BINOMIAL SERIES

 EXPANSIONS

 EXPANSIONS}

Created by T. Madas

Question 1

a) Expand $(1+2 x)^{-1}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

$$
1-2 x+4 x^{2}-8 x^{3}+16 x^{4}+O\left(x^{5}\right),-\frac{1}{2}<x<\frac{1}{2}
$$

Question 2

a) Expand $(1-4 x)^{-\frac{1}{2}}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

$$
1+2 x+6 x^{2}+20 x^{3}+70 x^{4}+O\left(x^{5}\right), \quad-\frac{1}{4}<x<\frac{1}{4}
$$

Created by T. Madas

Question 3

a) Expand $(1+2 x)^{-2}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

$$
1-4 x+12 x^{2}-32 x^{3}+80 x^{4}+O\left(x^{5}\right), \quad-\frac{1}{2}<x<\frac{1}{2}
$$

Question 4

a) Expand $(1+3 x)^{-\frac{1}{3}}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

$$
1-x+2 x^{2}-\frac{14}{3} x^{3}+\frac{35}{3} x^{4}+O\left(x^{5}\right), \quad-\frac{1}{3}<x<\frac{1}{3}
$$

Created by T. Madas

Question 5
a) Expand $\frac{1}{(1-2 x)^{2}}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

Question 6
a) Expand $\sqrt[4]{1+2 x}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

$$
1+\frac{1}{2} x-\frac{3}{8} x^{2}+\frac{7}{16} x^{3}-\frac{77}{128} x^{4}+O\left(x^{5}\right),-\frac{1}{2}<x<\frac{1}{2}
$$

Created by T. Madas

Question 7

a) Expand $\frac{1}{(1+2 x)^{3}}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

$$
1-6 x+24 x^{2}-80 x^{3}+240 x^{4}+O\left(x^{5}\right), \quad-\frac{1}{2}<x<\frac{1}{2}
$$

Question 8

a) Expand $\frac{1}{(1-3 x)^{2}}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

$$
1+6 x+27 x^{2}+108 x^{3}+405 x^{4}+O\left(x^{5}\right),-\frac{1}{3}<x<\frac{1}{3}
$$

Created by T. Madas

Question 9

a) Expand $(1+3 x)^{-\frac{5}{3}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
1-5 x+20 x^{2}-\frac{220}{3} x^{3}+O\left(x^{4}\right),-\frac{1}{3}<x<\frac{1}{3}
$$

Question 10

a) Expand $(1+5 x)^{-\frac{1}{2}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
1-\frac{5}{2} x+\frac{75}{8} x^{2}-\frac{625}{16} x^{3}+O\left(x^{4}\right), \quad-\frac{1}{5}<x<\frac{1}{5}
$$

Created by T. Madas

Question 11

a) Expand $(1-4 x)^{\frac{1}{2}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
1-2 x-2 x^{2}-4 x^{3}+O\left(x^{4}\right), \quad-\frac{1}{4}<x<\frac{1}{4}
$$

Question 12

a) Expand $\frac{1}{(1+4 x)^{3}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
1-12 x+96 x^{2}-640 x^{3}+O\left(x^{4}\right),-\frac{1}{4}<x<\frac{1}{4}
$$

Created by T. Madas

Question 13

a) Expand $\frac{1}{\sqrt{1-2 x}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
1+x+\frac{3}{2} x^{2}+\frac{5}{2} x^{3}+O\left(x^{4}\right), \quad-\frac{1}{2}<x<\frac{1}{2}
$$

Question 14

a) Expand $\sqrt{1+2 x}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.
c) By using $x=0.01$ in the above expansion find an approximation to $\sqrt{1.02}$, giving the answer correct to 5 decimal places.

$$
1+x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+O\left(x^{4}\right), \quad-\frac{1}{2}<x<\frac{1}{2}, 1.00995
$$

Created by T. Madas

MORE

BINOMIAL

EXPANSIONS

Created by T. Madas

Question 1
a) Expand $\sqrt{4-9 x}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
2-\frac{9}{4} x-\frac{81}{64} x^{2}-\frac{729}{512} x^{3}+O\left(x^{4}\right), \quad-\frac{4}{9}<x<\frac{4}{9}
$$

a) Expand $\frac{1}{(2-5 x)^{2}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
\frac{1}{4}+\frac{5}{4} x+\frac{75}{16} x^{2}+\frac{125}{8} x^{3}+O\left(x^{4}\right),-\frac{2}{5}<x<\frac{2}{5}
$$

Created by T. Madas

Question 3

a) Expand $\frac{1}{(3+2 x)^{3}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
\frac{1}{27}-\frac{2}{27} x+\frac{8}{81} x^{2}-\frac{80}{729} x^{3}+O\left(x^{4}\right), \quad-\frac{3}{2}<x<\frac{3}{2}
$$

Question 4

a) Expand $\frac{1}{\sqrt{4-3 x}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
\frac{1}{2}+\frac{3}{16} x+\frac{27}{256} x^{2}+\frac{135}{2048} x^{3}+O\left(x^{4}\right), \quad-\frac{4}{3}<x<\frac{4}{3}
$$

Created by T. Madas

Question 5
a) Expand $(2+3 x)^{-3}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
\frac{1}{8}-\frac{9}{16} x+\frac{27}{16} x^{2}-\frac{135}{32} x^{3}+O\left(x^{4}\right),-\frac{2}{3}<x<\frac{2}{3}
$$

Question 6
a) Expand $\sqrt{4-2 x}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
2-\frac{1}{2} x-\frac{1}{16} x^{2}-\frac{1}{64} x^{3}+O\left(x^{4}\right),-2<x<2
$$

Created by T. Madas

Created by T. Madas

Question 7
a) Expand $\frac{1}{(2-8 x)^{3}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

a) Expand $\sqrt{4-6 x}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
2-\frac{3}{2} x-\frac{9}{16} x^{2}-\frac{27}{64} x^{3}+O\left(x^{4}\right),-\frac{2}{3}<x<\frac{2}{3}
$$

Created by T. Madas

Created by T. Madas

Question 9
a) Expand $\frac{1}{\sqrt{4-5 x}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.
 term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
\frac{1}{4}+\frac{1}{4} x+\frac{3}{16} x^{2}+\frac{1}{8} x^{3}+O\left(x^{4}\right),-2<x<2
$$

Created by T. Madas

Created by T. Madas

Question 11
a) Expand $\sqrt{4-x}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

Created by T. Madas

Question 13
a) Expand $\frac{1}{\sqrt{25-x}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

a) Expand $\sqrt[3]{8+24 x}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.

$$
2+2 x-2 x^{2}+\frac{10}{3} x^{3}+O\left(x^{4}\right),-2<x<2
$$

Created by T. Madas

Created by T. Madas

Question 15

a) Expand $\frac{1}{\sqrt{4+x}}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.
c) By substituting $x=0.32$ into the expansion show that $\sqrt{3} \approx 1.732$.

$$
\frac{1}{2}-\frac{1}{16} x+\frac{3}{256} x^{2}-\frac{5}{2048} x^{3}+O\left(x^{4}\right),-4<x<4
$$

Question 16

a) Expand $\frac{1}{\sqrt{9+4 x^{2}}}$ as an infinite convergent binomial series, up and including the term in x^{4}.
b) State the range of values of x for which the expansion is valid.

$$
\frac{1}{3}-\frac{2}{27} x^{2}+\frac{2}{81} x^{4}+O\left(x^{6}\right), \quad-\frac{3}{2}<x<\frac{3}{2}
$$

Created by T. Madas

Question 17
a) Expand $(2+3 x)^{-2}$ as an infinite convergent binomial series, up and including the term in x^{3}.
b) State the range of values of x for which the expansion is valid.
c) Find the coefficient of x^{6} in the above expansion.

$$
\frac{1}{4}-\frac{3}{4} x+\frac{27}{16} x^{2}-\frac{27}{8} x^{3}+O\left(x^{4}\right),-\frac{2}{3}<x<\frac{2}{3}, \frac{5103}{256}
$$

