TRIGONOMETRY
EXAM QUESTIONS
INTRODUCTION
Question 1 (**+)**
Solve the following trigonometric equation in the range given.

\[
\cos(2\theta + 25)^\circ = -0.454, \quad 0 \leq \theta < 360.
\]

\[\theta \approx 46, 109, 226, 289\]

Question 2 (**+)**
Solve the following trigonometric equation in the range given.

\[
\cos(2y - 35)^\circ = 0.891, \quad 0 \leq y < 360.
\]

\[y \approx 4, 31, 184, 211\]
Question 3 (**+)**
Solve the following trigonometric equation in the range given.

\[\tan(5y-35) \degree = -2 - \sqrt{3}, \quad 0 \leq y < 90. \]

\[y \approx 28, 64 \]

Question 4 (**+)**
Solve, in radians, the following trigonometric equation

\[1 + \sin 2x = \frac{1}{3}, \quad 0 \leq x < 2\pi. \]

giving the answers correct to three significant figures.

\[x = 1.94, 2.78, 5.08, 5.92 \]
Question 5 (**+)
Solve the following trigonometric equation in the range given.

\[2 \cos \theta = \sin \theta, \quad 0^\circ \leq \theta < 360^\circ. \]

\[\theta = 63.4^\circ, 243.4^\circ \]

Question 6 (**+)
Solve the following trigonometric equation in the range given.

\[2 \sin \theta = 5 \cos \theta, \quad 0^\circ \leq \theta < 360^\circ. \]

\[x = 68.2^\circ, 248.2^\circ \]
Question 7 (**+)**
Solve the following trigonometric equation in the range given.

\[2\sin y + 5\cos y = 2\cos y, \quad 0^\circ \leq y < 360^\circ. \]

\[y \approx 123.7^\circ, \ 303.7^\circ \]

Question 8 (***)
Solve the following trigonometric equation in the range given.

\[3\cos 3x - 1 = 0.22, \quad -90^\circ \leq x < 90^\circ. \]

\[x \approx -22^\circ, \ 22^\circ \]
Question 9 (***)
Solve the following trigonometric equation in the range given.

\[1 + 2\sin(\theta + 25)^\circ = 2.532, \quad 0 \leq \theta < 360. \]

\[\theta \approx 25, 105 \]

Question 10 (***)
Solve, in radians, the following trigonometric equation

\[4\sin^2 \psi = 15 \cos \psi, \quad 0 \leq \psi < 2\pi, \]

giving the answers correct to three significant figures.

\[\psi \approx 1.32\text{c}, 4.97\text{c} \]
Question 11 (***)
Solve the following trigonometric equation in the range given.

\[4 \sin 2\theta + 3 \cos 2\theta = 0, \quad 0^\circ \leq \theta < 360^\circ. \]

\[\theta = 71.6^\circ, 161.6^\circ, 251.6^\circ, 341.6^\circ \]

Question 12 (***)
Solve the following trigonometric equation in the range given.

\[2 + 2 \sin 3\phi = 1, \quad 0^\circ \leq \phi < 180^\circ. \]

\[\phi = 70^\circ, 110^\circ \]
Question 13 (★★★)
Solve the following trigonometric equation in the range given.

\[9\cos 4\theta + 5\sin 4\theta = 0, \quad 0^\circ \leq \theta < 180^\circ. \]

\[\theta = 29.8^\circ, 74.8^\circ, 119.8^\circ, 164.8^\circ \]

Question 14 (★★★)
Solve the following trigonometric equation in the range given.

\[3\sin 3y + \sqrt{3}\cos 3y = 0, \quad 0^\circ \leq y < 180^\circ. \]

\[y = 50^\circ, 110^\circ, 170^\circ \]
Question 15 (***)
Solve, in radians, the following trigonometric equation

$$6\cos^2 x + \sin x = 4, \quad 0 \leq x < 2\pi,$$

giving the answers correct to three significant figures.

$$x \approx 0.73^\circ, 2.41^\circ, 3.67^\circ, 5.76^\circ$$

Question 16 (***)
Solve, in radians, the following trigonometric equation

$$5 + 2\tan\left(3\theta + \frac{\pi}{3}\right) = 3, \quad 0 \leq \theta < \pi,$$

giving the answers in terms of \(\pi\).

$$\theta = \frac{5\pi}{36}, \frac{17\pi}{36}, \frac{29\pi}{36}$$
Question 17 (***)
Solve, in degrees, the following trigonometric equation

\[3 \sin^2 3x - 7 \cos 3x = 5, \quad 0^\circ \leq x < 180^\circ.\]

\[x \approx 36.5^\circ, 83.5^\circ, 156.5^\circ\]

Question 18 (***)
Solve, in radians, the following trigonometric equation

\[8 \sin \left(\frac{\pi}{3} - 2x\right) = 4, \quad 0 \leq \theta < 2\pi;\]

giving the answers in terms of \(\pi\).

\[x = \frac{3\pi}{4}, \frac{13\pi}{4}, \frac{7\pi}{4}\]
Question 19 (***)
Solve the following trigonometric equation in the range given.

\[4\sin^2 \theta - \cos^2 \theta = 8\sin \theta + 3, \quad 0^\circ \leq \theta < 360^\circ. \]

\[\theta = 203.6^\circ, 336.4^\circ \]

Question 20 (***)
Solve, in degrees, the following trigonometric equation

\[\sin 3x = \sin 48^\circ, \quad 0^\circ \leq x < 180^\circ. \]

\[x = 16^\circ, 136^\circ, 164^\circ \]
Question 21 (***)
Solve, in radians, the following trigonometric equation

\[\cos 2x = \cos \frac{2\pi}{5}, \quad 0 \leq x < 2\pi, \]

giving the answers in terms of \(\pi \).

\[x = \frac{\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{9\pi}{5} \]

Question 22 (***)
Solve the following trigonometric equation in the range given.

\[2\sin^2 x - 2 \cos x - \cos^2 x = 1, \quad 0^\circ \leq x < 360^\circ. \]

\[x = 70.5^\circ, 289.5^\circ, \quad x = 180^\circ \]
Question 23 (***)
Solve the following trigonometric equation.

\[\sin(3\theta + 72)\degree = \cos 48\degree, \quad 0 \leq \theta < 180. \]

\[\theta = \{22, 110, 142\} \]
Question 24 (***+)

Solve the following trigonometric equation in the range given.

\[
\frac{5 + \cos(4y - 80)°}{3} = 1.5, \quad 0 \leq y < 180°.
\]

\[y = 50, 80, 140, 170\]

Question 25 (***+)

Solve the following trigonometric equation in the range given.

\[
\frac{3 + \sin^2 \theta}{\cos \theta - 2} = 3 \cos \theta, \quad 0° \leq \theta < 360°.
\]

\[\theta = 120°, 240°\]
Question 26 (***)

Solve, in radians, the following trigonometric equation

$$\sin^2 \left(\frac{3x}{2} \right) = \frac{1}{2}, \quad 0 \leq x < 2\pi,$$

giving the answers in terms of π.

$$x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}$$

Question 27 (***)

Solve the following trigonometric equation in the range given.

$$\sin x - \cos x = 2, \quad 0^\circ \leq x < 360^\circ.$$

$$x \approx 71.6^\circ, 251.6^\circ$$
Question 28 (***)
Solve, in radians, the following trigonometric equation
\[\frac{1}{\tan^2 \varphi} = 3, \quad 0 \leq \varphi < 2\pi, \]
giving the answers in terms of \(\pi \).

\[\varphi = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \]

Question 29 (***)
Solve, in radians, the following trigonometric equation
\[4\sin^2 2\varphi - \cos 2\varphi = 3 + 8\sin 2\varphi, \quad 0 \leq \varphi < 2\pi. \]
giving the answers correct to three significant figures.
\[\varphi \approx 1.78^\circ, 2.94^\circ, 4.92^\circ, 6.08^\circ \]
Question 30 (***+)

Solve the following trigonometric equation in the range given.

\[3\cos^2 2\phi - 4\sin^2 2\phi = 15\cos 2\phi - 6, \quad 0^\circ \leq \phi < 360^\circ. \]

\[\phi \approx 40.9^\circ, 139.1^\circ, 220.9^\circ, 319.1^\circ. \]}
Question 31 (***)

Solve, in radians, the following trigonometric equation

\[3\sin^2 \psi = \cos^2 \psi, \quad 0 \leq \psi < 2\pi, \]

giving the answers in terms of \(\pi \).

\[\psi = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \]

Question 32 (***)

Solve, in degrees, the following trigonometric equation

\[\tan(3x - 75) = \tan 450^\circ, \quad 300^\circ \leq x < 500^\circ. \]

\[x = 355^\circ, x = 415^\circ, x = 475^\circ \]
Question 33 (***+)
Solve the following trigonometric equation in the range given.
\[\frac{5\sin \theta - 2\cos \theta}{\sin \theta} = 3, \quad 0^\circ \leq \theta < 360^\circ. \]
\[x = 45^\circ, 225^\circ \]

Question 34 (***+)
\[2CT - 2C + T - 1 \]

a) Write the above expression as a product of two linear factors.

b) Hence solve the trigonometric equation
\[2\cos \theta \tan \theta - 2\cos \theta + \tan \theta = 1, \]
for \(0^\circ \leq \theta < 360^\circ. \)
\[(2C + 1)(T - 1), \quad \theta = 45^\circ, 120^\circ, 135^\circ, 240^\circ \]
Question 35 (***+)
Solve the following trigonometric equation in the range given.

\[\cos(4\psi - 120^\circ) = \cos 200^\circ, \quad 0 \leq \psi < 180. \]

\[\psi = 70, \ 80, \ 160, \ 170 \]

Question 36 (***+)
Solve, in radians, the following trigonometric equation

\[2 + 3\sin^2 4x = 4, \quad 0 \leq x < \frac{\pi}{2}, \]

giving the answers correct to three significant figures.

\[x = 0.239^\circ, \ 0.547^\circ, \ 1.02^\circ, \ 1.33^\circ \]
Question 37 (***)

Solve the following trigonometric equation in the range given.

\[\frac{5 \cos 2x + \sin 2x}{3 \sin 2x} = 7, \quad -90^\circ \leq x < 90^\circ. \]

\[x \approx -83.0^\circ, \ 7.0^\circ \]
Question 38 (***+)***)
Solve each of the following trigonometric equations, in the range given.

a) \(\sin(2\theta + 30^\circ) = \frac{\sqrt{3}}{2}, \quad -180^\circ \leq \theta < 180^\circ \)

b) \(\sin x = 2\cos x, \quad 0 \leq x < 360^\circ \)

c) \(2\sin^2 y - 5\cos y + 1 = 0, \quad 0 \leq y < 2\pi \)

\[\theta = -165^\circ, -135^\circ, 15^\circ, 45^\circ, \quad x \approx 63.4^\circ, 243.4^\circ, \quad y = \frac{x}{3}, \frac{5\pi}{3} \]
Question 39 (***+)

A cubic curve is given by

\[f(x) = 4x^3 - 8x^2 - x + k, \]

where \(k \) is a non zero constant.

a) Given that \((x - 2)\) is a factor of \(f(x)\), show that \((2x - 1)\) is also a factor of \(f(x)\).

b) Express \(f(x)\) as the product of three linear factors.

c) Hence solve the following trigonometric equation

\[4\sin^3 y - 8\sin^2 y - \sin y + k = 0, \]

for \(0^\circ \leq y < 360^\circ\).

\[y = 30^\circ, \ 150^\circ, \ 210^\circ, \ 330^\circ \]
Question 40 (***+)

Solve, in radians, the following trigonometric equation

$$7 \cos(2x + 3)^\circ = 5, \quad -\pi \leq x < \pi,$$

giving the answers correct to three significant figures.

\[x = -1.89^\circ, -1.11^\circ, 1.25^\circ, 2.08^\circ \]
Question 41 (***)

The graph of the curve with equation

\[y = 2\sin(2x + k)^\circ, \ 0 \leq x < 360, \]

where \(k \) is a constant so that \(0 < k < 90 \), passes through the points with coordinates \(P(55,1) \) and \(Q(\alpha, \sqrt{3}) \).

a) Show, without verification, that \(k = 40 \).

b) Determine the possible values of \(\alpha \).

\[\alpha = 10, 40, 190, 220 \]
Question 42 (***+)
Solve, in radians, the following trigonometric equation
\[\tan(3x - 5) = \tan 7, \quad 3 \leq x < 6, \]
giving the answers correct to three significant figures, where appropriate.
\[x = 4, \ x = 5.05 \]

Question 43 (***+)
Solve, in radians, the following trigonometric equation
\[\tan^4 y - \tan^2 y = 6, \quad 0 \leq y < 2\pi, \]
giving the answers in terms of \(\pi \).
\[y = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \]
Question 44 (***+)
Solve the following trigonometric equation
\[
\frac{2 + \cos 2x}{3 + \sin^2 2x} = \frac{2}{5}, \text{ for } 0^\circ \leq x < 360^\circ.
\]
\[x = 60^\circ, 120^\circ, 240^\circ, 300^\circ\]

Question 45 (***+)
Solve, in degrees, the following trigonometric equation
\[
\tan^4 y = 6 + \tan^2 y, \text{ } 0^\circ \leq y < 360^\circ.
\]
\[y = 60^\circ, 120^\circ, 240^\circ, 300^\circ\]
A trigonometric curve is defined by the equation
\[f(x) = 3 - 4\sin(2x + k) \, ^\circ, \quad 0 \leq x \leq 360 \]
where \(k \) is a constant such that \(-90 < k < 90\).

The curve passes through the point with coordinates \((15, 5)\) and further satisfies
\[A \leq f(x) \leq B, \]
for some constants \(A \) and \(B \).

a) State the value of \(A \) and the value of \(B \).

b) Show that \(k = -60 \).

e) Solve the equation \(f(x) = -1 \).

\[x = 75, 255, \quad A = -1, \quad B = 7, \quad x = 75, 255 \]
Question 47 (****)

Given that θ is measured in degrees, solve the following trigonometric equation

$$\frac{4}{\tan^2 3\theta} + 2 = \frac{7}{\sin 3\theta}, \quad 0 \leq \theta \leq 180.$$

$$\theta = 10^\circ, \ 50^\circ, \ 130^\circ, \ 170^\circ$$
Question 48 (***)

The depth of water in a harbour on a particular day can be modelled by the equation

\[D = 12 + 3 \sin \left(\frac{\pi t}{6} \right), \]

where \(D \) is the depth of the water in metres, \(t \) hours after midnight.

Determine the times after noon, when the depth of water in the harbour is 10 metres.

\[\boxed{19:24, 22:36} \]
Question 49 (***)

The height of tides in a harbour on a particular day can be modelled by the equation

\[h = a + b \sin(30t)^\circ, \]

where \(h \) is the height of the water in metres, \(t \) hours after midnight, and \(a \) and \(b \) are constants.

At 02.00, \(h = 9.5 \) m and at 08.00, \(h = 3.5 \) m.

Determine …

a) … the value of \(a \) and the exact value of \(b \).

b) … the first time after midnight when the height of the tide is 5 metres.

\[a = 6.5, \, b = 2\sqrt{3}, \, 06:51 \]
Question 50 (***)

Solve the following trigonometric equation, in the range given.

\[
\sqrt{3} + 2\sin \left(3x + \frac{\pi}{4}\right) = 0, \quad 0 \leq x < \frac{\pi}{2}.
\]

Give the answers in terms of \(\pi \).

\[x = \frac{13\pi}{36}, \frac{17\pi}{36}\]

Question 51 (***)

Solve the following trigonometric equation in the range given.

\[
4\tan^2 \theta \cos \theta = 15, \quad 0 \leq \theta < 360^\circ.
\]

\[\theta \approx 75.5^\circ, 284.5^\circ\]

Created by T. Madas
Question 52 (****)
Solve the following trigonometric equation in the range given.

\[2 \tan \phi \sin \phi = 3, \quad 0 \leq \phi < 2\pi. \]

Give the answers in terms of \(\pi \).

\[\phi = \frac{\pi}{3}, \frac{5\pi}{3} \]

Question 53 (****)
Solve the following trigonometric equation in the range given.

\[2 \cos x = 3 \tan x, \quad 0^\circ \leq x < 360^\circ. \]

\[x = 30^\circ, 150^\circ \]
Question 54 (****)

\[f(x) = x^3 - 4x^2 - \frac{1}{2}x + 2, \ x \in \mathbb{R}. \]

a) Show that \((x - 4)\) is a factor of \(f(x)\).

b) Express \(f(x)\) as the product of a linear and one quadratic factor.

c) Hence solve the trigonometric equation

\[\cos^3 \theta - 4 \cos^2 \theta - \frac{1}{2} \cos \theta + 2 = 0, \]

for \(0^\circ \leq \theta < 360^\circ\).

\[\boxed{\theta = 45^\circ, 135^\circ, 225^\circ, 315^\circ} \]
Question 55 (****)
Solve the following trigonometric equation in the range given.

\[2 \cos x - 3 \tan x = 0, \quad 0 \leq x < 2\pi.\]

Give the answers in terms of \(\pi\).

\[x = \frac{\pi}{6}, \frac{5\pi}{6}\]

Question 56 (****)
Solve the following trigonometric equation in the range given.

\[3 \tan \phi \sin \phi = 8, \quad 0 \leq \phi < 2\pi.\]

Give the answers in radians correct to two decimal places.

\[\phi = 1.23^\circ, 5.05^\circ\]
Question 57 (****)
Solve the following trigonometric equation in the range given.

\[4 \tan \psi \sin \psi \cos \psi + 4 \tan \psi \cos \psi + 1 = 0, \quad 0^\circ \leq \psi < 360^\circ. \]

\[\psi = 210^\circ, 330^\circ \]

Question 58 (****)
Solve the following trigonometric equation in the range given.

\[\frac{1}{2} \tan x - \sin x = 0, \quad 0^\circ \leq x < 360^\circ. \]

\[x = 0^\circ, 60^\circ, 180^\circ, 300^\circ \]
Question 59 (****)
Solve the following trigonometric equation in the range given.

\[3\tan \theta \sin \theta = \cos \theta + 1, \quad 0 \leq \theta < 2\pi. \]

Give the answers in radians correct to two decimal places.

\[\theta \approx 0.72, 3.14, 5.56 \]

Question 60 (****)
Solve the following trigonometric equation in the range given.

\[(\sqrt{3} + 2\sin y)(\sqrt{3} + \tan 2y) = 0, \quad 0 \leq y < \pi. \]

Give the answers in terms of \(\pi \).

\[y = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6} \]
Question 61 (****)

Solve the following trigonometric equation in the range given.

\[6 \cos \psi = 5 \tan \psi , \ 0 \leq \psi < 2\pi . \]

Give the answers in radians, correct to two decimal places.

\[\psi = 0.73^\circ , 2.41^\circ \]
Question 62 (****)

\[f(x) = x^3 - x^2 - 3x + 3. \]

a) Show that \((x - 1)\) is a factor of \(f(x)\).

b) Express \(f(x)\) as the product of three linear factors.

c) Hence solve the trigonometric equation

\[\tan^3 \theta - \tan^2 \theta - 3 \tan \theta + 3 = 0, \]

for \(0^\circ \leq \theta < 360^\circ\).

\[\{ \theta = 45^\circ, 60^\circ, 120^\circ, 225^\circ, 240^\circ, 300^\circ \} \]
Question 63 (****)
Solve the following trigonometric equation in the range given.

\[3\tan x + 2\cos x = 0, \quad 0 \leq x < 2\pi.\]

Give the answers in terms of \(\pi\).

\[x = \frac{7\pi}{6}, \quad \frac{11\pi}{6}\]

Question 64 (****)
Solve the following trigonometric equation in the range given.

\[\left(\sqrt{3} - 2\sin 3x\right)\left(\sqrt{3} + 2\cos 3x\right) = 0, \quad 0^\circ \leq x < 180^\circ.\]

\[x = 20^\circ, 50^\circ, 70^\circ, 140^\circ, 160^\circ, 170^\circ\]
Question 65 (****)
Solve the following trigonometric equation in the range given.

\[8 \tan^2 x \sin x = \cos x, \quad 0 \leq x < 2\pi. \]

Give the answers in radians correct to two decimal places.

\[x \approx 0.46, 3.61 \]

Question 66 (****+)
Solve the following trigonometric equation for \(0 \leq \theta < 360^\circ \)

\[\sin \theta \tan^2 \theta (2 \sin \theta + 3) + \tan^2 \theta = 0. \]

\[\theta = 0^\circ, 180^\circ, 210^\circ, 330^\circ \]
Question 67 (****+)

Calculate in degrees, correct to one decimal place, the solution of the following trigonometric equation

\[
\frac{1 - \cos \theta}{\sin \theta} = \sqrt{3} \sin \theta, \quad 0 < \theta < \pi.
\]

\[
\theta \approx 2.01^\circ
\]
Question 68 (**++)

The three angles in a triangle are denoted as α, β and γ.

It is further given that

$$\tan \alpha = -4.705 \quad \text{and} \quad \tan (\beta - \gamma) = 0.404$$

Determine, in degrees, the size of each of the angles α, β and γ.

$$\alpha \approx 102^\circ, \quad \beta \approx 50^\circ, \quad \gamma \approx 28^\circ$$
The figure above shows the graph of the curve with equation
\[y = 6 - 4\sin \theta - \cos^2 \theta, \quad 0^\circ \leq \theta \leq 360^\circ. \]

The curve has a minimum at the point \(A \) and a maximum at the point \(B \).

Determine the coordinates of \(A \) and \(B \).

\[A(90^\circ,2), \quad B(270^\circ,10) \]
Question 70 (***)
Solve the following trigonometric equation for $0 \leq \theta < 360^\circ$

$$2 + 4 \cos^2 \theta = 7 \cos \theta \sin \theta.$$

\[\theta \approx 56.3^\circ, \theta \approx 63.4^\circ, \theta \approx 236.3^\circ, \theta \approx 243.4^\circ \]
Question 71 (*****)

It is given that

$$4\sin x - \frac{\cos x}{2} = \frac{4}{\sin x} - \frac{1}{2\cos x}.$$

Show clearly that the above equation is equivalent to

$$\tan x = 2.$$
Question 72 (*****)

Solve the following trigonometric equation for $0 \leq x < 360^\circ$

\[
\frac{\tan x}{\cos x} + \frac{1}{1 + \sin x} = \frac{4}{3}.
\]

$x = 30^\circ, 150^\circ, 210^\circ, 330^\circ$
Question 73 (*****)

Solve the following trigonometric equation

\[
(19 + 2\sin^2 2\theta)\tan 2\theta = \frac{3}{\cos 2\theta} - 17\cos 2\theta, \quad 0^\circ \leq \theta < 360^\circ.
\]

\[
\theta = 105^\circ, \quad \theta = 165^\circ, \quad \theta = 285^\circ, \quad \theta = 345^\circ
\]
Show that $\theta = \frac{1}{3}\pi$ is a solution of the above trigonometric equation and use a non-verification method to find the other solutions.

$\theta = \frac{2}{3}\pi, \frac{4}{3}\pi, \frac{5}{3}\pi$