Snaths.com uasmaths.com TRIGONOMIC -EXAM QUESTIONS - MUCTION ATTRACTOR LANGER TRACTOR LANGER TRACTOR

Question 1 (**+)

Solve the following trigonometric equation in the range given.

$$\cos(2\theta + 25)^\circ = -0.454, \quad 0 \le \theta < 360.$$

Question 2 (**+)

Solve the following trigonometric equation in the range given.

 $\cos(2y-35)^\circ = 0.891$, $0 \le y < 360$.

100((2(q-5)) = 0.69) 0.5 g	ن س 270°
=) (2y-35 = 27.0° ± 3500 21-35 = 330° ± 3500	× × 1+0 μ=0, μ2, 3, · · · ·
360-27	
⇒ (2y = 62 ±3604 2y = 368. ±3604	
$=$ $\begin{pmatrix} 9 = 31 \pm 800 \\ y = 184 \pm 1809 \end{pmatrix}$	
GOOKING AT THE REPORTED RANGE	
y= 31°	
y ₂ = 211°	

 $y \approx 4, 31, 184, 211$

G

Question 3 (**+)

Solve the following trigonometric equation in the range given.

Madasn.

 $\tan(5y-35)^\circ = -2 - \sqrt{3}, \quad 0 \le y < 90.$

Question 4 (**+)

Solve, in radians, the following trigonometric equation

F.C.P.

 $1 + \sin 2x = \frac{1}{3}, \ 0 \le x < 2\pi$

giving the answers correct to three significant figures.

	F
$(1+Sy_12L = \frac{1}{3} 0 \leq 0. < 21^{-3}$ $\Rightarrow SW_12L = -\frac{2}{3}$ $\Rightarrow ars_{9}(-\frac{2}{3}) = -0.7257_{-}^{-5}$)
$ \left(\begin{array}{ccc} 2 \chi = -o 7 k \eta^2 \pm 2 \chi \eta_{f} \\ 2 \chi = -3 8 \eta g^6 \pm 2 \pi \eta_{f} \\ \chi = -o \xi g \pm \kappa \eta_{f} \\ \chi = - o \xi g \pm \kappa \eta_{f} \\ \chi = 1.4357 \pm \eta_{f} \end{array} \right) $	
$\therefore \Omega = 2.78^{\circ}, 5.92^{\circ}, 1.94^{\circ}, 5.08^{\circ}$	

C.B.

G

 $x = 1.94^{\circ}, 2.78^{\circ}, 5.08^{\circ}, 5.92^{\circ}$

Question 5 (**+)

Solve the following trigonometric equation in the range given.

i C.P.

 $2\cos\theta = \sin\theta$, $0^\circ \le \theta < 360^\circ$.

9/	2
20050 = SWA	∘ < 9 < 360
$\Rightarrow 2\cos\theta = \sin\theta$ $\Rightarrow \frac{2\cos\theta}{\cos\theta} = \frac{\sin\theta}{\cos\theta}$ $\Rightarrow 2 = \tan\theta$	
• metau(2) = 63.4°	
θ≈ 63.4°±180 и	N= ell'sj3. ~.
$\Theta_1 = G_3 \cdot \mu^\circ$	
0 ₂ = 243.4"	

 $\theta = 63.4^{\circ}, 243.4^{\circ}$

Question 6 (**+)

F.G.B.

I.C.

Solve the following trigonometric equation in the range given.

 $2\sin\theta = 5\cos\theta$, $0^\circ \le \theta < 360^\circ$.

21/281

72mlA = 2020	0 5 9 2 360
⇒ 25 MB = 56080	
OSA = Suco	

€	2.40	~	5

~	90 =	2.			
Ø	antis	白	5	68·2°	

-	G8·2*±	180 h	M=01123,9,
			1.1.1.1.1

i G.B.

G

 $\theta_2 = 248.2^\circ$

Question 7 (**+)

Solve the following trigonometric equation in the range given.

.C.

 $2\sin y + 5\cos y = 2\cos y$, $0^{\circ} \le y < 360^{\circ}$.

Question 8 (***)

K.C.

Solve the following trigonometric equation in the range given.

 $3\cos 3x - 1 = 0.22$, $-90^{\circ} \le x < 90^{\circ}$.

Ý.C.B.

G

Question 9 (***)

Solve the following trigonometric equation in the range given.

 $1 + 2\sin(\theta + 25)^\circ = 2.532$, $0 \le \theta < 360$.

 $\theta \approx 25, 105$

Question 10 (***) Solve, in **radians**, the following trigonometric equation

2

 $4\sin^2\psi = 15\cos\psi, \ 0 \le \psi < 2\pi,$

2025n

giving the answers correct to three significant figures.

4 sm/4 = 15 ws4, 0 < 4 < 217
45119Ψ = 150051Ψ ⇒4(ι-casiψ) = 151054Ψ
$= 94 - 4\cos(y) = 5\cos(y) - 4 $ $= 0 = 4\cos(y) + (5\cos(y) - 4 $ $= 0 = (4\cos(y) - 1)(\cos(y) + 4)$
$\Rightarrow Gos \psi = \begin{pmatrix} * \\ \downarrow \\ 4 \end{pmatrix}$
$\operatorname{arcos}\left(\frac{1}{2}\right) = 1.318^{\circ}$
$ \begin{pmatrix} \psi = (.3) \theta^c \pm \Im \eta \\ \psi = 4.96 c \pm \Im \eta \\ \eta = 0 \eta_{12} \beta_{1} \dots \end{cases} $
$\Psi_1 = (-32^{C})^{-32^{C}}$ $\Psi_2 = 4.97^{c}$

i C.P.

2

Question 11 (***)

Solve the following trigonometric equation in the range given.

C:

 $4\sin 2\theta + 3\cos 2\theta = 0$, $0^\circ \le \theta < 360^\circ$.

4 sm20 + 3 cos20 =0 0 6 8 < 360
-> 4sin20 + 36620=0
→ 451420 = -36520
$\frac{432}{60520} = -\frac{322}{60520}$
⇒ 45m20 = -3
$\implies = -\frac{3}{4}$
• ard $(-\frac{3}{4}) = -36.87^{\circ}$
20 = -36.87° ± 1804 U < 91,2,3
0 = -18.4° ± 904
0 = 71.6°, 161.6°, 251.6°, 341.6°

Question 12 (***)

.C.

Solve the following trigonometric equation in the range given.

21/201

 $2 + 2\sin 3\varphi = 1$, $0^{\circ} \le \varphi < 180^{\circ}$.

C.A.

G

2+ 25m3b=1, 0≤ \$<180}	
$ \Rightarrow 24 2 \sin 34 = 1 $ $ \Rightarrow 25 \sin 34 = -1 $ $ \Rightarrow 3 \sin 34 = -\frac{1}{2} $ $ \sin 25 \sin (-\frac{1}{2}) = -36^{\circ} $	THUS FOR THE RANGE GRITH $ \begin{array}{c} \varphi_1 = 110^* \\ \varphi_2 * 70^\circ \end{array} $
7743 $(34 = -30^{2} \pm 360n)$ $(34 = 210^{2} \pm 360n)$ $h=0,1,2,3,$	
$\left(\begin{array}{c} \phi = -10^{\circ} \pm 120n \\ \phi = 70^{\circ} \pm 120n \end{array} \right)$	

Question 13 (***)

Solve the following trigonometric equation in the range given.

E.

 $9\cos 4\theta + 5\sin 4\theta = 0$, $0^\circ \le \theta < 180^\circ$.

nadasma

_	
	9 cos40 + 55m 40=0 0 6 6 < 180
	$= 9\cos 40 + 5\cos 40 = 0$ $= 9\cos 40 = -5\cos 40$
	$\implies \frac{60040}{6000} = -\frac{0040}{20040}$
η.	=) 9 = - 5bur 48
1	a contrary $\left(-\frac{q}{5}\right) = -60.94^{\circ}$
2	$4\theta = -6094^{\circ} \pm 18004$ $\mu = 0_{1}1_{2}3$ $\theta = -15.24^{\circ} \pm 454$
	$\Theta_1 = 27.8^\circ$ $\Theta_2 = 74.8^\circ$
	$ \Theta_3 = 119.8^{\circ} $ $ \Theta_4 = 164.8^{\circ} $

 $\theta \approx 29.8^{\circ}, 74.8^{\circ}, 119.8^{\circ}, 164.8^{\circ}$

Question 14 (***)

 \mathbf{P}

Solve the following trigonometric equation in the range given.

 $3\sin 3y + \sqrt{3}\cos 3y = 0$, $0^{\circ} \le y < 180^{\circ}$.

 $y = 50^{\circ}, 110^{\circ}, 170^{\circ}$

and the second	
2 3.5m 3y + N3 cos 3y =0	
⇒ 35143y + V36053y = 0	
-> BSIMBY = -NEWSBY	
= 35434 = - N3 64385 60334 = - N3 64385	
=> 3tay 3y = -13	
=> (ay3y = - <u>v51</u>	
• $\operatorname{Chyp}_{M}\left(-\frac{\sqrt{3}}{3}\right) = -30^{\circ}$	
$\frac{30}{2} = -30^{\circ} \pm 1800$ $M = 91/3^{-3}$	
$y_1 = 50^{\circ}$ $y_2 = 100^{\circ}$ $y_3 = 170^{\circ}$	
4	

G

Question 15 (***)

Solve, in **radians**, the following trigonometric equation

 $6\cos^2 x + \sin x = 4, \quad 0 \le x < 2\pi,$

giving the answers correct to three significant figures.

	· / / / /
r.	663a+sma=4, 0≤2<21
P.	$6\cos^2 x + \sin^2 x = 4$
	-> 6-6542+5112-4 -> 6-6542+5112-4 -> 0=6542-5112-2
	\implies (25WD. + 1)(35W) - 2) $= -\frac{1}{2}$
	$\sum_{i=1}^{n} \frac{2}{3}$
	$(3.2 - \frac{1}{5} \pm 2\pi)$ $(3.2 - \frac{1}{5} \pm 2\pi)$ $(3.2 - \frac{1}{5} \pm 2\pi)$ $(3.2 - \frac{1}{5} \pm 2\pi)$
	$CL = \frac{24}{24} \pm \frac{260}{4}$ $weq_{12}3$ $weq_{12}3$
	$\lambda_1 = \frac{117}{6} \approx 5.76^{\circ}$
	$\chi_2 = 2 \pi \sim 3.67^{\circ}$ $\chi_3 \simeq 0.730^{\circ}$
	$\mathfrak{X}^{d} \approx \mathfrak{T}^{d/c}$

 $x \approx 0.73^{\circ}, 2.41^{\circ}, 3.67^{\circ}, 5.76^{\circ}$

Question 16 (***)

Solve, in radians, the following trigonometric equation

$$5+2\tan\left(3\theta+\frac{\pi}{3}\right)=3, \ 0\le\theta<\pi$$

giving the answers in terms of π .

$\sum_{i=1}^{2} \frac{1}{2} $	13
\Rightarrow 2tay $(3\theta + \frac{\pi}{3}) = -2$	THAL IF OF B <t< th=""></t<>
$\implies tor (3\theta + \frac{\pi}{3}) = -1$	0 <u>SIT</u>
(antau (-1)= - # 3	6 = <u>171</u>
The True	P3 = 2911
→ 30 + 3 = -4 ± 01 4=0,12,3,	36
$\implies \theta = -\frac{11}{2} \pm \frac{11}{2}$	
36 3	

Question 17 (***)

Solve, in **degrees**, the following trigonometric equation

~ (;)

 $3\sin^2 3x - 7\cos 3x = 5$, $0^\circ \le x < 180^\circ$.

$\begin{array}{c c} 3c_{W}^{2}3c_{L}-7c_{S}^{2}a_{L}-8c_{S}^{2}a_{L}\\ 3(1-c_{S}^{2}a_{L})-7c_{S}^{2}a_{L}c_{S}\\ 3-3c_{S}^{2}a_{L}c_{L}c_{S}^{2}a_{L}\\ -2c_{S}^{2}a_{L}c_{L}c_{L}c_{L}c_{L}c_{L}\\ -2c_{L}c_{L}c_{L}c_{L}c_{L}\\ 0-3c_{L}c_{L}c_{L}c_{L}\\ (c_{L}c_{L}c_{L}c_{L}c_{L})\\ (c_{L}c_{L}c_{L}c_{L}c_{L}c_{L}c_{L}c_{L}$	$\begin{aligned} & \operatorname{arrow}_{1}\left(\frac{-1}{2}\right) = \left\{0.9, 47^{*}\right\} \\ & \left(\frac{3}{3}a_{-} + \left[0.9, 47 + 360^{\circ}\right]_{-1} + e_{1}\left(1_{2}\right)_{-}\right]_{-1} \\ & \left(\frac{3}{3}a_{-} + 22_{-}52^{*} + 360^{\circ}\right]_{-1} \\ & \left(\frac{3}{2}a_{-} + 264^{\circ}\right)_{-1} + 264^{\circ} \\ & \left(\frac{3}{2}a_{-} + 364^{\circ}\right)_{-1} + 264^{\circ} \\ & \left(\frac{3}{2}a_{-} + 364^{\circ}\right)$
3	1

 $x \approx 36.5^{\circ}, 83.5^{\circ}, 156.5^{\circ}$

Question 18 (***)

Solve, in radians, the following trigonometric equation

$$8\sin\left(\frac{\pi}{3}-2x\right)=4, \ 0\le\theta<2\pi\,,$$

giving the answers in terms of π .

1			Э.	
$x = \frac{7}{1}$	$\frac{\tau}{2}$	$\frac{3\pi}{4}$,	$\frac{13\pi}{12}$,	$\frac{7\pi}{4}$

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
$\left\{8 \operatorname{SM}\left(\frac{\pi}{3} - 2\alpha\right) = 4,  0 \leq \alpha < 1\right\}$	C 211
$\Rightarrow$ Sm $(\frac{\pi}{3}-2a) = \frac{1}{2}$	~~
arcan(z) = z	8
$ = \begin{pmatrix} \underline{\mathfrak{F}} - 2\mathfrak{a} = \underline{\mathfrak{F}} \pm 2\mathfrak{n} \Pi \\ (\underline{\mathfrak{F}} - 2\mathfrak{a} = \underline{\mathfrak{F}} \pm 2\mathfrak{n} \Pi \end{pmatrix}^{\mathfrak{h} = \mathfrak{q}_1(2_13) \dots} $	
$ = \begin{pmatrix} -5^{2} = -\frac{5}{2} \mp 5^{2} \text{ML} \\ -5^{2} = -\frac{5}{2} \mp 5^{2} \text{ML} \end{pmatrix} $	~
$\Rightarrow \begin{pmatrix} a = \frac{\pi}{12} \pm \eta \eta \\ a = -\frac{\pi}{4} \pm \eta \eta \end{pmatrix}$	
$ \begin{array}{c} \overrightarrow{H}_{3} = \underbrace{\overrightarrow{H}_{1}}_{2} = \underbrace{\overrightarrow{H}_{2}}_{2} \\ \overrightarrow{J}_{3} = \underbrace{\overrightarrow{H}_{2}}_{3} \end{array} $	
24 = <u>71</u> +	×

2

#### Question 19 (***)

Solve the following trigonometric equation in the range given.

 $4\sin^2\theta - \cos^2\theta = 8\sin\theta + 3, \quad 0^\circ \le \theta < 360^\circ.$ 

nadasn.

510
42n9 - 1050 = 85140 +3 => 4540 - (1-51476) = 85140 +3 => 4240 - (1-51476) = 85140 +3
$\Rightarrow 5 \text{sinfb} - 8 \text{sinfb} - 4 = 0$ $\Rightarrow (5 \text{cmb} + 2)(\text{cmb} - 2) = 0$ $\text{sinfb} = \sqrt{2}$
• $-\frac{1}{5}$ • $(-\frac{3}{5}) = -23.98^{\circ}$ • $(0) = -23.58^{\circ} \pm 3600$
$(0 = 2n_3, g_0^{n_1} + 3g_{0,1}^{n_1} + -0)(1/3)$ $\Theta_1 = 3264^{0}$ $\Theta_2 = 203.6^{n_1}$

*θ* ≈ 203.6°,336.4°

#### Question 20 (***)

F.G.B.

Solve, in **degrees**, the following trigonometric equation

 $\sin 3x = \sin 48^{\circ}, \ 0^{\circ} \le x < 180^{\circ}.$ 



F.C.B.

G

#### Question 21 (***)

Solve, in **radians**, the following trigonometric equation

$$\cos 2x = \cos \frac{2\pi}{5}, \ 0 \le x < 2\pi,$$

giving the answers in terms of  $\pi$ .

	$x=\frac{\pi}{5},$	$\frac{4\pi}{5}$ ,	$\frac{6\pi}{5}$ ,	$\frac{9\pi}{5}$
b	~			4
05 22 = Cos	₫ <u>°≤</u> 2<	2173		
since an 2スニュ ミザ ± 2スニュ 男ザ ±	$rccos\left(cos \frac{2\pi}{5}\right) = \frac{2\pi}{5}$ $2v\pi r$ $2v\pi r$	< This 31 20	Hand Star	

 $\begin{pmatrix} x = \frac{\pi}{2} \pm u\pi \\ x = \frac{\pi}{2} \pm u\pi \end{pmatrix}$ 

#### Question 22 (***)

1.0,

Solve the following trigonometric equation in the range given.

 $2\sin^2 x - 2\cos x - \cos^2 x = 1, \quad 0^\circ \le x < 360^\circ.$ 



2

#### Question 23 (***)

Solve the following trigonometric equation.

 $\sin(3\theta+72)^\circ = \cos 48^\circ, \quad 0 \le \theta < 180.$ 

S.Com

2

Ŝ

	5 D .		$[], \theta = \{2\}$	2, 110, 142}
Ko.	- · G >	· G2	)	8
60	10	. 0	SUN (30 + 72°) = 605 48°	0 < 0 < 180° }
	3	no.	$\Rightarrow \Re n(30+72^{\circ}) = 60348^{\circ}$ $\Rightarrow \Re n(30+72^{\circ}) = \Im n(9^{\circ}-46^{\circ})$ $\Rightarrow \Re n(30+72^{\circ}) = \Im n(42^{\circ}$	6
∑. ₹	20	1902 -	$ = \left(\begin{array}{ccc} 30 + 72^{*} = & 42 \pm 360 \\ 30 + 72^{*} = & 136^{*} \pm 360 \\ & & 4 \\ (\underline{8}^{*}, 42^{*}) \end{array}\right) $	n=0,1,1,3
12.	alson .	The second	$= 9 \begin{pmatrix} 3\theta = -30^{\circ} \pm 362\theta \\ 3\theta = -66^{\circ} \pm 360\theta \\ -9 \begin{pmatrix} \theta = -10^{\circ} \pm 120^{\circ} \\ \theta = -22^{\circ} \pm 120\theta \\ \theta = -22^{\circ} \pm 120\theta \end{pmatrix}$	$\begin{cases} Sm (35 + 72.^{\circ}) = S(n + 32.^{\circ}) \\ Sm (35 + 72.^{\circ}) = 0.6611 \\ Sm (25 + 72.^{\circ}) = 0.6611 \\ arcs_{M} (0.66(1) + 42.^{\circ}) \end{cases}$
"he		All.	• $\Theta_1 = 10^{\circ}$ • $\Theta_2 = 22^{\circ}$ • $\Theta_2 = 10^{\circ}$	Arc ere
· · C	n. 198		Co	
~		Con	Up -	- 1
1.	1.1.		· /,	- -
J.	· · · · · ·			$\hat{\mathbf{a}}$
-6'2	· · · · · · ·	C		50
.0	*	m. "		· /2
	92.	1200	Do.	- Via
Sm.	~U20.	asp.	902	
212	-002-	. 427		3
	~ <i>"</i> ()			1h
- C (	lin "	Co.	On	1.00
	× .		- Y - y	01
6.12	1. J.	l'In		
10	. G	D	₽. [™]	62
~ ~5	y v		B	<b>.</b>
	m	Created by T Mad	as h.	
		Created by 1. Mau		

#### Question 24 (***+)

Solve the following trigonometric equation in the range given.

P.C.B.

$$\frac{5 + \cos(4y - 80)^{\circ}}{3} = 1.5, \quad 0 \le y < 180$$



# Question 25 (***+)

Y.C.

Solve the following trigonometric equation in the range given.

madası,

 $\frac{3+\sin^2\theta}{\cos\theta-2} = 3\cos\theta, \quad 0^\circ \le \theta < 360^\circ.$ 

REMONNUE THE REACTIONAL PARTS	
$\implies \frac{3 + s_{M}^{2}\theta}{cs_{W} - 2} = 3co_{M}\theta$	
$  \Rightarrow 3 + 5u_{1}^{2}\Theta = 3cos\Theta (cos\Theta - 2)   \Rightarrow 3 + 5u_{1}^{2}\Theta = 3cos^{2}\Theta - 6cos\Theta $	
-0200-1 = -07120	
$\implies 3 + (1 - (a\xi^2 \theta)) = 3(a\xi^2 \theta - 6ax \theta)$	
$\theta_{200}\delta - \theta_{200}^c = \theta_{200}^c - \theta_{-}$	
→ 0= 4620- G6000-4	
→ 21020 - 31020 - 2 = 0	
$\sigma = (2 - \theta_{200})(1 + \theta_{200}c) \iff$	
$\rightarrow$ $\log_{=} < \frac{1}{2}$	
Finally but command	
$O(Rcost(-\frac{1}{2}) >  D_n $	
$ = \left( \begin{array}{ccc} \theta = b_{0}\sigma \pm & 3Go_{ij} \\ \theta = 2i\delta^{2} \pm & 3Go_{ij} \end{array} \right) \mathcal{N} = q_{1}p_{2}p_{2}, $	
.: θ≈ 1201240°	

 $\theta = 120^{\circ}, 240^{\circ}$ 

1 il

#### Question 26 (***+)

Solve, in **radians**, the following trigonometric equation

$$\sin^2\left(\frac{3x}{2}\right) = \frac{1}{2}, \quad 0 \le x < 2\pi,$$

giving the answers in terms of  $\pi$ .

$x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{5\pi}{6}$	$\frac{7\pi}{6}, \frac{3\pi}{2},$	$\frac{11\pi}{6}$
12.		1
$\int Sh^2 \left(\frac{32}{2}\right) = \frac{1}{2},  o \leq 2 \leq 2\pi$ $\longrightarrow \left[Sh\sqrt{\frac{32}{2}}\right]^2 = \frac{1}{2}$ $\implies Sh(\frac{32}{2}) = \pm \sqrt{\frac{1}{2}},  \pm \sqrt{\frac{2}{2}}$	r]	
$\label{eq:states} \begin{split} & \bullet \mbox{Sh}(\frac{1}{2}\chi) = \sqrt{2}; \\ & \bullet \mbox{acsn}(\frac{1}{2}\chi) = \frac{\sqrt{2}}{2}; \\ & (\frac{1}{2}\chi = -\frac{1}{2}\chi + 2n\eta - n + c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi = -\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - (\frac{1}{2}\chi + n - c_1/c_1^2 \chi) - ($	$\frac{2}{2} - = (x_{0}^{2})_{0} = \frac{2}{2}, \ a_{2}no$ $\frac{2}{2} - (x_{2}^{2})_{0} = x_{0}^{2}, \ no = \frac{2}{2}, \ $	4=9133,~~
$\begin{array}{c} (\mathbf{x} = \mathcal{T}_{2} \pm \frac{4}{2} \mathbf{v} \\ (\mathbf{x}, \mathbf{y}, \pm \frac{4}{2} \mathbf{v}) \\ \mathcal{T} = \mathcal{T}_{1} \underbrace{\mathbf{\Sigma}}_{2} \mathbf{\Sigma}_{1} \underbrace{\mathbf{U}}_{2}, \mathbf{Y} \end{array}$	$ \begin{array}{c} z = -\frac{1}{6} \pm \frac{2}{6} m \\ (z = -\frac{1}{6} \pm \frac{2}{6} m \\ (z = \frac{5}{6} m \\ (z = \frac{5}{6} \pm \frac{2}{6} m \\ (z = \frac{5}{6} m \\ (z = \frac{5}{6}$	

/

#### Question 27 (***+)

Solve the following trigonometric equation in the range given.

$\frac{\sin x - \cos x}{\cos x} = 2,  0^{\circ} \le x$	< 360°.
$\cos x$ $-, \circ$	
$\gamma_{\rm c} = \gamma_{\rm c} \gamma_{\rm c} + \gamma_{\rm c} \gamma_{\rm c}$	In Van
2. 101 42.	
11 Co 11 C	$x \approx /1.6^{\circ}, 251.6^{\circ}$
×10. 20. ×15	
Vax Va Va	
4/h V.D. 4/	<u>Sm2-632</u> 23
<u> </u>	have mine
	$\Rightarrow SUN_{L} = 3 Cos_{L} = 2 Cos_{L}$
	$\Rightarrow \frac{Sin_2}{(ca_2)} = \frac{3(ca_2)}{(ca_2)} \qquad \qquad$
	$\Rightarrow t_{u 1} = 3$ $\left\{ t_{u 1-l} = 2 \right\}$
	$ancbuy 3 = 71.57^{\circ}$ $\begin{cases} tay 2 = 3 \\ cm \end{cases}$
	$Q = 71.51^{+} \pm 1800 \text{ M} = 0.1,2,3,$
	$\mathcal{I}_{2}^{\Sigma_{2}}$ 521·co
50 60 60	
1. S. S. M. M.	
	The second secon
Created by T. May	
	AN AD
42. Ja Un	do Un
4Ph 3/2 4/2	. The You

入

#### Question 28 (***+)

Solve, in **radians**, the following trigonometric equation

$$\frac{1}{\tan^2\varphi} = 3, \ 0 \le \varphi < 2\pi,$$

giving the answers in terms of  $\pi$ .



#### Question 29 (***+)

Solve, in radians, the following trigonometric equation

 $4\sin^2 2\varphi - \cos^2 2\varphi = 3 + 8\sin 2\varphi, \ 0 \le \varphi < 2\pi,$ 

giving the answers correct to three significant figures.



#### 43m24-6326= Ban24+3, 054527

- $\begin{array}{l} 4s_{1}n^{2}z_{2} (ns^{2}z_{2}) = 8s_{1}n_{2}b_{1} + 3\\ \rightarrow 1s_{1}n^{2}z_{1} (1-s_{1}n^{2}z_{2}) = 8s_{1}n_{2}b_{1} + 3\\ \Rightarrow 4s_{1}n^{2}z_{1} 1+s_{1}n^{2}z_{2} = 6s_{1}n_{2}b_{1} + 3\\ \Rightarrow 5s_{1}n^{2}z_{2} 8s_{1}n^{2}z_{1} (4=0)\\ \Rightarrow (5s_{1}n^{2}z_{1} + 2)(s_{1}n^{2}z_{1} 2) = 0\end{array}$ 
  - anst = -3
  - 24~ -04115"+ 2111 Nau[1,2,3,...

 $(\phi = -0.20\% \pm \pi)$  $(\phi = 1.77\% \pm \pi)$ 

#### Question 30 (***+)

Solve the following trigonometric equation in the range given.



Question 31 (***+)

Solve, in **radians**, the following trigonometric equation

 $3\sin^2\psi = \cos^2\psi, \ 0 \le \psi < 2\pi,$ 

giving the answers in terms of  $\pi$ .

	and the second s
$\psi = -\frac{1}{2}$	$\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$
3	
$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	$\begin{split} &\mu(\langle g_{1}\rangle)=\frac{T}{2}\\ &\mu(\langle g_{1}\rangle)=-\frac{T}{2}\\ &\xi\\ &=\frac{T}{2}\equiv\pm n\pi\tau\\ &=-\frac{T}{2}\pm n\tau\\ &=\frac{T}{2}\pm n\tau\\ &=\frac{T}{2}+\frac{T}{2}\frac{T}{2},  \frac{T}{2}\frac{T}{2},  \frac{T}{2}\frac{T}{2}\frac{T}{2},  \frac{T}{2}\frac{T}{2}\frac{T}{2},  \frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2}\frac{T}{2$
$\begin{array}{c} \underline{Attraventure}\\ \Rightarrow 3 \sin^{2}\psi = \cos^{2}\psi\\ \Rightarrow 3 \sin^{2}\psi = (-\sin^{2}\psi)\\ \Rightarrow 4 \sin^{2}\psi = -1\\ \Rightarrow \sin^{2}\psi = \pm\\ \Rightarrow \sin^{2}\psi = \pm\\ \Rightarrow \sin^{2}\psi = \pm \pm\\ \Rightarrow \sin^{2}\psi = \pm \pm\\ \end{array}$	
$\begin{array}{c} 1 & 1 & 1 \\ 0 & \operatorname{cress}(\underline{t}) = \overline{\mathbf{s}}^{-1} \\ (\psi = \overline{\mathbf{s}}^{-1} \pm \partial \mathbf{y}^{-1} \\ \psi = \overline{\mathbf{s}}^{-1} \pm \partial \mathbf{y}^{-1} \\ \psi = \underline{s}^{-1} \pm \partial \mathbf{y}^{-1} \\ \psi = -\overline{\mathbf{s}}^{-1} \int_{\mathbf{s}}^{\mathbf{s}} \mathbf{s}^{-1} \\ \psi = -\overline{\mathbf{s}}^{-1} \int_{\mathbf{s}}^{\mathbf{s}} \mathbf{s}^{-1} \\ $	$\begin{array}{c} \sigma(\Omega)_{1}\left(-\frac{1}{2}\right)=-\frac{1}{2},\\ \left(\Psi=-\frac{1}{2},\Psi=2m,\\ \Psi=-\frac{1}{2},\Psi=2m,\\ \Psi=-\frac{1}{2},\Psi=2m,\\ \Psi=0,\\ \frac{1}{2},\Psi=0,\\ \frac{1}{2},\Psi=0,\\$

-

Question 32 (***+)

Solve, in **degrees**, the following trigonometric equation

 $\tan(3x-75)^\circ = \tan 450^\circ$ ,  $300^\circ \le x < 500^\circ$ .



2

#### Question 33 (***+)

Solve the following trigonometric equation in the range given.



Question 34 (***+)

2CT - 2C + T - 1

a) Write the above expression as a product of two linear factors.

**b**) Hence solve the trigonometric equation

 $2\cos\theta\tan\theta - 2\cos\theta + \tan\theta = 1,$ 

for  $0^{\circ} \le \theta < 360^{\circ}$ .

,	(2C+1)(T-1)	,	$\theta = 45^{\circ},$	120°, 135°, 240°

FACTORIZE BY 1

 $\begin{array}{l} \underbrace{U(1)\chi_{2}}{} \quad TH \in \underline{P}(0)T \quad c \in \underline{P}(\underline{n} \in \underline{C}) \\ \hline & 2cadb \left[ b_{2n}(\underline{0} - 2cadb + t_{2n}(\underline{0} = 1) \\ 2cadb \left[ b_{2n}(\underline{0} - 2cadb + t_{2n}(\underline{0} - 1) = c \\ 2cadb \left[ b_{2n}(\underline{0} - 1) + (t_{2n}(\underline{0} - 1) = c \\ (t_{2n}(\underline{0} - 1) + (t_{2n}(\underline{0} + 1)) = c \\ (t_{2n}(\underline{0} - 1) + (t_{2n}(\underline{0} + 1)) = c \\ \hline \end{array} \right]$ 

arctay (1) = 45°

 $\left(\begin{array}{ccc} \Theta = & 42 \pm 180n & W=0|_{23}\\ \Theta = & N|_{4} & \Theta \end{array}\right)$ 

2CT - 2C+T - 1 = 2C(T-1) + (T-1)= (T-1)(2C+1)

 $\frac{1}{2} (\cos \theta = \frac{1}{2}$ 

( 0= 120 ± 3804 0= 240 ± 3804

2

#### Question 35 (***+)

Solve the following trigonometric equation in the range given.

 $\cos(4\psi - 120)^\circ = \cos 200^\circ, \ 0 \le \psi < 180.$ 

	58
	$\Rightarrow \cos(4\psi - 120) = \cos 200$
	$\implies \begin{pmatrix} 4\psi - 120 &= 2\alpha 0 \pm 360\eta \\ 4\psi - 120 &= (360 300) \pm 360\eta \\ & \eta = 0_1  _{2_1}  _{2_2} \dots \end{pmatrix}$
	$\implies \begin{pmatrix} 4\psi - 1b_{2} &= 2\infty \pm 3600\\ 4\psi - 1b_{2} &= 160 \pm 3800 \end{bmatrix}$
N	$\implies \begin{pmatrix} 4\psi = 320 \pm 3604 \\ 4\psi = 280 \pm 3609 \end{pmatrix}$
	$ \implies \begin{pmatrix} \Psi \in 80 \pm 900 \\ \Psi = 70 \pm 900 \end{pmatrix} $
	IN THE RANGE GRIPA
	$\Delta \Psi = \partial \sigma_1^\circ, 17 \sigma_1^\circ, 7 \sigma_2^\circ, 160^\circ$

,  $\psi = 70, 80, 160, 170$ 

#### Question 36 (***+)

Solve, in **radians**, the following trigonometric equation

 $2 + 3\sin^2 4x = 4$ ,  $0 \le x < \frac{\pi}{2}$ ,

giving the answers correct to three significant figures.

12N	
$\{2+3s_{1}s_{2}^{2}+2s_{2}=4,  0 \leq \infty$	H H
⇒ $3 \sin^2 4a = 2$ ⇒ $\sin^2 4a = \frac{2}{3}$ ⇒ $\sin^2 4a = \pm \sqrt{\frac{3}{3}}$	
$\label{eq:alpha} \begin{array}{l} \mbox{-rgl}_{SS} \\ \mbox{escale} & \mbox{sim} \left\{ \Delta_{S} = \sqrt{\frac{2}{S}} \\ \mbox{cutcut} \left( \sqrt{\frac{2}{S}} \right) = \mbox{0.953}^c \end{array} \right\}$	
$\begin{pmatrix} 42 = 0.455^{\circ} \pm 2\pi T \\ 4x = 2.1863^{\circ} \pm 2\pi T \\ \eta = 0_1/123_3 \end{pmatrix}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{pmatrix} \mathcal{I} = 0.239 \stackrel{\text{c}}{=} \frac{3}{2} \frac{3}{2} \\ \mathcal{I} = 0.547 \stackrel{\text{c}}{=} \frac{3}{2} \\ \end{pmatrix}$	$\begin{pmatrix} \infty & = -0.239^{6} \pm \frac{1017}{2} \\ \lambda & = 1.024^{5} \pm \frac{1017}{2} \end{pmatrix}$
Q = 0.239° ₁ 0.52	FT' 1-33°, 1-02°

2

 $x = 0.239^{\circ}, \ 0.547^{\circ}, 1.02^{\circ}, \ 1.33^{\circ}$ 

#### Question 37 (***+)

Solve the following trigonometric equation in the range given.



naths.com

I.V.C.B. Madasm

I.V.C.

#### (***+) **Question 38**

P

>

I.F.G.p.

Solve each of the following trigonometric equations, in the range given.

- **a**)  $\sin(2\theta + 30^\circ) = \frac{\sqrt{3}}{2}, -180^\circ \le \theta < 180^\circ$
- **b**)  $\sin x = 2\cos x, \ 0 \le x < 360^{\circ}$
- c)  $2\sin^2 y 5\cos y + 1 = 0, \ 0 \le y < 2\pi$



Created by T. Madas

00

#### Question 39 (***+)

A cubic curve is given by

 $f(x) \equiv 4x^3 - 8x^2 - x + k ,$ 

where k is a non zero constant.

a) Given that (x-2) is a factor of f(x), show that (2x-1) is also a factor of f(x).

**b)** Express f(x) as the product of three linear factors.

c) Hence solve the following trigonometric equation

 $4\sin^3 y - 8\sin^2 y - \sin y + k = 0,$ 

for  $0^{\circ} \le y < 360^{\circ}$ .



 $y = 30^{\circ}$ ,

150°,

210°,

330°

Question 40 (***+)

The Com

COM

I.F.G.p

>

Solve, in **radians**, the following trigonometric equation

 $7\cos(2x+3)^c = 5, -\pi \le x < \pi,$ 

COM

 $x = -1.89^{\circ}, -1.11^{\circ}, 1.25^{\circ}, 2.08^{\circ}$ 

I.C.P.

I.F.G.B.

madasma

madasm.

 $G_{i}$ 

05 (22+3)= 5

COM

giving the answers correct to three significant figures.

I.G.B.

Madas

Created by T. Madas

madasmaths,

00

#### Question 41 (***+)

The graph of the curve with equation

 $y = 2\sin(2x+k)^\circ$ ,  $0 \le x < 360$ ,

where k is a constant so that 0 < k < 90, passes through the points with coordinates P(55,1) and  $Q(\alpha,\sqrt{3})$ .

**a**) Show, without verification, that k = 40.

**b**) Determine the possible values of  $\alpha$ .

$\alpha = 10, 40, 190, 220$	ļ
212	

(a) FOW AN GROATION USING THE PO	ww ۳ ( <u>ss</u> 1)
$ \begin{array}{c} \longrightarrow 0 = 2 \sin(2x+k)^{\circ} \\ \longrightarrow 1 = 2 \sin(10+k)^{\circ} \\ \longrightarrow \sin(k+10)^{\circ} = \frac{1}{2} \end{array} $	
ansin(±) = 30°	
$\implies \begin{pmatrix} 1 + 10 = 30 \pm 3600 & h^{-1}0^{-1} \\ k + 10 = 150 \pm 3600 & h^{-1}0^{-1} \\ \end{pmatrix}$	۰
=> ( ± +-00 + 360m ( ± = 40 ± 360m	
→ k = <, 326, 40, 386, 546,	- ανιγ γαως in the ειροιείο εποίος Ο < κ <ηρι (ς ζ = 40
<li>b) 05/10- 2= 00 a THE POWN R(W/NS)</li>	
⇒9 y = 2sm (2x+140)° ⇒ G= 2sm (2x+140)°	
⇒ sin fx+4a)° e 9 <u>7</u> artsin (92) = 60	
$\Rightarrow \begin{pmatrix} 2w + 40 = 60 \pm 360n \\ 3x + 40 = 120 \pm 360n \\ 2x + 40 = 120 \pm 360n \end{pmatrix}$	
=> (2x = 20 ±3604 3x = 80 ±3604	N THE RANGE O < K < 300
⇒ (×= 10 ± 1804 ⇒ (×= 40 ± 1804	<u>≪= 10, 196, ₩, 230</u>

9

#### Question 42 (***+)

Solve, in **radians**, the following trigonometric equation

 $\tan(3x-5)^{c} = \tan 7^{c}, \ 3 \le x < 6,$ 

giving the answers correct to three significant figures, where appropriate.

x = 4	, $x \approx 5.05$
	Ch
~~~~~	
$\{\tan(3\alpha-5)^c=\tan7^c,$	3≤2<6}
32-5=7±nTT 32=12±nTT	n=01,2,3,
$\lambda = 4 \pm \frac{mT}{3}$	2. 2
. For THE GWW INTRUST.	- -
$2_{1}=4$ $2_{2}=5.05$	

Question 43 (***+)

Solve, in **radians**, the following trigonometric equation

 $\tan^4 y - \tan^2 y = 6, \ 0 \le y < 2\pi,$

giving the answers in terms of π .

m	
tanty - tany = 63	Soantan (13) = 3
tayty - tayy - 6 = 0	> arctay (-13) = -3
$\frac{(\tan^2 y + 2)(\tan^2 y - 3) = 0}{\tan^2 y = < \frac{3}{3}}$	y= = = + +++ y= = + +++ y= = +++++++++++
$tany = < \sqrt{3}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
	.4. = ST

Question 44 (***+)

Solve the following trigonometric equation

F.G.H

 $\frac{2 + \cos 2x}{3 + \sin^2 2x} = \frac{2}{5}, \text{ for } 0^\circ \le x < 360^\circ.$

Madası,

		1.
	SECTEMUNICUTE HE TO AN JUTTED	1.2
í	$\implies \frac{2+\log 2\lambda}{3+\sin^2 2x} = \frac{2}{5}$	
1	\implies $b + scala = 6 + 2ay^2 2a$	
2	123ND 605 22 + SH 22 =	
1	$= 10 + 5\cos 2a = 6 + 2(1 - \cos^2 2a)$	
	st 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	$\implies 2\cos^2 2x + 5\cos^2 x + 2 = 0$	
	⇒ (20052 + 1)(0052 + 2) = 0	
	$\Rightarrow \cos \alpha = < \sum_{-\frac{1}{2}}^{-\chi} -i \leq \cos \alpha \leq i$	
	-Places with some	
	$\alpha_{1}\alpha_{2}\alpha_{3}\left(-\frac{1}{2}\right) = 120^{\circ}$	
	$\begin{pmatrix} 2a = 12b \pm 380n \\ 2z = 24b \pm 380n \\ 2z = 24b \pm 380n \end{pmatrix}$	
	$\begin{pmatrix} x = 60 \pm 1004 \\ x = 120 \pm 1004 \end{pmatrix}$	
1	<u>J.= 60°, 240°, 120°, 300°</u>	
1		

 $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$

Question 45 (***+)

I.C.

Solve, in degrees, the following trigonometric equation

 $\tan^4 y = 6 + \tan^2 y$, $0^\circ \le y < 360^\circ$.

All Allen	
$y = 60^{\circ}, 120^{\circ}$, 240°, 300°
30	
-42	
tanty = 6 + tang o.	< 4 < 360°
Titles is a quindratic in targy	SO WE PROCED BY FAUTURE RATION
- tarty - tarty - 6 =	0
\Rightarrow $(targy + 2)(targy - 3)$	0 = 0
- tange - 3	
$\Rightarrow \forall any = < \sqrt[3]{3}$	
SOWING GACH OF THESE SCRITCAT	łuj
• buyy = N3	• tany = - 13
augan 12 = 60°	avetur (-15") = ~60"
y = 60°± 1804	y=-60°±1804
Configure at the contact of an example	ų≈0,1,2,6,.
= 41= 60°, 741° 120°	306°
$=9 \ 4 = 60^{\circ}, 120^{\circ}, 240^{\circ},$	300°
	/

I.F.G.

Question 46 (***+)

A trigonometric curve is defined by the equation

 $f(x) = 3 - 4\sin(2x + k)^\circ, \ 0 \le x \le 360$

where k is a constant such that -90 < k < 90.

The curve passes through the point with coordinates (15,5) and further satisfies

 $A \le f(x) \le B ,$

for some constants A and B.

- **a**) State the value of A and the value of B.
- **b**) Show that k = -60.
- c) Solve the equation f(x) = -1.

A = -1, B = 7, x = 75, 255

(****) Question 47

P

Given that θ is measured in degrees, solve the following trigonometric equation

F.G.B.

I.G.

Question 48 (****)

F.C.B.

1

The depth of water in a harbour on a particular day can be modelled by the equation

$$D = 12 + 3\sin\left(\frac{\pi t}{6}\right),$$

where D is the depth of the water in metres, t hours after midnight.

Determine the times after noon, when the depth of water in the harbour is 10 metres.

nadasm.

COM

G

i G.B.

C.p.

Question 49 (****)

The height of tides in a harbour on a particular day can be modelled by the equation

 $h = a + b\sin(30t)^\circ,$

where h is the height of the water in metres, t hours after midnight, and a and b are constants.

At 02.00, h = 9.5 m and at 08.00, h = 3.5 m.

Determine ...

- **a**) ... the value of a and the exact value of b.
- **b**) ... the first time after midnight when the height of the tide is 5 metres.

	, 0	$a = 6.5$, $ b = 2\sqrt{3} $, $ 06:51 $
1	2.7	
		//
6		
	Q)	$h = a + b SM(30E)^{\circ}$
		$w_{4}w_{5} + 2 + -9.5 \implies 9.5 = a + b \sin 60^{\circ} $ $w_{4}w_{5} + w_{5} + -3.5 \implies 3.5 = a + b \sin 240^{\circ} $
		$\Rightarrow \begin{cases} \begin{array}{c} 9 \cdot S = \alpha + \frac{\sqrt{2}}{2}b \\ 3 \cdot S = \alpha - \frac{\sqrt{2}}{2}b \end{array} \end{cases}$
		ADJONNON THE EPURTIONS MENDS
		13 = 2a a = 6.5
		ENAWY
		3 = 12 b
		6 = 18b
P		_//
3	6)	USING THE FORMULA WITH a = 6.5 AND b = 2437
		\rightarrow $h_1 = 6.5 + 2\sqrt{5} \operatorname{sm}(30^{+})^{\circ}$
		$\Rightarrow 5 \approx 6.5 + 243 \sin(30t)^{\circ}$ $\Rightarrow -1.5 = 243 \sin(30t)$
		→ - $\frac{\sqrt{3}}{4}$ = = = = (37)
		$a_{\text{TCSM}} \left(-\frac{1}{4} \right) = -25 \cdot 6589$
		$\Rightarrow \begin{pmatrix} 30t & : -25 \cdot 6589 \dots \pm 3609 \\ 30t & : 205 \cdot 6589 \dots \pm 3609 \end{pmatrix} \xrightarrow{d = Q_1 P_2 P_3} \cdot \cdot \cdot \cdot \underbrace{t = 6 \cdot 8523}$
		$\Rightarrow \begin{pmatrix} t & \pi & -0.8533 \pm 12\eta \\ t & = & 4533 \pm 12\eta \end{pmatrix} \qquad \therefore \frac{AT}{06:51}$
		11

2

Question 50 (****)

Solve the following trigonometric equation, in the range given.

 $\sqrt{3} + 2\sin\left(3x + \frac{\pi}{4}\right) = 0, \quad 0 \le x < \frac{\pi}{2}.$

Give the answers in terms of π .

2], $x = \frac{13\pi}{36}, \frac{17\pi}{36}$
22	
$\begin{array}{rcl} & & & & \\ & & & \\ & & & \\ \Rightarrow & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	$\begin{array}{c} \operatorname{grad}(tj)^{*,*} \\ \mathcal{J}^{2} = \frac{32}{100} + \frac{3}{100} \\ \mathcal{J}^{2} = \frac{3}{100} \\ \mathcal{J}^{2} = \frac{3}{100} + \frac{3}{100} \\ \mathcal{J}^{2} = \frac{3}{100} \\ \mathcal{J}^{2$

COM

P.C.A

in the

· Car

Question 51 (****)

F.G.B.

I.Y.G.B.

Solve the following trigonometric equation in the range given.

2

 $4\tan^2\theta\cos\theta=15,\ 0\le\theta<360^\circ.$

A	
$ \begin{array}{c} \left(4 \log \theta + 15 \right) \\ \Rightarrow \left((\frac{\sin \theta}{\cos \theta} \cos \theta + 15 \right) \\ \Rightarrow \frac{4 \sin^2 \theta}{\cos \theta} \cos \theta + 15 \\ \Rightarrow \frac{4 \sin^2 \theta}{\cos \theta} \cos \theta + 17 \\ \Rightarrow \frac{4 \sin^2 \theta}{\cos \theta} = 15 \\ \Rightarrow 4 \sin^2 \theta = 15 \\ \Rightarrow 4 \sin^2 \theta = 15 \\ \Rightarrow 4 \sin^2 \theta = 15 \\ \Rightarrow 4 - 4 \cos^2 \theta = 15 \\ \Rightarrow 0 = 4 \log^2 \theta + 15 \log^2 \theta + 15 \log^2 \theta + 15 \\ \Rightarrow 0 = 4 \log^2 \theta + 15 \log^2 \theta + 1$	$\begin{array}{c} \theta^{2} = 554^{2} \\ \theta^{1} = 22^{2} \\ \theta^{1} = 22^{2} \\ \theta^{2} = 256^{2} \\ \theta^{2} = 256^{2} \\ \theta^{2} = 252^{2} \\ \theta^{2} = 22^{2} \\ \theta^{2} = 22^{$

 $\theta \approx 75.5^{\circ}, 284.5^{\circ}$

F.G.B.

Question 52 (****)

Solve the following trigonometric equation in the range given.

 $2\tan\varphi\sin\varphi=3, \ 0\leq\varphi<2\pi.$

Give the answers in terms of π .

3	<u> </u>
$\begin{array}{c} \left(\begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $

 π 5 π

 $\varphi =$

Question 53 (****)

Solve the following trigonometric equation in the range given.

 $2\cos x = 3\tan x$, $0^{\circ} \le x < 360^{\circ}$.

E.

 $\mathfrak{I}_1 = 30^\circ$ $\mathfrak{I}_2 = 190$

Question 54 (****)

 $f(x) = x^3 - 4x^2 - \frac{1}{2}x + 2, x \in \mathbb{R}.$

- a) Show that (x-4) is a factor of f(x).
- **b**) Express f(x) as the product of a linear and one quadratic factor.
- c) Hence solve the trigonometric equation

Y.G.B.

 $\cos^3\theta - 4\cos^2\theta - \frac{1}{2}\cos\theta + 2 = 0,$

for $0^{\circ} \le \theta < 360^{\circ}$.

F.G.B.

I.C.B.

			· · · · · · · · · · · · · · · · · · ·
,	$f(x) \equiv (x-4)(x^2-\frac{1}{2})$,	$\theta = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315$
			··C
0		h.,	-0

_ /]	
h -		1 1 1 1 m
Latte		
100	1 m.	
1		
	Emm	
	$\chi^{+}(x) = x^{-} - 4\chi^{-} - \frac{1}{2}x + 2$	
	Par 13 2 1 mar av av	212.50
a) .	$\uparrow(4) = 4 - 4x4 - 5x4 + 2 = 64 - 64$	-2+2 - 0
		: (x-4) & A MUSE
	A	~
6)	$+(\alpha) = (\alpha - 4)(\alpha^{2} + A\alpha - \frac{1}{2})$	OR BY LONG DIVUION 3
	-4x2	2-4 3/12/1212
	les a statis	-23+dx2
	$f(z) = (z - z)(z - \overline{z})$	-2x+2
	(BY INJERFLION)	+==
		in many
	3 2 1 0	
9	$\cos \theta = 4\cos \theta = \frac{1}{2}\cos \theta + 2 = 0$	
-	$(\cos\theta - 4)(\cos^2\theta - \frac{1}{2}) = 0$ Rew	Pher ia. (b
	(mpa water -1 < cost < 1	
	or $\omega s \theta = \frac{1}{2}$	
	$= (050 = \pm 1 = \pm \sqrt{2})$	
	/ 100 - 12 - 2	
	$\operatorname{ORCLOS}\left(\frac{\sqrt{2}}{2}\right) = 45^{\circ}$	$\operatorname{alccol}\left(-\frac{S}{\sqrt{S}}\right) = 132_{\circ}$
	(0 = 45° ± 3804	(0 = 135° + 3600
	(P = 315° ± 3604 H=911,2,3	B = 225° = 3604 4=9122.
		/
	A= 45° 315° 135° 3	00 /
	0	~~ //
		1/

C.I.

G

2017

mana

F.G.p.

Question 55 (****)

Solve the following trigonometric equation in the range given.

 $2\cos x - 3\tan x = 0, \quad 0 \le x < 2\pi.$

Give the answers in terms of π .

Question 56 (****)

Solve the following trigonometric equation in the range given.

 $3\tan\varphi\sin\varphi=8$, $0\leq\varphi<2\pi$.

Give the answers in radians correct to two decimal places.

- anccos(1)= 1.231°
- $\begin{pmatrix} \varphi = 1.23^{\circ} \pm 2\pi M \\ \varphi = 5.05^{\circ} \pm 2\pi M \end{pmatrix}$ $M = 0/(2^{2}).$

2

Question 57 (****)

Solve the following trigonometric equation in the range given.

 $4\tan\psi\sin\psi\cos\psi + 4\tan\psi\cos\psi + 1 = 0, \quad 0^\circ \le \psi < 360^\circ.$

Question 58 (****)

1.

Solve the following trigonometric equation in the range given.

 $\frac{1}{2}\tan x - \sin x = 0, \ 0^{\circ} \le x < 360^{\circ}.$

G

Question 59 (****)

Solve the following trigonometric equation in the range given.

 $3\tan\theta\sin\theta = \cos\theta + 1, \quad 0 \le \theta < 2\pi.$

Give the answers in radians correct to two decimal places.

 $\theta \approx 0.72^{\rm c}, 3.14^{\rm c}, 5.56^{\rm c}$

Question 60 (****)

Solve the following trigonometric equation in the range given.

 $(\sqrt{3} + 2\sin 2y)(\sqrt{3} + \tan 2y) = 0, \ 0 \le y < \pi$

Give the answers in terms of π .

<u> </u> ,	$y = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6}$
2	100

(N3 + Zsin2y) (N3 + tu2y) =	=03
<u>ETTH</u> ER (3"+ 25M 2y =0 25M 2y = -13" SM 2y = -22"	2 13"+ tay 2y =0 tay 2y = - 13"
$O(CSN \left(-\frac{4S}{2}\right) = -\frac{11}{3}$	2 • arcting(- $\sqrt{3}$) = $-\frac{\pi}{3}$
$ \begin{pmatrix} 2g & = -\frac{TL}{3} \pm 2\pi m \\ 2g & = \frac{4TL}{3} \pm 2\pi m \\ \end{pmatrix} $	$\sum_{i=1}^{N=0} \frac{1}{2i} = \frac{1}{2i} \pm ML$
$m \pm 3 = -3 \pm 10$	y = -7= ± 2
== 	,

2

Question 61 (****)

Solve the following trigonometric equation in the range given.

 $6\cos\psi = 5\tan\psi$, $0 \le \psi < 2\pi$.

Give the answers in radians, correct to two decimal places.

~ G.B	C.B	$[$, $\psi \approx$	0.73 ^c ,2.41 ^c	C.P
adasm.		$\begin{array}{c} \hline \\ \hline $	$Slup = \begin{cases} 33 \\ 41 \\ c \\ c \\ 2 \\ c \\ 2 \\ c \\ c \\ c \\ c \\ c$	Inathe
Alls.			"S.COM	. v.
	11302 CI	maria	.B. 1120	
	Con Con	, ¹² 331 011	aths co.	STI3/IS
I.F.C.			C.p.	1. Y.C.
nada.	Created by T. Mada	s Mada		asn

Question 62 (****)

 $f(x) = x^3 - x^2 - 3x + 3.$

- a) Show that (x-1) is a factor of f(x).
- **b**) Express f(x) as the product of **three linear factors**.
- c) Hence solve the trigonometric equation

 $\tan^3\theta - \tan^2\theta - 3\tan\theta + 3 = 0,$

for $0^\circ \le \theta < 360^\circ$.

i.G.B.

I.G.B.

], $\theta = 45^{\circ}, 60^{\circ}, 120^{\circ}, 225^{\circ}, 240^{\circ}, 300^{\circ}$

Maria 81

20

M21/2

G

F.G.B.

(a) $-\frac{1}{2}(x_{1}^{2} - x_{2}^{2} - x_{$

Question 63 (****)

Solve the following trigonometric equation in the range given.

 $3\tan x + 2\cos x = 0, \quad 0 \le x < 2\pi.$

Give the answers in terms of π .

Question 64 (****)

Solve the following trigonometric equation in the range given.

 $(\sqrt{3} - 2\sin 3x)(\sqrt{3} + 2\cos 3x) = 0, \quad 0^{\circ} \le x < 180^{\circ}.$

$x = 20^{\circ}$, 50°, 70°, 14	0°, 160°, 170°
~	90	
he.	HE GRUHINA W HARAYA ANDREED AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND	SO WE SOME DIBETLY BE AND
20	$\Rightarrow \sqrt{3} + 2 \cos 32 = 0$ $\Rightarrow \sqrt{3}^{2} = 2 \sin 32$ $\Rightarrow \sin 32 = \sqrt{2}$	$ \rightarrow \sqrt{3}^{2} + 2\cos 31 = 0 $ $ \rightarrow 2\cos 331 = -\sqrt{3}^{2} $ $ \rightarrow \cos 331 = -\frac{\sqrt{3}^{2}}{2} $
	$arcsin(\frac{\sqrt{C}}{2}) = 6c^{a}$ = $9(3x = 60^{a} \pm 360^{a}, n_{e0,123},$	$a_{12225}\left(-\frac{\sqrt{13}}{2}\right) = 150^{\circ}$ $\Rightarrow \begin{pmatrix} 3\chi = 150^{\circ} \pm 350^{\circ} \\ 3\chi = 210^{\circ}\pm 360^{\circ} \\ 3\chi = 210^{\circ}\pm 360^{\circ} \end{pmatrix}$ we give
	⇒(a = 20°± 120h a = 40°± 120h	$\Rightarrow \begin{pmatrix} 3 = 50^{\circ} \pm 120^{\circ} \\ 3 = 70^{\circ} \pm 120^{\circ} \end{pmatrix}$
1		
0	20 = 140° 20 = 40° 21 = 60° 21 = 50° 20 = 50°	
5/	αι τη της αη = 70° Ο <u>Ε</u> R = 20°, 44	°, 50°, 76°, 46°, 160°, 176°

G

Question 65 (****)

Solve the following trigonometric equation in the range given.

 $8\tan^2 x \sin x = \cos x, \quad 0 \le x < 2\pi.$

Give the answers in radians correct to two decimal places.

<u> </u> ,	$x \approx 0.46^{\circ}, 3.61^{\circ}$
	n.
8 tay = 1052	0 € X < 217 }
$8 \log_{2.5}(n_{1} = \cos_{2.5})$ $\Rightarrow 6 \left(\frac{\sin_{2.5}}{\cos_{2.5}} \right) \sin_{2.5} = \cos_{2.5}$ $\Rightarrow \frac{\cos_{2.5}}{\cos_{2.5}} = \cos_{2.5}$	$\left\{\begin{array}{c} & \text{AUTELIATIVE} \\ & \text{BEWARSING} \\ & \text{COSE} \\ & \text{COSE} \\ & \text{BEWARSENA} \\ & \text{COSE} \\ & \text{BEWARSENA} \\ & \text{COSE} \\ & \text$
$f_{2ad}^{2} = f_{12}^{2} \otimes \mathbb{C}$ $\frac{f_{2ad}}{f_{2ad}} = \frac{f_{12}^{2} \otimes \mathbb{R}}{f_{2ad}^{2}} \approx$ $I = x_{1}^{2} x_{2}^{2} \otimes \mathbb{C}$	8 thu32 = 1 ftr
$\begin{array}{c} (t_{W})_{\mathcal{A}}^{2} = \frac{1}{8} \\ \Rightarrow t_{W} \cdot \varepsilon = \frac{1}{2} \\ arct_{W} \left(\frac{1}{2}\right) = 0.464^{c} \end{array}$	$\begin{array}{c} \mathcal{T}_{1} = \mathcal{O} \cdot \mathcal{A} \mathcal{C}_{1} \\ \mathcal{X}_{1} = \mathcal{O} \cdot \mathcal{A} \mathcal{C}_{1} \\ \mathcal{X}_{2} = \mathcal{J} \cdot \mathcal{C}_{1} \\ \mathcal{C}_{1} \\ \mathcal{C}_{2} = \mathcal{J} \cdot \mathcal{C}_{1} \\ \mathcal{C}_{1} \\ \mathcal{C}_{2} \end{array}$

Question 66 (****+)

Solve the following trigonometric equation for $0 \le \theta < 360^{\circ}$

 $\sin\theta\tan^2\theta(2\sin\theta+3)+\tan^2\theta=0.$

19		
5140 tun ² 0 (25m6 - tan ² 0 [29u0(25m1 - tan ² 0 [20u30 + 3 - tan ² 0 (25m0 + 1)	3+3) + tay20=0 0+3) + 1] = 0 sw0 +1] = 0 1)(su0+1) = 0	
• turo= 0 (• Sh0=-1	Ø SMD = -⊥
θ= 0 ± 180n μεσηίζει.	$\theta = -90\pm 3604$ $\theta = 270\pm 3604$ $w = 91_{21}$) θ= -30 ± 360μ Θ= 210 ± 360μ
9= 0, 180	0-20 OF tang	θ = 330°, 210°
Atticution → Sunt baile (25m0 +) → Sunt baile (25m0 +) → Sunt content → Sunt baile (25m0 +3) +50 	$a_{10} = 0$ $a_{10} = 0$ $a_{10} = 0$ $a_{10} = 0$ $a_{10} = 0$	$\begin{array}{c} \text{Grifter Single=0} \\ \text{eq. Single=-} \\ \text{eq. Single=-} \\ \text{As Billeria} \\ \text{As Billeria} \\ \text{As Differ Barrieria} \end{array}$
=> S490-[251490+35	140+1]=0 (US RELEASE BY COSE

2

 $\theta = 0^{\circ}, 180^{\circ}, 210^{\circ}, 330^{\circ}$

Question 67 (****+)

Calculate in **degrees**, correct to one decimal place, the solution of the following trigonometric equation

hs.com

10				7
1.1.	$\frac{1-\cos\theta}{\sin\theta} = \sqrt{3}\sin\theta$	$\theta, 0 < \theta < \pi.$	Ko.	11
	p ''	ig ⊏	$\theta \approx 2.01^{\circ}$	
in.	nan	$\begin{array}{c} \text{Hyperformation} \\ \text{Hyperformation} \\ \Rightarrow \frac{1-\cos\theta}{\sin\theta} = \sqrt{3} \\ = 9 1-\cos\theta = \sqrt{3} \\ \end{array}$	$\frac{1}{1} = \phi_{hee} + \delta_{ho} = 0$ $\Theta_{hee}^{2} = 0$ $\Theta_{hee}^{2} = 0$ $\Theta_{hee}^{2} = 0$ $\Theta_{hee}^{2} = 0$	120
Adas .	-43SD	= (∞) = 41 - = √3/αδ (cmp + 1) 1) THE QUARENTE GROWA = (asg = -($ -\sqrt{2} \approx D$ $ -\sqrt{2} \approx D$ $ -\sqrt{2} \approx D$ $ -\sqrt{2} \approx \sqrt{2} + \sqrt$	
S. 192	h	$\underbrace{\begin{array}{c} \text{Souries} \text{each case served} \\ \bullet \text{usiges } 1 \\ \text{altras}(j) = 0 \\ (\theta, z) = 2\pi \text{ m} \\ \theta^{+} z = 2\pi \text{ m} \\ \theta^{+} z = 2\pi \text{ m} \end{array}}$	241° -0.422C TECY $\Phi \cos \theta = -0.422C$ $\operatorname{acces}(-0.422C_{\circ}) = 2.007S_{\circ}$. 3173_{\circ} $(9 = 2.01 \pm 2.01 \operatorname{weat}_{3,1-1})$	
	COM	<u>b=201</u>	5 = 4 28 ± 2011	7
	\sim	12 ×	12	
es a	B	Gp	43	
nan	1202	in,		20
1, ⁴² 8m	I.	21.7	2800	351
ls in	lis	ans.co.	131h	
	"COM	- A	J. "	200
	0. 1	J.	No.	Č. 1,
63	S, h	Gp	S.	<u>ь</u>

Question 68 (****+)

The three angles in a triangle are denoted as α , β and γ .

It is further given that

·C.3-

I.C.

 $\tan \alpha = -4.705$ and $\tan (\beta - \gamma) = 0.404$

, $\alpha \approx 102^{\circ}$, $\beta \approx 50^{\circ}$

tana= -4.705

arcton(-4.705)= -7

 $\rightarrow \forall + \& + \chi = 180$ $\Rightarrow 102^{\circ}+B+\chi = 180^{\circ}$ $\Rightarrow B+\chi = 78^{\circ}$ ADDING THE ENGLISHE $\gamma \approx 28^{\circ}$

2017

R

i G.B.

try (B-x) = 0.454

B-X = 22°

Determine, in degrees, the size of each of the angles α , β and γ .

The figure above shows the graph of the curve with equation

 $y = 6 - 4\sin\theta - \cos^2\theta$, $0^\circ \le \theta \le 360^\circ$.

The curve has a minimum at the point A and a maximum at the point B.

Determine the coordinates of A and B.

1.

K.C.

FIEST WENTE THE EPUATION IN SMB
y= 6-4.2m8-∞20 y= 6-4.3m9-(1-2m26) y= 5-4.5m9+2m26
BY INSPRETION, LOCKING AT THE SINE GRAPHT, AND NOTING 17/17 SIN 270° = -1
$\bigcup_{MAK} = 5 - 4(-1) + (-1)^2 = 10$
: <u>B(270°,10)</u>
COMPLETING THE SpORE IN SIMD
$\begin{array}{l} (y) = (y_{0})^{2} - (y_{0})^{2} + (y_$
BUT SING \neq 2, so Minimum was be followed with smb=+1
$y_{1} = (+1-2)^{2} + 1 = 1 + 1 = 2$

 $B(270^{\circ},10)$

·· 4(99°2)

 $A(90^{\circ}, 2)$

(****) **Question 70**

man.

I.F.G.p.

naths.com

SM2/IS-COM

I.F.G.p

>

Solve the following trigonometric equation for $0 \le \theta < 360^{\circ}$

 $2+4\cos^2\theta=7\cos\theta\sin\theta$.

C.B. Madasmatis.Com

naths.com

. G.J.

I.C.

Madasma

I.V.C.B. Madasn

Iths.com

Created by T. Madas

00

.C.

Mada

madasmaths.com

(*****) Question 72

Solve the following trigonometric equation for $0 \le x < 360^{\circ}$

Question 73 (*****)

1720

'31/15.COM

naths.com

I.V.G.B

I.F.G.B.

Þ

2

Solve the following trigonometric equation

the com $(19+2\sin^2 2\theta)\tan 2\theta = \frac{3}{\cos 2\theta} - 17\cos 2\theta$, $0^\circ \le \theta < 360^\circ$.

F.G.B.

Madası

nn,

E.A.

I.C.

madasma

2010

I.V.C.B. Madasn

Created by T. Madas

2017

I.Y.C.J

Question 74 (*****)

F.G.B.

21/15

I.V.G.B.

1120251

 $4\cos^2\theta + \tan^4\theta = 10, \ 0 \le \theta < 2\pi.$

Show that $\theta = \frac{1}{3}\pi$ is a solution of the above trigonometric equation and use a non verification method to find the other solutions.

12112SM

G

COM

Mada

I.C.p