
Created by T. Madas TRIGONOMETRIC GRAPHS Cu RIGONOMEA GRAPHS ASTRAILS COM I. Y. C.P. MARIASINALIS.COM I. Y. C.P. MARIASINALIS.COM I. Y. C.P. MARIASINALIS.COM I. Y. C.P. MARIASIN

Question 1 (**) Sketch the graph of

 $y = \cos 2x, \ 0^{\circ} \le x \le 360^{\circ}.$

The sketch must include the coordinates of all the points where the graph meets the coordinate axes.

graph

Question 2 (**+)

Sketch on separate diagrams the graph of

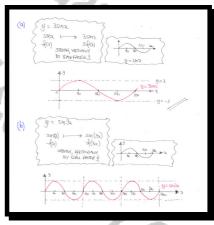
- **a**) $y = \sin 3x^{\circ}, \ 0 \le x \le 360$.
- **b**) $y = 3 + \sin x^{\circ}, \ 0 \le x \le 360$.

The sketches must include the coordinates of all the points where each of the graphs meets the coordinate axes.

graph

100	
(a)	y= sn 30c = 77415 15 4 HORIZOUTAL STRETCH OF SNOC, BY SOME ANDRE 5
	y=5002
	y=3M32 81
11	U = 3 + SIMOL -> THIS IS A TOMUSIANT WITH LAND & SMICH & S
(b)	
	86
	10 ido 210 360

Question 3 (**+)

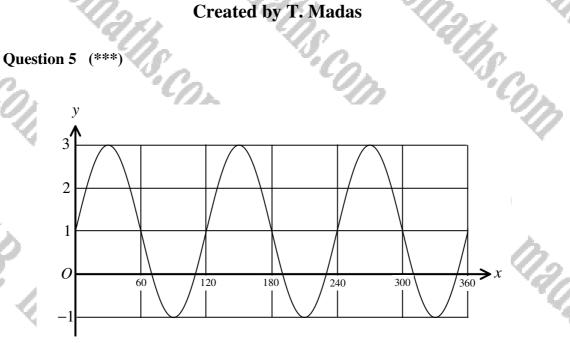

Sketch on separate diagrams the graph of

a)
$$y = 3\sin x^{\circ}, \ 0 \le x \le 360$$
.

b)
$$y = \sin 3x^{\circ}, \ 0 \le x \le 360$$
.

The sketches must include the coordinates of all the points where each of the graphs meets the coordinate axes.

graph

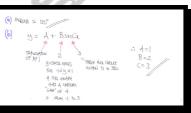


Question 4 (***) Sketch the graph of

 $y = 1 + \cos \frac{1}{2}x$, $0^{\circ} \le x \le 360^{\circ}$.

graph

{ y= 1	(x£) 200 +	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
S cosfe)	⊨ w ws(ta)	→ 62(±2) + 1 }
l	STRETCH, HEREWINCH BY SCALL FACISE 2	TEASSIATION, "URWHERS"
(Bo i b g= log	
34		y=2.
-	180 361	THE Y


The figure above shows an accurate graph of

 $y = A + B\sin Cx ,$

where x is measured in degrees and A, B and C are constants.

- a) State the period of the graph.
- **b**) Find the value of A, B and C.

Y.C.

A = 1, B = 2, C = 3

 $\tau = 120^{\circ}$,

he,

1

nadasn

Question 6 (***)

Sketch the graph of

Ĉ,

Ka,

 $y = \sin(x - 30)^\circ, \ 0 \le x \le 360.$

The sketch must include the coordinates of all the points where the graph meets the coordinate axes.

21/20

graph

Ĉ.

madasn.

2

210 340 >

Question 7 (***)

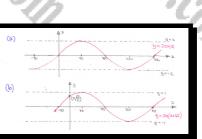
 $y = -1 + \sin 2x^\circ, \ 0 \le x \le 360.$

a) Describe geometrically the two transformations that map the graph of $y = \sin x^\circ$ onto the graph of $y = -1 + \sin 2x^\circ$.

b) Sketch the graph of

 $y = -1 + \sin 2x^\circ$, $0 \le x \le 360$.

horizontal stretch by scale factor $\frac{1}{2}$, followed by translation "downwards" by 1 unit


(a) <	SU(22)
(6)	45 90 115 1180 215 2% 31/5 340
	4
	J-may a

Question 8 (***)

Sketch on separate diagrams the graph of

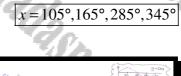
- **a**) $y = 2\sin x^\circ, \ 0 \le x \le 360$.
 - **b**) $y = \sin(x+45)^\circ$, $0 \le x \le 360$.

The sketches must include the coordinates of all the points where each of the graphs meets the coordinate axes.

graph

Question 9 (***)

Ĉ.Ŗ.

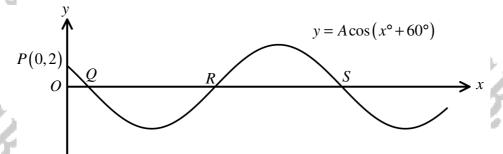

ic.p.

 $y = \frac{1}{2}\sin 2x$, $0^{\circ} \le x \le 360^{\circ}$.

a) Sketch the graph of y.

The sketch must include the coordinates of all the points where the graph meets the coordinate axes.

b) Solve the equation $y = -\frac{1}{4}$.


() A ^y y= ±sina	and the second s
45 90 135	100 225 276 3/5 CM
2	
(b) $y = -\frac{1}{4}$ $\Rightarrow \frac{1}{2} \sin 2a = -\frac{1}{4}$	(27 = -30 ± 3604 (27 = 210 ± 3604 4=04,33,
⇒ sin2a = -1/2	$\begin{array}{ccc} & & & \\ (\mathcal{R} = & 201 \pm 201 \\ \mathcal{R} = & 201 \pm 201 \end{array}$
$a_{E-} = \left(\frac{1}{3} - \right) \alpha_{1231} p$	∴ Q = 165° 345° 105° 285°

Ĉ,

1120251

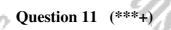
15

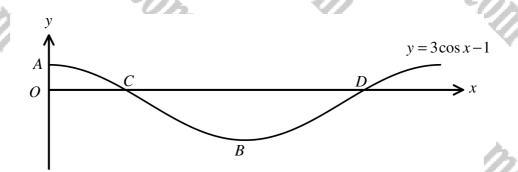
The figure above shows part of the graph of the curve with equation

$y = A\cos\left(x^{\circ} + 60^{\circ}\right),$

where x is measured in degrees and A is a constant.

The point P(0,2) lies on the curve.


a) Find the value of A.

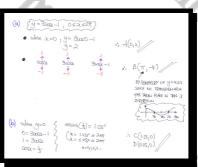

The first three x intercepts of the curve, for which x > 0, are the points labelled as Q, R and S.

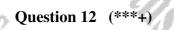
b) State the coordinates of Q, R and S.

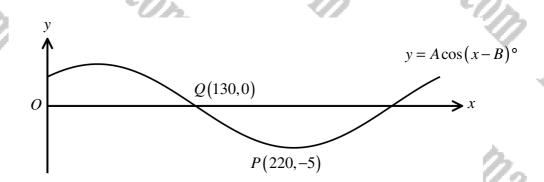
	The second se
A = 4, $B = 3$,	Q(30,0), R(210,0), S(390,0)

1	The second se
a) (ISING- THE	- four (02)
	y = two.(2+60) 2 = tax60
	$2 = \frac{1}{2}4$
	<u>A= 4</u>
D	"
b) sounc	4 las(2+60) =0
	$o=(_{Q}+x)_{AOJ} \rightleftharpoons$
	$ \begin{array}{c} \longrightarrow \\ \left(\begin{array}{c} 2+60 = 90 \\ 3+60 = 280 \\ \pm 3 \\ \end{array} \right) \\ \left(\begin{array}{c} 3+60 \\ + 50 \\ \end{array} \right) \\ \left(\begin{array}{c} 2+60 \\ - 280 \\ \end{array} \right) \\ \left(\begin{array}{c} 3$
	$ \Rightarrow \begin{pmatrix} \alpha = 30^{\circ} \pm 3604 \\ \alpha = 20^{\circ} \pm 3604 \end{pmatrix} $
	$\therefore \frac{\varphi(\mathfrak{W}_0)}{\varphi(\mathfrak{W}_0)}, \ \mathfrak{L}(\mathfrak{W}_0), \ \mathfrak{s}(\mathfrak{W}_0)$

The figure above shows the graph of the curve with equation


$$y = 3\cos x - 1, \quad 0 \le x \le 2\pi.$$


The graph meets the y axis at point A and the x axis at points C and D.

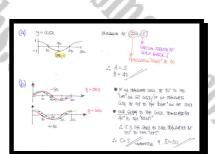

The point *B* is the first minimum of the graph for which x > 0.

- **a**) State the coordinates of A and B.
- **b**) Determine the coordinates of C and D, correct to three significant figures.

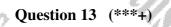
 $[A(0,2)], [B(\pi,-4)], [C(1.23,0)], [C(5.05,0)]$

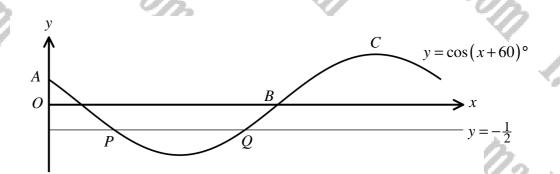
The figure above shows the graph of the curve with equation

$$y = A\cos(x-B)^\circ, \ 0 \le x \le 360,$$


where A and B are positive constants with 0 < B < 90.

The graph meets the x axis at point Q(130,0) and the point P(220,-5) is the minimum point of the curve.

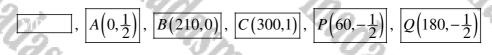

a) State the value of A and the value of B.

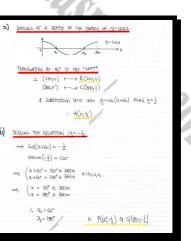

The graph of $y = A\cos(x-B)^\circ$ can also be expressed in the form $y = C\sin(x+D)^\circ$, where C and D are positive constants with $0 < D < 90^\circ$.

b) State the value of C and the value of D.

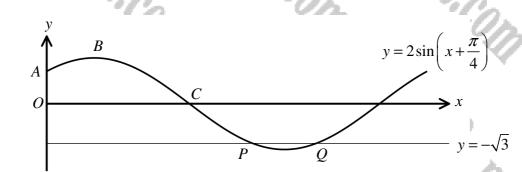
A = 5, B = 40, C = 5, D = 50

The figure above shows the graph of


$$y = \cos(x+60)^\circ, \ 0 \le x \le 360.$$


The graph meets the y axis at the point A and the point B is one of the two x intercepts of the curve. The point C is the maximum point of the curve.

a) State the coordinates of A, B and C.


The straight line with equation $y = -\frac{1}{2}$ meets the graph of $y = \cos(x+60)^\circ$ at the points *P* and *Q*.

b) Determine the coordinates of P and Q.

Question 14 (***+)

The figure above shows the graph of

$$y = 2\sin\left(x + \frac{\pi}{4}\right), \ 0 \le x \le 2\pi \ .$$

The graph meets the y axis at the point A and the point C is one of the two x intercepts of the curve. The point B is the maximum point of the curve.

a) State the coordinates of A, B and C.

The straight line with equation $y = -\sqrt{3}$ meets the graph of $y = 2\sin\left(x + \frac{\pi}{4}\right)$ at the points *P* and *Q*.

b) Determine the coordinates of P and Q.

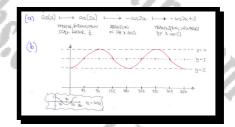
 $A(0,\sqrt{2}), B(\frac{\pi}{4},2), C(\frac{3\pi}{4},0), P(\frac{13\pi}{12},-\sqrt{3}), Q(\frac{17\pi}{12},-\sqrt{3})$

 $P\left(\frac{12}{12}, -\sqrt{3}\right)$

Question 15 (***+)

C.B.

i C.B.


 $y = 3 - \cos 2x^\circ$, $0 \le x \le 360$.

a) Describe geometrically the three transformations that map the graph of $y = \cos x^{\circ}$ onto the graph of $y = 3 - \cos 2x^{\circ}$.

b) Sketch the graph of

 $y = 3 - \cos 2x^{\circ}, \ 0 \le x \le 360$.

horizontal stretch by scale factor 2, followed by reflection in the *x* axis, followed by translation "upwards" by 3 units

Ĉ.Ŗ

2

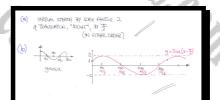
Question 16 (***+)

 $y = 2\cos\left(x - \frac{\pi}{3}\right), \ 0 \le x \le 2\pi \,.$

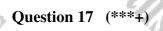
a) Describe geometrically the three transformations that map the graph of $y = \cos x$ onto the graph of $y = 2\cos\left(x - \frac{\pi}{3}\right)$.

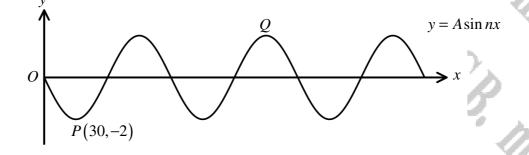
b) Sketch the graph of

F.G.B.


I.C.B.

 $y = 2\cos\left(x - \frac{\pi}{3}\right), \ 0 \le x \le 2\pi.$


1. C.P


vertical stretch by scale factor 2,

followed by translation "right" by $\frac{\pi}{3}$

I.C.B.

The figure above shows part of the graph of

$y = A\sin nx,$

where x is measured in degrees and A and n are constants.

The first minimum of the curve for which x > 0 is the point P(30, -2).

a) Find the value of A and the value of n

The second maximum of the curve for which x > 0 is at the point Q.

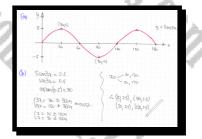
b) Determine the coordinates of Q.

A = -2, n = 3, Q(210, 2)

(a) $g = \int_{\Delta M} \frac{1}{2} \int_{\Delta$

Question 18 (***+)

 $f(x) = 5\sin(3x)^\circ, \quad 0 \le x \le 180.$


a) Sketch the graph of f(x).

The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes and the coordinates of any stationary points.

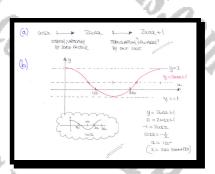
The line with equation y = 2.5 intersects the graph of f(x) at four points.

b) Determine the coordinates of the points of intersections between the straight line with equation y = 2.5 and f(x).

(10, 2.5), (50, 2.5), (130, 2.5), (170, 2.5)

Question 19 (***+)

 $y = 1 + 2\cos x^{\circ}, \ 0 \le x \le 360.$


a) Describe geometrically the two transformations that map the graph of $y = \cos x^\circ$ onto the graph of $y = 1 + 2\cos x^\circ$.

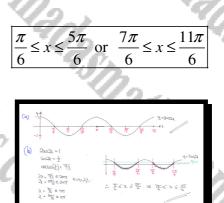
b) Sketch the graph of

 $y = 1 + 2\cos x^{\circ}, \ 0 \le x \le 360$.

The sketch must include the coordinates of any points where the graph meets the coordinate axes.

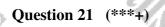
vertical stretch by scale factor 2, followed by translation "upwards" by 1 unit

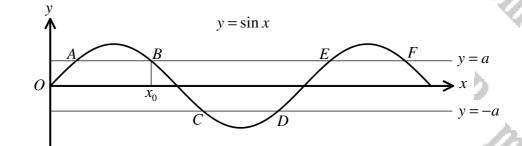
Question 20 (***+)


KR

$$f(x) = 2\cos 2x, \quad 0 \le x \le 2\pi.$$

a) Sketch the graph of f(x).


The sketch must include the coordinates of any points where the graph of f(x) meets the coordinate axes.

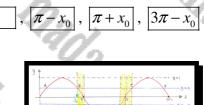

b) Hence, or otherwise, solve the inequality $f(x) \le 1$.

5

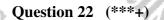
nadasn.

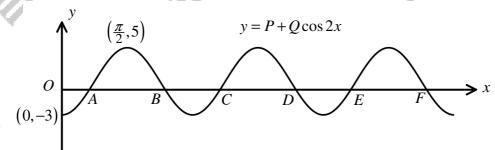
The figure above shows the graph of the curve with equation

$$y = \sin x \,, \ 0 \le x \le 3\pi \,.$$


The graph is intersected by the straight lines with equations

 $y = \pm a, \ 0 < a < 1.$


These intersections are labelled in the figure by the points A, B, C, D, E and F.


The x coordinate of the point B is x_0 .

Express, in terms of x_0 and π , the x coordinates of the points A, D and E.

4	F y=q
2.5	A =
	P.W.
Pitta	(III) : A (IT-2,, A)
$\left\{\begin{array}{l} B^{\sharp} = \pi \Pi_{-} \left(\pi_{-} \chi_{v} \right) = \pi + \chi_{v} \end{array}\right\}$	$\mathbb{D}(\pi + \chi_{a_1} - a)$
(E: aT+ (T-70)= 37-70	E (3T-36,9)
7	

The figure above shows part of the graph of

$$y = P + Q\cos 2x \,, \ x \ge 0$$

where P and Q are constants.

The points (0,-3) and $\left(\frac{\pi}{2},5\right)$ lie on the graph of y.

a) Find the value of P and the value of Q.

The first six x intercepts of the graph are labelled A to F.

b) Determine to two decimal places the x coordinates of the six points, labelled as A to F.

P=1, Q=-4, $x \approx 0.66^{\circ}, 2.48^{\circ}, 3.80^{\circ}, 5.62^{\circ}, 6.94^{\circ}, 8.77^{\circ}$

$ \begin{array}{l} (\mathfrak{a}) \ \ \ \ \ \ \ \ \ \ \ \ \$	4
$ \begin{array}{ccc} \langle \varphi_{1}-z\rangle & \Longrightarrow & \varphi_{1} \neq \varphi_{1} \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & & \varphi_{2}-z\rangle & & \varphi_{2}-z\rangle \\ \langle \varphi_{1}-z\rangle & &$	
$\begin{array}{ccc} 2P = 2 & 2Q = -8 \\ P = 1 & Q = -4 \end{array}$	
(b) $y = 1 - 4\cos 2x$ => 0 = 1 - 4\cos 2x $\begin{cases} 2x = 1.3187 \pm 2n17 \\ 2x = 4.9651 \pm 2n17 \\ m=0/(23) \end{cases}$	(a. a.)
$\Rightarrow 4 \log_{21} = 1 \qquad \qquad$	
$a_{RLOS}(\mathcal{A}) = 1.3181$ $(2.2) = 0.46^{\circ}_{0.2} \cdot 48^{\circ}_{1.3} \cdot 80^{\circ}_{1.5} \cdot 5.25^{\circ}_{1.5} \cdot 6.94^{\circ}_{1.5}$,8.77

Question 23 (***+)

 $y = \tan\left(\frac{1}{2}x - 45\right)^{\circ}, -90^{\circ} \le x \le 630^{\circ}.$

- a) Describe geometrically the two transformations that map the graph of $y = \tan x^\circ$ onto the graph of $y = \tan \left(\frac{1}{2}x 45\right)^\circ$.
- **b**) Sketch the graph of

$$y = \tan\left(\frac{1}{2}x - 45\right)^{\circ}, -90^{\circ} \le x \le 630^{\circ}.$$

The sketch must include the coordinates of any points where the graph meets the coordinate axes and the equations of the vertical asymptotes of the graph.

translation "right" by 45 units, followed by horizontal stretch by scale factor 2

(a)	tama in two (2-45) in tam (2x-45)
	translation to horizabil stratch the "right" by 45° by scale budge 2
(6)	Philod of $\int_{DLQ} = 180^{\circ}$ Pailed of $\int_{RL} \frac{1}{2} \frac{1}{$
	Asymptotes of tours = ± 90°
	This refuscation so 45, THEN "DOUBLING
	-10 90 210 450 600

2

Question 24 (***+) A trigonometric curve *C* has equation

 $y = A + k \sin x \,, \ 0 \le x < 2\pi \,,$

where A and k are non zero constants.

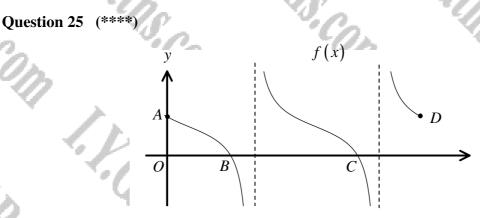
ŀ.G.B.

I.C.B.

Given that *C* passes through the points with coordinates $\left(\frac{\pi}{6}, 1\right)$ and $\left(\frac{7\pi}{6}, 5\right)$ determine the minimum and the maximum value of *y*.

 $y_{\min} = -1$, $y_{\max} = 7$

24


2

Com

Madas,

F.G.B.

 $\begin{array}{c} \underbrace{(\Xi_{1})}{=} A + \underbrace{ksm}_{2} \\ \underbrace{(\Xi_{1})}{=} S = A + \underbrace{ksm}_{2} \\ \underbrace{(\Xi_{1})}{=} S = A + \underbrace{ksm}_{2} \\ \underbrace{(\Xi_{2})}{=} S = A + \underbrace{ksm}_{2} \\ \underbrace{(\Xi_{2})}{=} \\ \underbrace{S = 3 - \frac{1}{2}k}_{\underline{k}} \\ \underbrace{(\Xi_{2})}{=} \underbrace{(\Xi_{2})}_{\underline{k}} \\ \underbrace{(\Xi_{2})}{=} \underbrace{(\Xi_{2})}_{\underline{k}} \\ \underbrace{(\Xi_{2})}{=} \underbrace{(\Xi_{2})}_{\underline{k}} \\ \underbrace{(\Xi_{2})}{=} \underbrace{(\Xi_{2})}_{\underline{k}} \\ \underbrace{$

The figure above shows the graph of the curve with equation

 $f(x) = \sqrt{3} - \tan(2x^\circ - \alpha^\circ), \quad 0 \le x \le 180, \ 0 < \alpha < 90.$

a) Given that the point (52.5, -2) lies on the curve show that $\alpha = 30$.

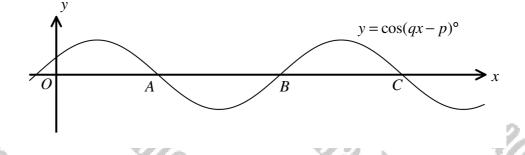
The curve crosses the x axis at the points B and C

b) Determine the coordinates of B and C.

The points A and D are the endpoints of the curve.

c) Find the exact coordinates of A and D.

The dotted lines represent the vertical asymptotes of the curve.


- **d**) Write down the period of f(x).
- e) Determine the equations of the two vertical asymptotes of the curve.

 $, B(45,0), C(135,0) , A(0,\frac{4}{3}\sqrt{3}), D(180,\frac{4}{3}\sqrt{3}) , x = 60, 150$

 $\begin{array}{c} (t) & (t) = (t)$

period = 90

The figure below shows part of the graph of

 $y = \cos(qx - p)^\circ, x \in \mathbb{R},$

where q and p are positive constants.

The graph crosses the x axis at the points A, B(220,0) and C(340,0).

a) State the coordinates of A.

b) Determine the value of q and the value of p.

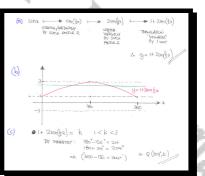
A(100,0), $q = \frac{3}{2}, p = 60$

è

- (a) 37 gravity A (100,0)
 (b) RELED of ge loss 13367, And THIS GAUL AND RELED 2400
 (c) REDERATE BY 240 = 8
 - $= 0 = \frac{3}{2}$
 - Now first a notice of g = loss a gr (free reality and This a new case work of two the two sectors of two the two sectors of the sector of th

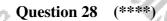
4(Theymnute:)= Cas(100y-p) (0 = Cas(220y-p) 100g-p = 90) 220y-p = 2

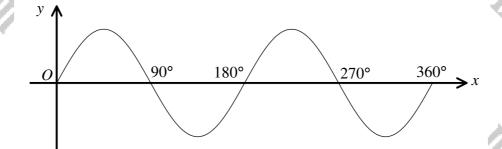
sugrition ~ 1209 = 180 4 = €/14 P= 60//


Question 27 (****)

The graph of $f(x) = \sin x$ is subjected to a sequence of transformations consisting of

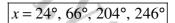
- a horizontal stretch by scale factor 2,
- followed by a vertical stretch by scale factor 2,
- followed by a translation in the positive y direction by 1 unit.
- a) Write an equation of the transformed graph, in the form y = g(x).
- **b**) Sketch y = g(x), for $0 \le x^{\circ} \le 360$.

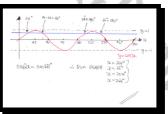

The horizontal line with equation y = k, 1 < k < 3, meets y = g(x) at two distinct points P and Q.

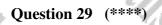

c) Given that the coordinates of P are $(24^\circ, k)$, find the coordinates of Q

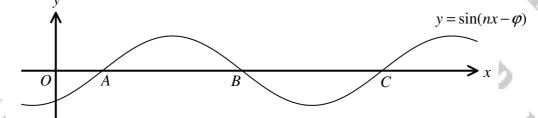
 $Q(204^{\circ}, k$

 $y = 1 + 2\sin\left(\frac{1}{2}x\right)$




The figure above shows the graph of the curve with equation


$$y = \sin 2x , \ 0 \le x^{\circ} \le 360 .$$


By drawing a suitable horizontal line on a copy of this graph and by fully communicating your method, solve the equation

 $\sin 2x^{\circ} = \sin 48^{\circ}, \ 0 \le x^{\circ} \le 360.$

The figure above shows part of the graph of

$y = \sin(nx - \varphi)$,

where *n* and φ are positive constants, with $0 \le \varphi < \frac{\pi}{2}$

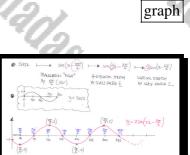
The graph of $y = \sin(nx - \varphi)$ crosses the x axis at the points A, B and C with respective coordinates $\left(\frac{\pi}{9}, 0\right), \left(\frac{4\pi}{9}, 0\right)$ and $\left(\frac{7\pi}{9}, 0\right),$.

Determine the value of n and the value of φ .

	$\varphi = \frac{\pi}{3}$, $\varphi = \frac{\pi}{3}$
$\begin{array}{c} \begin{array}{c} g=3\alpha\lambda\\ \hline \\ \hline \\ g=3\alpha\lambda\\ \hline \\ g=3\alpha\lambda\\$	$\begin{array}{c} \underbrace{\operatorname{ATTWARTW}}_{1} \operatorname{AT$

Question 30 (****)

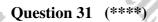
Sketch the graph of

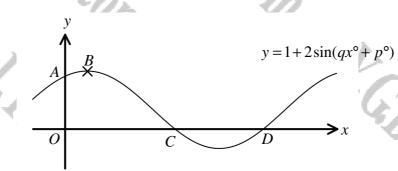

i.G.B.

I.C.P.

 $y = 2\sin\left(2x - \frac{5\pi}{6}\right), \quad 0 \le x \le 2\pi.$

The sketch must include the exact coordinates ...)


- ... of any stationary points.
- ... of any points where the graph meets the coordinate axes.



i.G.B.

Madasn

1+

The figure above shows part of the graph of

 $y=1+2\sin(qx^{\circ}+p^{\circ}), x \in \mathbb{R},$

where q and p are positive constants with $0^{\circ} , <math>0 < q < 5$.

The graph crosses the y axis at the point $A(0,1+\sqrt{3})$, and the x axis at the points C(50,0) and D.

The point B is a maximum point on the curve.

a) Determine the value of q and the value of p.

b) Find the coordinates of B and D.

q = 3, p = 60, A(90,0)

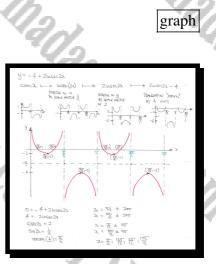
$q = 1 + 2 \operatorname{Sm}(q + p)$	
$(b_1 + \sqrt{3}) \Rightarrow 1 + \sqrt{3} = 1 + 2 \sin p$	
13 = 2514p Sinp = 43	
P=600 ~ p ~ 40	
$(5qb) \rightarrow 0 = 1 + 2Sin(Soq + p)$ -1 = 2.5in(Soq + 6c)	
$-Sh(Sod + 60) = -\frac{1}{2}$	
(504+60 = -30 ± 3604 504+60 = 210 ± 3604	k=q
(50g = 150 ± 360y	
$\begin{pmatrix} d = -1.8 \pm 7.2n \\ d = -3 \pm 7.2n \end{pmatrix}$	
: q=3, o <q<5< th=""><th></th></q<5<>	

3x + 60 = 40	
3x > 30	
⊃L = 10	
·· B(193)	
TO FIND D GATTLE SOLUT THE EQUATION WE	0
TO GET THE I INTREGERTS SQ DO, 170,	
50 D(9010)	
COL BY TRANSGROUTTONS/SYMMETRY	nz
(The set)	
OR MAR TO MIN US 60°	(
THUL C(Sqo) D	· · · \$
Arey Attin	CUMBER

Question 32 (****)

Sketch the graph of

$y = -4 + 2\csc 2x, \quad 0 \le x \le 2\pi$


The sketch must include

6

• the equations of any asymptotes to the curve

ø

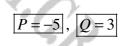
- the exact coordinates of any stationary points.
- the exact coordinates of any points where the curve meets the coordinate axes.

Question 33 (****)

Stion 33 (****)

$$y$$

 d
 d
 $A(\pi,-8)$
 $B(2\pi,-2)$
 $y = P+Q \sec x$


The figure above shows part of the curve with equation

$$y = P + Q \sec x \,,$$

where P and Q are non zero constants.

The curve has turning points at $A(\pi, -8)$ and $B(2\pi, -2)$

Determine the value of P and the value of Q.

21/15

y= P+ Qsecx			
$(\pi_{1}-8) \Rightarrow -8 = P + P \sec \pi$	2	_	

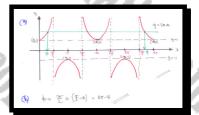
. R.B.

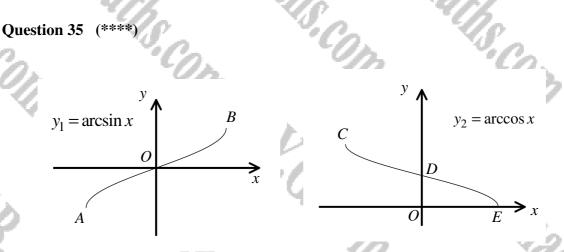
Question 34 (****)

2

K.C.

 $f(x) = \sec x, \ x \in \mathbb{R}, \ 0 \le x \le 4\pi$


a) Sketch the graph of f(x), showing clearly the coordinates of any stationary points and equations of asymptotes.


It is given that $\sec \theta = \sec \varphi$, where $0 < \theta < \frac{\pi}{2}$ and $\frac{7\pi}{2} < \varphi < 4\pi$.

b) Express φ in terms of θ .

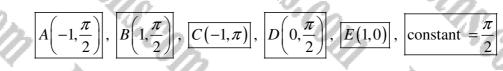
2

The figures above show the graph of $y_1 = \arcsin x$ and the graph of $y_2 = \arccos x$.

The graph of y_1 has endpoints at A and B.

The graph of y_2 has endpoints at C and E, and D is the point where the graph of y_2 crosses the y axis.

a) State the coordinates of A, B, C, D and E.


The graph of y_2 can be obtained from the graph of y_1 by a series of two geometric transformations which can be carried out in a specific order.

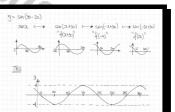
b) Describe these two geometric transformations.

c) Deduce using valid arguments that

 $\arcsin x + \arccos x = \text{constant}$,

stating the exact value of this constant.

Question 36 (****+)


Sketch the graph of

 $y = \sin(30 - 2x)^\circ$, $0 \le x \le 180$.

The sketch must include the coordinates ...

ø

- ... of any stationary points.
 - ... of any points where the graph meets the x axis.

graph

2

Question 37 (****+)

- $y_1 = 2\cos 2x$, $y_2 = 3\tan 2x$, $0 \le x \le 2\pi$.
- a) Sketch in a single set of axes the graph of y_1 and the graph of y_2 .

The sketch must include the coordinates of any points where the two graphs meet the coordinate axes and the equations of any asymptotes.

b) Show that the coordinates of the points of intersection between the graphs of y_1 and y_2 are solutions of the equation

 $2\sin^2 2x + 3\sin 2x - 2 = 0.$

c) Hence find the x coordinates of the points of intersection between the graphs of y_1 and y_2 .

 5π 11π 17π π x =12 12 12 12

生町 シロニ王四四四

ERROR: stackunderflow OFFENDING COMMAND: ~

STACK: