TRIGONOMETRIC GRAPHS
Question 1 (**)
Sketch the graph of
\[y = \cos 2x, \quad 0^\circ \leq x \leq 360^\circ. \]
The sketch must include the coordinates of all the points where the graph meets the coordinate axes.

Question 2 (**+)
Sketch on separate diagrams the graph of
\[a) \quad y = \sin 3x^\circ, \quad 0 \leq x \leq 360. \]
\[b) \quad y = 3 + \sin x^\circ, \quad 0 \leq x \leq 360. \]
The sketches must include the coordinates of all the points where each of the graphs meets the coordinate axes.
Question 3 (**+)**

Sketch on separate diagrams the graph of

a) \(y = 3\sin x^\circ, \ 0 \leq x \leq 360^\circ \).

b) \(y = \sin 3x^\circ, \ 0 \leq x \leq 360^\circ \).

The sketches must include the coordinates of all the points where each of the graphs meets the coordinate axes.

graph

Question 4 (****)

Sketch the graph of

\[y = 1 + \cos \frac{1}{2}x, \ 0^\circ \leq x \leq 360^\circ. \]

graph
The figure above shows an accurate graph of

\[y = A + B \sin Cx, \]

where \(x \) is measured in degrees and \(A \), \(B \) and \(C \) are constants.

a) State the period of the graph.

b) Find the value of \(A \), \(B \) and \(C \).

\[C = \frac{\pi}{120^\circ} \], \(A = 1 \), \(B = 2 \), \(C = 3 \)
Question 6 (***)

Sketch the graph of

\[y = \sin (x - 30)^\circ, \ 0 \leq x \leq 360. \]

The sketch must include the coordinates of all the points where the graph meets the coordinate axes.
Question 7 (***)

\[y = -1 + \sin 2x^\circ, \; 0 \leq x \leq 360. \]

a) Describe geometrically the two transformations that map the graph of
\[y = \sin x^\circ \] onto the graph of
\[y = -1 + \sin 2x^\circ. \]

b) Sketch the graph of
\[y = -1 + \sin 2x^\circ, \; 0 \leq x \leq 360. \]

horizontal stretch by scale factor \(\frac{1}{2} \),
followed by translation "downwards" by 1 unit.

Question 8 (***)

Sketch on separate diagrams the graph of

a) \(y = 2 \sin x^\circ, \; 0 \leq x \leq 360. \)

b) \(y = \sin (x + 45)^\circ, \; 0 \leq x \leq 360. \)

The sketches must include the coordinates of all the points where each of the graphs meets the coordinate axes.
Question 9 (***)

\[y = \frac{1}{4} \sin 2x, \ 0^\circ \leq x \leq 360^\circ. \]

a) Sketch the graph of \(y \).

The sketch must include the coordinates of all the points where the graph meets the coordinate axes.

b) Solve the equation \(y = -\frac{1}{4} \).

\[x = 105^\circ, 165^\circ, 285^\circ, 345^\circ \]
Question 10 (***)

The figure above shows part of the graph of the curve with equation

\[y = A \cos(x^\circ + 60^\circ) \]

where \(x \) is measured in degrees and \(A \) is a constant.

The point \(P(0,2) \) lies on the curve.

a) Find the value of \(A \).

The first three \(x \) intercepts of the curve, for which \(x > 0 \), are the points labelled as \(Q, R \) and \(S \).

b) State the coordinates of \(Q, R \) and \(S \).

\[A = 4, \quad B = 3, \quad Q(30,0), \quad R(210,0), \quad S(390,0) \]
The figure above shows the graph of the curve with equation
\[y = 3 \cos x - 1, \quad 0 \leq x \leq 2\pi. \]
The graph meets the \(y \) axis at point \(A \) and the \(x \) axis at points \(C \) and \(D \).
The point \(B \) is the first minimum of the graph for which \(x > 0 \).

a) State the coordinates of \(A \) and \(B \).

b) Determine the coordinates of \(C \) and \(D \), correct to three significant figures.

\[A(0, 2), \quad B\left(\pi, -4\right), \quad C(1.23, 0), \quad C(5.05, 0) \]
Question 12 (***)

The figure above shows the graph of the curve with equation

\[y = A \cos (x - B)°, \quad 0 \leq x \leq 360, \]

where \(A \) and \(B \) are positive constants with \(0 < B < 90 \).

The graph meets the \(x \) axis at point \(Q(130,0) \) and the point \(P(220,-5) \) is the minimum point of the curve.

a) State the value of \(A \) and the value of \(B \).

The graph of \(y = A \cos (x - B)° \) can also be expressed in the form \(y = C \sin (x + D)° \), where \(C \) and \(D \) are positive constants with \(0 < D < 90° \).

b) State the value of \(C \) and the value of \(D \).

\[C = 5, \quad A = 50, \quad B = 40, \quad C = 5, \quad D = 50 \]
The figure above shows the graph of

\[y = \cos(x + 60)\,^\circ, \quad 0 \leq x \leq 360. \]

The graph meets the \(y \) axis at the point \(A \) and the point \(B \) is one of the two \(x \) intercepts of the curve. The point \(C \) is the maximum point of the curve.

a) State the coordinates of \(A \), \(B \) and \(C \).

b) Determine the coordinates of \(P \) and \(Q \).

\[A(0, \frac{1}{2}) \quad \text{,} \quad B(210,0) \quad \text{,} \quad C(300,1) \quad \text{,} \quad P(60,-\frac{1}{2}) \quad \text{and} \quad Q(180,-\frac{1}{2}) \]
The figure above shows the graph of

\[y = 2\sin\left(x + \frac{\pi}{4}\right), \quad 0 \leq x \leq 2\pi. \]

The graph meets the \(y \) axis at the point \(A \) and the point \(C \) is one of the two \(x \) intercepts of the curve. The point \(B \) is the maximum point of the curve.

a) State the coordinates of \(A \), \(B \) and \(C \).

b) Determine the coordinates of \(P \) and \(Q \).

\[A(0, \sqrt{2}), \quad B\left(\frac{\pi}{4}, 2\right), \quad C\left(\frac{3\pi}{4}, 0\right), \quad P\left(\frac{13\pi}{12}, -\sqrt{3}\right), \quad Q\left(\frac{17\pi}{12}, -\sqrt{3}\right) \]
Question 15 (***)

\[y = 3 - \cos 2x, \ 0 \leq x \leq 360 \]

a) Describe geometrically the three transformations that map the graph of
\(y = \cos x \) onto the graph of \(y = 3 - \cos 2x \).

b) Sketch the graph of
\[y = 3 - \cos 2x, \ 0 \leq x \leq 360. \]

horizontal stretch by scale factor 2,
followed by reflection in the \(x \) axis,
followed by translation "upwards" by 3 units.
Question 16 (***)

\[y = 2\cos\left(x - \frac{\pi}{3}\right), \quad 0 \leq x \leq 2\pi. \]

a) Describe geometrically the three transformations that map the graph of
\[y = \cos x \] onto the graph of
\[y = 2\cos\left(x - \frac{\pi}{3}\right). \]

b) Sketch the graph of

\[y = 2\cos\left(x - \frac{\pi}{3}\right), \quad 0 \leq x \leq 2\pi. \]

- vertical stretch by scale factor 2,
- followed by translation "right" by \(\frac{\pi}{3} \).
The figure above shows part of the graph of

\[y = A \sin nx, \]

where \(x \) is measured in degrees and \(A \) and \(n \) are constants.

The first minimum of the curve for which \(x > 0 \) is the point \(P(30, -2) \).

a) Find the value of \(A \) and the value of \(n \).

The second maximum of the curve for which \(x > 0 \) is at the point \(Q \).

b) Determine the coordinates of \(Q \).

\[2A = -2, \quad n = 3, \quad Q(210, 2) \]
Question 18 (***)

\[f(x) = 5\sin(3x) \degree, \quad 0 \leq x \leq 180 \degree. \]

a) Sketch the graph of \(f(x) \).

The sketch must include the coordinates of any points where the graph of \(f(x) \) meets the coordinate axes and the coordinates of any stationary points.

The line with equation \(y = 2.5 \) intersects the graph of \(f(x) \) at four points.

b) Determine the coordinates of the points of intersections between the straight line with equation \(y = 2.5 \) and \(f(x) \).

\[(10,2.5), (50,2.5), (130,2.5), (170,2.5) \]

Created by T. Madas
Question 19 (***)

\[y = 1 + 2 \cos x^\circ, \ 0 \leq x \leq 360 \]

a) Describe geometrically the two transformations that map the graph of \(y = \cos x^\circ \) onto the graph of \(y = 1 + 2 \cos x^\circ \).

b) Sketch the graph of

\[y = 1 + 2 \cos x^\circ, \ 0 \leq x \leq 360 \]

The sketch must include the coordinates of any points where the graph meets the coordinate axes.

- vertical stretch by scale factor 2,
- followed by translation "upwards" by 1 unit
Question 20 (***)

\[f(x) = 2\cos 2x, \quad 0 \leq x \leq 2\pi. \]

a) Sketch the graph of \(f(x) \).

The sketch must include the coordinates of any points where the graph of \(f(x) \) meets the coordinate axes.

b) Hence, or otherwise, solve the inequality \(f(x) \leq 1 \).

\[\frac{\pi}{6} \leq x \leq \frac{5\pi}{6} \quad \text{or} \quad \frac{7\pi}{6} \leq x \leq \frac{11\pi}{6} \]
The figure above shows the graph of the curve with equation

\[y = \sin x, \ 0 \leq x \leq 3\pi. \]

The graph is intersected by the straight lines with equations

\[y = \pm a, \ 0 < a < 1. \]

These intersections are labelled in the figure by the points A, B, C, D, E and F.

The \(x \) coordinate of the point B is \(x_0 \).

Express, in terms of \(x_0 \) and \(\pi \), the \(x \) coordinates of the points A, D and E.

\[\boxed{\pi - x_0, \ \pi + x_0, \ 3\pi - x_0} \]
The figure above shows part of the graph of

\[y = P + Q \cos 2x, \quad x \geq 0, \]

where \(P \) and \(Q \) are constants.

The points \((0, -3)\) and \(\left(\frac{\pi}{2}, 5\right)\) lie on the graph of \(y \).

a) Find the value of \(P \) and the value of \(Q \).

b) Determine to two decimal places the \(x \) coordinates of the six points, labelled as \(A \) to \(F \).

\[P = 1, \quad Q = -4, \quad x \approx 0.66, 2.48, 3.80, 5.62, 6.94, 8.77 \]
Created by T. Madas

Question 23 (***+)

\[y = \tan\left(\frac{1}{2}x - 45\right)^\circ, \quad -90^\circ \leq x \leq 630^\circ. \]

a) Describe geometrically the two transformations that map the graph of
\[y = \tan x^\circ \] onto the graph of
\[y = \tan\left(\frac{1}{2}x - 45\right)^\circ. \]

b) Sketch the graph of

\[y = \tan\left(\frac{1}{2}x - 45\right)^\circ, \quad -90^\circ \leq x \leq 630^\circ. \]

The sketch must include the coordinates of any points where the graph meets the coordinate axes and the equations of the vertical asymptotes of the graph.

Translation "right" by 45 units, followed by horizontal stretch by scale factor 2
Question 24 (***)

A trigonometric curve C has equation

$$y = A + k \sin x, \quad 0 \leq x < 2\pi,$$

where A and k are non-zero constants.

Given that C passes through the points with coordinates $\left(\frac{\pi}{6}, 1\right)$ and $\left(\frac{7\pi}{6}, 5\right)$, determine the minimum and the maximum value of y.

$$y_{\text{min}} = -1, \quad y_{\text{max}} = 7$$
The figure above shows the graph of the curve with equation
\[f(x) = \sqrt{3} - \tan(2x^\circ - \alpha^\circ), \quad 0 \leq x \leq 180, \quad 0 < \alpha < 90. \]

a) Given that the point \((52.5, -2)\) lies on the curve show that \(\alpha = 30\).

The curve crosses the \(x\) axis at the points \(B\) and \(C\).

b) Determine the coordinates of \(B\) and \(C\).

The points \(A\) and \(D\) are the endpoints of the curve.

c) Find the exact coordinates of \(A\) and \(D\).

The dotted lines represent the vertical asymptotes of the curve.

d) Write down the period of \(f(x)\).

e) Determine the equations of the two vertical asymptotes of the curve.

\[\text{period} = 90 \]
The figure below shows part of the graph of

\[y = \cos(qx - p) \], \quad x \in \mathbb{R},

where \(q \) and \(p \) are positive constants.

The graph crosses the \(x \) axis at the points \(A, B(220,0) \) and \(C(340,0) \).

a) State the coordinates of \(A \).

b) Determine the value of \(q \) and the value of \(p \).

\[A(100,0), \quad q = \frac{3}{2}, \quad p = 60 \]
The graph of \(f(x) = \sin x \) is subjected to a sequence of transformations consisting of

- a horizontal stretch by scale factor 2,
- followed by a vertical stretch by scale factor 2,
- followed by a translation in the positive \(y \) direction by 1 unit.

a) Write an equation of the transformed graph, in the form \(y = g(x) \).

b) Sketch \(y = g(x) \), for \(0 \leq x \leq 360 \).

The horizontal line with equation \(y = k \), \(1 < k < 3 \), meets \(y = g(x) \) at two distinct points \(P \) and \(Q \).

c) Given that the coordinates of \(P \) are \((24^\circ, k)\), find the coordinates of \(Q \).

\[
y = 1 + 2\sin\left(\frac{1}{2}x\right), \quad Q(204^\circ, k) \]
The figure above shows the graph of the curve with equation
\[y = \sin 2x, \quad 0 \leq x \leq 360^\circ. \]

By drawing a suitable horizontal line on a copy of this graph and by fully communicating your method, solve the equation
\[\sin 2x = \sin 48^\circ, \quad 0 \leq x \leq 360^\circ. \]

\[x = 24^\circ, 66^\circ, 204^\circ, 246^\circ \]
The figure above shows part of the graph of

\[y = \sin(nx - \varphi), \]

where \(n \) and \(\varphi \) are positive constants, with \(0 \leq \varphi < \frac{\pi}{2} \).

The graph of \(y = \sin(nx - \varphi) \) crosses the \(x \) axis at the points \(A \), \(B \) and \(C \) with respective coordinates \(\left(\frac{\pi}{9}, 0 \right) \), \(\left(\frac{4\pi}{9}, 0 \right) \) and \(\left(\frac{7\pi}{9}, 0 \right) \).

Determine the value of \(n \) and the value of \(\varphi \).

\[\square \, \, \, n = 3 \, \, \, \varphi = \frac{\pi}{3} \]
Question 30 (****)

Sketch the graph of

\[y = 2 \sin \left(2x - \frac{5\pi}{6} \right), \quad 0 \leq x \leq 2\pi. \]

The sketch must include the exact coordinates:
- ... of any stationary points.
- ... of any points where the graph meets the coordinate axes.
The figure above shows part of the graph of
\[y = 1 + 2\sin(qx^° + p^°), \quad x \in \mathbb{R}, \]
where \(q \) and \(p \) are positive constants with \(0^° < p < 90^°, \ 0 < q < 5 \).

The graph crosses the \(y \) axis at the point \(A(0, 1 + \sqrt{3}) \), and the \(x \) axis at the points \(C(50, 0) \) and \(D \).

The point \(B \) is a maximum point on the curve.

a) Determine the value of \(q \) and the value of \(p \).

b) Find the coordinates of \(B \) and \(D \).

\[
\begin{align*}
\text{Answer: } & \quad q = 3, \quad p = 60, \quad \text{and } A(90, 0)
\end{align*}
\]
Question 32 (****)

Sketch the graph of

\[y = -4 + 2 \csc 2x, \quad 0 \leq x \leq 2\pi \]

The sketch must include

- the equations of any asymptotes to the curve
- the exact coordinates of any stationary points,
- the exact coordinates of any points where the curve meets the coordinate axes.
The figure above shows part of the curve with equation

\[y = P + Q \sec x, \]

where \(P \) and \(Q \) are non-zero constants.

The curve has turning points at \(A(\pi, -8) \) and \(B(2\pi, -2) \).

Determine the value of \(P \) and the value of \(Q \).

\[P = -5, \quad Q = 3 \]
a) Sketch the graph of \(f(x) \), showing clearly the coordinates of any stationary points and equations of asymptotes.

It is given that \(\sec \theta = \sec \varphi \), where \(0 < \theta < \frac{\pi}{2} \) and \(\frac{7\pi}{2} < \varphi < 4\pi \).

b) Express \(\varphi \) in terms of \(\theta \).

\[\varphi = 4\pi - \theta \]
The figures above show the graph of \(y_1 = \arcsin x \) and the graph of \(y_2 = \arccos x \).

The graph of \(y_1 \) has endpoints at \(A \) and \(B \).

The graph of \(y_2 \) has endpoints at \(C \) and \(E \), and \(D \) is the point where the graph of \(y_2 \) crosses the \(y \) axis.

a) State the coordinates of \(A, B, C, D \) and \(E \).

b) Describe these two geometric transformations.

c) Deduce using valid arguments that

\[
\arcsin x + \arccos x = \text{constant},
\]

stating the exact value of this constant.

\[
A\left(-1, \frac{\pi}{2}\right), \quad B\left(1, \frac{\pi}{2}\right), \quad C(-\pi, 0), \quad D\left(0, \frac{\pi}{2}\right), \quad E(1,0), \quad \text{constant} = \frac{\pi}{2}
\]
Question 36 (****+)

Sketch the graph of

\[y = \sin(30 - 2x)\degree, \quad 0 \leq x \leq 180. \]

The sketch must include the coordinates …

- … of any stationary points.
- … of any points where the graph meets the \(x \) axis.
Question 37 (***)

\[y_1 = 2 \cos 2x, \quad y_2 = 3 \tan 2x, \quad 0 \leq x \leq 2\pi. \]

a) Sketch in a single set of axes the graph of \(y_1 \) and the graph of \(y_2 \).

The sketch must include the coordinates of any points where the two graphs meet the coordinate axes and the equations of any asymptotes.

b) Show that the coordinates of the points of intersection between the graphs of \(y_1 \) and \(y_2 \) are solutions of the equation

\[2\sin^2 2x + 3\sin 2x - 2 = 0. \]

c) Hence find the \(x \) coordinates of the points of intersection between the graphs of \(y_1 \) and \(y_2 \).

\[x = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{11\pi}{12}, \frac{17\pi}{12} \]
ERROR: stackunderflow
OFFENDING COMMAND: ~

STACK: