BINOMIAL SERIES EXPANSIONS

Created by T. Madas

Question 1 (**)
The binomial expression $(1+x)^{-2}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Determine the expansion of $(1+x)^{-2}$, up and including the term in x^{3}.
b) Use part (a) to find the expansion of $(1+2 x)^{-2}$, up and including the term in x^{3}, stating the range of values of x for which this expansion is valid.

L, $1-2 x+3 x^{2}-4 x^{3}+O\left(x^{4}\right), 1-4 x+12 x^{2}-32 x^{3}+O\left(x^{4}\right),-\frac{1}{2}<x<\frac{1}{2}$

Question 2 (**+)
The binomial expression $(1-x)^{-1}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Determine the expansion of $(1-x)^{-1}$, up and including the term in x^{3}.
b) Use the expansion of part (a) to find the expansion of $\frac{1}{3-2 x}$, up and including the term in x^{3}.
c) State the values of x for which the expansion of $\frac{1}{3-2 x}$ is valid.

$$
1+x+x^{2}+x^{3}+O\left(x^{4}\right), \quad \frac{1}{3}+\frac{2}{9} x+\frac{4}{27} x^{2}+\frac{8}{81} x^{3}+O\left(x^{4}\right), \quad-\frac{3}{2}<x<\frac{3}{2}
$$

Question 3 (**+)
The binomial expression $(1+x)^{\frac{1}{2}}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Determine the expansion of $(1+x)^{\frac{1}{2}}$, up and including the term in x^{3}.
b) Use the expansion of part (a) to find the expansion of $\sqrt{4+2 x}$, up and including the term in x^{3}.
c) State the range of values of x for which the expansion of $\sqrt{4+2 x}$ is valid.

Question 4 (**+)
The binomial expression $(1+x)^{\frac{1}{3}}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Determine the expansion of $(1+x)^{\frac{1}{3}}$, up and including the term in x^{3}.
b) Use the expansion of part (a) to find the expansion of $(1-3 x)^{\frac{1}{3}}$, up and including the term in x^{3}.
c) Use the expansion of part (a) to find the expansion of $(27-27 x)^{\frac{1}{3}}$, up and including the term in x^{3}.

Created by T. Madas

Question 5 (**+)

$$
f(x)=\frac{5 x+3}{(1-x)(1+3 x)},|x|<\frac{1}{3}
$$

a) Express $f(x)$ into partial fractions.
b) Hence find the series expansion of $f(x)$, up and including the term in x^{3}.

Question 6 (**+)

$$
f(x)=\frac{2 x}{(1+2 x)^{3}}, x \neq-\frac{1}{2}
$$

a) Find the first 4 terms in the series expansion of $f(x)$.
b) State the range of values of x for which the expansion of $f(x)$ is valid.

$$
\square, f(x)=2 x-12 x^{2}+48 x^{3}-160 x^{4}+O\left(x^{5}\right),-\frac{1}{2}<x<\frac{1}{2}
$$

Created by T. Madas

Question 7 (**+)

$$
f(x)=\frac{8 x}{\sqrt{4-x}}
$$

Show that if x is small, then

$$
f(x) \approx 4 x+\frac{1}{2} x^{2}+\frac{3}{32} x^{3}
$$

\square , proof
\square

Question 8 (**+)

$$
f(x)=2 \sqrt{1+4 x}+\frac{4}{1+x}
$$

a) By combining the first 4 terms in the expansions of $(1+x)^{-1}$ and $(1+4 x)^{\frac{1}{2}}$ show that

$$
f(x) \approx 6+4 x^{3}
$$

b) State range of values of x for which the expansion of $f(x)$ is valid.

$$
\square,-\frac{1}{4}<x<\frac{1}{4}
$$

\square
(a) $f(x)=2(1+4 x)^{\frac{1}{2}}+4(1+x)^{-1}$

\qquad
(3) $\begin{aligned} 4(1+x)^{-1} & =4\left[1+\frac{-1}{1}(x)^{1}+\frac{(-1)(-2)}{1 \times 2}(x)^{2}+\frac{(-1)(-2)(-3)}{1 \times 2 \times 3}(x)^{2}+\left[\left(x^{2}\right)\right]\right. \\ & =4\left[1-2+x^{2}-x^{3}+0(x)\right]\end{aligned}$
\qquad
$\therefore f(3)=2+4 x-4 x^{2} / 2 x^{3}+c(x)$ $4-4 x+4 x^{2}-4 x^{3}+0\left(x^{4}\right)$

Created by T. Madas

Question 9 (**+)

$$
f(x)=\frac{(1+2 x)^{2}}{1-2 x}, x \neq \frac{1}{2}
$$

a) Find the first 4 terms in the series expansion of $f(x)$.
b) State the range of values of x for which the expansion of $f(x)$ is valid.

$$
\text { U, } f(x)=1+6 x+16 x^{2}+32 x^{3}+O\left(x^{4}\right),-\frac{1}{2}<x<\frac{1}{2}
$$

Question 10 (***)
a) Show that if x is numerically small

$$
f(x) \approx 1+\frac{13}{3} x+\frac{16}{3} x^{2}+\frac{140}{27} x^{3}
$$

b) State the range of values of x for which the expansion of $f(x)$ is valid.

Created by T. Madas

Created by T. Madas

Question 11 (***)

$$
y=\sqrt{4-12 x},-\frac{1}{3}<x<\frac{1}{3} .
$$

a) Find the binomial expansion of y in ascending powers of x up and including the term in x^{3}, writing all coefficients in their simplest form.
b) Hence find the coefficient of x^{2} in the expansion of

Question 12 (***)
The binomial $(1+x)^{-\frac{1}{2}}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Find the series expansion of $(1+x)^{-\frac{1}{2}}$ up and including the term in x^{3}.
b) Use the expansion of part (a) to find the expansion of $\frac{1}{\sqrt{1+2 x}}$, up and including the term in x^{3}.
c) State the range of values of x for which the expansion of $\frac{1}{\sqrt{1+2 x}}$ is valid.
d) Use the expansion of $\frac{1}{\sqrt{1+2 x}}$ with $x=-0.1$ to show that $\sqrt{5} \approx 2.235$.

$$
1-\frac{1}{2} x+\frac{3}{8} x^{2}-\frac{5}{16} x^{3}+O\left(x^{4}\right), \quad 1-x+\frac{3}{2} x^{2}-\frac{5}{2} x^{3}+O\left(x^{4}\right),-\frac{1}{2}<x<\frac{1}{2}
$$

Question 13 (***)

$$
f(x)=\sqrt{1-2 x}, \quad|x|<\frac{1}{2}
$$

a) Expand $f(x)$ as an infinite series, up and including the term in x^{3}.
b) By substituting $x=0.01$ in the expansion, show that $\sqrt{2} \approx 1.414214$.

$$
f(x)=1-x-\frac{1}{2} x^{2}-\frac{1}{2} x^{3}+O\left(x^{4}\right)
$$

Created by T. Madas

Question 14 (***)

$$
f(x) \equiv \frac{18-19 x}{(1-x)(2-3 x)}, x \in \mathbb{R},|x|<\frac{2}{3} .
$$

a) Express $f(x)$ in partial fractions.
b) Hence, or otherwise, show that if x is numerically small

$$
\begin{aligned}
& f(x) \approx 9+13 x+19 x^{2}+28 x^{3} \\
& \\
& \square, f(x) \equiv \frac{1}{1-x}+\frac{16}{2-3 x}
\end{aligned}
$$

Created by T. Madas

Question 15 (***)

$$
f(x) \equiv \frac{2-x}{\sqrt{1+x}},|x|<1
$$

a) Show that the first four terms in the binomial expansion of $f(x)$ are

$$
2-2 x+\frac{5}{4} x^{2}-x^{3}
$$

b) Use the answer of part (a) to find the first four terms in the expansion of

$$
g(x)=\frac{2-2 x}{\sqrt{1+2 x}}
$$

\square $g(x)=2-4 x+5 x^{2}-8 x^{3}$

$$
\text { a) } \begin{aligned}
f(x)= & \frac{2-x}{\sqrt{1+x}}=(2-x)(1+x)^{-\frac{1}{2}} \\
= & (2-x)\left[1+\frac{1}{1}(x)+\frac{-\frac{1}{2}\left(\frac{3}{2}\right)}{1 \times 2}(x)^{2}+\frac{-\frac{1}{2}\left(\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1 \times 2 \times 3}(x)^{3}+0\left(x^{4}\right)\right] \\
= & (2-x)\left(1-\frac{1}{2} x+\frac{3}{8} x^{2}-\frac{5}{16} x^{3}+0\left(x^{4}\right)\right) \\
= & 2-x+\frac{3}{4} x^{2}-\frac{5}{8} x^{3}+0\left(x x^{4}\right) \\
& -x+\frac{1}{2} x^{2}-\frac{2}{8} x^{3}+0\left(x^{4}\right) \\
= & =\frac{2-2 x+\frac{5}{4} x^{2}-x^{3}+0\left(x^{4}\right)}{\text { b) } \begin{aligned}
f(x x)= & \frac{2-(2 x)}{\sqrt{1+(2 x)^{4}}}= \\
& =2-2(2 x)+\frac{5}{4}(2 x)^{2}-(2 x)^{3}+0\left(x^{4}\right)
\end{aligned}} \begin{aligned}
& =2-4 x+5 x^{2}-8 x^{3}+0\left(x^{4}\right)
\end{aligned}
\end{aligned}
$$

Created by T. Madas

Question 16 (***)

$$
f(x)=\sqrt{1+\frac{1}{8} x},|x|<8
$$

a) Expand $f(x)$ as an infinite series, up and including the term in x^{2}.
b) By substituting $x=1$ in the expansion, show that

$$
\sqrt{2} \approx \frac{256}{181} \text { or } \sqrt{2} \approx \frac{181}{128}
$$

\square $f(x)=1+\frac{1}{16} x-\frac{1}{512} x^{2}+O\left(x^{3}\right)$

Created by T. Madas

Question 17 (***)

$$
\frac{27 x+2}{(2-x)(1+3 x)} \equiv \frac{P}{2-x}+\frac{Q}{1+3 x} .
$$

a) Find the value of each of the constants P and Q.
b) Hence show that if x is sufficiently small

$$
Q, P=8, Q=-3
$$

$$
\frac{27 x+2}{(2-x)(1+3 x)} \approx 1+11 x-26 x^{2}+\frac{163}{2} x^{3} .
$$

Created by T. Madas

Question 18 (***)

$$
\frac{16}{(1-x)(2-x)^{2}} \equiv \frac{A}{1-x}+\frac{B}{(2-x)^{2}}+\frac{C}{2-x} .
$$

a) Find the value of each of the constants A, B and C.
b) Hence show that if x is sufficiently small

$$
\frac{16}{(1-x)(2-x)^{2}} \approx 4+8 x+11 x^{2}
$$

$\square, A=16, B=-16, C=-16$
1 Coneren
(a) $\left.\frac{16}{(1-x)(2-x)^{2}} \equiv \frac{A}{(1-x}\right)+\frac{B}{(2-x)^{2}}+\frac{C}{\frac{C}{2-x}}$
$16 \equiv A(2-x)^{2}+B(1-x)+C(1-x)(2-x)$
$\begin{aligned} & \text { - } 1 x=1,16=A \quad \\ & \text { of } x=2, \quad 16=-B \Rightarrow z=-16\end{aligned}$

- If $x=0, \begin{aligned} 16 & =4 x+B+2 C \\ 16 & =64-16+2 C \\ C & =-16\end{aligned}$
(b) $\cdot\left(16(1-x)^{-1}\right)=16\left[1+\frac{1}{1}(-x)^{1}+\frac{(-1)(-2)}{1 \times 2}(-x)^{2}+o\left(x^{2}\right)\right]$
$\begin{aligned} & =16\left(1+x+x^{2}+0\left(x^{3}\right)\right. \\ & =16+16 x+16 x^{2}+0\left(x^{3}\right)\end{aligned}$
- $\begin{aligned}(-16(2-x))^{-2} & =-16 \times 2^{-2}\left(1-\frac{1}{2} x\right)^{-2}=-4\left[1+\frac{-2}{1}\left(-\frac{1}{2} x\right)^{1}+\frac{\left.(22)(-3)(-2 x))^{2}+(x) 0\right]}{1 \times 2}\right] \\ & \left.=-4\left[1+x+\frac{3}{4} a^{2}+0 x^{3}\right)\right]\end{aligned}$
$=-4-4 x-3 x^{2}+0(3)$
(- $\left(-16(2-x)^{-1}\right)=-16 \times 2^{-1}\left(1-\frac{1}{2} x\right)^{-1}=-8\left[1+\frac{-1}{1}\left(-\frac{1}{2} x\right)^{1}+\frac{61)(-2)}{1 \times 2}\left(-\frac{1}{2} x\right)^{2}+0(x)\right)$
$\begin{aligned} & =-8\left[1+\frac{1}{2} x+\frac{1}{4} x^{2}+0\left(x^{3}\right)\right] \\ & =-8-4 x-2 x^{2}+0\left(x^{3}\right)\end{aligned}$
$\therefore \frac{16}{(1-x)(2 x)^{2}}=\left\{\begin{array}{l}16+16 x+16 x^{2}+0\left(x^{3}\right) \\ -4-4 x-3 x^{2}+0\left(x^{3}\right) \\ -8-4 x-2 x^{2}+0\left(x^{3}\right)\end{array}\right\} \approx 4+8 x+11 x^{2}$

Created by T. Madas

Question 19 (***)

$$
f(x)=\frac{15}{\sqrt{1-x}},|x|<1
$$

a) Expand $f(x)$ as an infinite series, up and including the term in x^{3}.
b) By substituting $x=0.1$ in the expansion of $f(x)$, show that

$$
\sqrt{10} \approx 3.162
$$

$$
f(x)=15+\frac{15}{2} x+\frac{45}{8} x^{2}+\frac{75}{16} x^{3}+O\left(x^{4}\right)
$$

a) Show that $b=3$ and find the value of n.
b) Find the coefficient of x^{3}.

Created by T. Madas

Question 21 (***)

$$
f(x)=\frac{20}{\sqrt{4+2 x}},|x|<2 .
$$

a) Expand $f(x)$ as an infinite series, up and including the term in x^{3}.
b) By substituting $x=\frac{1}{12}$ in the above expansion, show that

$$
\sqrt{6} \approx 2.45
$$

$f(x)=10-\frac{5}{2} x+\frac{15}{16} x^{2}-\frac{25}{64} x^{3}+O\left(x^{4}\right)$

Created by T. Madas

Created by T. Madas

Question 22 (***)

$$
f(x)=\sqrt{225+15 x},|x|<15
$$

a) Expand $f(x)$ as an infinite series, up and including the term in x^{2}.
b) By substituting $x=1$ in the expansion of $f(x)$, show that

$$
\sqrt{15} \approx \frac{1859}{480}
$$

$f(x)=15+\frac{1}{2} x-\frac{1}{120} x^{2}+O\left(x^{3}\right)$

Created by T. Madas

Question 23 (***)

$$
f(x)=\frac{4 x+1}{(1-2 x)(1+x)},|x|<\frac{1}{2}
$$

a) Find the first four terms in the series expansion of $(1+x)^{-1}$.
b) Hence, find the first four terms in the series expansion of $(1-2 x)^{-1}$.
c) Hence show that

$$
f(x) \approx 1+5 x+7 x^{2}+17 x^{3}
$$

stating the range of values of x for which the above approximation is valid.
\square $,(1+x)^{-1}=1-x+x^{2}-x^{3}+O\left(x^{4}\right),(1-2 x)^{-1}=1+2 x+4 x^{2}+8 x^{3}+O\left(x^{4}\right)$,

$$
-\frac{1}{2}<x<\frac{1}{2}
$$

Created by T. Madas

Question 24 (***)

$$
f(x)=\left(\frac{6-x}{1+2 x}\right)^{2},|x|<\frac{1}{2}
$$

Determine the value of the coefficient of x^{2} in the binomial expansion of $f(x)$.

Created by T. Madas

Question 25 (***)

$$
f(x)=(1-x)^{\frac{1}{3}},-1<x<1 .
$$

a) Find the binomial expansion of $f(x)$ in ascending powers of x up and including the term in x^{2}.

$$
g(x)=(8-3 x)^{\frac{1}{3}},-\frac{8}{3}<x<\frac{8}{3} .
$$

b) Use the result of part (a) to find the binomial expansion of $g(x)$ in ascending powers of x up and including the term in x^{2}.
c) Hence, show that

$$
\sqrt[3]{7} \approx \frac{551}{288}
$$

$f(x)=1-\frac{1}{3} x-\frac{1}{9} x^{2}+O\left(x^{3}\right), g(x)=2-\frac{1}{4} x-\frac{1}{32} x^{2}+O\left(x^{3}\right)$

Created by T. Madas

Question 26 (***)
In the series expansion of

$$
(1+a x)^{n},|a x|<1
$$

the coefficient of x is -10 and the coefficient of x^{2} is 75 .
a) Show that $n=-2$ and find the value of a.
b) Find the coefficient of x^{3}.
c) State the range of values of x for which the above expansion is valid.

$$
\text { , } \left.a=5,-5 x^{3}\right]:-500,-\frac{1}{5}<x<\frac{1}{5}
$$

Created by T. Madas

Created by T. Madas

Question 27 (***)

$$
f(x)=\sqrt{1-x},-1<x<1
$$

a) Expand $f(x)$ in ascending powers of x, up and including the term in x^{2}.
b) Use the expansion of part (a) to show that if y is numerically small
$\sqrt{1-4 y+y^{2}} \approx 1-2 y-\frac{3}{2} y^{2}$.
$f(x)=1-\frac{1}{2} x-\frac{1}{8} x^{2}+O\left(x^{3}\right)$
a) Exprnana binaminay of to x^{2}
$\Rightarrow f(x)=\sqrt{1-x}=(1-x)^{\frac{1}{2}}=1+\frac{\frac{1}{2}}{1}(-x)^{1}+\frac{\frac{1}{1}\left(\frac{1}{2}\right)}{1 \times 2}(-x)^{2}+\cdots$
$\Rightarrow f(x)=\sqrt{1-x}=1-\frac{1}{2} x-\frac{1}{8} x^{2}+O\left(x^{3}\right)$
b) LK $x=\left(4 y-y^{2}\right)-$ C̈ARFix wril THE MINLS an $y^{2^{n}}$
$\Rightarrow-\frac{1}{2} x=-\frac{1}{2}\left(4 y-y^{2}\right)=-2 y+\frac{1}{2} y^{2}$
$\Rightarrow-\frac{1}{8} x^{2}=-\frac{1}{8}\left(4 y-y^{2}\right)^{2}=-\frac{1}{8}\left(\sqrt{6} y^{2}-8 y^{3}+y^{4}\right)=-2 y^{2}+y^{3}-\frac{1}{6} y^{4}$ Hmxt we Hevt
$\rightarrow \sqrt{1-4 y+y^{2}}=\sqrt{1-\left(4 y-y^{2}\right)^{2}}$
$=1-2 y+\frac{1}{2} y^{2}-2 y^{2}+y^{3}-\frac{1}{6} y^{4}+\cdots$
$=1-2 y-\frac{3}{2} y^{2}+o\left(y^{3}\right)$

Created by T. Madas

Created by T. Madas

Question 28 (***)

$$
f(x)=\frac{4+x}{(1+3 x)^{2}},|x|<\frac{1}{3} .
$$

a) Find the series expansion of $(1+3 x)^{-1}$, up and including the term in x^{3}.
b) By differentiating both sides of the expansion found in part (a), show that

$$
(1+3 x)^{-2}=1-6 x+27 x^{2}+\ldots
$$

c) Hence find the first three terms in the series expansion of $f(x)$.
\square $(1+3 x)^{-1}=1-3 x+9 x^{2}-27 x^{3}+O\left(x^{4}\right), f(x)=4-23 x+102 x^{2}+O\left(x^{3}\right)$
 -2

a) PRocero is fonows
$\Rightarrow(1+3 x)^{-1}=1+\frac{-1}{1}(3 x)^{1}+\frac{-1(-2)}{1(2)}(3 x)^{2}+\frac{-1(-2)(-3)}{1 \times 2 \times 3}(3 x)^{3}+d\left(x x^{4}\right)$
$\left.\Rightarrow(1+3 x)^{-1}=1-3 x+9 x^{2}-27 x^{3}+00 x\right)$ $\Rightarrow(1+3 x)^{-1}=1-3 x+9 x^{2}-27 x^{3}+0\left(x^{4}\right)$
b) Diffgernitating As sugaestio
$\rightarrow \frac{d}{d x}\left[(1+3 x)^{-1}\right]=\frac{d}{d x}\left[1-3 x+9 x^{2}-27 x^{3}+0\left(x^{4}\right)\right]$
$\Rightarrow-3(1+3 x)^{-2}=0-3+18 x-8 x^{2}+0\left(3^{3}\right)$
$\Rightarrow \quad(1+3 x)^{-2}=\frac{-3}{-3}+\frac{18 x}{-3}-\frac{B 1 x^{2}}{-3}+O\left(x^{3}\right)$
$\Rightarrow \underline{(1+3 x)^{-2}=1-6 x+27 x^{2}+O\left(x^{3}\right)}$
c) osina phot (b)
$f(x)=\frac{4+x}{(1+3 x)^{2}}=(4+x)(1+3 x)^{-2}$
$=(4+x)\left[1-6 x+27 x^{2}+0\left(x^{3}\right)\right]$
$\begin{array}{r}=\begin{array}{r}4-24 x+08 x^{2}+O\left(x^{2}\right) \\ x-6 x^{2}+O\left(x^{3}\right)\end{array} \\ \hline\end{array}$
$=4-23 x+102 x^{2}+0(3)$

Created by T. Madas

Question 29 (***)

$$
f(x)=(1-2 x)^{-\frac{1}{2}}
$$

a) Expand $f(x)$ up and including the term in x^{2}.
b) State the values of x for which the expansion is valid.
c) By substituting $x=\frac{1}{8}$ in the expansion of part (a) show that

$$
\sqrt{3} \approx \frac{256}{147}
$$

$$
1+x+\frac{3}{2} x^{2}+O\left(x^{3}\right),-\frac{1}{2}<x<\frac{1}{2}
$$

Created by T. Madas

Question 30 (${ }^{* * *+)}$

$$
f(x)=(1+a x)^{n}, a \in \mathbb{R}, n \in \mathbb{R} .
$$

It is given that the series expansion of $f(x)$ is

$$
1+2 x+\frac{1}{2} x^{2}+b x^{3}+O\left(x^{4}\right)
$$

a) Show that $a=\frac{3}{2}$ and find the value of n.
b) Find the value of b.
c) State the range of values of x for which the above expansion is valid.

Question 31 (***+)
In the series expansion of

$$
(1+a x)^{n},|a x|<1, \quad a, n \in \mathbb{R},
$$

the coefficient of x is 15 and the coefficients of x^{2} and x^{3} are equal.
a) Given that n is not a positive integer, show that $a=6$.
b) Find the value of n.
c) Find the coefficient of x^{4}.

Created by T. Madas

Question 32 (***+)

$$
f(x)=\frac{8 x^{2}+17 x}{(1-x)(3+2 x)^{2}},|x|<1
$$

a) Express $f(x)$ into partial fractions.
b) Hence show that

Created by T. Madas

Question 33 (***+)
The algebraic expression $\sqrt[3]{1-3 x}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Find the first 4 terms in the series expansion of $\sqrt[3]{1-3 x}$.
b) State the range of values of x for which the expansion is valid.
c) By substituting a suitable value for x in the expansion, show that

$$
\sqrt[3]{997} \approx 9.989989983
$$

Created by T. Madas

Question 34 (***+)
The binomial expression $(1+12 x)^{\frac{3}{4}}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Find the first 4 terms in the expansion of $(1+12 x)^{\frac{3}{4}}$.
b) State the range of values of x for which the expansion is valid.
c) By substituting a suitable value for x in the expansion show that

Created by T. Madas

Question $35 \quad(* * *+)$

$$
f(x)=\sqrt{1+8 x},|x|<\frac{1}{8}
$$

a) Expand $f(x)$ up and including the term in x^{3}.
b) By considering $\sqrt{1.08}$ and the series obtained in part (a), show that

$$
f(x)=1+4 x-8 x^{2}+32 x^{3}+O\left(x^{4}\right)
$$

$$
\sqrt{3} \approx 1.73205
$$

Created by T. Madas

Question 36 (***+)

$$
f(x)=\frac{1}{\sqrt{1+4 x}},-\frac{1}{4}<x<\frac{1}{4}
$$

a) Find the binomial series expansion of $f(x)$ up and including the term in x^{3}.
b) Hence determine the coefficient of x^{3} in the binomial expansion of $f\left(x+x^{2}\right)$.

Question 37 (***+)

$$
f(x) \equiv \frac{1+x}{(1-2 x)\left(1+2 x^{2}\right)} \equiv \frac{A}{1-2 x}+\frac{B x+C}{1+2 x^{2}},|x|<\frac{1}{2}
$$

a) Find the value of each of the constants A, B and C.
b) Find the binomial expansion of $f(x)$, up and including the term in x^{3}.

Question 38 (***+)

$$
f(x)=\frac{3 x-1}{(1-2 x)^{2}},|x|<\frac{1}{2}
$$

Show that if x is small, then

Created by T. Madas

Question 39 (***+)

$$
(125-27 x)^{\frac{1}{3}},|x|<\frac{125}{27}
$$

a) Find the first three terms in the series expansion of $f(x)$.
b) Use first three terms in the series expansion of $f(x)$ to show that
$\sqrt[3]{120} \approx \frac{5549}{1125}$.
, $f(x)=5-\frac{9}{25} x-\frac{81}{3125} x^{2}+O\left(x^{3}\right)$

Created by T. Madas

Question $40 \quad\left({ }^{* * *}+\right.$)

$$
f(x)=\frac{(1-x)^{2}}{\sqrt{1+2 x}},|x|<\frac{1}{2}
$$

Show that if x is small, then

Question 41 ($* * *+$)
The algebraic expression $\frac{1}{\sqrt[3]{1+x}}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Expand $\frac{1}{\sqrt[3]{1+x}}$ up and including the term in x^{3}.
b) Use the expansion of part (a) to find the expansion of $\left(1+\frac{3}{4} x\right)^{-\frac{1}{3}}$ up and including the term in x^{3}.
c) Hence find the expansion of $\sqrt[3]{\frac{256}{4+3 x}}$ up and including the term in x^{3}.

$$
\text { , } 1-\frac{1}{3} x+\frac{2}{9} x^{2}-\frac{14}{81} x^{3}+O\left(x^{4}\right), \frac{1-\frac{1}{4} x+\frac{1}{8} x^{2}-\frac{7}{96} x^{3}+O\left(x^{4}\right)}{4-x+\frac{1}{2} x^{2}-\frac{7}{24} x^{3}+O\left(x^{4}\right)},
$$

Created by T. Madas

Question 42 (***+)

$$
f(x) \equiv \frac{1}{(2-3 x)^{3}},|x|<\frac{2}{3}
$$

a) Find the series expansion of $f(x)$, up and including the term in x^{2}.

It is given that

$$
\frac{2+p x}{(2-3 x)^{3}} \equiv \frac{1}{4}+\frac{1}{8} x+q x^{2}+\ldots
$$

where p and q are non zero constants.
b) Determine the value of p and the value of q.

Created by T. Madas

Question 43 (***+)

$$
f(x) \equiv\left(\frac{1}{4}-x\right)^{-\frac{3}{2}},|x|<\frac{1}{4}
$$

a) Find the series expansion of $f(x)$, up and including the term in x^{3}.
b) Use the result of part (a) to obtain the series expansion of

$$
\sqrt{\frac{1}{4}-x},|x|<\frac{1}{4}
$$

up and including the term in x^{3}.
No credit will be given for obtaining a direct expansion in this part.
\square , $f(x)=8+48 x+240 x^{2}+1120 x^{3}+O\left(x^{4}\right)$,

$$
\sqrt{\frac{1}{4}-x}=\frac{1}{2}-x-x^{2}-2 x^{3}+O\left(x^{4}\right)
$$

Created by T. Madas

Question $44 \quad\left({ }^{* * *}+\right)$

$$
\frac{3}{(1-2 x)\left(1+2 x^{2}\right)} \equiv \frac{A}{1-2 x}+\frac{B x+C}{1+2 x^{2}},|x|<\frac{1}{2} .
$$

a) Find the value of each of the constants A, B and C.
b) Hence or otherwise find the first five terms in the binomial expansion of

$$
\begin{aligned}
& \frac{3}{(1-2 x)\left(1+2 x^{2}\right)} \cdot \\
& A=2, B=2, C=1,3+6 x+6 x^{2}+14 x^{3}+36 x^{4}+O\left(x^{5}\right)
\end{aligned}
$$

9

Question 45 (***+)
The function $f(x)$ is defined in terms of the non zero constant n, by

$$
f(x)=(3+2 x)^{n},-\frac{3}{2}<x<\frac{3}{2} .
$$

a) Given that n is not a positive integer, find in terms of n the ratio of the coefficient of x^{3} to the coefficient of x^{2} in binomial expansion of $f(x)$.

It is now given that $n=\frac{7}{2}$.
b) Evaluate the ratio found in part (a).

The coefficient of x^{r} in the binomial expansion of $f(x)$ is negative.
c) Find the smallest value of r.

Question 46 (****)

$$
f(x)=\sqrt{\frac{4-x}{4+x}},|x|<4
$$

a) Expand $f(x)$ as an infinite convergent series, up and including the term in x^{2}.
b) By substituting $x=0.5$ in the expansion of part (a), show that

$$
\sqrt{7} \approx \frac{339}{128}
$$

\square

$$
f(x)=1-\frac{1}{4} x+\frac{1}{32} x^{2}+O\left(x^{3}\right)
$$

Created by T. Madas

Question 47 (****)

$$
f(x) \equiv(1-8 x)^{\frac{1}{4}},|x|<\frac{1}{8} .
$$

a) Find the first four terms in the binomial series expansion of $f(x)$.

The term of lowest degree in the series expansion of

$$
(1+a x)\left(1+b x^{2}\right)^{5}-f(x)
$$

is the term in x^{3}.
b) Determine the value of each of the constants a and b, and hence state the coefficient of x^{3}.
, $1-2 x-6 x^{2}-28 x^{3}+O\left(x^{4}\right), a=-2, b=-\frac{6}{5},\left[x^{3}\right]=40$
a) $\operatorname{f\times PANO}$ BNOMIALCY UPTO x^{3}
$(1-8 x)^{\frac{1}{4}}=1+\frac{\frac{1}{1}}{1}(-8 x)+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{1 \times 2}(--4)^{2}+\frac{\frac{1}{2}\left(-\frac{1}{4}\right)\left(-\frac{-x}{4}\right)}{1 \times 2 \times 3}(-8)^{3}+o\left(x^{4}\right)$ $(1-8)^{\frac{1}{4}}=1-2 x-6 x^{2}-28 x^{3}+o\left(x^{4}\right)$
b) Procefo is fouows.
$(1+a x)\left(1+b x^{2}\right)^{5}-(1-8 x)^{\frac{1}{4}}$
$=(1+a x)\left[1+\frac{5}{1}\left(b x^{2}\right)^{\prime}+0\left(x^{4}\right)\right]-\left[1-2 x-6 x^{2}-28 x^{3}+0\left(x^{4}\right)\right]$
$=(1+a x)\left[1+5 b x^{2}+O\left(x^{4}\right)\right]-\left[1-2 x-6 x^{2}-28 x^{3}+o\left(x^{y}\right)\right]$
$=1+a x+5 b x^{2}+5 a b x^{3}+0\left(x^{4}\right)-1+2 x+6 x^{2}+25 x^{3}+0\left(x^{4}\right)$
$=(a+2) x+(5 b+6) x^{2}+(5 a b+28) x^{3}+0\left(x^{4}\right)$ $\underset{z \in R O}{4} \underset{z \in 60}{4}$ $\stackrel{a=-2}{\substack{a \\ b=-\frac{5}{8}}}$
\therefore Cocfichnt of a^{3} is $5 a b+28$
$=5(-2)\left(-\frac{6}{5}\right)+2 \theta$
$=\frac{40}{2}$

Created by T. Madas

Created by T. Madas

Question 48 (****)

$$
\frac{2-3 x^{2}}{(2 x+1)\left(x^{2}+1\right)} \equiv \frac{A}{2 x+1}+\frac{B}{x^{2}+1}+\frac{C x}{x^{2}+1} .
$$

a) Find the value of each of the constants A, B and C in the above identity.
b) Hence, or otherwise, determine the series expansion of

$$
\frac{2-3 x^{2}}{(2 x+1)\left(x^{2}+1\right)}
$$

up and including the term in x^{3}.

Created by T. Madas

Question 49 (****)

$$
f(x)=\sqrt{1-x},-1<x<1
$$

a) Expand $f(x)$ up and including the term in x^{3}.
b) Show clearly that

$$
8 \times \sqrt{1-\frac{1}{64}}=3 \sqrt{7}
$$

c) By using the first two terms of the expansion obtained in part (a) and the result shown in part (b), show further that

$$
\sqrt{7} \approx \frac{127}{48}
$$

$\square, 1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}+O\left(x^{4}\right)$

Created by T. Madas

Question 50 (****)
The algebraic expression $\frac{1+x}{1+3 x}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Find the first 4 terms in the binomial expansion of

$$
\frac{1+x}{1+3 x}
$$

b) State the range of values of x for which the expansion is valid.
c) By substituting a suitable value for x in the above expansion show that

$$
\frac{101}{103} \approx 0.980582 .
$$

$$
1-2 x+6 x^{2}-18 x^{3}+O\left(x^{4}\right),-\frac{1}{3}<x<\frac{1}{3}
$$

Created by T. Madas

Question 51 (****)
The algebraic expression $\sqrt{9-x}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Find the first 4 terms in the series expansion of $\sqrt{9-x}$.
b) State the range of values of x for which the expansion is valid.
c) By substituting a suitable value for x in the expansion show that

$$
\begin{aligned}
& \sqrt{850} \approx 29.1548 . \\
& \\
& 3-\frac{1}{6} x-\frac{1}{216} x^{2}-\frac{1}{3888} x^{3}+O\left(x^{4}\right), \quad-9<x<9
\end{aligned}
$$

Question 52 (****)

$$
f(x)=\frac{5 x^{2}-52 x+4}{(1+2 x)(2-x)^{2}},|x|<\frac{1}{2} .
$$

Show that if x is numerically small

$$
f(x) \approx 1-14 x+17 x^{2}-42 x^{3}
$$

$\frac{\text { Athrantive }}{(1+2 x)^{-1}=}$
$+\frac{-1}{1}(2 x)^{1}+\frac{-1(-2)}{1 \times 2}(2 x)^{2}+\frac{-1(-2)(-3)}{1 \times 2 \times 3}(2 x)^{3}+0\left(x^{4}\right)$ $\begin{aligned} & =1-2 x+4 x^{3}-8 x^{2}+0\left(x^{4}\right) \\ (2-x)^{-2} & \left.=2^{-2}\left(1-\frac{1}{2} x\right)^{-2}=\frac{1}{4}\left[1+\frac{-2}{1}\left(-\frac{1}{2} x\right)^{1}+\frac{-2(-3)}{1 \times 2}\left(-\frac{1}{2} x\right)^{2}+\frac{-2(-3)(-4)}{1(22 \times 3}\right)\left(-\frac{1}{2} x\right)^{3}+0\left(x^{4}\right)\right]\end{aligned}$ $=\frac{1}{4}\left[1+x+\frac{5}{4} x^{2}+\frac{1}{2} x^{2}+0(x 4)\right]$

 $1-x+\frac{14}{4} x^{2}-5 x^{3}+0\left(x^{4}\right)$
$-13 x+13 x^{2}-443 x^{3}+0\left(x^{4}\right)$ $\Rightarrow f(x)=\frac{1-14 x+7 x^{2}-42 x^{3}+O\left(x^{4}\right)}{1+0(x)}$

Created by T. Madas

Question 53 (****)

$$
\frac{2 x^{2}-3}{(3-2 x)(1-x)^{2}} \equiv \frac{A}{3-2 x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}} .
$$

a) Find the value of each of the constants A, B and C.
b) Hence show that for small x

$$
\frac{2 x^{2}-3}{(3-2 x)(1-x)^{2}} \approx-1-\frac{8}{3} x-\frac{37}{9} x^{2}
$$

c) State the range of values of x for which the approximation in part (b) is valid.

Created by T. Madas

Question 54 (****)

$$
f(x)=\frac{18-20 x}{8 x^{2}-18 x+9},-\frac{3}{4}<x<\frac{3}{4} .
$$

a) Express $f(x)$ into partial fractions.
b) Hence show that

$$
f(x) \approx 2+\frac{16}{9} x+\frac{16}{9} x^{2}+\frac{160}{81} x^{3}
$$

Created by T. Madas

Question
(****)

$$
f(x)=\frac{12}{\sqrt{1-2 x}}, \quad x \in \mathbb{R}, \quad x \leq \frac{1}{2}
$$

Use a quadratic approximation for $f(x)$ to solve the equation

Created by T. Madas

Question 55 (****)

$$
f(x)=\sqrt{1-x},-1<x<1
$$

a) Expand $f(x)$ up and including the term in x^{3}.
b) Show clearly that

$$
9 \sqrt{1-\frac{1}{81}}=4 \sqrt{5}
$$

c) By using the first two terms of the expansion obtained in part (a) and the result shown in part (b), show further that

$$
\sqrt{5} \approx \frac{161}{72}
$$

$$
1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}+O\left(x^{4}\right)
$$

Created by T. Madas

Question 56 (****)

$$
f(x)=\sqrt{\frac{1+x}{1-x}} \approx 1+A x+B x^{2}, \text { for small } x
$$

a) Show that $B=\frac{1}{2}$ and find the value of A.
b) By using $x=\frac{1}{10}$ in the above expansion, show clearly that

Created by T. Madas

Question 57 (****)

$$
f(x)=\sqrt{1-x},-1<x<1 .
$$

a) Expand $f(x)$ up and including the term in x^{3}.
b) Show carefully that

$$
17 \sqrt{1-\frac{1}{289}}=12 \sqrt{2}
$$

c) By using the first two terms of the expansion obtained in part (a) and the result shown in part (b), show further that

$$
\sqrt{2} \approx \frac{577}{408}
$$

$$
1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}+O\left(x^{4}\right)
$$

Created by T. Madas

Question 58 (****)

$$
f(x) \equiv \frac{4 x(9 x-10)}{(2-x)(2-3 x)^{2}}, x \in \mathbb{R},|x|<\frac{2}{3}, x \neq 0
$$

a) Find the values of the constants A, B and C given that

$$
f(x) \equiv \frac{A}{2-x}+\frac{B}{2-3 x}+\frac{C}{(2-3 x)^{2}}
$$

b) Hence, or otherwise, find the binomial series expansion of $f(x)$, up and including the term in x^{2}.

The equation $f(x)=-0.63$ is known to have a positive solution which is further known to be numerically small.
c) Use part (b) to find this solution.
, $A=4, B=0, C=-8, f(x)=-5 x-13 x^{2}+O\left(x^{3}\right), x=0.1$

b) $\quad f(x)=\frac{4}{2-x}-\frac{8}{(2-3)^{2}}$

- $\frac{4}{2-x}=4(2-x)^{-1}=4 \times x^{-1}\left(1-\frac{1}{2} x\right)^{-1}=2\left(1-\frac{1}{2} x\right)^{-1}$
$=2\left[1+\frac{1}{1}\left(-\frac{1}{2} x\right)^{1}+\frac{-11-2)}{1 \times 2}\left(-\frac{1}{2} x\right)^{2}+\cdots\right]$
$=2\left[1+\frac{1}{2}+\frac{1}{2} x^{2}+\cdots\right]$
$=2\left[1+\frac{1}{2} 2+\frac{1}{4} x^{2}+\cdots\right]$

$=-2\left[1+\frac{-2}{1}\left(-\frac{3}{2} x\right)^{\prime}+\frac{-2(-3)}{1 \times 2}\left(-\frac{3}{2} x\right)^{2}+\cdots\right]$
$=-2\left[1+3 x+\frac{27}{7} x^{2}+\ldots\right]$
FDOMN OXANAONS
$f(x)=\left(\begin{array}{c}2 \\ -2+6 x-\frac{1}{2} x^{2}+\cdots \\ -272 x^{2}-\cdots\end{array}\right)=-5 x-13 x^{2}+O\left(x^{3}\right)$

Created by T. Madas

Question 59 (****)

$$
f(x)=(1+k x)^{-3},|k x|<1,
$$

where k is a non zero constant.
a) Expand $f(x)$, in terms of k, as an infinite convergent series up and including the term in x^{3}.

$$
g(x)=\frac{6-x}{(1+k x)^{3}},|k x|<1
$$

The coefficient of x^{2} in the expansion of $g(x)$ is 3 .
b) Find the possible values of k.

$$
\square, 1-3 k x+6 k^{2} x^{2}-10 k^{3} x^{3}+O\left(x^{4}\right), \quad k=-\frac{1}{3}, \frac{1}{4}
$$

Created by T. Madas

Question 60 (****)
,
a) Show clearly that

$$
f(x)=\frac{1}{\sqrt{1-x}}-\sqrt{1+x},|x|<1
$$

/3

$$
f(x)=\frac{1}{2} x^{2}+\frac{1}{4} x^{3}+O\left(x^{4}\right)
$$

b) Hence show that $f(x)$ has a minimum at the origin.

Question 61 (****)

$$
f(x) \equiv \frac{16 x^{2}+3 x-2}{x^{2}(3 x-2)}, x \in \mathbb{R},|x|<\frac{2}{3}, x \neq 0 .
$$

a) Determine the value of each of the constants A, B and C given that

$$
f(x) \equiv \frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{(3 x-2)} .
$$

b) Find the binomial series expansion of $\frac{1}{3 x-2}$, up and including the term in x^{3}.
c) Hence, or otherwise, show that if x is numerically small

$$
\frac{16 x^{2}+3 x-2}{(3 x-2)} \approx 1-8 x^{2}-12 x^{3}-18 x^{4}-27 x^{5}
$$

$, A=1, B=0, C=16,-\frac{1}{2}-\frac{3}{4} x-\frac{9}{8} x^{2}-\frac{27}{16} x^{3}+O\left(x^{4}\right)$

METPD B (USing Pervos PAETS)
$\frac{16 x^{2}+3 x-2}{x^{2}(3 x-2)}=\frac{1}{x^{2}}+\frac{16}{3 x-2}$
$\frac{1}{x^{2}}\left(\frac{16 x^{2}+3 x-2}{3 x-2}\right)=\frac{1}{x^{2}}+16\left(\frac{1}{3 x-2}\right)$
$\frac{16 x^{2}+3 x-2}{3 x-2}=1+16 x^{2}\left(\frac{1}{3 x-2}\right)$
$\frac{16 x^{2}+3 x-2}{3 x-2}=1+16 x^{2}\left[-\frac{1}{2}-\frac{3}{4} x-\frac{9}{8} x^{2}-\frac{27}{16} x^{4}+0\left(x^{4}\right)\right]$
$\frac{16 x^{2}+3 x-2}{3 x-2}=1-8 x^{2}-12 x^{3}-18 x^{4}-27 x^{5}+0\left(x^{6}\right)$

Created by T. Madas

Question 62 (****)

$$
f(x)=\sqrt{1-x},-1<x<1
$$

a) Expand $f(x)$ up and including the term in x^{3}.
b) Show clearly that

$$
7 \sqrt{1-\frac{1}{49}}=4 \sqrt{3}
$$

\square
c) By using the first two terms of the expansion obtained in part (a) and the result obtained in part (b), show further that

$$
\sqrt{3} \approx \frac{97}{56}
$$

$\square, 1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}+O\left(x^{4}\right)$

Created by T. Madas

Question 63 (****+)

$$
f(x)=\sqrt{\frac{1+a x}{4-x}},-1<x<1
$$

The value of the constant a is such so that the coefficient of x^{2} in the convergent binomial expansion of $f(x)$ is $\frac{1}{64}$.

Find the value of a.

Created by T. Madas

Question 64 (****+)

$$
f(x) \equiv \frac{1}{\sqrt{1-a x}}-\sqrt{1+b x}
$$

The function f is defined in a suitable domain of x, and furthermore the values of x are small enough so that $f(x)$ has a binomial series expansion.

Given that

$$
f(x) \approx 2 x+26 x^{2}
$$

determine the value of a and the value of b.
\square , $a=8, b=4$
\square

Created by T. Madas

Question 65 (****+)

$$
f(x)=\sqrt{\frac{1+2 x}{1-2 x}},|x|<\frac{1}{2} .
$$

By writing $f(x)$ in the form $f(x)=\frac{1+a x}{\sqrt{1+b x^{2}}}$, show that

$$
f(x)=1+2 x+2 x^{2}+4 x^{3}+6 x^{4}+12 x^{5}+O\left(x^{6}\right)
$$

Created by T. Madas

Question 66 (****+)

$$
f(x)=\left(\frac{1}{2}-x\right)^{-3}, \quad|x|<\frac{1}{2}
$$

a) Expand $f(x)$, up and including the term in x^{3}.

$$
g(x)=\frac{a+b x}{\left(\frac{1}{2}-x\right)^{3}}
$$

The coefficients of x^{2} and x^{3} in the expansion of $g(x)$ are 42 and 136 respectively.
b) Show that $a=\frac{1}{4}$ and find the value of b.

$$
\text { M }, f(x)=8+48 x+192 x^{2}+640 x^{3}+O\left(x^{4}\right), \quad b=-\frac{1}{8}
$$

where k and n are non zero constants, the coefficient of x^{2} is 12 and the coefficient of x^{3} is 32 .

Given the coefficient of x is negative determine the values of k and n.

Created by T. Madas

Question $68(* * * *+)$

$$
\frac{A+B x}{(2-x)^{3}} \equiv \frac{1}{4}+C x^{2}+D x^{3}+\ldots
$$

where A, B, C and D are constants, and $|x|<2$

Determine the value of A, B, C and D.
, $A=2, B=-3, C=-\frac{3}{16}, D=-\frac{1}{4}$

Created by T. Madas

Question 69 (****+)

It is given that the equation

$$
f(x) \equiv \sqrt[3]{1+12 x}
$$

$$
f(x)+(6 x-5)^{2}=24-15 x
$$

has a solution α, which is numerically small.

Use a quadratic approximation for $f(x)$ to find an approximate value for α.

Question 70 (****+)
The function f is defined as

$$
f(x) \equiv \frac{a x+b}{(1-x)(1+2 x)}, x \in \mathbb{R},|x|<\frac{1}{2},
$$

where a and b are constants.
a) Find the values of the constants P and Q in terms of a and b, given that

$$
f(x) \equiv \frac{P}{(1-x)}+\frac{Q}{(1+2 x)} .
$$

The binomial series expansion of $f(x)$, up and including the term in x^{3} is

$$
f(x)=1+13 x+A x^{2}+B x^{3}+\ldots
$$

where A and B are constants.
b) Determine the value of the constants ...
i. ... a and b.
ii. ... A and B.
\square $P=\frac{a+b}{3}, P=\frac{2 b-a}{3}, a=14, b=1, \quad A=-11, \quad B=37$

$(a+b)+4(2 b-a)=3 A$	$[a+b)-8(2 b-a)=38$
$9 \mathrm{~b}-3 \mathrm{a}=3 \mathrm{~A}$	$9 a-15 b=3 B$
$A=3 b-a$	$3 a-5 b=B$
$A=3-14$	$B=3 \times 4-5 \times 1$
$A=-11$	$B=42-5$
	$B=37$

Question 71 (****+)
The function f is defined as

$$
f(x) \equiv \frac{a(2-3 x)}{(1-2 x)(2+x)}, x \in \mathbb{R},|x|<\frac{1}{2}, x \neq 0 .
$$

where a is a non zero constant.
a) Show that for all values of the constant a, the coefficient of x in the binomial series expansion of $f(x)$, is zero.
b) Find the value of a, given that the coefficient of x^{2} in the binomial series expansion of $f(x)$, is 10 .

Question 72 (****+)

$$
f(x)=(1+a x)(1-3 x)^{\frac{1}{3}}+\frac{b}{\left(1+\frac{1}{2} x\right)^{2}},|3 x|<1,|a x|<1 .
$$

In the binomial expansion of $f(x)$ the coefficients of x^{2} and x^{3} are both zero.

Show clearly that the coefficient of x^{4} is $-\frac{7}{6}$.
\square , proof

Doorbin' \mathbb{N} setions vp to a^{4}
$=(1+m)\left[1-x-x^{2}\right.$
$=1-x-x^{2}-\frac{3}{3} x^{3}-6 x^{4}+o\left(x^{5}\right)$
$1+(a-1) x+(-1-1) x^{2}+\left(-1-\frac{1}{3}\right) x^{2}+\left(-\frac{3 a-1}{3}\right) x^{x}+o\left(x^{3}\right)$

Finauy 矿 Corfachmol of a^{y}

$=b-b x+\frac{3}{4} 6 x^{2}-\frac{1}{2} b x^{3}+\frac{3}{16} b x^{4}+6\left(x^{3}\right)$

$\left.\begin{array}{ll}\text { - }-a-1+\frac{3}{7} b=0 \\ -a-\frac{1}{3}-\frac{1}{2} b=0\end{array}\right\}$ simTukincuand $\quad \begin{aligned} & \frac{2}{3}+\frac{5}{4} b=0 \\ & \frac{5}{2} b=-2\end{aligned}$
$=\frac{-\frac{1}{6}}{}=\frac{1}{4}$ escareso

Created by T. Madas

Question 73 (****+)
If x is sufficiently small find the series expansion of

$$
\frac{10 x^{2}-x-6}{(2+3 x)\left(1-2 x^{2}\right)}
$$

up and including the term in x^{3}.

$$
\square, \frac{10 x^{2}-x-6}{(2+3 x)\left(1-2 x^{2}\right)}=-3+4 x-7 x^{2}+\frac{19}{2} x^{3}+O\left(x^{4}\right)
$$

Question 74 (****+)
In the convergent expansion of

$$
\left(1+\frac{4}{7} n x\right)^{n}, n \in \mathbb{R}, n \notin \mathbb{N}, n \neq 0
$$

the coefficients of x^{2} and x^{3} are non zero and equal.
a) Determine the possible values of n.
b) State with justification which value, values or indeed if any of the values of n produces a valid expansion for $x=1$.
$n=-\frac{3}{2}, \frac{7}{2}$, only $n=-\frac{3}{2}$ produces a valid expansion for $x=1$

Created by T. Madas

Question 75 (*****)

It is given that the equation

$$
f(x)-(8 x+3)^{3}=-37 x^{3}-475 x^{2}-157 x+27
$$

has a solution α, which is numerically small.

Find an approximate value for α.

Created by T. Madas

Question 76 (*****)
By considering the binomial expansion of

Question 77 (*****)

$$
f(x) \equiv \frac{1-x}{1+x+x^{2}+x^{3}},-1<x<1 .
$$

Show that $f(x)$ can be written in the form
where $g(x)$ is a simplified function to be found.
\square $g(x)=(1-x)^{2}$

$$
\begin{aligned}
& f(a)=\frac{1-x}{1+x+x^{2}+x^{3}}
\end{aligned}=\frac{1-x}{(1+x)+x^{2}(1+x)}=\frac{1-x}{(1+x)\left(1+x^{2}\right)}
$$

$f(x)=\left(1-2 x+x^{2}\right)+x^{4}\left(1-2 x+x^{2}\right)+x^{4}\left(1-2 x+x^{2}\right)+\cdots$
$f(x)=\left(1-2 x+x^{2}\right)\left[1+x^{x}+x^{8}+x^{12}+\cdots\right]$

Longer Alternative
$f(x)=\frac{1-x}{1+x+x^{2}+x^{4}}=\cdots=\frac{1-x}{(1+x)\left(1+x^{2}\right)} \cdots$ Now PGerit. Fratatans
$\left\{\begin{aligned} \frac{1-x}{(1+x)\left(1+x^{2}\right)} & \equiv \frac{A}{1+x}+\frac{B x+C}{1+x^{2}} \\ 1-x & \equiv A\left(1+x^{2}\right)+(1+x)(B x+C)\end{aligned}\right\}$
$\left\{\begin{array}{l}1-x \equiv A(1+x)+(1+x)(B x+C) \\ \text { If } x=-1 \Rightarrow 2=2 A \Rightarrow A=1 \\ \text { If } x=0 \Rightarrow 1=4+C=C=0 \\ \text { If } x=1 \Rightarrow 0=2 A+2 B B B=-1\end{array}\right\}$

Question 78 (*****)

$$
S=1+\frac{2}{4}+\frac{2 \cdot 3}{4 \cdot 8}+\frac{2 \cdot 3 \cdot 4}{4 \cdot 8 \cdot 12}+\frac{2 \cdot 3 \cdot 4 \cdot 5}{4 \cdot 8 \cdot 12 \cdot 16}+\ldots
$$

By considering a suitable binomial series, or other wise, find the sum to infinity of S.

Question 80 (*****)

$$
g(x) \equiv \sum_{r=0}^{\infty} f(x, r)-\frac{1-x}{\sqrt{1-x^{2}} \sqrt[3]{1-x^{3}}},-1<x<1
$$

Given that the first term of the series expansion of $g(x)$ is $\frac{1}{5} x^{5}$, determine in exact simplified form a simplified expression of $f(x, r)$.
$\square, f(x, r)=\frac{(-x)^{r}}{r!}$

- Tbos we now thut $\sum_{r=0}^{5} f(x, r)-\left(1-x+\frac{1}{2} x^{2}-\frac{1}{2} x^{3}+\frac{1}{24} y^{4}-\frac{5}{2 t} x^{5}\right)=\frac{1}{5} x^{5}$ $\sum_{R=0}^{5} f(x, r)=1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}$ $\sum_{r=0}^{s} f\left(x_{r}\right)=\frac{x^{\prime \prime}}{0!}-\frac{a^{1}}{1!}+\frac{1}{2!} x^{2}-\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}-\frac{1}{5!} x^{x}$ $\therefore f(x, 1)-\frac{\left(-x^{r}\right.}{\Gamma!}$

Question 81 (*****)

$$
S=1-\frac{1}{4}+\frac{1 \cdot 3}{4 \cdot 8}-\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12 \cdot 16}-\ldots
$$

Find the sum to infinity of S, by considering the binomial series expansion of $(1+x)^{n}$ for suitable values of x and n.
\square $S_{\infty}=\sqrt{\frac{2}{3}}$

Question 82 (******)
Without the use of any calculating aid and by showing full workings, show that

Created by T. Madas

Created by T. Madas

Question 83 (*****)

$$
f(x)=\frac{1}{\sqrt{1-x}},-1<x<1 .
$$

a) By manipulating the general term of binomial expansion of $f(x)$ show that

$$
f(x)=\sum_{r=0}^{\infty}\binom{2 r}{r}\left(\frac{1}{4} x\right)^{r}
$$

b) Find a similar expression for $\frac{1}{\sqrt{16-x^{2}}}$ and show further that

$$
\frac{x}{\left(16-x^{2}\right)^{\frac{3}{2}}}=\sum_{r=1}^{\infty}\binom{2 r}{r}\left(\frac{1}{16} r\right)\left(\frac{1}{8} x\right)^{2 r-1}
$$

c) Determine the exact value of
\square $\frac{25}{108}$

Question 84
$(* * * * *)$

$$
f(x) \equiv \frac{2-3 x}{(1-x)(1-2 x)},-\frac{1}{2}<x<\frac{1}{2} .
$$

Show that $f(x)$ can be written in the form

$$
f(x)=\sum_{r=0}^{\infty}\left[x^{r} g(r)\right]
$$

where $g(r)$ is a simplified function to be found.
\square

$$
g(r)=2^{r}+1
$$

\square - Next Absust Tife mast somuation so it smets from Fo Afrin

- statet by rewatina a sputtina wo prettal fetatons by inspectos
$\Rightarrow f(x)=\frac{2-3 x}{(1-x)(1-2 x)}=(2-3 x) \times \frac{1}{(1-x)(1-2 x)}$
$\Rightarrow f(x)=(2-3 x) \times\left[\frac{-1}{1-x}+\frac{\frac{1}{1 / 2}}{1-2 x}\right]$
$\Rightarrow f(x)=(2-3 x)\left[\frac{2}{1-2 x}-\frac{1}{1-x}\right]$
 $\frac{1}{1-t}=1+t+t^{2}+t^{3}+\ldots$,
$f(x)=2+\sum_{r=0}^{\infty}\binom{r+1}{2^{+}+1} x^{r+1}$
To ogtarn:

$$
f(x)=2+\sum_{r=1}^{\infty}\left(2^{r}+1\right) x^{r}
$$

$f(x)=\left(2^{0}+1\right) x^{0}+\sum_{r=1}^{\infty}\left(2^{n}+1\right) r^{r}$
$f(x)=\sum_{t=0}^{\infty}\left(2^{r}+1\right) x^{n}$

$f(x)=(2-3 x)\left(1+3 x+7 x^{2}+15 x^{3}+\ldots\right)<$ Feountrumer
$f(x)=\begin{array}{r}2 \\ +6 x+14 x^{2}+30 x^{3}+\cdots \\ -3 x-9 x^{2}-21 x^{2}-\cdots\end{array}$
$f(x)=2+3 x+5 x^{2}+9 x^{3}+\cdots$
Whltat ONE M1GatT-DEEOCE is $\sum_{r=0}^{\infty}\left(z^{r}+1\right) x^{r}$

Created by T. Madas

Question 85 (*****)
Show by considering a suitable binomial expansion that
$1+\frac{1}{24}+\frac{1 \cdot 4}{24 \cdot 48}+\frac{1 \cdot 4 \cdot 7}{24 \cdot 48 \cdot 72}+\frac{1 \cdot 4 \cdot 7 \cdot 10}{24 \cdot 48 \cdot 72 \cdot 96}-\ldots=\frac{2}{\sqrt[3]{7}}$.

V \square , proof

Question 86 (******)

$$
S=\frac{3}{8}+\frac{3 \times 9}{8 \times 16}+\frac{3 \times 9 \times 15}{8 \times 16 \times 24}+\frac{3 \times 9 \times 15 \times 21}{8 \times 16 \times 24 \times 32}+\frac{3 \times 9 \times 15 \times 21 \times 27}{8 \times 16 \times 24 \times 32 \times 40} \ldots
$$

By considering a suitable binomial expansion, show that $S=1$.
\square , proof

Created by T. Madas

Question 87 (*****)
The function f is defined in terms of the real constants, a, b and c, by

$$
f(x)=\left(a+b x+c x^{2}\right)(1-x)^{-3}, \quad x \in \mathbb{R}, \quad|x|<1
$$

a) Show that

$$
f(x)=a+(3 a+b) x+\frac{1}{2} \sum_{n=2}^{\infty}\left[[a(n+1)(n+2)+b n(n+1)+c n(n-1)] x^{n}\right]
$$

b) Use the expression of part (a) to deduce the value of

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
$$

\square , 6

Created by T. Madas

Question 88 (*****)
The first three terms of a series S are

$$
S=7+9 x+8 x^{2}+\ldots
$$

The $n^{\text {th }}$ term of S is given by

$$
A\left(\frac{3}{4} x\right)^{n}+B\left(\frac{1}{3} x\right)^{n}
$$

where A and B are non zero constants.

Given that the sum to infinity of S is 19 , determine the value of x.

Created by T. Madas

Question 89 (*****)

$$
f(x) \equiv \frac{1-7 x}{(1+x)(1-3 x)},-\frac{1}{3}<x<\frac{1}{3} .
$$

Show that $f(x)$ can be written in the form

$$
f(x)=1-\sum_{r=1}^{\infty}\left[x^{r} g(r)\right]
$$

where $g(r)$ is a simplified function to be found.
\square
$\square, g(r)=3^{r}+2 \times(-1)^{r+1}$

Created by T. Madas

Question 90 (*****)
The product operator Π, is defined as

Find the sum to infinity of the following expression

Created by T. Madas

Question 91 (******)
It is given that for $x \in \mathbb{R},-\frac{1}{k}<x<\frac{1}{k}, k>0$,

$$
f(x, k) \equiv \frac{k+1}{(1-x)(1+k x)} .
$$

Given further that

$$
f(x, k) \equiv \sum_{r=0}^{\infty}\left[a_{r} x^{r}\right]
$$

where a_{r} are functions of k, show that

$$
\sum_{r=0}^{\infty}\left[a_{r}^{2} x^{r}\right]=\frac{(1-k x)(1+k)^{2}}{(1-x)(1+k x)\left(1-k^{2} x\right)}
$$

You may assume that $\sum^{\infty}\left[a_{r}^{2} x^{r}\right]$ converges.

Created by T. Madas

Question 92 (*****)
Consider the following infinite series, S.

$$
S=\frac{5}{18}-\frac{5 \times 8}{18 \times 24}+\frac{5 \times 8 \times 11}{18 \times 24 \times 30}-\frac{5 \times 8 \times 11 \times 14}{18 \times 24 \times 30 \times 36}+\frac{5 \times 8 \times 11 \times 14 \times 17}{18 \times 24 \times 30 \times 36 \times 42}-\ldots
$$

Given that S converges, show that

$$
S=9 A-41,
$$

where A is an exact simplified surd.

\square $A=\sqrt[3]{96}$

Process As fouler \square
$\rightarrow \frac{1}{30} \$=\left(1+\frac{1}{2}\right)^{\frac{1}{3}}-\left(1+\frac{1}{6}-\frac{1}{36}\right)$
$\Rightarrow \vec{P}=36\left(\frac{3}{2}\right)^{\frac{1}{3}}-(36+6-1)$
$\rightarrow \delta=36 \sqrt[3]{\frac{3}{2}}-41$
$\Rightarrow \vec{S}=9 \times 4 \times \sqrt{\frac{3}{2}}-4$
$\Rightarrow \$=9 \times \sqrt[3]{6+} \times \sqrt[3]{\frac{3}{2}}-41$
$\rightarrow S=9 \sqrt[3]{96}-41$

