## BINOMIAL SERIES EXPANSIONS

#### **Question 1**

- a) Expand  $(1+2x)^{-1}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .
- **b**) State the range of values of x for which the expansion is valid.

 $\boxed{1 - 2x + 4x^2 - 8x^3 + 16x^4 + O(x^5)}, \quad \boxed{-\frac{1}{2} < x < -\frac{1}{2}}$ 

(a)  $(1+22)^{-1} = 1 + \frac{(-1)^{-1}}{(2+2)^{-1}} + \frac{(-1)^{-1}}{(2+2)^{-1}}$ 

#### **Question 2**

- a) Expand  $(1-4x)^{-\frac{1}{2}}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .
- **b**) State the range of values of x for which the expansion is valid.

 $1 + 2x + 6x^2 + 20x^3 + 70x^4 + O(x^5),$  $-\frac{1}{4} < x < \frac{1}{4}$ 

 $\begin{array}{l} \mathbf{a}_{1}\left(1-u_{2}\right)^{-\frac{1}{2}}=|+\frac{1}{4}(-u_{2})+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{2})}{1-u_{2}}(-u_{2})^{2}+\frac{(1+\frac{1}{$ 

#### **Question 3**

- a) Expand  $(1+2x)^{-2}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .
- **b**) State the range of values of x for which the expansion is valid.

| $1 - 4x + 12x^2$ | $-32x^{3}+$ | $80x^4 + O$ | $\left(x^{5}\right)$ | , | $-\frac{1}{2} < x <$ |
|------------------|-------------|-------------|----------------------|---|----------------------|
|                  |             |             |                      |   |                      |

#### **Question 4**

- a) Expand  $(1+3x)^{-\frac{1}{3}}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .
- **b**) State the range of values of x for which the expansion is valid.

 $1 - x + 2x^2 - \frac{14}{3}x^3 +$  $\frac{35}{3}x^4 + O(x^5)$  $< x < \frac{1}{3}$ 

| <b>(a</b> ) | $ (1+3a)^{\frac{1}{2}} = 1 + \frac{(1)}{(1)}(3a) + \frac{(1)(\frac{1}{2})}{1\times 2}(3a)^2 + \frac{(1)(\frac{1}{2})(\frac{1}{2})}{1\times 2\times 3}(3a)^3 + \frac{(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})}{1\times 2\times 3\times 4}(3a)^3 + O(2^5) $ |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | $=1-\mathcal{J} + \frac{3}{2}(dx_{5}) - \frac{91}{16}(5x_{3}) + \frac{3^{2}}{3^{2}}(8x_{5}) + \mathcal{O}(\mathbf{x}_{1})$                                                                                                                               |
|             | $= 1 - x + 2a^2 - \frac{14}{3}a^3 + \frac{35}{3}a^4 + O(2^5)$                                                                                                                                                                                            |
| (b)         | Value for $ 3\alpha  < 1$<br>$ \alpha  < \frac{1}{3}$ $ \alpha  - \frac{1}{3} < \alpha < \frac{1}{3}$                                                                                                                                                    |

#### **Question 5**

a) Expand  $\frac{1}{(1-2x)^2}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .

**b**) State the range of values of x for which the expansion is valid.

 $1 + 4x + 12x^{2} + 32x^{3} + 80x^{4} + O(x^{5}), \quad \boxed{-\frac{1}{2} < x < \frac{1}{2}}$ 

 $\begin{array}{l} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left( -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{$ 

#### **Question 6**

- a) Expand  $\sqrt[4]{1+2x}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .
- **b**) State the range of values of x for which the expansion is valid.

$$1 + \frac{1}{2}x - \frac{3}{8}x^2 + \frac{7}{16}x^3 - \frac{77}{128}x^4 + O\left(x^5\right), \quad -\frac{1}{2} < x < \frac{1}{2}$$

 $\begin{array}{l} (\textbf{g}, \sqrt[3]{1+2\lambda_{1}^{-1}} = (1+2\lambda_{1})^{\frac{1}{2}} \\ &= 1+\frac{1}{2}(\lambda_{2})^{\frac{1}{2}} + \frac{1}{2}(\lambda_{2})^{\frac{1}{2}} + \frac{1}{2}(\lambda_{$ 

#### **Question 7**

a) Expand  $\frac{1}{(1+2x)^3}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .

**b**) State the range of values of x for which the expansion is valid.

 $\boxed{1 - 6x + 24x^2 - 80x^3 + 240x^4 + O\left(x^5\right)}, \quad \boxed{-\frac{1}{2} < x < \frac{1}{2}}$ 

 $\begin{cases} \mathbf{a} & \frac{1}{(1+2)^{k-1}} (1+2)^{k-1} (1+2)^{k-1} (2\mathbf{a})^{k-1} \frac{\xi_{1}^{(k)}(\mathbf{a})^{k}}{1+k^{2}} (1+2)^{k-1} (2\mathbf{a})^{k-1} (2\mathbf{a})^{k-1}$ 

#### **Question 8**

a) Expand  $\frac{1}{(1-3x)^2}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .

**b**) State the range of values of x for which the expansion is valid.

$$1 + 6x + 27x^{2} + 108x^{3} + 405x^{4} + O\left(x^{5}\right), \quad \boxed{-\frac{1}{3} < x < \frac{1}{3}}$$

 $\begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left( -5 \chi^{2} = \left( 1 - 2 \chi \right)^{2} = 1 + \left( \frac{2}{3} \left( 4 \chi \right) + \frac{2}{3} \left( 2 \chi \right) + \frac{2}{3} \left($ 

#### **Question 9**

- a) Expand  $(1+3x)^{-\frac{5}{3}}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

 $1 - 5x + 20x^2 - \frac{220}{3}x^3 + O(x^4), \quad -\frac{1}{3} < x < \frac{1}{3}$ 

#### Question 10

- a) Expand  $(1+5x)^{-\frac{1}{2}}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

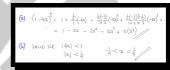
 $1 - \frac{5}{2}x + \frac{75}{8}x^2 - \frac{625}{16}x^3 + O\left(x^4\right), \quad -\frac{1}{5} < x < \frac{1}{5}$ 

| 6 |          | $1 + \frac{-\frac{1}{k}}{l} \left( Sx_{i}^{1} \right)^{l} + \frac{-\frac{1}{2} \left( -\frac{1}{2} \right)}{(\times 2)} \left( Sx_{i}^{2} \right)^{2} + \frac{-\frac{1}{k} \left( -\frac{k}{2} \right) \left( -\frac{1}{2} \right)}{1 \times 2 \times 3} \left( Sx_{i}^{2} \right)^{2} + O\left( X^{\theta} \right)$ |
|---|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | =        | $1 - \frac{5}{2}x + \frac{8}{12}x_{5}^{2} - \frac{6}{16}x_{5}^{2} + O(x_{6})$                                                                                                                                                                                                                                        |
| 3 | VAUD 162 | $ \begin{array}{c c}  Sa  < 1 \\  Sa  < \frac{1}{5} \\  x  < \frac{1}{5} \\ \end{array} $                                                                                                                                                                                                                            |

#### **Question 11**

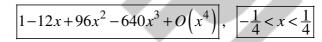
- a) Expand  $(1-4x)^{\frac{1}{2}}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

 $1-2x-2x^2-4x^3+O(x^4)$ ,  $-\frac{1}{4} < x < \frac{1}{4}$ 



#### Question 12

- a) Expand  $\frac{1}{(1+4x)^3}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.





#### **Question 13**

- a) Expand  $\frac{1}{\sqrt{1-2x}}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

$$1 + x + \frac{3}{2}x^2 + \frac{5}{2}x^3 + O\left(x^4\right), \quad -\frac{1}{2} < x < \frac{1}{2}$$

 $\begin{pmatrix} \frac{1}{\lambda_{1}^{(1-2\lambda)}} = (1-2\lambda_{2}^{-\frac{1}{2}}) = (1+\frac{(2)}{1}(2\lambda_{1}^{-1}) + \frac{(1+2)}{1+2}(2\lambda_{1}^{-1}) + \frac{(1+2)(+1)}{1+2(2\lambda_{1}-\lambda_{1})}(2\lambda_{1}^{-1}) + O(2k) \\ = (1+2\lambda_{1}-2\lambda_{1}^{-1}) + \frac{(1+2)(+2\lambda_{1}-\lambda_{1})}{1+2(2\lambda_{1}-\lambda_{1})} + O(2k) \end{pmatrix}$   $(3) \quad \forall \mu u \in [k] \quad |2\lambda_{1}| < (1+2\lambda_{1}-2\lambda_{1}) + \frac{(1+2)(+2\lambda_{1}-\lambda_{1})}{1+2(2\lambda_{1}-\lambda_{1})} + O(2k) + \frac{(1+2)(+2\lambda_{1}-\lambda_{1})}{1+2(2\lambda_{1}-\lambda_{1})} + O(2k) + O(2k)$ 

#### **Question 14**

- a) Expand  $\sqrt{1+2x}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of *x* for which the expansion is valid.
- c) By using x = 0.01 in the above expansion find an approximation to  $\sqrt{1.02}$ , giving the answer correct to 5 decimal places.

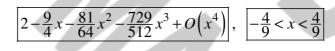
$$1 + x - \frac{1}{2}x^{2} + \frac{1}{2}x^{3} + O(x^{4}), \quad -\frac{1}{2} < x < \frac{1}{2}, \quad 1.00995$$

 $\begin{array}{l} (v_{0}) = \frac{1}{10} \left( v_{0} + \frac{1}{10} \left( v_{0} + \frac{1}{10} \right) + \frac{1}{100} \left( v_{0} + \frac{1}{100} + \frac{1}{100} \left( v_{0} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} \right) \right) \\ = 1 + \alpha - \frac{1}{2} + \frac{1}{2$ 

# MORE BINOMIAL EXPANSIONS

#### **Question 1**

- a) Expand  $\sqrt{4-9x}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of *x* for which the expansion is valid.



| <b>(a)</b> $\sqrt{4-q_{\lambda}} = (4-q_{\lambda})^{\frac{1}{2}} = 4^{\frac{1}{2}}(1-\frac{q_{\lambda}}{q_{\lambda}})^{\frac{1}{2}} = 2(1-\frac{q_{\lambda}}{q_{\lambda}})^{\frac{1}{2}}$                                                                                                   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $= 2 \left[ 1 + \frac{(\frac{1}{2})}{1} - \left(-\frac{q}{4}x\right) + \frac{(\frac{1}{2})^{\frac{1}{2}}}{1\times 2} \left[-\frac{q}{4}x\right]^{\frac{q}{2}} + \frac{(\frac{1}{2})^{\frac{1}{2}}}{1\times 2\times 3} \left(-\frac{q}{4}x\right)^{\frac{1}{2}} + O(x^{\frac{1}{2}})\right]$ | 1 |
| $= 2 \left[ 1 - \frac{q}{8} x - \frac{g_1}{128} x^2 - \frac{72 \pi}{1024} x^3 + c(x^4) \right]$                                                                                                                                                                                             |   |
| $= 2 - \frac{q}{4\lambda} - \frac{B_1}{64\lambda^2} - \frac{72q}{512}\lambda^3 + O(\lambda^4)$                                                                                                                                                                                              |   |
| <ul> <li>し、いろのである</li> <li>し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、</li></ul>                                                                                                                                                                                                                 |   |

## **Question 2**

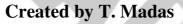
a) Expand  $\frac{1}{(2-5x)^2}$  as an infinite convergent binomial series, up and including

the term in  $x^3$ .

**b**) State the range of values of x for which the expansion is valid.

| 1   | 5              | 75 0                             | 105              | 2 (            | 1   | 0    | 2                     |
|-----|----------------|----------------------------------|------------------|----------------|-----|------|-----------------------|
| 14  | $-\frac{3}{r}$ | $+\frac{15}{r^2}$ r <sup>2</sup> | $+\frac{125}{r}$ | $^{3} + 0   x$ | 4 1 | -4 < | r < 4                 |
| 4 ' | $4^{\Lambda}$  | ' 16 <sup>~</sup>                | 8 ~              | 10(1           | 기'  | 5    | <sup><i>n</i></sup> 5 |
|     |                |                                  |                  |                |     |      |                       |

| (a) |         | $(2-\theta_A)^3 \approx 2^3 \left[1-\psi_A\right]^{-3} = \frac{1}{6}(1-\psi_A)^{-3}$                                                                                                                   |
|-----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 2       | $\frac{1}{8}\left[1+\frac{(-3)}{1}\left(-4\lambda\right)+\frac{(-3)(-4)}{(\times 2}\left(-4\lambda\right)^2+\frac{(-3)(-4)(-5)}{(\times 2\times 3}\left(-4\lambda\right)^3+O(\lambda^4)\right]\right]$ |
|     |         | $\frac{1}{8} \left[ 1 + 12x + 96a^2 + 640a^3 + 000'' \right]$                                                                                                                                          |
|     | =       | $\frac{1}{8} + \frac{3}{2}x + 12x^{2} + 80x^{3} + o(x^{4})$                                                                                                                                            |
| (b) | VAUD BR | $\begin{array}{c c}  4q_{1}  \\  x_{1}  \leq \frac{1}{2} & \ddots & -\frac{1}{2} < x < \frac{1}{2} \end{array}$                                                                                        |



#### **Question 3**

a) Expand  $\frac{1}{(3+2x)^3}$  as an infinite convergent binomial series, up and including

the term in  $x^3$ .

**b**) State the range of values of x for which the expansion is valid.

2

$$\frac{1}{27} - \frac{2}{27}x + \frac{8}{81}x^2 - \frac{80}{729}x^3 + O(x^4), \quad -\frac{3}{2} < x < \frac{3}{2}$$

 $\begin{array}{l} (\textbf{a}) & \frac{1}{(2+2)} = (2+2)^{-2} = \frac{1}{2^2} (1+\frac{2}{3}) x^{-2} = \frac{1}{2^2} (1+\frac{2}{3}) x^{-3} \\ & = \frac{1}{2^2} \left[ (1+\frac{1}{2^2}) x^{-3} + \frac{60(-4)}{1\times2} (2x)^2 - \frac{1}{2^2} (1+\frac{2}{3}) x^{-3} \\ & = \frac{1}{2^2} \left[ (1+2x) + \frac{2}{3} x^2 - \frac{2}{3^2} x^2 + c_0 x) \right] \\ & = \frac{1}{2^2} \left[ (1+2x) + \frac{2}{3} x^2 - \frac{2}{3^2} x^2 + c_0 x) \right] \\ & = \frac{1}{2^2} \left[ \frac{1}{2^2} - \frac{2}{3^2} x^2 + \frac{2}{3^2} x^2 + c_0 x) \right] \\ & = \frac{1}{2^2} \left[ \frac{1}{2^2} - \frac{2}{3^2} x^2 + \frac{2}{3^2} x^2 + c_0 x) \right] \\ & = \frac{1}{2^2} \left[ \frac{1}{2^2} - \frac{1}{2^2} x^2 + \frac{2}{3^2} x^2 + c_0 x) \right] \\ & = \frac{1}{2^2} \left[ \frac{1}{2^2} - \frac{1}{2^2} x^2 + \frac{2}{3^2} x^2 + c_0 x) \right] \\ & = \frac{1}{2^2} \left[ \frac{1}{2^2} - \frac{1}{2^2} x^2 + \frac{2}{3^2} x^2 + \frac{1}{2^2} x^2$ 

#### **Question 4**

- a) Expand  $\frac{1}{\sqrt{4-3x}}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

 $\frac{1}{2} + \frac{3}{16}x + \frac{27}{256}x^2 + \frac{135}{2048}x^3 + O(x^4)$  $\frac{4}{3} < x < \frac{4}{3}$ 

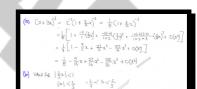
$$\begin{split} & \frac{1}{\sqrt{4-sa_{1}}} = (4-sa_{1})^{\frac{1}{2}} = \frac{1}{s_{1}}^{\frac{1}{2}} (-\frac{1}{2}s_{1})^{\frac{1}{2}} = \frac{1}{s_{1}} (-\frac{1}{2}s_{1})^{\frac{1}{2}} \\ & = \frac{1}{s_{1}} \left[ (+\frac{1}{2})(-\frac{1}{2}s_{1}) + \frac{(\frac{1}{2},\frac{1}{2})}{1s_{2}}(-\frac{1}{2}s_{1})^{\frac{1}{2}} + \frac{(\frac{1}{2},\frac{1}{2})}{1s_{2}}(-\frac{1}{2}s_{1})^{\frac{1}{2}} + \frac{(\frac{1}{2}s_{1})}{1s_{2}}(-\frac{1}{2}s_{1})^{\frac{1}{2}} + \frac{(\frac{1}{2}s_{1})}(-\frac{1}{2}s_{1})^{\frac{1}{2}} + \frac{(\frac{1$$

#### **Question 5**

a) Expand  $(2+3x)^{-3}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .

 $\boxed{\frac{1}{8} - \frac{9}{16}x + \frac{27}{16}x^2 - \frac{135}{32}x^3 + O\left(x^4\right)},$ 

**b**) State the range of values of x for which the expansion is valid.



 $< x < \frac{2}{3}$ 

#### **Question 6**

- a) Expand  $\sqrt{4-2x}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

 $2 - \frac{1}{2}x - \frac{1}{16}x^2 - \frac{1}{64}x^3 + O(x^4), \quad \boxed{-2 < x < 2}$ 

| <u>(</u> | 14-22  | $= (4-2x)^{\frac{1}{2}} = 4^{\frac{1}{2}}(1-\frac{1}{2}x)^{\frac{1}{2}} = 2(1-\frac{1}{2}x)^{\frac{1}{2}}$                                                                                                                                                                                                                                                   |
|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |        | $= \Im \left( \frac{1}{2} + \frac{\frac{1}{2}}{2} \left( -\frac{1}{2} \alpha \right) + \frac{\frac{1}{2} \left( -\frac{1}{2} \right)}{1 \times 2} \left( -\frac{1}{2} \alpha \right)^2 + \frac{\frac{1}{2} \left( -\frac{1}{2} \right) \left( -\frac{1}{2} \alpha \right)^2}{1 \times 2 \times \pi^2} \left( -\frac{1}{2} \alpha \right)^2 + O(2^q) \right)$ |
|          |        | $= 2 \left[ \left[ 1 - \frac{1}{4} \alpha - \frac{1}{32} \chi^2 - \frac{1}{128} \chi^3 + o(2\theta) \right] \right]$                                                                                                                                                                                                                                         |
|          |        | $= 2 - \frac{1}{2}\lambda - \frac{1}{16}\chi^2 - \frac{1}{64}\chi^3 + c(\chi^4)$                                                                                                                                                                                                                                                                             |
| ) \      | AUD RE | 1221<1                                                                                                                                                                                                                                                                                                                                                       |
|          |        | x <2 :-2 <x<2< td=""></x<2<>                                                                                                                                                                                                                                                                                                                                 |

#### **Question 7**

- a) Expand  $\frac{1}{(2-8x)^3}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of *x* for which the expansion is valid.

 $\frac{1}{8} + \frac{3}{2}x + 12x^2 + 80x^3 + O(x^4)$  $< x < \frac{1}{4}$ 

$$\begin{split} (9) & \frac{1}{(2-6x)^3} = (2-6x)^3 = x^2(1-4x)^3 = \frac{1}{6}(1-4x)^{-2} \\ &= \frac{1}{6}\left[\frac{1}{1+\frac{\pi^2}{4}(-4x)} + \frac{(9)(-4x)^2}{(1+x)^2(-4x)^2} + (-4x)^4 + (-5x)^4\right] \\ &= \frac{1}{6}\left[\frac{1}{1+12x} + 4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4(2x^2+4$$

#### **Question 8**

- a) Expand  $\sqrt{4-6x}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

 $2 - \frac{3}{2}x - \frac{9}{16}x^2 - \frac{27}{64}x^3 + O(x^4),$  $< x < \frac{2}{3}$ 

 $\begin{array}{l} 1 & \sqrt{4 - (\omega_{1}^{-1})} = (4 - \omega_{1})^{\frac{1}{2}} = 2\frac{1}{2} \left(1 - \frac{4}{2} \omega_{2}^{\frac{1}{2}} = 2\left(1 - \frac{4}{2} \omega_{2}\right)^{\frac{1}{2}} \\ & = 2\left[1 + \frac{4}{2} \left(1 + \frac{4}{2}\right) + \frac{4}{2} \left(1 + \frac{4}{2}\right) \left(2 + \frac{4}{2}\right) \left(2 + \frac{4}{2}\right)^{\frac{1}{2}} + c(2)\right] \\ & = 2\left[1 - \frac{4}{2}\omega_{1} - \frac{4}{2}\omega_{2}^{-1} - \frac{2}{2}\omega_{2}^{-1} + \frac{2}{2}(2\omega_{2})\right] \\ & = 2 - \frac{3}{2}\omega_{1} - \frac{4}{2}\omega_{2}^{-1} - \frac{24}{2}(2\omega_{2}) \left(2 + \frac{4}{2}\right) \left(2$ 

#### **Question 9**

- a) Expand  $\frac{1}{\sqrt{4-5x}}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

$$\frac{1}{2} + \frac{5}{16}x + \frac{75}{256}x^2 + \frac{625}{2048}x^3 + O\left(x^4\right), \quad -\frac{4}{5} < x < \frac{4}{5}$$

 $\begin{array}{l} \begin{array}{l} (\mathbf{e}) & \frac{1}{1+s^{2}} = (4\cdot s_{2})^{\frac{1}{2}} = \frac{1}{4} \left( (-\frac{1}{2}s_{1})^{\frac{1}{2}} = \frac{1}{2} \left( (-\frac{1}{2}s_{1})^{\frac{1}{2}} \\ & = \frac{1}{2} \left[ \left( + \frac{1}{4} \left( \frac{1}{2}s_{1} \right) + \frac{\left(\frac{1}{2}s_{1}\right)^{\frac{1}{2}} \left( \frac{1}{2}s_{1} \right)^{\frac{1}{2}} + \frac{\left(\frac{1}{2}s_{1}\right)^{\frac{1}{2}} \left( \frac{1}{2}s_{1} \right)^{\frac{1}{2}} \\ & = \frac{1}{2} \left[ \left( + \frac{1}{6} \left( \frac{1}{2}s_{1} \right) + \frac{1}{66} \left( \frac{1}{2}s_{1} + \frac{1}{66} \left( \frac{1}{2}s_{1} \right) + \frac{1}{66} \left( \frac{1}{2}s_{1} \right)^{\frac{1}{2}} + \frac{1}{66} \left( \frac{1}{2}s_{1} - \frac{1}{2}s_{1} \right)^{\frac{1}{2}} \\ & = \frac{1}{2} \left[ \left( + \frac{1}{6}s_{1} + \frac{1}{66}s_{1} + \frac{1}{66}s_{1} + \frac{1}{66}s_{1} + \frac{1}{66}s_{1} + \frac{1}{66}s_{1} \right) \\ & = \frac{1}{2} \left[ + \frac{1}{6}s_{1} + \frac{1}{66}s_{1} + \frac{1}{66}s_{$ 

#### **Question 10**

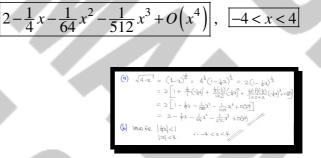
- a) Expand  $\frac{1}{(2-x)^2}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

## $\frac{1}{4} + \frac{1}{4}x + \frac{3}{16}x^2 + \frac{1}{8}x^3 + O(x^4), \quad -2 < x < 2$

 $\begin{array}{|c|c|c|c|c|c|} \hline \frac{1}{(2-x)^2} = (2-x)^2 = 2^2 (1-\frac{1}{2}x)^2 = \frac{1}{4} (1-\frac{1}{2}x)^{-2} \\ = \frac{1}{4} \left[ \frac{1}{1+x^2} (\frac{1}{1}\sqrt{\frac{1}{2}}\sqrt{\frac{1}{1+x^2}} (\frac{1}{1+x^2})^3 + \frac{(2)(2)(2)}{1+x^2} (\frac{1}{2}\sqrt{\frac{1}{2}})^4 + c(2) \right] \\ = \frac{1}{4} \left[ \frac{1}{1+x} + \frac{3}{4}x^2 + \frac{1}{2}x^3 + c(2) \right] \\ = \frac{1}{4} + \frac{4}{4}x + \frac{3}{8}x^3 + \frac{1}{8}x^3 + c(2) \end{array}$ 

#### **Question 11**

- a) Expand  $\sqrt{4-x}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of *x* for which the expansion is valid.



## **Question 12**

- a) Expand  $\frac{1}{2-3x}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

 $\frac{\frac{1}{2} + \frac{3}{4}x + \frac{9}{8}x^2 + \frac{27}{16}x^3 + O\left(x^4\right)}{\frac{1}{2}}, \quad \frac{-\frac{2}{3} < x < \frac{2}{3}}{\frac{2}{3}}$ 

| (9) | $\frac{1}{2-3a} = \frac{(2-3a)^{-1}}{2} = \frac{2}{2} \left(1-\frac{3}{2}a\right)^{-1} = \frac{1}{2} \left(1-\frac{3}{2}a\right)^{-1}$                                                                                                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $= \frac{1}{2} \left[ \left( 1 + \frac{-1}{1} \left( -\frac{1}{2} \lambda \right) + \frac{f(1)(-1)}{1 \times 2} \left( -\frac{1}{2} \lambda \right)^2 + \frac{(-1)(-1)}{1 \times 2 \times 3} \left( -\frac{1}{2} \lambda \right)^4 + O(2H) \right]$ |
|     | $= \frac{1}{2} \left[ 1 + \frac{3}{2}x + \frac{9}{4}x^2 + \frac{3}{6}x^3 + o(2t) \right]$<br>= $\frac{1}{2} \left[ + \frac{3}{2}x + \frac{9}{4}x^2 + \frac{3}{6}x^3 + o(2t) \right]$                                                                |
| ds  |                                                                                                                                                                                                                                                     |
| (9) | What Be (===================================                                                                                                                                                                                                        |

#### **Question 13**

- a) Expand  $\frac{1}{\sqrt{25-x}}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

 $\frac{1}{5} + \frac{1}{250}x + \frac{3}{25000}x^2 + \frac{1}{250000}x^3 + O(x^4), \quad -25 < x < 25$ 

$$\begin{split} \hat{\mathbf{g}}_{1} & = \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{$$

#### (9) VITUD BR 12/21<1 4 -25 < 2 < 25

#### **Question 14**

- a) Expand  $\sqrt[3]{8+24x}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.

 $2 + 2x - 2x^2 + \frac{10}{3}x^3 + O(x^4), \quad -2 < x < 2$ 

 $\begin{aligned} 3) & \sqrt{16+3A_{4}} = (6+3A_{4})^{\frac{1}{2}} = 5^{\frac{1}{2}}(1+3A_{4})^{\frac{1}{2}} = 2(1+3A_{4})^{\frac{1}{2}} \\ & = 2\left[1+\frac{1}{2}(3A_{4}) + \frac{1}{2}(3B_{4}) + \frac{1}{2}(3A_{4}) + \frac{1}{2}(3A_{4}) + (2A_{4})\right] \\ & = 2\left[1+3A_{4} - \frac{1}{2}(3A_{4}) + \frac{5}{2}(3A_{4}) + (2A_{4})\right] \\ & = 2\left[1+3A_{4} - 3A_{4} + \frac{1}{2}A_{4} + (2A_{4})\right] \\ & = 2\left[1+3A_{4} - 3A_{4} + \frac{1}{2}A_{4} + (2A_{4})\right] \\ & = 2\left[1+3A_{4} - 3A_{4} + \frac{1}{2}A_{4} + (2A_{4})\right] \\ & = 2\left[1+3A_{4} - 3A_{4} + \frac{1}{2}A_{4} + (2A_{4})\right] \end{aligned}$ 

) Vhuo Bre 1321<1 : -13<2<1

#### **Question 15**

- a) Expand  $\frac{1}{\sqrt{4+x}}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .
- **b**) State the range of values of x for which the expansion is valid.
- c) By substituting x = 0.32 into the expansion show that  $\sqrt{3} \approx 1.732$ .

 $\frac{1}{2} - \frac{1}{16}x + \frac{3}{256}x^2 - \frac{5}{2048}x^3 + O(x^4), \quad -4 < x < 4$ 

#### **Question 16**

- a) Expand  $\frac{1}{\sqrt{9+4x^2}}$  as an infinite convergent binomial series, up and including the term in  $x^4$ .
- **b**) State the range of values of x for which the expansion is valid.

 $\frac{1}{3} - \frac{2}{27}x^2 + \frac{2}{81}x^4 + O(x^6),$  $\frac{3}{2} < x < \frac{3}{2}$ 

| (9) | 1 =     | $(q+q_{2}r)^{\frac{1}{2}} = q^{\frac{1}{2}}(1+\frac{q}{3}x^{2})^{\frac{1}{2}} = \frac{1}{3}(1+\frac{q}{3}x^{2})^{\frac{1}{2}}$  |
|-----|---------|---------------------------------------------------------------------------------------------------------------------------------|
|     | 18.     | $\frac{1}{3} \left[ 1 + \frac{(1)}{1} (\frac{1}{3} x)^{2} + \frac{(1)}{1 \times 2} (\frac{1}{3} x)^{2} + 0 (3 - 3)^{2} \right]$ |
|     | =       | $\frac{1}{3} \left[ 1 - \frac{2}{3} \alpha^2 + \frac{2}{27} \alpha^4 + o(\alpha^4) \right]$                                     |
|     | 11      | $\frac{1}{3} = \frac{2}{27}\chi^2 + \frac{2}{81}\chi^4 + o(\chi^0)$                                                             |
| (b) | VAUD GR | $\left \frac{4}{5}\chi^{2}\right  <  $                                                                                          |
|     |         | $\frac{ \lambda^2  < \frac{q}{4}}{2} - \frac{3}{2} < \Im < \frac{3}{2}$                                                         |

#### **Question 17**

a) Expand  $(2+3x)^{-2}$  as an infinite convergent binomial series, up and including the term in  $x^3$ .

 $\boxed{\frac{1}{4} - \frac{3}{4}x + \frac{27}{16}x^2 - \frac{27}{8}x^3 + O\left(x^4\right)},$ 

<u>5103</u> 256

 $\frac{2}{3} < x <$ 

- **b**) State the range of values of x for which the expansion is valid.
- c) Find the coefficient of  $x^6$  in the above expansion.