +\frac{42^{2} - 62^{2}}{(2^{3} + 29^{3} + 29_{1} - 2)} \\ -\frac{62^{3} - 42^{2}}{(2^{3} - 2)} \\ -\frac{82^{2} - 42^{2}}{(2^{3}$
· (2-2) & (2+2) the Frities of I(2)	$\begin{cases} & & \\ & $
	$\begin{array}{c} y = (x-2)(x+2)(x-2)(x-4) \\ y = (x-2)^2(x+2)(x-4) \end{array}$
 6) • sight w 9 - 3. (q. 2) 9 - 3. (q. 2) (Tournak-base) 4 (seasaw base) 	5 (2pt) (2pt) (4pt) = 2

 $y = (x+2)(x-4)(x-2)^2$

Question 11 (****)

$$f(x) = \frac{x-2}{x-3}, x \in \mathbb{R}, x \neq 3.$$

b) Express f(x) in the form

$$f(x) = a + \frac{1}{x+b},$$

where a and b are integers.

c) By considering a series of transformations which map the graph of $\frac{1}{x}$ onto the graph of f(x), sketch the graph of f(x).

The sketch must include ...

- ... the coordinates of all the points where the curve meets the coordinate *iii* axes.
- ... the equations of the two asymptotes of the curve.

a=1, b=-3

Question 12 (****)

A cubic curve C has equation

$$y = (3-x)(4+x)^2$$
.

a) Sketch the graph of C.

The sketch must include any points where the graph meets the coordinate axes.

b) Sketch in separate diagrams the graph of ...

i. ...
$$y = (3-2x)(4+2x)^2$$

ii. ...
$$y = (3+x)(4-x)^2$$

iii. ... $y = (2-x)(5+x)^2$.

The sketches must include any points where each of the graphs meets the coordinate axes.

Question 13 (****)

The curve *C* has equation y = f(x) given by

 $f(x) = \frac{x-4}{(x-5)(x-8)}, x \in \mathbb{R}, x \neq 5, x \neq 8.$

Sketch the graph of C.

Indicate clearly in the sketch ...

- ... the equations of the asymptotes
- ... the coordinates of any intersections of C with the coordinate axes.
- ... the coordinates of any turning points of *C*.

Question 14 (*****)

By considering a sequence of four transformations, or otherwise, sketch the graph of

$$y = -||x-2|^2 - 4|x-2|-5|$$
.

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.

(-3,0),(7,0),(0,-9),(2,-5)

Question 15 (*****)

By considering the graphs of two separate curves, or otherwise, sketch the graph of

y = x |x - 4|.

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.

(0,0),(4,0)

y= ala-41		$u = x(\lambda + 4)$
$y = \begin{cases} x(x-4) & \text{if } x > 4 \\ x(4-x) & \text{if } x < 4 \end{cases}$	1 4 3	
	X	× *
		\sim
я	=2 2-4	y= 2(4-3)

Question 16 (*****)

By considering the graphs of three separate lines, or otherwise, sketch the graph of

y = |x - 4| + |x + 1|

Indicate the coordinates of any intersections with the axes, and the coordinates of the cusp of the curve.

(-1,5),(0,5),(4,5)

$\hat{Q} = \mathcal{D} - \hat{H} + \mathcal{D} + =$	$\begin{cases} if x \neq i \\ if x \neq i \\ if x \neq i \end{cases}$	-(x-4)-(y+1) = -57+3 -(x-4)+(x+1) = 2 (x-4)+(x+1) = 2
Gut	4 (95) (95) (95)	->> //

Question 17 (*****) The curve *C* has equation

$$y = \frac{x^2 - 4}{|x + 5|}, x \in \mathbb{R}, x \neq -5.$$

The sketch must include ...

- ... the coordinates of all the points where the curve meets the coordinate axes.
 - ... the equations of the asymptotes of the curve.

$\underline{q} = \frac{\alpha^2 - \underline{4}}{[\alpha + s]} =$	(x+s) (x+s)	
$= \frac{\chi^{0} - \psi}{3c^{+}S} = 0.001$	$\frac{\mathcal{X}^{-2}}{\mathcal{T}\left(\mathcal{X}+\mathcal{E}\right)-\mathcal{E}\left(\mathcal{X}+\mathcal{E}\right)+5/}=-\mathcal{K}^{-2}$	$+\frac{2i}{\chi-\zeta}$
● within or>-2	$\widetilde{\partial}_{\overline{\sigma}} \; \frac{x+2}{\overline{x}_{\delta}^{2}-\overline{\sigma}} = \overline{\sigma} - 2 + \frac{x\alpha}{51}$	When 200 y=-ge (a-fe) When y=0 g==== (-2,0),(2,0)
		ha-+00 4-02-5
		t= 2→ -5 y→ +00
• when a <-s	$\mathcal{Y} = \frac{3^2 - 4}{-(3+3)}$	
	$-\underline{U} = \frac{\alpha^{2}-4}{\alpha+2} = \alpha-2 + \frac{\alpha}{24}$	
4	$\frac{12}{12} - 2 + 2 - 2 \qquad \qquad$	As a as y ats
	10 XIS	42-2-2 2-2+00
The		
175	4 48	
1	1	
		y=2-5
	N. 19	
	N.	6 6600
		(a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b
		10(20)3
-	A	Da .
	9=-	-245
	1	"

Created by T. Madas

h