INTEGRATION IN PARAMETRIC

68 EXAM QUESTIONS

Created by T. Madas

Question 1 (**)

The figure above shows the curve C, given parametrically by

$$
x=t^{2}-2, \quad y=6 t, t \geq 0 .
$$

The finite region R is bounded by C, the x axis and the straight lines with equations $x=2$ and $x=14$.
a) Show that the area of R is given by
stating the value of T.
b) Hence find the area of R.

$$
\int_{2}^{T} 12 t^{2} d t
$$

Question 2 (**+)

The figure above shows the curve C, given parametrically by

$$
x=4 t-1, \quad y=\frac{16}{t^{2}}, \quad t>0
$$

The finite region R is bounded by C, the x axis and the straight lines with equations $x=7$ and $x=15$.
a) Show that the area of R is given by

$$
\int_{t_{1}}^{t_{2}} \frac{64}{t^{2}} d t
$$

stating the values of t_{1} and t_{2}.
b) Hence find the area of R.
c) Find a Cartesian equation of C, in the form $y=f(x)$.
d) Use the Cartesian equation of C to verify the result of part (b).

Created by T. Madas

Question $3 \quad\left({ }^{* *}+\right.$)

The figure above shows the curve C, given parametrically by

$$
x=4-t^{2}, \quad y=t(t+3), \quad t \geq 0
$$

The curve meets the coordinate axes at the points P and Q.
a) Find the coordinates of P and Q.

The finite region R is bounded by C and the coordinate axes.
b) Show that the area of R is given by

$$
\int_{t_{1}}^{t_{2}} 2 t^{3}+6 t^{2} d t
$$

stating the values of t_{1} and t_{2}.
c) Hence find the area of R.
$P(4,0) \& Q(0,10), t_{1}=0, t_{2}=2$, area $=24$

Created by T. Madas

Question $4 \quad(* *+)$

The figure above shows the curve C, given parametrically by

$$
x=t^{3}+3, y=\frac{2}{3 t}, t>0
$$

The finite region R is bounded by C, the x axis and the straight lines with equations $x=4$ and $x=11$.
a) Show that the area of R is 3 square units.

The region R is revolved in the x axis by 2π radians to form a solid of revolution S.
b) Find the volume of S.

Created by T. Madas

Question 5 (***)

The figure above shows the curve C, given parametrically by

$$
x=6 t^{2}, \quad y=t-t^{2}, \quad t \geq 0
$$

The curve meets the x axis at the origin O and at the point P.
a) Show that the x coordinate of P is 6 .

The finite region R, bounded by C and the x axis, is revolved in the x axis by 2π radians to form a solid of revolution, whose volume is denoted by V..
b) Show clearly that
stating the value of T.
c) Hence find the value of V.

Created by T. Madas

Question 6 (***)

The figure above shows the curve C, given parametrically by

$$
x=\ln t, \quad y=t+\sqrt{t}, \quad 1 \leq t \leq 10 .
$$

The finite region R is bounded by C, the straight lines with equations $x=1$ and $x=2$, and the x axis.
a) Show that the area of R is given by

stating the values of T_{1} and T_{2}.
b) Hence find an exact value for the area of R.

Question 7 (***)

The figure above shows the curve C, given parametrically by

$$
x=3 t+\sin t, \quad y=2 \sin t, 0 \leq t \leq \pi .
$$

The curve meets the coordinate axes at the point P and at the origin O.
The finite region R is bounded by C and the x axis.
Determine the area of R.

Created by T. Madas

Question $1 \quad(* * *+)$

The figure above shows the curve C, with parametric equations

$$
x=36 t^{2}-\pi^{2}, \quad y=\frac{\sin 3 t}{8}, \frac{\pi}{6} \leq t \leq \frac{\pi}{3} .
$$

The curve meets the coordinate axes at the points A and B.
By setting up and evaluating a suitable integral in parametric, show that the area bounded by C and the coordinate axes is $(\pi-1)$ square units.

Created by T. Madas

Question 2 (***+)

The figure above shows the curve C, with parametric equations

$$
x=4 \sin ^{2} t, y=2 \cos t, 0 \leq t \leq \frac{\pi}{2}
$$

The curve meets the coordinate axes at the points A and B.
The point $P(3,1)$ lies on C.

The point Q lies on the x axis so that $P Q$ is parallel to the y axis.
a) Show that the area of the shaded region bounded by C, the line $P Q$ and the x axis is given by the integral

$$
16 \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \cos ^{2} t \sin t d t
$$

Created by T. Madas

Question 3 (***+)

The figure above shows the curve C with parametric equations

$$
x=8 \tan t, y=\cos ^{2} t, \quad 0 \leq t<\frac{\pi}{2}
$$

The finite region R is bounded by C, the coordinate axes and the straight line with equation $x=8$.

The region R is revolved in the x axis by 2π radians to form a solid of revolution S.
a) Show the volume of S is given by the integral
for some appropriate limits t_{1} and t_{2}.
b) Hence find an exact value for the volume of S.

Question $4 \quad(* * *+)$

The figure above shows a curve known as a re-entrant cycloid, with parametric equations

$$
x=\theta-4 \sin \theta, \quad y=1-2 \cos \theta, \quad 0 \leq \theta \leq 2 \pi .
$$

The curve crosses the x axis at the points P and Q.
a) Find the value of θ at the points P and Q.
b) Show that the area of the finite region bounded by the curve and the x axis, shown shaded in the figure above, is given by the integral

$$
\int_{\theta_{1}}^{\theta_{2}} 1-6 \cos \theta+8 \cos ^{2} \theta d \theta
$$

where θ_{1} and θ_{2} must be stated.
c) Find an exact value for the above integral.

Created by T. Madas

Question 5 (***+)

The figure above shows the curve C, with parametric equations

$$
x=t^{2}, \quad y=1+\cos t, 0 \leq t \leq 2 \pi
$$

The curve meets the coordinate axes at the points A and B.
a) Show that the area of the shaded region bounded by C and the coordinate axes is given by the integral
where t_{1} and t_{2} are constants to be stated.
b) Evaluate the above parametric integral to find an exact value for the area of the shaded region.

Question 6 (***+)

The figure above shows part of the curve C, with parametric equations

$$
x=\cos 2 \theta, \quad y=\sec \theta, 0<\theta<\frac{\pi}{2}
$$

The finite region R is bounded by C, the straight line with equation $x=\frac{1}{2}$ and the coordinate axes.
a) Show that the area of R is given by the integral

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} 4 \sin \theta d \theta
$$

b) Evaluate the above integral to find an exact value for R.

The region R is rotated by 2π radians in the x axis to form a solid of revolution S.
c) Use parametric integration to find an exact value for the volume of S.
\square , area $=2 \sqrt{3}-2 \sqrt{2}$,
volume $=2 \pi \ln \left(\frac{3}{2}\right)$

Created by T. Madas

Question $7 \quad(* * *+)$

The figure above shows the curve C with parametric equations

$$
x=6 \tan \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

The curve has a single stationary point at P.
a) Find the coordinates of P.

The point Q lies on the x axis so that $P Q$ is parallel to the y axis. The finite region R is bounded by C, the x axis and the straight line segment $P Q$. The region R is revolved in the x axis by 2π radians to form a solid of revolution S.
b) Show the volume of S is given by the integral

$$
\pi \int_{0}^{\frac{\pi}{4}} 24 \sin ^{2} \theta d \theta
$$

c) Hence find an exact value for the volume of S.

Created by T. Madas

Question $8 \quad(* * *+)$

The figure above shows a cycloid C, whose parametric equations are

$$
x=\theta-\sin \theta, \quad y=1-\cos \theta, \quad 0 \leq \theta \leq 2 \pi
$$

The finite region R is bounded by C and the x axis.
a) Show, with full justification, that the area of R is given by

$$
\int_{0}^{2 \pi}(1-\cos \theta)^{2} d \theta
$$

b) Hence find the area of R.

Created by T. Madas

Question 9 (****)

The figure above shows the curve C, with parametric equations

$$
x=4 \cos \theta, \quad y=\sin \theta, \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

The curve meets the coordinate axes at the points A and B. The straight line with equation $y=\frac{1}{2}$ meets C at the point P.
a) Show that the area under the arc of the curve between A and P, and the x axis, is given by the integral

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta
$$

The shaded region R is bounded by C, the straight line with equation $y=\frac{1}{2}$ and the y axis.
b) Find an exact value for the area of R.

Created by T. Madas

Question 10 (****)

The figure above shows an ellipse E, given parametrically by

$$
x=2-\cos \theta, \quad y=1+2 \sin \theta, \quad 0 \leq \theta<2 \pi .
$$

The ellipse crosses the x axis at the points A and B.
a) Find, as exact surds, the coordinates of A and the coordinates of B.

The finite region R is bounded by E, for which $y \geq 0$, the x axis and the straight lines with equations $x=\frac{3}{2}$ and $x=2$.
b) Show that the area of R is given by
c) Hence find the area of R.

$$
A\left(2-\frac{\sqrt{3}}{2}\right), B\left(2+\frac{\sqrt{3}}{2}\right), \quad \text { area }=\frac{1}{12}(6+2 \pi+3 \sqrt{3}) \approx 1.46
$$

Created by T. Madas

The figure above shows the curve C, given parametrically by

$$
x=5 \cos ^{2} \theta, \quad y=6 \sin \theta,-\frac{\pi}{2}<\theta \leq \frac{\pi}{2}
$$

The curve is symmetrical in the x axis.
The finite region bounded by C and the y axis is denoted by R.
a) Show that the area of R is given by

$$
\int_{0}^{\frac{\pi}{2}} 120 \sin ^{2} \theta \cos \theta d \theta
$$

b) Hence find the area of R.

[continued from overleaf]

The region R is to be revolved by π radians in the x axis to form a solid of revolution S.
c) Show that the volume of S is 90π cubic units.

Created by T. Madas

Question 12 (****)

The figure above shows the curve C, defined by the parametric equations

$$
x=\tan \theta, \quad y=\cos ^{2} \theta,-\frac{\pi}{2}<\theta<\frac{\pi}{2}
$$

The finite region R is bounded by C, the coordinate axes and the straight line with equation $x=1$.
a) Determine the area of R.

The region R is revolved by 2π radians in the x axis, forming a solid S.
b) Show that the volume of S is

$$
\frac{\pi}{8}(\pi+2)
$$

c) Find a Cartesian equation of C, giving the answer in the form $y=f(x)$.

Created by T. Madas

Question 13 (****)

The figure above shows the curve C, with parametric equations

$$
x=6 t \sin t, \quad y=3 \sec t, 0 \leq t<\frac{\pi}{2}
$$

The curve meets the coordinate axes at the point A.
The line $y=6$ meets C at the point P.
a) Show that the area under the arc of the curve between A and P, and the x axis is given by the integral

The shaded region R is bounded by C, the line $y=6$ and the y axis.
b) Show that the area of R is approximately 10.3 square units.
\square , proof

Created by T. Madas

Created by T. Madas

Created by T. Madas

Question 14 (****)

The figure above shows the curve C with parametric equations

$$
x=5 \cos t, \quad y=3 \sin 2 t, \quad 0 \leq t \leq \frac{\pi}{2}
$$

The curve meets the x axis at the origin O and at the point P.
a) Find the value of t at O and at P.

The finite region R bounded by C and the x axis is revolved by 2π radians in the x axis forming a solid of revolution S.
b) Show that the volume of S is given by the integral

$$
\pi \int_{0}^{\frac{\pi}{2}} 180 \sin ^{3} t \cos ^{2} t d t
$$

c) By using the substitution $u=\cos t$, or otherwise, find the volume of S.

Created by T. Madas

The figure above shows part of the curve C with parametric equations

$$
x=\frac{6}{t}, \quad y=6 t-t^{2}, \quad t \neq 0 .
$$

The curve crosses the x axis at the point R.

The point $P(6,5)$ lies on C and the straight line l is the normal to C at P.

This normal crosses the x axis at the point Q.
a) Determine ...
i. ... the value of t at the points R and P.
ii. ... an equation for l.
iii. ... the coordinates of R and Q.

Created by T. Madas

[continued from overleaf]

The finite region bounded by C, l and the x axis is shown shaded in the figure above.
b) Use parametric integration to find, correct to two decimal places, the area of this region.

$$
\square, t_{R}=6, t_{P}=1,2 y=3 x-8, R(1,0), Q\left(\frac{8}{3}, 0\right), 36 \ln 6-\frac{115}{3} \approx 26.17
$$

Created by T. Madas

The figure above shows part of the curve C with parametric equations

$$
x=\cos \theta, \quad y=\tan ^{2} \theta, \quad 0 \leq \theta<\frac{\pi}{2}
$$

The finite region R, shown shaded in the figure above, is bounded by C, the coordinate axes and the line $y=1$.
a) Show that the area of R is given by the integral

$$
\int_{\theta_{1}}^{\theta_{2}} 2 \tan \theta \sec \theta d \theta
$$ for some appropriate limits θ_{1} and θ_{2}.

b) Hence find an exact value for the area of R.

Created by T. Madas
[continued from overleaf]

The finite region R is revolved by 2π radians in the y axis forming a solid of revolution S.
c) Show that the volume of S is exactly $\pi \ln 2$.

$$
\theta_{1}=0, \quad \theta_{2}=\frac{\pi}{4}, \quad \operatorname{area}=2(\sqrt{2}-1)
$$

\square
 $=\pi \int_{0}^{\frac{y_{1}}{4}} \cos ^{2} \theta\left(2 \tan \theta \sec ^{2} \theta\right) d \theta=2 \pi \int_{0}^{\frac{\pi}{7}} \tan \theta d \theta$ $=2 \pi[\ln |\sec \theta|]_{0}^{\frac{\pi}{4}}=2 \pi[\ln \mid$ set $T|-\ln |$ seco $\mid]$ $=2 \pi[\ln \sqrt{2}-\ln 1]=2 \pi \ln 2^{\frac{1}{2}}=\pi \ln 2$

Created by T. Madas

Question 17 (****)

The figure above shows the re-entrant curve C with parametric equations

$$
x=27-3 t^{2}, \quad y=5 t\left(4-t^{2}\right), t \in \mathbb{R} .
$$

The curve meets the y axis at P and Q, and the x axis at R and S.
a) Determine
i. ... the value of t at the points P, Q, R and S.
ii. ... the Cartesian coordinates of the points P, Q, R and S.
b) Given that C is symmetrical about the x axis, show that the area enclosed by the loop of C, shown shaded in the figure above, is 256 square units.
c) Find a Cartesian equation of C, in the form $y^{2}=f(x)$.
 $, P(0,75), t=-3, Q(0,-75), t=3, R(27,0), t=0, S(15,0), t= \pm 2$,

$$
y^{2}=\frac{25}{27}(27-x)(x-15)^{2}
$$

[solution overleaf]

Created by T. Madas

Created by T. Madas

Question 18 (****)

The figure above shows the curve C with parametric equations

$$
x=\cos ^{3} \theta, \quad y=12 \sin \theta, \quad 0 \leq \theta<2 \pi
$$

The finite region in the first quadrant, bounded by C and the coordinate axes is shown shaded in the figure above. The curve is symmetrical in both the x and in the y axis.
a) Show that the area of the shaded region is given by the integral

$$
36 \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta
$$

b) Use trigonometric identities to show that

$$
\cos ^{2} \theta \sin ^{2} \theta \equiv \frac{1}{8}(1-\cos 4 \theta)
$$

c) Hence find, in terms of π, the total area enclosed by C.

Created by T. Madas

Question 19 (****)

The figure above shows part of the curve with parametric equations

$$
x=t^{2}-9, y=t(4-t)^{2}, t \in \mathbb{R}
$$

The curve meets the x axis at the points P and Q, and the y axis at the points R and T. The point T is not shown in the figure.
a) Find the coordinates of each of the points P, Q, R and T.

The point S is a stationary point of the curve.
b) Show that the coordinates of S are $\left(-\frac{65}{9}, \frac{256}{27}\right)$.

The region bounded by the curve and the x axis is shown shaded in the figure above.
c) Determine an exact value for the area of the shaded region.

$P(-9,0), Q(7,0), R(0,3), T(0,-147)$, area $=\frac{1024}{15}$

Question 20 (****)

The figure above shows the curve C with parametric equations

$$
x=\sin t, y=t^{2}, 0 \leq t \leq 2 \pi
$$

It is given that C is symmetrical about the y axis.

Show that the area enclosed by C can be found by the integral

$$
\int_{0}^{\pi} 4 t \sin t d t
$$

and hence find an exact value for this area.

Created by T. Madas

Question 21 (****)

The figure above shows the design of a pendant $A B C D$ in the shape of a rhombus, made up of two different types of metal.

The innermost part of the design is enclosed by a curve and is made of silver. The rest of the design is made of gold.

The design is symmetrical about both the x and the y axis.

The innermost part of the design is modelled by an ellipse, given parametrically by

$$
x=12 \cos \theta, y=6 \sin \theta, 0 \leq \theta<2 \pi
$$

a) Use integration to show that the area enclosed by the ellipse is exactly 72π.
[continued from overleaf]

The point P lies on the ellipse where $\theta=\frac{\pi}{6}$.

The straight line $A B$ is the tangent to the ellipse at P.
b) Show that the equation of the tangent $A B$ can be written as

$$
2 y+\sqrt{3} x=24
$$

c) Hence find an exact value for the area of the pendant that is made up of gold.
\square
, area $=192 \sqrt{3}-72 \pi$

Created by T. Madas

Question 22 (****)

The figure 1 above, shows the curve C with parametric equations

$$
x=6 \cos t, y=12 \sin 2 t, \quad 0 \leq t \leq 2 \pi
$$

The curve is symmetrical in the x axis and in the y axis.

The region R, shown shaded on the figure 1 , is bounded by the part of C in the first quadrant and the coordinate axes.
a) Show that the area of R is given by

$$
\int_{0}^{\frac{\pi}{2}} 144 \cos t \sin ^{2} t d t
$$

b) Hence find the area enclosed by C in all four quadrants.

[continues overleaf]

Created by T. Madas

Created by T. Madas

[continued from overleaf]

The area enclosed by the entire curve is to be cut out of a piece of rectangular card, as shown in the figure 2 . This is modelled by a rectangle whose sides are tangents to the curve, parallel to the coordinate axes.

The area of the card left over after the curve was cut out is shown shaded in figure 2.

Created by T. Madas

Question 23 (****)

The diagram above shows the curve defined by the parametric equations

$$
x=4 \theta-\sin \theta, \quad y=2 \cos \theta, \text { for } 0 \leq \theta<2 \pi
$$

The curve crosses the x axis at points A and B. The point C is the minimum point on the curve and $C D$ is perpendicular to the x axis and a line of symmetry for the curve.
a) Find the exact coordinates of A, B and C.
b) Show that an equation of the tangent to the curve at the point A is given by
[continued from overleaf]
c) Show further that the area of the region R bounded by the curve and the coordinate axes is given by
d) Determine an exact value for this integral.

Created by T. Madas

Question 24 (****)

The figure above shows the curve C with parametric equations

$$
x=\ln (t+1), \quad y=\frac{2}{t+2}, \quad t \in \mathbb{R}, t \geq 0
$$

The finite region R, shown shaded in the figure above, is bounded by C, the straight lines with equations $x=\ln 3$ and $x=\ln 9$ and the x axis.
a) Show that the area R is given by the integral

$$
I=\int_{2}^{8} \frac{2}{(t+1)(t+2)} d t
$$

b) Find an exact value for the above integral.
c) Show that a Cartesian equation of C is

$$
y=\frac{2}{\mathrm{e}^{x}+1}
$$

[continues overleaf]

Created by T. Madas
[continued from overleaf]
d) Use the Cartesian equation of C and the substitution $u=\mathrm{e}^{x}+1$ to show that the area of R can also be found by the integral

$$
J=\int_{4}^{10} \frac{2}{u(u-1)} d u
$$

e) Without evaluating J, show that $J=I$.

Created by T. Madas

Question 25 (****)

The figure above shows two sections of a curve with parametric equations

$$
x=\frac{2}{t}+1, \quad y=4-t^{2}, \text { for } t \in \mathbb{R}, t \neq 0 .
$$

The curve crosses the x axis at the origin O and at the point A.
The straight line with equation $x+y=6$ intersects the curve at the point B.
a) Find the value of t at the point A.
b) Determine the coordinates of B.

The line $B C$ is parallel to the y axis.

The finite region R, bounded by the curve, the y axis and the line $B C$ is revolved by 2π radians to form a solid of revolution S.
c) Use integration in parametric form to find an exact value for the volume of S.

Created by T. Madas

Question 26 (****)

The figure above shows the curve C with parametric equations

$$
x=t^{2}, \quad y=4 \sin 2 t, \quad t \in \mathbb{R}, t \geq 0
$$

The curve crosses the x axis for the first time at the point A. The finite region R, shown shaded in the figure above, is bounded by C and the part of the x axis from the origin O to the point A. This region is revolved about the x axis to form a solid of revolution S.
a) Show that the volume of S is given by the integral
b) Hence find an exact value for the volume of S.

Created by T. Madas

Created by T. Madas

Question 27 (****)

The figure above shows the curve C with parametric equations

$$
x=2 \sin t, \quad y=\tan t, \text { for } 0 \leq t<\frac{\pi}{2} .
$$

The curve passes through the origin O.
The region R is bounded by C, the y axis and the line $y=1$.

Use integration in parametric form to find an exact value for the area of R.
area $=2 \sqrt{2}-2$

Created by T. Madas

Question 28 (****)

The figure above shows the graph of the curve with parametric equations

$$
x=2-\frac{1}{4} t, \quad y=2^{t}-2, \quad t \in \mathbb{R}
$$

The curve meets the x axis at the point P and the y axis at the point Q.
a) Find the coordinates of P and Q.

The finite region R is bounded by the curve and the coordinate axes, and is shown shaded in the figure above.
b) Show that the area R is given by the integral

$$
\int_{1}^{8} 2^{t-2}-\frac{1}{2} d t
$$

c) Hence find an exact value for R.

Created by T. Madas

The figure above shows an ellipse with parametric equations

$$
x=2 \cos \theta, y=6 \sin \left(\theta+\frac{\pi}{3}\right),-\pi \leq \theta<\pi
$$

The curve meets the coordinate axes at the points A, B, C and D.
a) Find the coordinates of the points A, B, C and D.

The straight line l is the tangent to the ellipse at the point E.
b) State the equation of l, given that l is parallel to the y axis.
c) Find the value of θ at the point E.
[continued from overleaf]

The finite region bounded by the ellipse and the x axis for which $y \geq 0$ is shown shaded in the figure above.
d) Show that the area of this region is given by the integral

$$
\int_{-\frac{\pi}{3}}^{\frac{2 \pi}{3}} 3-3 \cos 2 \theta+3 \sqrt{3} \sin 2 \theta d \theta
$$

e) Hence find the area of the shaded region.
\square $A(-1,0), B(1,0), C(-3,0), D(-3,0), x=2, \theta_{A}=0$, area $=3 \pi$

Created by T. Madas

Question 30

The figure above shows the curve with parametric equations

$$
x=2 \cos ^{2} \theta, \quad y=\sqrt{3} \tan \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

The finite region R shown shaded in the figure, bounded by the curve, the y axis, and the straight lines with equations $y=1$ and $y=3$.

Use integration in parametric to show that the volume of the solid formed when R is fully revolved about the y axis is $\frac{\pi^{2}}{\sqrt{3}}$.

23 HARD QUESTIONS

Created by T. Madas

Question 1

The figure above shows the curve C with parametric equations

$$
x=6 \cos t, \quad y=3 \sin 2 t, \quad 0 \leq t \leq \frac{\pi}{2}
$$

The point P lies on C where $x=3$.
a) Find the y coordinate of P.

The line L is the normal to the curve at P. This normal meets the x axis at Q
b) Show that an equation of L is

$$
2 y+2 x \sqrt{3}=9 \sqrt{3} \text {. }
$$

[continued from overleaf]

The line $P R$ is parallel to the y axis.
c) Show that the area of the finite region bounded by C, the line $P R$ and the x axis is given by the integral

$$
\int_{0}^{\frac{\pi}{3}} 36 \sin ^{2} t \cos t d t
$$

d) Hence find an exact value for the area of the shaded region, bounded by C, the normal L and the x axis

Question 2 (****+)
A curve has parametric equations

$$
x=\frac{1-\mathrm{e}^{4-4 t}}{4}, \quad y=\frac{2 t}{\mathrm{e}^{2 t}}, t \in \mathbb{R}
$$

a) Find the gradient at the point on the curve where $t=\frac{5}{2}$.
b) Show that the finite area bounded by the curve, the x axis, and the straight lines with equations $x=\frac{1-\mathrm{e}^{4}}{4}$ and $x=\frac{1-\mathrm{e}^{2}}{4}$, is exactly

$$
\frac{1}{18} \mathrm{e}\left(\mathrm{e}^{3}-4\right)
$$

c) Determine a Cartesian equation of the curve in the form $y=f(x)$.

$$
y,\left.\frac{d y}{d x}\right|_{t=\frac{5}{2}}=-8 \mathrm{e}, y=\frac{[4-\ln (1-4 x)] \sqrt{1-4 x}}{2 \mathrm{e}^{2}}
$$

Created by T. Madas

Question 3 (****+)

The figure above shows the curve C with parametric equations

$$
x=4 \cos ^{2} \theta, y=4 \sin \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

The point $P(3,2)$ lies on C. The straight line l is the tangent to C at P.
a) Show that an equation of l is

$$
x+y=5
$$

The finite region R is bounded by C, l and the x axis. This region is to be revolved by 2π radians about the x axis to form a solid S.
b) Find an exact value for the volume of S.

Created by T. Madas
Question $4 \quad(* * * *+)$

The figure above shows the curve C, given parametrically by

$$
x=3 \sin 2 \theta, \quad y=\cos \theta, \text { for } 0 \leq \theta \leq \frac{\pi}{2}
$$

a) Find an expression for $\frac{d y}{d x}$ in terms of θ.

The line T is parallel to the y axis and is a tangent to C at the point P.
b) Show that $\theta=\frac{\pi}{4}$ at P.
[continued from overleaf]

The finite region R bounded by C, T and the x axis.
c) Show that the area of R is given by

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} 12 \sin ^{2} \theta \cos \theta-6 \cos \theta d \theta
$$

d) Hence find the area of R.
e) Find a Cartesian equation for C in the form $x^{2}=f(y)$.

Created by T. Madas

Question 5 (****+)

The figure above shows part of the curve C with parametric equations

$$
x=t+\frac{1}{4 t}, \quad y=t-\frac{1}{4 t}, \quad t>0
$$

The curve crosses the x axis at P.
a) Determine the coordinates of P.
b) Show that the gradient at any point on C is given by

$$
\frac{d y}{d x}=\frac{4 t^{2}+1}{4 t^{2}-1}
$$

[continues overleaf]

Created by T. Madas
[continued from overleaf]

The region R bounded by C, the line $x=\frac{5}{3}$ and the x axis is shown shaded in the above figure.
d) Show that the area of R is given by

$$
\int_{\frac{1}{2}}^{\frac{3}{2}}\left(t-\frac{1}{4 t}\right)\left(1-\frac{1}{4 t^{2}}\right) d t
$$

e) Hence calculate an exact value for the area of R.

Created by T. Madas

Question $6 \quad\left({ }^{* * * *+)}\right.$

he curve C with parametric equations

$$
x=2 t+\frac{1}{t}, \quad y=2 t-\frac{1}{t}, \quad t>0 .
$$

The curve crosses the x axis at P and the point Q is such so that $t=2$.

The straight line L is a normal to C at Q.
a) Determine the exact coordinates of P.
b) Show that the gradient at any point on C is given by

$$
\frac{d y}{d x}=\frac{2 t^{2}+1}{2 t^{2}-1}
$$

[continued from overleaf]

The normal L crosses the x axis at R.

The finite region bounded by C, L and the x axis, shown shaded in the figure, has area A.
c) Find the coordinates of R.
$P(2 \sqrt{2}, 0), R(9,0), A=\frac{63}{4}-6 \ln 2$
d) Calculate an exact value for A.

Created by T. Madas

Question 7 (****+)

The figure above shows a curve known as a Cardioid which is symmetrical about the x axis.

The curve crosses the x axis at the points $A(-2,0)$ and $B(6,0)$.

The point P is the maximum point of the curve.

The parametric equations of this Cardioid are

$$
x=4 \cos \theta+2 \cos 2 \theta, \quad y=4 \sin \theta+2 \sin 2 \theta, \quad 0 \leq \theta<2 \pi .
$$

a) Find a simplified expression for $\frac{d y}{d x}$, in terms of θ, and hence find the exact coordinates of P.
b) Show that the area of the top half of this Cardioid, shown shaded in the figure, is given by the integral

$$
\int_{0}^{\pi} 16 \sin ^{2} \theta+24 \sin \theta \sin 2 \theta+8 \sin ^{2} 2 \theta d \theta
$$

and hence find the exact value of the area enclosed by the Cardioid.

Created by T. Madas

Question $8 \quad(* * * *+)$

The figure above shows a symmetrical design for a suspension bridge arch $A B C D$.

The curve $O B C R$ is a cycloid with parametric equations

$$
x=6(2 \theta-\sin 2 \theta), \quad y=6(1-\cos 2 \theta), \quad 0 \leq \theta \leq \pi .
$$

a) Show clearly that

$$
\frac{d y}{d x}=\cot \theta
$$

Created by T. Madas

[continued from overleaf]

The arch design consists of the curved part $B C$ and the straight lines $A B$ and $C D$.

The straight line $A B$ is a tangent to the cycloid at the point B where $\theta=\frac{\pi}{3}$, and similarly the straight line $C D$ is a tangent to the cycloid at the point C where $\theta=\frac{2 \pi}{3}$.
b) Show further that ...
i. ... the tangent to the cycloid at B meets the x axis at $x=4 \pi-12 \sqrt{3}$.
ii. ... the length of $A P$ is $9 \sqrt{3}$.
iii. ... the area between the x axis and the part of the cycloid between B and C is given by

$$
36 \int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} 3-4 \cos 2 \theta+\cos 4 \theta d \theta
$$

c) Hence find an exact value for the area enclosed by $A B C D$ and the x axis.

Created by T. Madas

Question 9 (****+)

The figure above shows the curve with parametric equations

$$
x=t^{2}+1, \quad y=2 t+2, \quad t \in \mathbb{R}
$$

The straight line with equation $x=10$ meets the curve at the points P and Q.

The area of the finite region bounded by the curve and the straight line with equation $x=10$ is shown shaded in the figure above.

Show that this area is given by
and hence find its value.

Created by T. Madas

Question 10 (****+)

The figure above shows the curve with parametric equations

$$
x=t^{2}, y=\sin t, 0 \leq t \leq \pi .
$$

The curve crosses the x axis at the origin O and at the point A.
The point P lies on the curve where $t=\frac{2}{3} \pi$.

The straight line T is a tangent to the curve at P.

Show that the area of the finite region bounded by the curve, the tangent T and the x axis, shown shaded in the figure above, is

$$
\frac{1}{3}(3 \sqrt{3}-\pi) .
$$

Created by T. Madas

Question 11 (****+)

A curve lies entirely above the x axis and has parametric equations

$$
x=\sin ^{2} t, \quad y=4 \tan ^{3} t, \quad 0 \leq t<\frac{1}{2} \pi
$$

The finite region R is bounded by the curve, the x axis and the straight line with equation $x=\frac{1}{2}$.

Use integration in parametric to find the exact area of R.

Created by T. Madas

Question $12 \quad(* * * *+)$
A curve lies entirely above the x axis and has parametric equations

$$
x=2 t^{5}, \quad y=\frac{1}{1+2 t^{\frac{5}{2}}}, \quad t \geq 0
$$

The finite region R is bounded by the curve, the x axis, the y axis and the straight line with equation $x=2$

Use integration in parametric to find the exact area of R.

Created by T. Madas

Question $13 \quad(* * * *+)$

The figure above shows the closed curve C with parametric equations

$$
x=\cos \theta, y=\sin \theta-\frac{1}{4} \sin 2 \theta, \quad 0 \leq \theta<2 \pi .
$$

The curve is symmetrical about the x axis.

The finite region enclosed by C is revolved by π radians about the x axis, forming a solid of revolution S.

Show that the volume of S is given by

$$
\pi \int_{0}^{\pi} \sin ^{3} \theta\left(1-\frac{1}{2} \cos \theta\right)^{2} d \theta
$$

and by using the substitution $u=\cos \theta$, or otherwise, determine an exact value for the volume of S

Created by T. Madas

Question 14 (****+)

The figure above shows the curve with parametric equations

$$
x=\frac{1}{1+t}, \quad y=\frac{1}{1-t}, \quad-1<t<1 .
$$

The region R, shown shaded in the figure, is bounded by the curve, the x axis and the straight lines with equations $x=\frac{2}{3}$ and $x=2$.
a) Show that the area of R can be found by the parametric integral

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{(1-t)(1+t)^{2}} d t
$$

and hence find the exact area of R.
b) Determine a Cartesian equation of the curve, in the form $y=f(x)$, and by evaluating a suitable integral in Cartesian verify the answer given to part (a).

Created by T. Madas

Created by T. Madas

Question 15 (****+)

The figure above shows the ellipse with parametric equations

$$
x=8 \cos \theta, y=4 \sin \theta, 0 \leq \theta<2 \pi
$$

The point P lies on the ellipse, where $\theta=\frac{1}{4} \pi$.

The straight line T is a tangent to the ellipse at P.
The finite region R, shown shaded in the figure, is bounded by the ellipse, the tangent T and the x axis.

Find an exact value for the area of R.

Created by T. Madas

Question 16 (****+)

The figure above shows the curve C with parametric equations

$$
x=\sin t, y=t^{2}, 0 \leq t \leq 2 \pi
$$

It is given that C is symmetrical about the y axis.

The region bounded by C is to be revolved about the y axis by π radians to form a solid of revolution with volume V.

By considering a suitable integral in parametric, or otherwise, find an exact value for this volume.

Created by T. Madas

Created by T. Madas

Question $17 \quad(* * * *+)$

The figure above shows the curve with parametric equations

$$
x=2+2 \sin \theta, y=2 \cos \theta+\sin 2 \theta,-\frac{1}{2} \pi \leq \theta \leq \frac{1}{2} \pi
$$

The curve meets the x axis at the origin O and at the point P.
The finite region bounded by the curve and the x axis is rotated by 2π radians in the x axis, forming a solid of revolution S.
a) Show that the volume of S is given by
and hence find its exact value.
b) Determine a Cartesian equation of the curve and by forming and evaluating an appropriate integral in Cartesian verify the answer for the volume of S, found in part (a).

Created by T. Madas

Question $18 \quad(* * * *+)$

The figure above shows a curve with parametric equations

$$
x=\cos \theta, y=\sin 2 \theta-\cos \theta, 0 \leq \theta<2 \pi .
$$

The curve, which has rotational symmetry about the origin O, crosses the x axis at the points P, Q and O.

The finite region bounded by the curve, for which $x \geq 0, y \geq 0$, and the x axis is shown shaded in the figure.

Show, with detailed workings, that ...
i. $\quad .$. the area of shaded region is $\frac{5}{24}$.
ii. \ldots the area enclosed by the two loops of the curve is $\frac{8}{3}$.
iii. ... a Cartesian equation of the curve is

$$
4 x^{2}\left(1-x^{2}\right)=(x+y)^{2}
$$

Created by T. Madas

Created by T. Madas

Question $19(* * * *+)$

The figure above shows part of the curve with parametric equations

$$
x=\frac{8}{t}, y=\ln t, t>0
$$

The finite region R is bounded by the curve, the x axis and the straight line with equation $x=1$.
a) Show that the area of R is given by
where the t_{1} and t_{2} are constants to be found.
b) Evaluate the above parametric integral to determine, in exact simplified form, the area of R.
c) Find a Cartesian equation of the curve and hence verify the answer of part (b).

Created by T. Madas

Created by T. Madas

Question $20(* * * *+)$
3

A semi-cubical parabola C, which consists of two sections meeting at the origin O, has parametric equations

$$
x=t^{2}, y=t^{3}, t \in \mathbb{R}
$$

The point P lies on C where $t=2$.

The straight line L is the tangent to C at P and the point Q is where L re-intersects C, as shown in the figure.
a) Find the coordinates of Q
b) Determine the area of the finite region bounded by C and L, shown shaded in the figure above.

Created by T. Madas

Created by T. Madas

Question 21 (*****)

Figure 1
figure 2

Figure 1 above, shows the curve with parametric equations

$$
x=\sin 2 \theta, y=1-\sin 3 \theta, 0 \leq \theta \leq \frac{1}{2} \pi
$$

Figure 2 above shows a glass design. It consists of the curve of figure 1, reflected successively in the x and y axis.

The resulting design fits snugly inside a rectangle, whose sides are tangents to the curve and its reflections, parallel to the coordinate axes. The region inside the 4 loops of the curve is made of clear glass while the region inside the rectangle but outside the 4 loops of C is made of yellow glass.

Determine the area of the yellow glass.

Created by T. Madas

Question 22

A curve is defined in terms of a parameter θ, by the following equations.

$$
x=\cos \theta, y=8 \sin \theta, 0 \leq \theta<2 \pi
$$

Determine an exact value for the area of the finite region bounded by the curve, the y axis for which $y \geq 0$, and the straight line with equation $y=4$ for which $y \geq 4$.

Created by T. Madas

The figure above shows a curve with parametric equations

$$
x=t^{2}+2 t, y=t^{3}-9 t, t \in \mathbb{R} .
$$

The curve meets the coordinate axes at the origin O and at the points A, B and C.
a) Determine the coordinates of A, B and C.

The finite region R, shown shaded in the figure, is bounded by the curve and the coordinate axes.
b) Find the area of R.

The finite region bounded by the curve and the y axis, for which $x<0$, is revolved by 2π radians about the x axis, forming a solid S.
c) Calculate the volume of S.

, $A(3,0), B(15,0), C(0,10)$, area $=17.1$, volume ≈ 282

Created by T. Madas

8 ENRICHMENT QUESTIONS

Created by T. Madas

Question 1 (*****)

The figure above shows the curve C with parametric equations

$$
x=4 \cos 3 \theta, \quad y=4 \sin \theta, \quad 0 \leq \theta \leq \frac{1}{6} \pi .
$$

The curve meets the coordinate axes at $P(0,2)$ and at $Q(4,0)$.
The straight line L is the tangent to C at the point P.
a) Show that an equation of L is

$$
6 y+x \sqrt{3}=12
$$

The finite region bounded by the curve C the tangent L and the x axis is shown shaded in the above figure.
b) Show further that the area of this region is exactly $\sqrt{3}$ square units.

Created by T. Madas

Question 2 (*****)

The figure above shows the curve C with parametric equations

$$
x=t \sin t, \quad y=\cos t, 0 \leq t<2 \pi
$$

The curve meets the coordinate axes at the points P, Q, R and S.
a) Find the value of the parameter t at each the points P, Q, R and S.

The finite region bounded by the curve C is shown shaded in the above figure.
b) Show that the area of this region is exactly π^{2} square units.

$$
\square, t_{P}=0, t_{S}=\frac{\pi}{2}, t_{Q}=\pi, t_{R}=\frac{3 \pi}{2}
$$

Question 3 (*****)

The figure above shows a curve given parametrically by

$$
x=\sin 3 t, \quad 1+y \cos 3 t=2 y, \quad t \in \mathbb{R}, 0 \leq t \leq \frac{1}{3} \pi
$$

The finite region bounded by the curve and the y axis, shown shaded in the figure is revolved by 2π radians about the y axis, forming a solid of revolution.

Determine an exact simplified value for the volume of this solid.

Created by T. Madas

Created by T. Madas

Question 4 (*****)

The figure above shows the curve with parametric equations

$$
x=\sin \left(t+\frac{\pi}{6}\right), y=1+\cos 2 t, 0 \leq t<2 \pi
$$

Given that the curve is symmetrical about the y axis, show that the area enclosed by the two loops of the curve is $\frac{4 \sqrt{3}}{3}$.

Created by T. Madas

Question 5 (*****)

The figure above shows the curve C with parametric equations

$$
x=2 t, \quad y=t^{2}-1, \quad t \in \mathbb{R}
$$

The finite region, bounded by C, the x axis and the line $x=4$ is revolved by 2π radians about the line $x=4$, to form a solid of revolution S.

Find an exact value for the volume of S.

Created by T. Madas

Question 6 (*****)

The figure above shows the curve with parametric equations

$$
x=t^{3}, \quad y=t^{2}, \quad t \in \mathbb{R}
$$

The tangent to the curve at the point P meets the curve again at the point Q.

Given that the area of the finite region bounded by the curve and the tangent, shown shaded in the above figure, is $2 \frac{7}{10}$ square units, determine the coordinates of P.

Created by T. Madas

Question 7 (*****)

The figure above shows a set of coordinate axes superimposed with a circular cotton reel of radius a and centre at $C(0,3 a)$.

A piece of cotton thread, of length $3 \pi a$, is fixed at one end at O and is being unwound from around the circumference of the fixed circular reel. The free end of the cotton thread is marked as the point $B(x, y)$ which was originally at $A(0,6 a)$.

The unwound part of the cotton thread $B D$ is kept straight and θ is the angle $O C D$ as shown in the figure above.
a) Determine the parametric equations that satisfy the locus of $B(x, y)$, as the cotton thread is unwound in the fashion described, for which $x>0, y>0$.
b) Find the total area enclosed by the curve traced by B, in the entire $x-y$ plane.
$x=3 a[\sin \theta+(\pi-\theta) \cos \theta], y=3 a[1-\cos \theta+(\pi-\theta) \sin \theta]$, area $=\frac{3}{2} \pi a^{2}\left(5 \pi^{2}+6\right)$

Created by T. Madas

Created by T. Madas

Question 8 (*****)
A curve C has equation

$$
x^{2}+x y+y^{2}=1 . \quad 0 \leq x \leq 3
$$

By seeking a suitable parameterization of C in the form

$$
x=A \cos \theta+B \sin \theta \quad \text { and } \quad y=A \cos \theta-B \sin \theta,
$$

where A and B are suitable constants,
determine the area of the finite region in the first quadrant, bounded by the curve and the coordinate axes.

You may assume that the curve does not intersect itself.

