
uasmanns.com Created by T. Madas

Smaths.com

INTEGRATION IN PARAMETRIC asmaths.com Maths Com I.K. T.Y.C.B. Madasmanne Madasmanne Market Strength S Q, K, G, B, Madasman, B, B, Madasman, C, K, G, B, Madasman, C, B, Madasman, C, B, Madasma, C, B, QUESTIONS

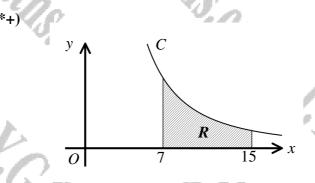
Created by T. Madas ASTRAILS COM I. Y. C.B. MARIASINALIS COM I.Y. C.B. MARIASING

The figure above shows the curve C, given parametrically by

 $x = t^2 - 2$, y = 6t, $t \ge 0$.

The finite region R is bounded by C, the x axis and the straight lines with equations x = 2 and x = 14.

 $12t^2 dt$,


a) Show that the area of R is given by

stating the value of T.

b) Hence find the area of R.

, |T = 4|area = 224

6A= 1 4+3

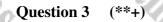
The figure above shows the curve C, given parametrically by

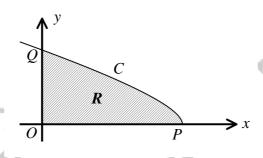
$$x = 4t - 1$$
, $y = \frac{16}{t^2}$, $t > 0$.

The finite region R is bounded by C, the x axis and the straight lines with equations x = 7 and x = 15.

a) Show that the area of R is given by

Question 2


stating the values of t_1 and t_2 .


b) Hence find the area of R.

c) Find a Cartesian equation of C, in the form y = f(x).

d) Use the Cartesian equation of C to verify the result of part (b).

256 =4area = 16 $(x+1)^{2}$

The figure above shows the curve C, given parametrically by

$$x = 4 - t^2$$
, $y = t(t+3)$, $t \ge 0$.

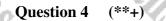
The curve meets the coordinate axes at the points P and Q.

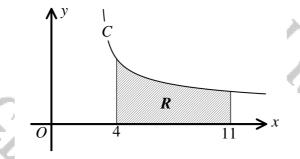
a) Find the coordinates of P and Q.

The finite region R is bounded by C and the coordinate axes.

b) Show that the area of R is given by

$$\int_{t_1}^{t_2} 2t^3 + 6t^2 dt ,$$


stating the values of t_1 and t_2


c) Hence find the area of R.

P(4,0) & Q(0,10), $t_1 = 0$, $t_2 = 2$, area = 24

7.91

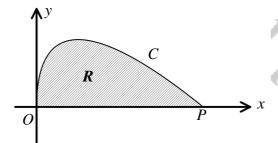
The figure above shows the curve C, given parametrically by

$$x = t^3 + 3$$
, $y = \frac{2}{3t}$, $t > 0$

1

The finite region R is bounded by C, the x axis and the straight lines with equations x = 4 and x = 11.

a) Show that the area of R is 3 square units.


The region R is revolved in the x axis by 2π radians to form a solid of revolution S.

b) Find the volume of *S*.

 $A = \int g(a) da = \int g(t) \frac{dt}{dt} dt$ 3€)(32) dt = 2t dt W VI $\frac{dx}{dt} dt = \pi \left[\frac{2}{3t^2} \left(\frac{2}{3t^2} \right)^2 \left(\frac{3}{3t^2} \right) dt \right]$ $\frac{4}{3} dt = \pi \left[\frac{4}{3}t\right]^2 = \pi \left[\frac{g}{4}-\frac{4}{3}\right]$

 $\frac{4\pi}{3}$

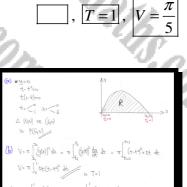
Question 5 (***)

The figure above shows the curve C, given parametrically by

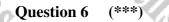
$$x = 6t^2$$
, $y = t - t^2$, $t \ge 0$

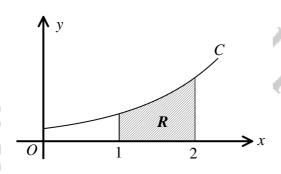
The curve meets the x axis at the origin O and at the point P.

a) Show that the x coordinate of P is 6.


The finite region R, bounded by C and the x axis, is revolved in the x axis by 2π radians to form a solid of revolution, whose volume is denoted by V.

b) Show clearly that


$$V = \pi \int_0^T 12t \left(t - t^2\right)^2 dt,$$


stating the value of T.

c) Hence find the value of V.

$$\begin{split} &= \mathsf{p}\pi\left[\frac{1}{2}\mathsf{f}_{\mathsf{f}} \mathsf{f}_{\mathsf{f}}^* - \frac{3}{2}\mathsf{f}_{\mathsf{f}}^* + \frac{1}{2}\mathsf{f}_{\mathsf{f}}^*\right]_0^* = \mathsf{I}\mathfrak{I}\pi\left[\frac{1}{2}\mathsf{f}_{\mathsf{f}}^* - \frac{3}{2}\mathsf{f}_{\mathsf{f}}^* + \frac{1}{2}\mathsf{f}_{\mathsf{f}}^*\right] = \mathsf{p}\pi\left[\frac{1}{2}\mathsf{f}_{\mathsf{f}}^* - \frac{3}{2}\mathsf{f}_{\mathsf{f}}^*\right] = \mathsf{D}\pi\left[\frac{1}{2}\mathsf{f}_{\mathsf{f}}^* - \frac{3}{2}\mathsf{f}_{\mathsf{f}}^* + \frac{1}{2}\mathsf{f}_{\mathsf{f}}^*\right] = \mathsf{D}\pi \mathsf{f}_{\mathsf{f}}^* \mathsf{f}_{\mathsf{f}}^* = \frac{1}{2}\mathsf{f}_{\mathsf{f}}^* \mathsf{f}_{\mathsf{f}}^* \mathsf{f}_{\mathsf{f}}^* = \mathsf{I}_{\mathsf{f}}^* \mathsf{f}_{\mathsf{f}}^* \mathsf{f}^* \mathsf{f}^* \mathsf{f}}^* \mathsf{f}_{\mathsf{f}}$$

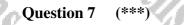
The figure above shows the curve C, given parametrically by

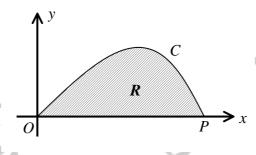
$$x = \ln t$$
, $y = t + \sqrt{t}$, $1 \le t \le 10$.

The finite region R is bounded by C, the straight lines with equations x = 1 and x = 2, and the x axis.

a) Show that the area of R is given by

$$\int_{T_1}^{T_2} 1 + t^{-\frac{1}{2}} dt$$


stating the values of T_1 and T_2 .

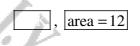

b) Hence find an exact value for the area of R.

(t+tt)(t)e + 2et

 $e^2 + e - 2e^{\frac{1}{2}}$

 $T_1 = e, T_2 = e^2$

The figure above shows the curve C, given parametrically by


 $x = 3t + \sin t, \quad y = 2\sin t \ , \quad 0 \le t \le \pi \ .$

The curve meets the coordinate axes at the point P and at the origin O.

The finite region R is bounded by C and the x axis.

Determine the area of R.

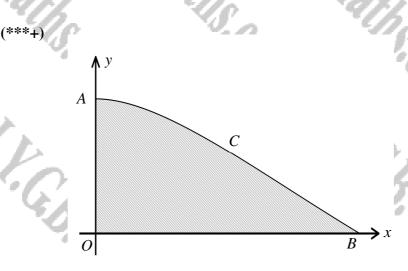
Ĉ.p.

i G.B.

Maga

197

6


2017

Madasma

2.4

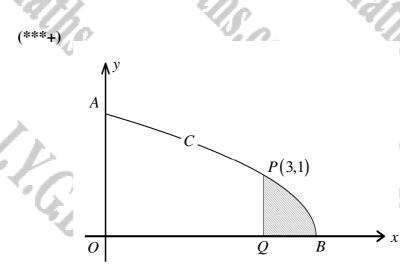
 $\begin{array}{c} & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt{\log p} \ell \leq \frac{1}{p} \right)}_{q \neq q} \\ & \underbrace{\left(\begin{array}{c} \sqrt$

Created by T. Madas ASTRAITS COM I.Y. G.B. MARIAS MARINE COM I.Y. C.B. MARIAS COM I.Y. C.B. MARIAS COM I.Y. C.B. MARIAS COM

The figure above shows the curve C, with parametric equations

Question 1

 $x = 36t^2 - \pi^2$, $y = \frac{\sin 3t}{8}$, $\frac{\pi}{6} \le t \le \frac{\pi}{3}$.


The curve meets the coordinate axes at the points A and B.

By setting up and evaluating a suitable integral in parametric, show that the area bounded by C and the coordinate axes is $(\pi - 1)$ square units.

y 4 2 = 0 2 = 15 t = 15	• $\Im = 36t^{2} - \pi^{2}$ $0 = 36t^{2} - \pi^{2}$ $\pi^{2} = 36t^{2}$ $t^{2} = \frac{\pi^{2}}{26}$ $t^{2} = \frac{\pi^{2}}{26}$	• y= Sizt 0 = Sizt 3t= 0,7,27,37, t= 0, y= m t= p
$f_{t} = \int_{x_{1}}^{x_{2}} g(x) dx = \int_{t_{1}}^{t_{2}} g(\theta) \frac{d\theta}{d\theta}$	$\frac{1}{6}$ of $= \int_{\frac{1}{2}}^{\frac{1}{2}} (\frac{1}{2} \text{ and })$	$(72t)$ dt = $\int_{\frac{1}{2}}^{\frac{1}{2}} 9 \tan \theta$ dt
$\begin{cases} Symptotic for the set of th$	= T-1	· M3t]% F)-(-蹇sas蹇+ Sm聖) ≈
	18	REPURIO

proof

2017

The figure above shows the curve C, with parametric equations

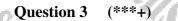
$x = 4\sin^2 t$, $y = 2\cos t$, $0 \le t \le \frac{\pi}{2}$.

The curve meets the coordinate axes at the points A and B.

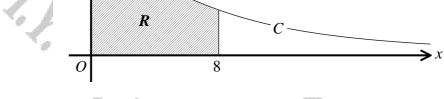
The point P(3,1) lies on C.

Question 2

The point Q lies on the x axis so that PQ is parallel to the y axis.


a) Show that the area of the shaded region bounded by C, the line PQ and the x axis is given by the integral

$$6\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^2t\,\sin t\,dt\,.$$


b) Evaluate the above integral to find the area of the shaded region.

2 - Asalt of the E	(3,1)	
• Whan y=0 Ziast=0 ast=0 「七王王	and the state	
• $3 = 4 \sin^2 \xi$ $\frac{3}{4} = \sin^2 \xi$	* the = h = costant dt	
$\frac{1}{4} = \sin c$ $\frac{1}{4}$ $\sin t = \frac{1}{2}$ $\sqrt{\frac{1}{4}}$	() = [- $\frac{16}{3}$ cm / 14. Based	
$\frac{1}{\sqrt{2}} = \int_{x_1}^{x_2} \frac{g(x)}{g(x)} dx = \int_{x_1}^{x_2} \frac{g(x)}{g(x)} \frac{dx}{dx} dx$	$= \frac{10}{3} \begin{bmatrix} 60^{5}F \\ 17^{2} \end{bmatrix}$ $= \frac{11}{3} \begin{bmatrix} 60^{5}\frac{61}{3} - 60^{5}\frac{61}{2} \end{bmatrix}$	
464 = JE (Zust)(Bakust) dt	$= \frac{2}{3} \times \frac{1}{3}$	
~		

area

y /

The figure above shows the curve C with parametric equations

$$x = 8 \tan t$$
, $y = \cos^2 t$, $0 \le t < \frac{\pi}{2}$.

The finite region R is bounded by C, the coordinate axes and the straight line with equation x = 8.

The region R is revolved in the x axis by 2π radians to form a solid of revolution S

a) Show the volume of S is given by the integral

$$8\pi \int_{t_1}^{t_2} \cos^2 t \ dt \,,$$

for some appropriate limits t_1 and t_2 .

b) Hence find an exact value for the volume of S.

,	volume = $\pi(\pi + 2)$
,	volume = $\pi(\pi+2)$

(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	(b) $\therefore V = \pi \int_{0}^{\frac{1}{2}} \left(\frac{1}{2} + \frac{1}{2} \cos 2t \right) dt$
2/10 2/18 2	$\implies V = \pi \int_{0}^{\frac{T}{2}} 4 + 4 \log 2t dt$
Blant=0 Blant=B tant=0 tant=1 (t=0 (t=#)	$\Rightarrow V \circ \pi \left[\begin{array}{c} 4\varepsilon + 2SM2 \varepsilon \end{array} \right]_{0}^{\overline{V}}$
$\rightarrow V = \pi \int_{2^{n}}^{\infty} (0)^{2} d\alpha$	$\Rightarrow \int \mathcal{I}_{\mathcal{I}} \left[\left(1 + \mathcal{D}_{\mathcal{H}} \mathbf{\tilde{E}} \right) - (0) \right]$
⇒ V = π [t] ⇒ V = π [t] (with) the set of	$\Rightarrow V = \pi(\pi + 2)$
$\Rightarrow V = \pi \int_{0}^{\infty} \omega t \times \frac{\partial}{\partial \omega} dt$	
→ V= T J & Bust de	

The figure above shows a curve known as a re-entrant cycloid, with parametric equations

х

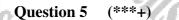
$$x = \theta - 4\sin\theta$$
, $y = 1 - 2\cos\theta$, $0 \le \theta \le 2\pi$.

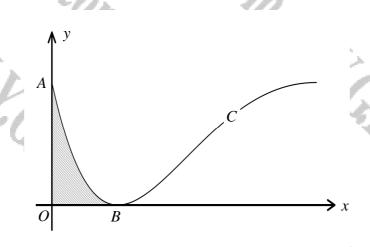
The curve crosses the x axis at the points P and Q.

- **a**) Find the value of θ at the points P and Q.
- b) Show that the area of the finite region bounded by the curve and the x axis, shown shaded in the figure above, is given by the integral

 $\int_{\theta_1}^{\theta_2} 1 - 6\cos\theta + 8\cos^2\theta \ d\theta,$

where θ_1 and θ_2 must be stated.


c) Find an exact value for the above integral.


 $\theta_1 =$ $\pi + 4$

的品句

35-5)-(#-35+5)

Created by T. Madas

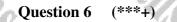
The figure above shows the curve C, with parametric equations

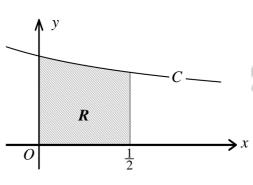
 $x = t^2$, $y = 1 + \cos t$, $0 \le t \le 2\pi$.

The curve meets the coordinate axes at the points A and B.

a) Show that the area of the shaded region bounded by C and the coordinate axes is given by the integral

 $\int_{t_2}^{t_2} 2t \left(1 + \cos t\right) dt,$


where t_1 and t_2 are constants to be stated.


b) Evaluate the above parametric integral to find an exact value for the area of the shaded region.

$$t_1 = 0, t_2 = \pi$$
, area = $\pi^2 - 4$

[solution overleaf]

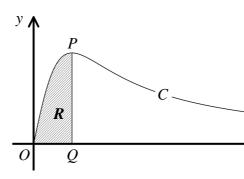
The figure above shows part of the curve C, with parametric equations

$$x = \cos 2\theta$$
, $y = \sec \theta$, $0 < \theta < \frac{\pi}{2}$

The finite region R is bounded by C, the straight line with equation $x = \frac{1}{2}$ and the coordinate axes.

a) Show that the area of R is given by the integral

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} 4\sin\theta \ d\theta$$


b) Evaluate the above integral to find an exact value for R.

The region R is rotated by 2π radians in the x axis to form a solid of revolution S

c) Use parametric integration to find an exact value for the volume of S.

volume = $2\pi \ln\left(\frac{3}{2}\right)$ area = $2\sqrt{3} - 2\sqrt{2}$ = $\left[4(05B)\right]_{12}^{126} = 2\sqrt{3} - 2\sqrt{2} = 2(\sqrt{3} - \sqrt{2})$ y(x))2 da = 1 $(9(0))^2 \frac{d_2}{d_2} d\theta = \pi \int_{0}^{0}$ (Sec B)²(-2 SINSB) dB. $(000) = \pi \int_{\overline{x}}^{\overline{x}} \frac{4_{SNG}}{\omega_{SG}} d\sigma = \pi \int_{\overline{x}}^{\overline{x}} 4_{Low} \theta d\sigma = \pi \left[4 |u| |sec6 \right]_{\overline{x}}^{\overline{x}}$ $\left(\operatorname{Sec}^{\frac{\pi}{4}}\right) - \ln\left(\operatorname{Sec}^{\frac{\pi}{4}}\right) = 4\pi \left[\ln \sqrt{2} - \left(\ln \left(\frac{2}{3}\sqrt{5}\right) \right] = 2\pi \left[2\ln \sqrt{2} - 2\ln \left(\frac{\pi}{3}\sqrt{5}\right) \right]$ $2\pi \int \left[h2 - \left[h \frac{\mu}{3} \right] \right] = 2\pi \left[h \left(\frac{2}{43} \right) = 2\pi \left[h \left(\frac{3}{22} \right) \right]$

Question 7 (***+)

The figure above shows the curve C with parametric equations

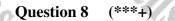
 $x = 6 \tan \theta$, $y = \sin 2\theta$, $0 \le \theta < \frac{\pi}{2}$.

The curve has a single stationary point at P.

a) Find the coordinates of P.

The point Q lies on the x axis so that PQ is parallel to the y axis. The finite region R is bounded by C, the x axis and the straight line segment PQ. The region R is revolved in the x axis by 2π radians to form a solid of revolution S.

b) Show the volume of *S* is given by the integral


 $\pi \int_{0}^{\frac{\pi}{4}} 24\sin^2\theta \ d\theta.$

c) Hence find an exact value for the volume of S.

|P(6,1)|,volume = $3\pi(\pi-2)$ $dx = \pi \int (\underline{\dot{q}}(\theta))^2 dt dt$ A REGUL 24(t- + 6426)d= # $= \pi \left[(3\pi - 6) - (0 - 0) \right] = \pi (3\pi - 6)$ = $3\pi (\pi - 2)$

 $\rightarrow x$

С

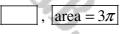
у

0

The figure above shows a cycloid C, whose parametric equations are

R

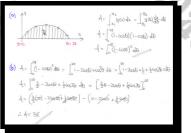
10

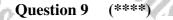

$$x = \theta - \sin \theta$$
, $y = 1 - \cos \theta$, $0 \le \theta \le 2\pi$.

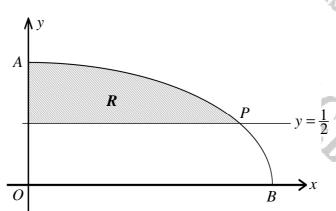
The finite region R is bounded by C and the x axis.

a) Show, with full justification, that the area of R is given by

 $\int_0^{2\pi} (1-\cos\theta)^2 \ d\theta \, .$


b) Hence find the area of R.




2

6

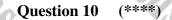
2017

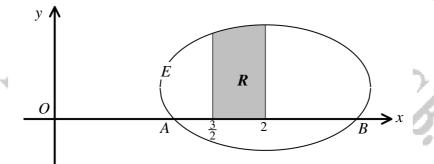
The figure above shows the curve C, with parametric equations

$$x = 4\cos\theta$$
, $y = \sin\theta$, $0 \le \theta \le \frac{\pi}{2}$

The curve meets the coordinate axes at the points A and B. The straight line with equation $y = \frac{1}{2}$ meets C at the point P.

a) Show that the area under the arc of the curve between A and P, and the x axis, is given by the integral


$$\frac{\frac{\pi}{2}}{\frac{\pi}{6}} 4\sin^2\theta \ d\theta.$$


The shaded region R is bounded by C, the straight line with equation $y = \frac{1}{2}$ and the y axis.

b) Find an exact value for the area of R.

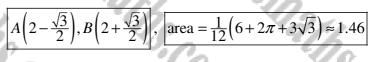
_ dsm20, db =

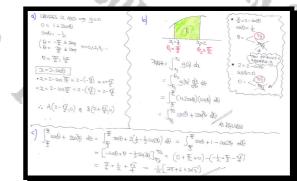
area = $\frac{1}{6}(4\pi -$

The figure above shows an ellipse E, given parametrically by

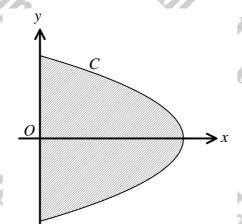
 $x = 2 - \cos \theta$, $y = 1 + 2\sin \theta$, $0 \le \theta < 2\pi$.

The ellipse crosses the x axis at the points A and B.


a) Find, as exact surds, the coordinates of A and the coordinates of B.


The finite region R is bounded by E, for which $y \ge 0$, the x axis and the straight lines with equations $x = \frac{3}{2}$ and x = 2.

b) Show that the area of R is given by


 $\sin\theta + 2\sin^2\theta \ d\theta.$

c) Hence find the area of R.

Question 11 (****)

The figure above shows the curve C, given parametrically by

$$x = 5\cos^2\theta$$
, $y = 6\sin\theta$, $-\frac{\pi}{2} < \theta \le \frac{\pi}{2}$.

The curve is symmetrical in the x axis.

The finite region bounded by C and the y axis is denoted by R.

a) Show that the area of R is given by

 $\int_{0}^{2} 120\sin^{2}\theta\cos\theta \ d\theta.$

b) Hence find the area of R.

[continues overleaf]

13.SM

1+

[continued from overleaf]

>

Y.C.B.

i C.B.

The region R is to be revolved by π radians in the x axis to form a solid of revolution S.

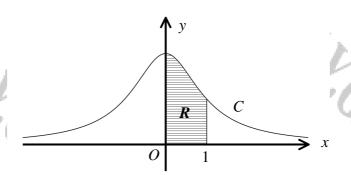
200

·C.p.

200

F.C.B.

6


ちょ

c) Show that the volume of S is 90π cubic units.

 $\frac{dx}{d\theta} = 2 \left(6 \sin \theta \left(-10 \cos \theta \sin \theta \right) \right) d\theta$ (MINUS USED TO SUPP) $\begin{array}{c} \textcircled{O} \quad \mathcal{V} = \pi \int_{-\infty}^{\infty} \underbrace{(g(x))}_{2}^{2} dx = \pi \int_{-\infty}^{\infty} \underbrace{(g(y))}_{2} \frac{dy}{dy} dy = \pi \int_{-\infty}^{\infty} \underbrace{(g(y))}_{2} \underbrace{(g(y))}_{2} \frac{dy}{dy} dy \\ = \pi \int_{-\infty}^{\infty} \underbrace{(g(y))}_{2} \frac{dy}{dy} dy = \pi \int_{-\infty}^{\infty} \underbrace{(g(y))}_{2} \frac{dy}{dy} dy \\ = \pi \int_{-\infty}^{\infty} \underbrace{(g(y))}_{2} \frac{dy}{dy} dy \\$ - SY EHALSE OHIND FLIG

area = 40

Question 12 (****)

The figure above shows the curve C, defined by the parametric equations

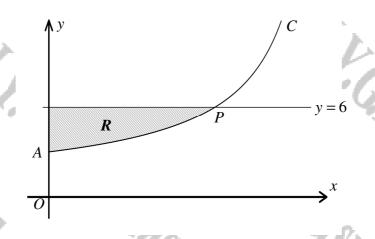
 $x = \tan \theta$, $y = \cos^2 \theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

The finite region R is bounded by C, the coordinate axes and the straight line with equation x = 1.

a) Determine the area of R.

The region R is revolved by 2π radians in the x axis, forming a solid S.

b) Show that the volume of S is


 $\frac{\pi}{8}(\pi+2).$

c) Find a Cartesian equation of C, giving the answer in the form y = f(x).

area =

(a) $A_{CM} = \int_{a_L}^{a_L} g(x) dx = \int_{a_L}^{b_L} g(a) \frac{da}{dQ} dQ = \int_{a_L}^{a_L} g(a) \frac{da}{dQ} dQ$ $d\theta = \left[\theta\right]^{\frac{1}{2}} = \frac{\pi}{4} - 0 = \frac{\pi}{4}$ $\int_{0}^{\theta_{2}} \left[9[\theta]^{2} \frac{d_{x}}{d\theta} d\theta = \pi \int_{0}^{\frac{\pi}{2}} \left(\cos^{2}\theta\right)^{2} \sin^{2}\theta d\theta$ $\frac{1}{2} = \frac{1}{2} \int_{0}^{\frac{1}{2}} d\theta \, d\theta = \pi \int_{0}^{\frac{1}{2}} \frac{1}{2} + \frac{1}{2} (\omega 2\theta) \, d\theta$ $= T \left[\left(\frac{T}{8} + \frac{1}{4} S n \frac{T}{2} \right)_{-} (c) \right] = T \left[\frac{T}{8} + \frac{1}{4} \right]$

Question 13 (****)

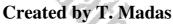
The figure above shows the curve C, with parametric equations

 $x = 6t \sin t$, $y = 3 \sec t$, $0 \le t < \frac{\pi}{2}$.

The curve meets the coordinate axes at the point A.

The line y = 6 meets C at the point P.

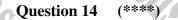
a) Show that the area under the arc of the curve between A and P, and the x axis is given by the integral


$$18\int_0^{\frac{\pi}{3}}t+\tan t dt$$

The shaded region R is bounded by C, the line y = 6 and the y axis.

b) Show that the area of R is approximately 10.3 square units.

proof


[solution overleaf]

Smarps.com I. K. Udsin, asuidins.com ue of E AT P & A T.Y.G.B. MARASINANISCOM T.Y.G.B. MARASINANISCOM T.Y.G. y= 3560t 6~ 3060t 2= 560t $t + tant dt = 10 \left[\frac{1}{2}t^2 + \ln[sect] \right]$ a~6x₹×50₹ 2= 217×€ I.V.C.J. $= 18 \left[\left[\frac{1}{2} x \frac{y^2}{9} + \ln(\sec \frac{y}{2}) \right] - \left[\circ + \ln(\sec \frac{y}{2}) \right] \right]$ A (0,3) WIH t=0 $\cos t = \frac{1}{2}$ 2=151 ASTRAITS COM I. Y. C.B. MARIAS MARINE COM I.Y. C.B. MARINE COM I.Y. C.B. MARIAS MARINE COM I.Y. C.B. MARINE COM I.Y. C.B. MARIAS MARINE COM I.Y. C.B. MARIAS MARINE COM I.

R

Р

y

The figure above shows the curve C with parametric equations

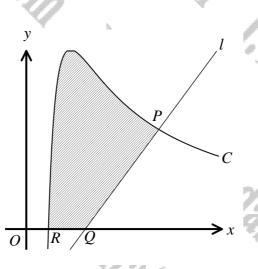
$$x = 5\cos t$$
, $y = 3\sin 2t$, $0 \le t \le \frac{\pi}{2}$

The curve meets the x axis at the origin O and at the point P.

a) Find the value of t at O and at P.

The finite region R bounded by C and the x axis is revolved by 2π radians in the x axis forming a solid of revolution S.

b) Show that the volume of S is given by the integral


 $\pi \int_{-2}^{-2}$ $180\sin^3 t \, \cos^2 t \, dt \, .$

c) By using the substitution $u = \cos t$, or otherwise, find the volume of S.

 $t_0 = \frac{\pi}{2}$ $t_P = 0$, volume = 24π

36 smit cost)(samt) di

Question 15 (****)

The figure above shows part of the curve C with parametric equations

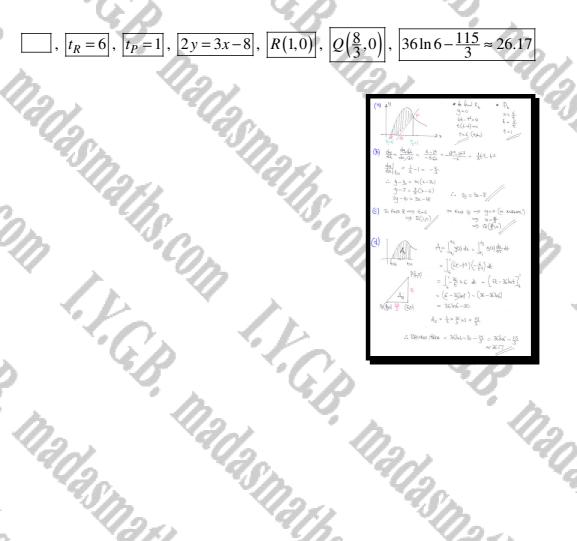
$$x = \frac{6}{4}, \quad y = 6t - t^2, \quad t \neq 0.$$

The curve crosses the x axis at the point R.

The point P(6,5) lies on C and the straight line l is the normal to C at P.

This normal crosses the x axis at the point Q.

a) Determine ...


- i. ... the value of t at the points R and P.
- **ii.** ... an equation for l.
- **iii.** ... the coordinates of R and Q.

[continues overleaf]

[continued from overleaf]

The finite region bounded by C, l and the x axis is shown shaded in the figure above.

b) Use parametric integration to find, correct to two decimal places, the area of this region.

Created by T. Madas

6

R

С

P

Question 16 (****)

The figure above shows part of the curve C with parametric equations

 $x = \cos \theta$, $y = \tan^2 \theta$, $0 \le \theta < \frac{\pi}{2}$.

The finite region R, shown shaded in the figure above, is bounded by C, the coordinate axes and the line y=1.

a) Show that the area of R is given by the integral

1

0

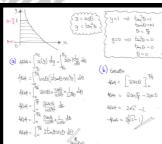
 $\int_{\theta_1}^{\theta_2} 2\tan\theta \sec\theta \ d\theta,$

for some appropriate limits θ_1 and θ_2 .

b) Hence find an exact value for the area of R.

[continues overleaf]

[continued from overleaf]


>

I.C.p

The finite region R is revolved by 2π radians in the y axis forming a solid of revolution S.

 $\theta_1 = 0$, $\theta_2 = \frac{\pi}{4}$

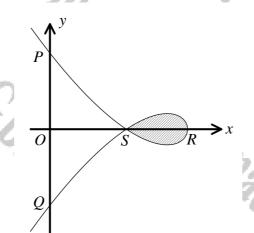
c) Show that the volume of S is exactly $\pi \ln 2$.

C) Volum $\left(\alpha(y)\right)^{2} dy = \pi \int_{0}^{0} \left(\alpha(y)\right)^{2} \frac{dy}{dy} dy$ (260(260) do =21 = 21 = 600 do $2\pi \left[h \left[\sec \theta \right] \right]_{o}^{\frac{\pi}{4}} = 2\pi \left[h \left[\sec \xi \right] - \left[h \left[\sec \phi \right] \right] \right]$ $\left[\ln \sqrt{2} - \ln 1\right] = \operatorname{ar} \ln 2^{\frac{1}{2}} = \pi \ln 2$

 $|area = 2(\sqrt{2})$

The Com

2


6

21/3.51

mana.

F.C.B.

Question 17 (****)

The figure above shows the **re-entrant** curve C with parametric equations

$$x = 27 - 3t^2, y = 5t(4 - t^2), t \in \mathbb{R}$$

The curve meets the y axis at P and Q, and the x axis at R and S.

a) Determine ...

i. ... the value of t at the points P, Q, R and S.

ii. ... the Cartesian coordinates of the points P, Q, R and S.

b) Given that C is symmetrical about the x axis, show that the area enclosed by the loop of C, shown shaded in the figure above, is 256 square units.

c) Find a Cartesian equation of C, in the form $y^2 = f(x)$.

$$Q(0,-75), t = -3, Q(0,-75), t = 3, R(27,0), t = 0, S(15,0), t = \pm 2$$
$$y^2 = \frac{25}{27}(27-x)(x-15)^2$$

[solution overleaf]

Question 18 (****)

The figure above shows the curve C with parametric equations

 $x = \cos^3 \theta$, $y = 12\sin \theta$, $0 \le \theta < 2\pi$.

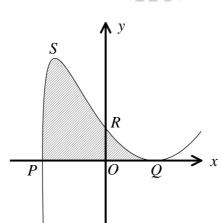
The finite region in the first quadrant, bounded by C and the coordinate axes is shown shaded in the figure above. The curve is symmetrical in both the x and in the y axis.

a) Show that the area of the shaded region is given by the integral

b) Use trigonometric identities to show that

$$\cos^2\theta\sin^2\theta = \frac{1}{8}(1-\cos 4\theta).$$

 $36\int_{0}^{\frac{\pi}{2}}\sin^{2}\theta\cos^{2}\theta \ d\theta.$


c) Hence find, in terms of π , the total area enclosed by C.

[solution overleaf]

Question 19

The figure above shows part of the curve with parametric equations

 $x = t^2 - 9, y = t(4-t)^2, t \in \mathbb{R}$.

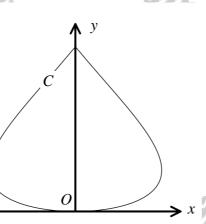
The curve meets the x axis at the points P and Q, and the y axis at the points R and T. The point T is not shown in the figure.

a) Find the coordinates of each of the points P, Q, R and T.

The point S is a stationary point of the curve.

b) Show that the coordinates of S are $\left(-\frac{65}{9}, \frac{256}{27}\right)$

The region bounded by the curve and the x axis is shown shaded in the figure above.


c) Determine an exact value for the area of the shaded region.

area $=\frac{102}{15}$ P(-9,0), Q(7,0), R(0,3), T(0,-147)

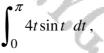
 $(2t)dt = \int_{-2t^{2}(t^{2}-\theta t+1t)}^{4} dt$ $4t^4 + \frac{32}{3}t^3 \int_{0}^{4}$

y(t) at dt

Question 20 (****)

Ĉţ.

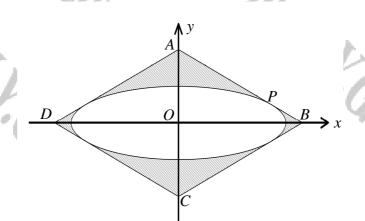
21/2.5m


 4π

The figure above shows the curve C with parametric equations

$$x = \sin t$$
, $y = t^2$, $0 \le t \le 2\pi$.

It is given that C is symmetrical about the y axis.


Show that the area enclosed by C can be found by the integral

and hence find an exact value for this area.

A state of the second s	
START by TRADNO'THE CODUC.	$\frac{4t}{-4t} = \frac{4}{2}$ $\frac{1}{2} + \frac{1}{2} +$

Question 21 (****)

The figure above shows the design of a pendant *ABCD* in the shape of a rhombus, made up of two different types of metal.

The innermost part of the design is enclosed by a curve and is made of silver. The rest of the design is made of gold.

The design is symmetrical about both the x and the y axis.

The innermost part of the design is modelled by an ellipse, given parametrically by

 $x = 12\cos\theta$, $y = 6\sin\theta$, $0 \le \theta < 2\pi$.

a) Use integration to show that the area enclosed by the ellipse is exactly 72π .

[continues overleaf]

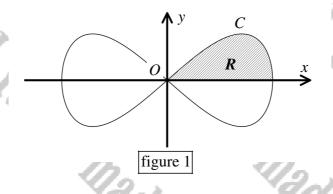
[continued from overleaf]

The point *P* lies on the ellipse where $\theta = \frac{\pi}{6}$.

The straight line AB is the tangent to the ellipse at P.

b) Show that the equation of the tangent *AB* can be written as

 $2y + \sqrt{3}x = 24.$


c) Hence find an exact value for the area of the pendant that is made up of gold.

, ,		_		10:0
<u>a</u>	· · C	6)	$\frac{dy}{dt} = \frac{dy_{40}}{dt_{1}^{2}d\theta} = \frac{f_{cos}\theta}{-12sm\theta} = -\frac{g_{cos}\theta}{2sm\theta}$	GRUATION OF TRUGHUT y-16-m(2-7.)
	Loso Delivero		$\frac{dy}{dx}\Big _{x=0}^{z=1} = \frac{\omega_{x}\pi e}{2s_{x}\pi} = \frac{-s_{x}}{2s_{x}} = \left(\frac{-s_{x}}{2s_{x}}\right)$ where $0 = \frac{1}{2}(1-2s_{x})$ $\frac{dy}{dx}\Big _{x=0}^{z=1} = \frac{1}{2}(1-2s_{x})$ $\frac{dy}{dx}\Big _{x=0}^{z=1} = \frac{1}{2}(1-2s_{x})$	1 - 1 - 6
- Li	$= \frac{1}{2} \int_{0}^{0} \frac{y(z)}{z} \frac{dz}{dz} d\theta = \frac{1}{2} \int_{0}^{0} \frac{y(z)}{z} \frac{dz}{dz} d\theta = \frac{1}{2} \int_{0}^{0} \frac{y(z)}{z} \frac{dz}{dz} \frac{dz}{dz} d\theta$	Q	(+ (GVST 3))	4 2-90 Gig
$=\int_{0}^{\frac{1}{2}} 288 \sin^{2}\theta d\theta$	$= \int_{0}^{\frac{\pi}{2}} 2\Re \left(\frac{1}{2} - \frac{1}{2} \cos 2\theta \right) d\theta$	- 2	$\begin{array}{ccc} \mathcal{A} = 0 & \mathcal{Y} = 1_{2} & \therefore & \mathcal{A} \left(\mathcal{O}_{1} \mathbf{z} \right) \\ \mathcal{Y} = 0 & \mathcal{I} = \frac{24}{43} \in \mathcal{B}_{M} \\ \end{array}$	+huxe Reporting -ARIA. = (4 × 4815") - 7277 = 19215" - 7277
= []= (12+17-0) - (0	$\Theta = \Theta = \left[\frac{144\Theta - 725M2\Theta}{2} \right]_{0}^{\frac{1}{2}}$ $(\Theta = O) = 72\pi$		$\begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{1}{2} \times 12 \times 8 \sqrt{3}$ $= 48 \sqrt{3}$	

, area = $192\sqrt{3} - 72\pi$

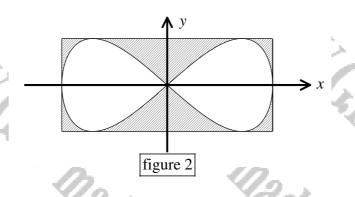
11+

The figure 1 above, shows the curve C with parametric equations

$$x = 6\cos t, y = 12\sin 2t, 0 \le t \le 2\pi$$
.

The curve is symmetrical in the x axis and in the y axis.

The region R, shown shaded on the figure 1, is bounded by the part of C in the first quadrant and the coordinate axes.

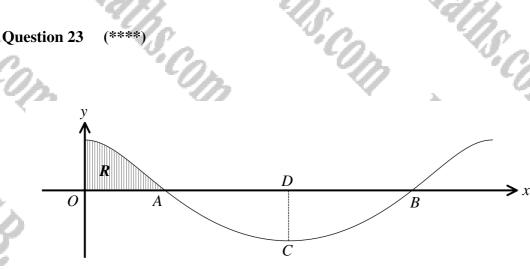

a) Show that the area of R is given by

 $\int \frac{\pi}{2} 144\cos t \sin^2 t \, dt \, .$

b) Hence find the area enclosed by C in all four quadrants.

[continues overleaf]

[continued from overleaf]


The area enclosed by the entire curve is to be cut out of a piece of rectangular card, as shown in the figure 2. This is modelled by a rectangle whose sides are tangents to the curve, parallel to the coordinate axes.

The area of the card left over after the curve was cut out is shown shaded in figure 2.

c) Show that the area of the card left over is exactly 96 square units.

 $y(\alpha) d\lambda = \int_{-1}^{12} y(t) d\alpha dt dt$ TT 21 1 39

area = 192

The diagram above shows the curve defined by the parametric equations

 $x = 4\theta - \sin \theta$, $y = 2\cos \theta$, for $0 \le \theta < 2\pi$.

The curve crosses the x axis at points A and B. The point C is the minimum point on the curve and CD is perpendicular to the x axis and a line of symmetry for the curve.

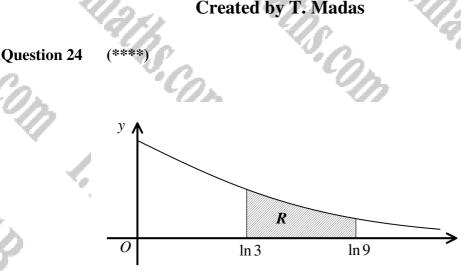
- **a**) Find the exact coordinates of A, B and C.
- **b**) Show that an equation of the tangent to the curve at the point A is given by

 $x+2y=2\pi-1.$

[continues overleaf]

[continued from overleaf]

Show further that the area of the region R bounded by the curve and the c) coordinate axes is given by


 $\int_0^{\frac{\pi}{2}} 8\cos\theta - 2\cos^2\theta \ d\theta.$

d) Determine an exact value for this integral.

 $\frac{\pi}{2}$ $A(2\pi-1,0)$, $B(6\pi+1,0)$, $C(4\pi,-2)$, 8-

1

3=40-5140 (b) 3=2650	$\frac{du}{dt} = \frac{du}{dt}\frac{d\theta}{d\theta} = \frac{-2s_M\theta}{4-\cos\theta}$		(2)	$-AltA = \int_{2}^{2_{f}} y dz = \int_{R_{c}}^{R_{c}} g(s) \frac{d1}{dR} = \int_{-\infty}^{\infty} \frac{c}{2(\cos\theta)} (4-\cos\theta)$
- y = 0 21050= 0 6050= 0	$\begin{array}{c c} \displaystyle \frac{\mathrm{d} u}{\mathrm{d} z} \\ & \displaystyle \frac{-2 \sum_{k} \frac{w_{k}}{2}}{4 - \omega x} = \frac{-z}{4} z - \frac{1}{2} \\ & \displaystyle \frac{w_{k}}{2} \end{array}$	1		$= \int_{0}^{\frac{3}{2}} 8\omega s\theta - 2\omega s\theta d\theta$
0= 11,31.	 4+trace m = -1/2 A(2R-1, 0) 			A 14porte
$\begin{array}{l} \gamma^{*} \mathcal{J}^{'}_{i} = \frac{\mathcal{H}\left(\frac{T}{2}\right) - \mathcal{O}^{*} \frac{2\pi}{2}}{2} = -2ii + i \\ \gamma^{*} = \frac{\mathcal{H}\left(\frac{T}{2}\right) - \mathcal{O}^{*} \frac{2\pi}{2}}{2} = -2ii + i \end{array}$	$ \begin{array}{l} & & & \\ & \rightarrow & & \\ & & & \\ & \rightarrow & & \\ & $		(d)	$\int_{\frac{1}{2}}^{\infty} \theta(\cos\theta - 2\cos^{2}\theta) d\theta = \int_{\frac{1}{2}}^{\infty} \theta(\cos\theta - 2(\frac{1}{2} + \frac{1}{2}\cos^{2}\theta) d\theta$
: A(271-1)0) & B(627+1) By summer	$\Rightarrow 2y = -2 + (2\pi - 1)$			$= \int_{0}^{\frac{1}{2}} 8\cos\theta - (-\cos2\theta) d\theta = \left[-\cos\theta - \frac{1}{2}\sin^{2}\theta - \theta \right]^{\frac{1}{2}}$
$C\left(\frac{(2n-1)+(6n+1)}{2}, \frac{(2)}{2}, \frac{(2)}{$	=> 2y+2=2t-1			$= (8 - 0 - \frac{\pi}{2}) - 0 = 8 - \frac{\pi}{2}$
C(41,-2)				

The figure above shows the curve C with parametric equations

 $x = \ln(t+1), \quad y = \frac{2}{t+2}, \quad t \in \mathbb{R}, \ t \ge 0.$

The finite region R, shown shaded in the figure above, is bounded by C, the straight lines with equations $x = \ln 3$ and $x = \ln 9$ and the x axis.

a) Show that the area R is given by the integral

$$I = \int_{2}^{8} \frac{2}{(t+1)(t+2)} dt .$$

- **b**) Find an exact value for the above integral.
- c) Show that a Cartesian equation of C is

 $y = \frac{2}{e^x + 1}$

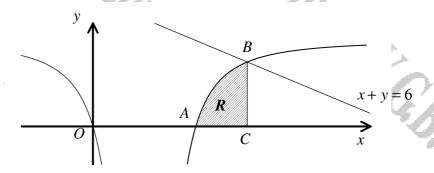
[continues overleaf]

[continued from overleaf]

1.0

G.B.

d) Use the Cartesian equation of C and the substitution $u = e^{x} + 1$ to show that the area of R can also be found by the integral


$$U = \int_{4}^{10} \frac{2}{u(u-1)} \, du \, du$$

e) Without evaluating J, show that J = I.

 $2\ln\left(\frac{6}{5}\right)$

6

Question 25 (****)

The figure above shows two sections of a curve with parametric equations

$$x = \frac{2}{t} + 1$$
, $y = 4 - t^2$, for $t \in \mathbb{R}$, $t \neq 0$

The curve crosses the x axis at the origin O and at the point A.

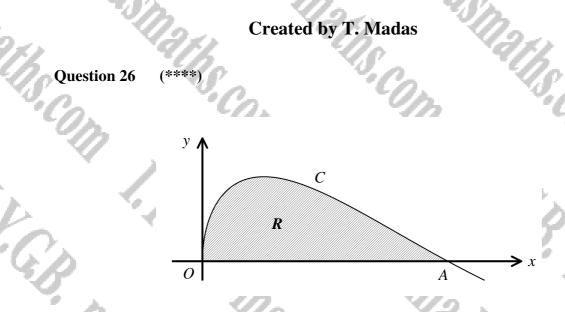
The straight line with equation x + y = 6 intersects the curve at the point B.

- **a**) Find the value of t at the point A.
- **b**) Determine the coordinates of *B*.

The line BC is parallel to the y axis.

The finite region R, bounded by the curve, the y axis and the line BC is revolved by 2π radians to form a solid of revolution S.

c) Use integration in parametric form to find an exact value for the volume of S.


Created by T. Madas

 $(g(t))^2 \frac{dz}{dt} dt = \pi \int (4-t)^2 \left(-\frac{2}{ta}\right) dt$ ===(16-84+t4) dt 8 +t2 dt €-8t+3t3 $-16 + \frac{8}{2} - (-16 - 8 + \frac{1}{2})$

|t=2|,

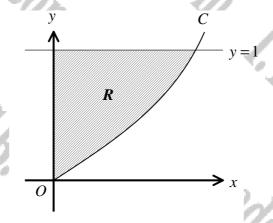
|B(3,3)|

volume =

The figure above shows the curve C with parametric equations

 $x = t^2$, $y = 4\sin 2t$, $t \in \mathbb{R}$, $t \ge 0$.

The curve crosses the x axis for the first time at the point A. The finite region R, shown shaded in the figure above, is bounded by C and the part of the x axis from the origin O to the point A. This region is revolved about the x axis to form a solid of revolution S.


a) Show that the volume of S is given by the integral

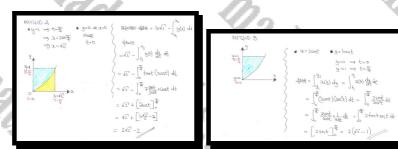
$$I = \pi \int_0^{\frac{\pi}{2}} 16t - 16\cos 4t \ dt \, .$$

b) Hence find an exact value for the volume of S.

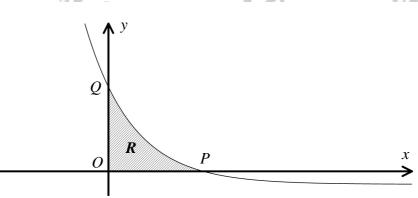
$2\pi^3$
STETLING OF A STANDARD VOLUME INDIGRAL N PARAMETRIC,
STACING BY FINDING THE WHILE OF I AT POINT "4"
47 A y=0, 2>0 #SH26=0
2 t= ο, π ₁ 2 η 3 η, t= ο, 💬, η, ψ
$ \Lambda = u \left[\frac{\sigma^{1}}{2} \left[\widehat{\Lambda}(\sigma) \right]_{r} \frac{q_{r}}{q_{r}} = u \left[\frac{1}{r^{2}} \left(\widehat{\Lambda}(r) \right)_{r} \frac{q_{r}}{q_{r}} \right] \frac{q_{r}}{q_{r}} $
$V = \pi \int_{0}^{\frac{\pi}{2}} C4sn/2t^{2}(2t) dt = \pi \int_{0}^{\frac{\pi}{2}} \frac{a_{2}}{a_{2}b s_{1}a_{2}^{2}t} dt$
$V = \pi \int_{-\infty}^{\infty} 32\varepsilon \left(\frac{1}{2} - \frac{1}{2} \log 4\varepsilon\right) dt = \pi \int_{0}^{\frac{1}{2}} kt - 140 \cosh t dt$
b) SHAWATING THE ABOUK
V=T Jo Kt - Getweld it may Price of
$V = \pi \left[\left(\frac{2}{2} \left(\frac{1}{2} - \frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{$
$V \sim \eta \left[\left[\left\{ \Theta t^2 \right\}_{0}^{\overline{H}} - \left\{ 4 t_{\text{SINH}} t_{1}^{T_{\text{SI}}} + \int_{0}^{T_{\text{SINH}}} \delta t_{\text{SINH}} t_{1}^{T_{\text{SI}}} \right]^{T_{\text{SI}}} \right]$
$V = \pi \left[8t^2 - 4tswelt - cost \right]_{o}^{W_{c}}$
$\Lambda \approx \pi \left[\left(\int dd_{s}^{-} \circ + 1 \right) - \left(\circ - \circ + 1 \right) \right]$
$v \in \pi(2\pi^2)$
i. V= 21 ⁻³

Question 27 (****)

The figure above shows the curve C with parametric equations


 $x = 2\sin t$, $y = \tan t$, for $0 \le t < \frac{\pi}{2}$.

The curve passes through the origin O.


The region R is bounded by C, the y axis and the line y=1.

Use integration in parametric form to find an exact value for the area of R

area = $2\sqrt{2} - 2$

Question	28	(****)
Question	20	()

The figure above shows the graph of the curve with parametric equations

 $x = 2 - \frac{1}{4}t$, $y = 2^t - 2$, $t \in \mathbb{R}$.

The curve meets the x axis at the point P and the y axis at the point Q.

a) Find the coordinates of P and Q.

The finite region R is bounded by the curve and the coordinate axes, and is shown shaded in the figure above.

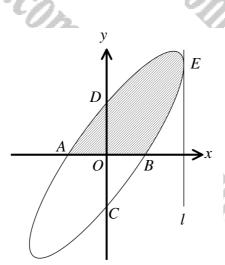
b) Show that the area R is given by the integral

7. 4

c) Hence find an exact value for R.

(a) Within Yeo	which I=0
2 ^t -2=0 3 ^t =2 (t=1)	$2 - \frac{1}{4} t \approx 0$ $\lambda = \frac{1}{4} t$
÷ P(7+10)	$\begin{array}{c} \overline{(t=s)} \\ \therefore Q(\begin{array}{c} 0, 254 \end{array}) \end{array}$
$\frac{1}{2} - \frac{1}{4} \times I$	2 ⁸ -2 = 254-
(b) 13.	$\mathbb{P} = \int_{x_1}^{x_2} g(x) dx = \int_{t_2}^{t_2} g(t) \frac{dx}{dt} dt$
R t-B	$\mathcal{R} = \int_{0}^{t} (2^{t}-2)(-\frac{1}{4}) dt = \int_{0}^{\infty} \frac{1}{4} (2^{t}-2) dt$
	$ k = \int_{1}^{B} \frac{1}{4} \times 2^{\frac{k}{2}} - \frac{1}{2} dt = \int_{1}^{B} 2^{\frac{k}{2}} \frac{1}{2} dt $
	$k = \int_{1}^{8} 2^{\frac{t-2}{2}} - \frac{1}{2} dt$

(c) NOW		
	$\frac{d}{dt}\left(2^{t-2}\right) = 2^{t-2} \ln 2$		
	$ = \frac{1}{b_{h2}} \frac{1}{dt} \begin{pmatrix} t^{-2} \\ 2 \end{pmatrix} = 2^{t-2} $		
	$R = \left[\frac{1}{\ln 2} 2^{\frac{1}{2}-2} \pm \frac{1}{2} \right]^{\frac{1}{2}}$	$B = \left(\frac{G4}{1/2} - \frac{1}{4}\right) - \left(-\frac{1}{1}\right)$	$\frac{2^{-1}}{\ln 2} - \frac{1}{2}$
	In2 2/m2 + 2	$=\frac{64}{1_{H2}}-\frac{1}{2_{H2}}-$	7
	$=\frac{1}{2}\left[\frac{127}{102}-7\right]$		


Q(0,254)

 $P\left(\frac{7}{4},0\right)$

127

 $2\ln 2$

Question 29 (****)

The figure above shows an ellipse with parametric equations

 $x = 2\cos\theta, y = 6\sin\left(\theta + \frac{\pi}{3}\right), -\pi \le \theta < \pi.$

The curve meets the coordinate axes at the points A, B, C and D.

a) Find the coordinates of the points A, B, C and D.

The straight line l is the tangent to the ellipse at the point E.

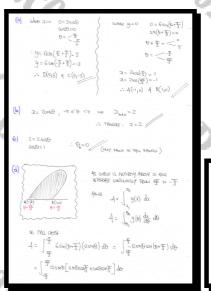
- **b**) State the equation of l, given that l is parallel to the y axis.
- c) Find the value of θ at the point E.

[continues overleaf]

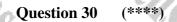
6

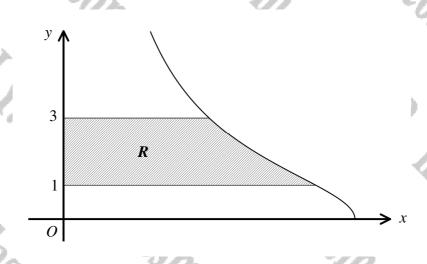
adasm.

[continued from overleaf]


The finite region bounded by the ellipse and the x axis for which $y \ge 0$ is shown shaded in the figure above.

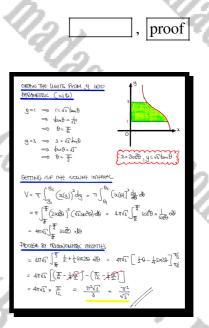
d) Show that the area of this region is given by the integral


 ${}^{3}_{-\frac{\pi}{2}}3-3\cos 2\theta+3\sqrt{3}\sin 2\theta \ d\theta.$

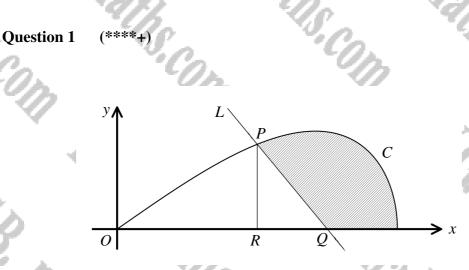

e) Hence find the area of the shaded region.

$A(-1,0), B(1,0), C(-3,0), D(-3,0), x=2, \theta_A = 0, \text{ area} = 3\pi$

= $\int_{-\frac{11}{21}}^{-\frac{11}{21}}$	$\int_{\frac{\pi}{2}}^{2} ds \left(\frac{1}{2}\cos^{2} t + \Theta m s^{2}\right) \Theta m ss $	shi Goudinizini) + Giniz
=]=	$6(\frac{1}{2}-\frac{1}{2}\cos 2\theta)+36^{2}\sin 2\theta d\theta=\int_{-\frac{1}{2}}^{\frac{2}{2}}$	
Con 1	= [30-3/20-3/20020] =	240 RENO
	$= \left[\begin{array}{c} \cos \frac{\pi}{2} \sin $	$-\frac{3}{2}\left(-\frac{G}{2}\right) - \frac{3G}{2}\left(-\frac{1}{2}\right)$
	- [2n+315+345]-[-1+315	11



The figure above shows the curve with parametric equations


$$x = 2\cos^2 \theta$$
, $y = \sqrt{3} \tan \theta$, $0 \le \theta < \frac{\pi}{2}$

The finite region R shown shaded in the figure, bounded by the curve, the y axis, and the straight lines with equations y=1 and y=3.

Use integration in parametric to show that the volume of the solid formed when R is fully revolved about the y axis is $\frac{\pi^2}{\sqrt{3}}$.

Created by T. Madas Mada ASTRAITS COM INCOM INCOM INCOM INCOM

The figure above shows the curve C with parametric equations

 $x = 6\cos t$, $y = 3\sin 2t$, $0 \le t \le \frac{\pi}{2}$.

The point P lies on C where x = 3.

a) Find the y coordinate of P.

The line L is the normal to the curve at P. This normal meets the x axis at Q.

b) Show that an equation of L is

 $2y + 2x\sqrt{3} = 9\sqrt{3} \ .$

[continues overleaf]

[continued from overleaf]

The line PR is parallel to the y axis.

- c) Show that the area of the finite region bounded by C, the line PR and the x axis is given by the integral
 - $\int_{0}^{3} 36\sin^2 t \cos t \, dt \, .$
- d) Hence find an exact value for the area of the shaded region, bounded by C, the normal L and the x axis

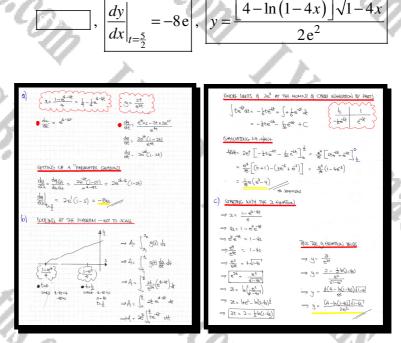
n. – – – – – – – – – – – – – – – – – – –	đ
(a) $x = 3$ $\int_{Cach \to 3}$ $\int_{Cach \to 3}$	
(c) $\begin{cases} \frac{3}{100} + \frac{3}{100}$	
$ \begin{array}{c} (d) \begin{array}{c} (d) \begin{array}{c} (1) \\ $	

 $\frac{3\sqrt{3}}{2}$

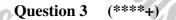
area =

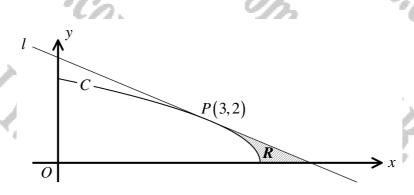
Question 2 (****+)

Y.C.


A curve has parametric equations

$$x = \frac{1 - e^{4 - 4t}}{4}, \quad y = \frac{2t}{e^{2t}}, \quad t \in \mathbb{R}$$


- **a**) Find the gradient at the point on the curve where $t = \frac{5}{2}$.
- **b)** Show that the finite area bounded by the curve, the x axis, and the straight lines with equations $x = \frac{1 e^4}{4}$ and $x = \frac{1 e^2}{4}$, is exactly

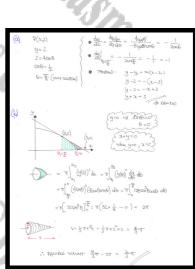

 $\frac{1}{18}e(e^3-4).$

c) Determine a Cartesian equation of the curve in the form y = f(x).

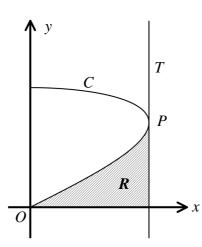
Ĉ.

The figure above shows the curve C with parametric equations

 $x = 4\cos^2\theta$, $y = 4\sin\theta$, $0 \le \theta \le \frac{\pi}{2}$.


The point P(3,2) lies on C. The straight line l is the tangent to C at P.

a) Show that an equation of l is


x + y = 5

The finite region R is bounded by C, l and the x axis. This region is to be revolved by 2π radians about the x axis to form a solid S.

b) Find an exact value for the volume of S.

Question 4 (****+)

The figure above shows the curve C, given parametrically by

$$x = 3\sin 2\theta$$
, $y = \cos \theta$, for $0 \le \theta \le \frac{\pi}{2}$

nath

a) Find an expression for $\frac{dy}{dx}$ in terms of θ .

The line T is parallel to the y axis and is a tangent to C at the point P.

b) Show that $\theta = \frac{\pi}{4}$ at *P*.

I.C.p

[continues overleaf]

F.G.B.

M2(12)

6

:0M

Madasma

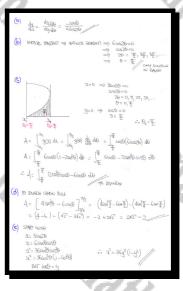
GB

[continued from overleaf]

The finite region R bounded by C, T and the x axis.

c) Show that the area of R is given by

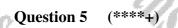
 $\frac{1}{2}$ 12 sin² $\theta \cos \theta - 6 \cos \theta \, d\theta$.

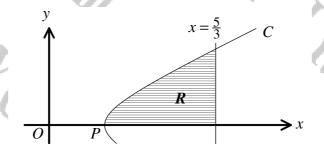

d) Hence find the area of R.

KQ,

C.B.

e) Find a Cartesian equation for C in the form $x^2 = f(y)$.


$$\frac{dy}{dx} = -\frac{\sin\theta}{6\cos 2\theta}, \text{ area} = 2\sqrt{2}-2, x^2 = 36y^2(1-y^2)$$



C.4.

6

madasm.

The figure above shows part of the curve C with parametric equations

 $x = t + \frac{1}{4t}$, $y = t - \frac{1}{4t}$, t > 0.

The curve crosses the x axis at P.

- a) Determine the coordinates of P.
- **b**) Show that the gradient at any point on C is given by

 $\frac{dy}{dx} = \frac{4t^2 + 1}{4t^2 - 1}.$

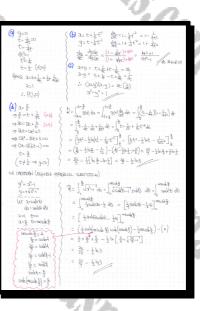
c) By considering x + y and x - y find a Cartesian equation for C.

[continues overleaf]

[continued from overleaf]

K.C.B.

Ĉ.p


The region R bounded by C, the line $x = \frac{5}{3}$ and the x axis is shown shaded in the above figure.

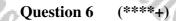
d) Show that the area of R is given by

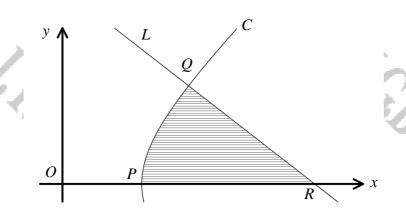
 $\int_{\frac{1}{2}}^{\frac{3}{2}} \left(t - \frac{1}{4t}\right) \left(1 - \frac{1}{4t^2}\right) dt \, .$

P(1,0)

e) Hence calculate an exact value for the area of R.

C.4.


6


Area = $\frac{10}{9}$

 $\frac{1}{2}\ln 3$

 $x^2 - y^2 = 1$

12.01

The figure above shows part of the curve C with parametric equations

 $x = 2t + \frac{1}{t}$, $y = 2t - \frac{1}{t}$, t > 0.

The curve crosses the x axis at P and the point Q is such so that t = 2.

The straight line L is a normal to C at Q.

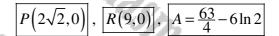
a) Determine the exact coordinates of P.

b) Show that the gradient at any point on C is given by

 $\frac{dy}{dx} = \frac{2t^2 + 1}{2t^2 - 1}$

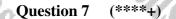
[continues overleaf]

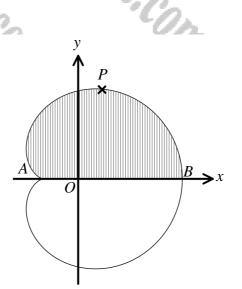
m


[continued from overleaf]

The normal L crosses the x axis at R.

The finite region bounded by C, L and the x axis, shown shaded in the figure, has area A.


c) Find the coordinates of R.


d) Calculate an exact value for A.

	Sec. 1.
(b) d_{1} where d_{2} d_{1} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2} d_{2	$\begin{cases} u_{1}^{W_{1},W_{2}} \underbrace{g_{-0}}_{1-\frac{1}{2} = -\frac{1}{2}(x-\frac{1}{2})} \\ \frac{1}{2} = \frac{1}{2}(x-\frac{1}{2}) \\ \frac{1}{2} = x-\frac{1}{2} \\ x=q \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\$
(b) $d_{1} = \frac{4y_{2}y_{2}}{2^{1+y_{2}}} = \frac{4y_{2}y_{2}}{2^{1+y_{2}}}$ $d_{2} = \frac{4y_{2}y_{2}}{2^{1+y_{2}}} = \frac{2y_{2}}{2^{1+y_{2}}}$ Mutative set [actual by t2 $d_{2} = \frac{2y_{2}^{1+y_{2}}}{2^{1+y_{2}}}$ Mutative set [actual by t2 $d_{2} = \frac{2y_{2}^{1+y_{2}}}{2^{1+y_{2}}}$	$\begin{cases} J_{x_{1}}^{*} \rightarrow J_{t_{1}}^{*} \text{ or } T \\ = \int_{-\infty}^{1} (2\epsilon - \frac{1}{t_{1}}) (2 - \frac{1}{t_{2}}) dt \\ = \int_{-\infty}^{1} 4t - \frac{\pi}{t_{2}} - \frac{\pi}{t_{2}} + \frac{1}{t_{2}} dt \\ = \int_{-\infty}^{1} 4t - \frac{\pi}{t_{2}} - t + \frac{1}{t_{2}} dt \\ = \int_{-\infty}^{1} 4t - \frac{\pi}{t_{2}} - t + \frac{1}{t_{2}} dt \\ = \int_{-\infty}^{1} 4t - \frac{\pi}{t_{2}} - t + \frac{1}{t_{2}} dt \end{cases}$
$\begin{array}{c} G \\ G \\ G \\ G \\ G \\ G \\ F = 2 \\ F \\ M \\ S \\ M \\ S \\ S \\ S \\ S \\ S \\ S \\ S$	$\begin{cases} -1 & 2 & -\frac{1}{42} \\ = (\theta - i \ln_2 - \frac{1}{42}) - (1 - \frac{1}{4} \ln_1 \frac{1}{42} - 1) \\ = \theta - \frac{1}{4} \ln_2 - \frac{1}{42} + 2 \ln_2 + \frac{1}{4} \\ = \frac{1}{42} - \frac{1}{4} - 6 \ln_2 . \end{cases}$
$\begin{array}{c} \mathcal{L} = 224 \frac{1}{2} = \frac{7}{2} \\ \mathcal{L} = 224 \frac{1}{2} = \frac{7}{2} \\ \mathcal{L} = 324 \frac{1}{2} = \frac{7}{2} \\ \mathcal{L} = \frac{7}{2} \\ \mathcal{L} = -\frac{7}{2} \\ L$	$\begin{array}{c} 4 = \left(\frac{G_3}{8} - G_{4/2}\right) + \frac{G_3}{8} \\ 4 = \frac{G_3}{4} - G_{4/2} \end{array}$

C à

The figure above shows a curve known as a Cardioid which is symmetrical about the x axis.

The curve crosses the x axis at the points A(-2,0) and B(6,0).

The point P is the maximum point of the curve.

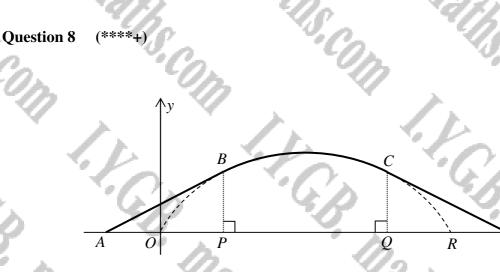
The parametric equations of this Cardioid are

 $x = 4\cos\theta + 2\cos 2\theta$, $y = 4\sin\theta + 2\sin 2\theta$, $0 \le \theta < 2\pi$.

a) Find a simplified expression for $\frac{dy}{dx}$, in terms of θ , and hence find the exact coordinates of *P*.

b) Show that the area of the top half of this Cardioid, shown shaded in the figure, is given by the integral

 $\int_0^{1} 16\sin^2\theta + 24\sin\theta\sin2\theta + 8\sin^22\theta \ d\theta,$


and hence find the exact value of the area enclosed by the Cardioid.

 $\frac{dy}{dx} = -\frac{\cos\theta + \cos 2\theta}{\sin\theta + \sin 2\theta}, \quad P(1, 3\sqrt{3}), \quad \text{area} = 24\pi$

[solution overleaf]

428

The figure above shows a symmetrical design for a suspension bridge arch ABCD.

The curve OBCR is a cycloid with parametric equations

$$x=6(2\theta-\sin 2\theta), y=6(1-\cos 2\theta), 0 \le \theta \le \pi$$
.

a) Show clearly that

>

 $\frac{dy}{dx} = \cot\theta$

[continues overleaf]

6

[continued from overleaf]

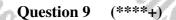
The arch design consists of the curved part BC and the straight lines AB and CD.

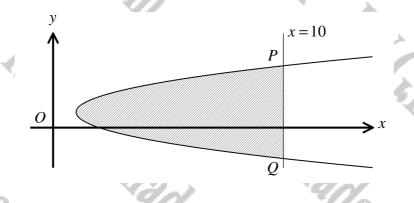
The straight line AB is a tangent to the cycloid at the point B where $\theta = \frac{\pi}{3}$, and

similarly the straight line *CD* is a tangent to the cycloid at the point *C* where $\theta = \frac{2\pi}{3}$.

- **b**) Show further that ...
 - i. ... the tangent to the cycloid at B meets the x axis at
 - $x = 4\pi 12\sqrt{3} \; .$
 - ii. ... the length of AP is $9\sqrt{3}$.
 - iii. ... the area between the x axis and the part of the cycloid between Band C is given by

 $36\int_{\frac{\pi}{3}}^{3} 3-4\cos 2\theta +\cos 4\theta \ d\theta.$


c) Hence find an exact value for the area enclosed by ABCD and the x axis.


 $\frac{dy}{dx} = \frac{dy}{dy}\frac{d\theta}{d\theta} = \frac{f_0(2sw(2\theta))}{f_0(2-2coS\theta)} =$ $= \frac{2GWBGOSD}{2SWBG} = \frac{GGB}{SWB} = GFB$ $\left(\frac{2\pi}{3}\right) = 6\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2} = 4\pi - 3N_{2}\right)$ $\underline{y} = 6\left(1 - \cos \frac{2\pi}{5}\right) = c\left(1 - \left(-\frac{1}{5}\right) = q$ $\frac{\mathrm{d} \sigma}{\mathrm{d} \sigma} = \mathrm{cot}_{\frac{1}{2}}^{\frac{1}{2}} = \frac{\mathrm{d} \sigma}{1} \frac{\mathrm{d} \sigma}{1} = \frac{\mathrm{d} \sigma}$ PNOBST: $Y - q = \frac{1}{N_3} \left(\alpha - (4\pi - 3N_3^{-1}) \right)$ $-q = \frac{1}{\sqrt{3}} \left(x - 4\eta + 3\sqrt{3} \right)$ a - 417 + 3√3 2 = 411-1263 ·: [AP] = [AT-343") - [AT-12N3") = 9N3" 3-4600+60000 do = 36 30-20000+ 450000 $6\left(\left(2\pi + \sqrt{3} + \frac{\sqrt{3}}{8}\right) - \left(\pi - \sqrt{3} - \frac{\sqrt{3}}{8}\right)\right)$ (1-6526) × 6(2-200520) de 36 [·Ψ + 2 N3] = 36π + 81 N3] $= 2 \times \frac{1}{2} (\underline{9}, \underline{6}) (\underline{9}) = 81, \underline{6}^{1}$ 2(1-2600+6520) 10 ab (44200++++ 40540) da ARIA = 3617+81/3+81/3 3-400520+00540 d6

area = $36\pi + 162\sqrt{}$

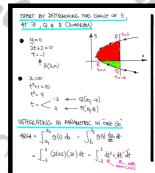
= 36TT+ 162X3

Created by T. Madas

The figure above shows the curve with parametric equations

 $x = t^2 + 1$, y = 2t + 2, $t \in \mathbb{R}$.

The straight line with equation x = 10 meets the curve at the points P and Q.


The area of the finite region bounded by the curve and the straight line with equation x = 10 is shown shaded in the figure above.

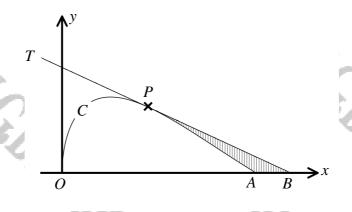
8 t^2

dt

Show that this area is given by

and hence find its value.

$= \frac{2}{\left[\frac{9}{5}t^3\right]_{0}^{3}} = \left(\frac{9}{5}\times 21\right) - 0$
- 72
Alternative by securino the near in 2. "Ornios here" = $\int_{-1}^{3} 4t^{2} + 4t$ dt
^{li} Gettin neta ⁿ = -∫ ⁻³ 4t ² +4t dt
AS THE ADAY IS BOONTHY 22 4935 THE MINUS WILL MAKE IT POSITIVE


0 1 12 11

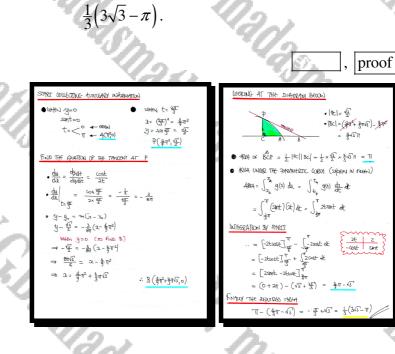
VCE THE TOTAL AREA (AN BE FOUND
$\pi_{AL} + R_{LA} = \int_{-1}^{3} \frac{4}{4} + 4 + 4 + 4 + - \int_{-1}^{-3} \frac{4}{4} + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +$
$= \int_{-1}^{3} 4t^{2} + 4t = 4t + \int_{-3}^{-1} 4t^{2} + 4t = 4t$
$= \int_{-3}^{3} \frac{4t^2 + \frac{1}{2}}{4t^2 + \frac{1}{2}} \frac{4t}{4t} \frac{dt}{4t}$
$= 2 \int_{-3}^{3} dt^{2} dt$
= A Bifore .

, area = 72

5

Question 10 (****+)

The figure above shows the curve with parametric equations


 $x = t^2$, $y = \sin t$, $0 \le t \le \pi$.

The curve crosses the x axis at the origin O and at the point A.

The point *P* lies on the curve where $t = \frac{2}{3}\pi$.

The straight line T is a tangent to the curve at P.

Show that the area of the finite region bounded by the curve, the tangent T and the x axis, shown shaded in the figure above, is

Created by T. Madas

Question 11 (****+)

A curve lies entirely above the x axis and has parametric equations

$$x = \sin^2 t$$
, $y = 4 \tan^3 t$, $0 \le t < \frac{1}{2}\pi$.

The finite region *R* is bounded by the curve, the *x* axis and the straight line with equation $x = \frac{1}{2}$.

Use integration in parametric to find the exact area of R.

t⁵n2 = ± ± = ±n2 ∓ + − ± $\int_{1}^{t} g(t) \frac{dx}{dt} dt = \left(\frac{4}{4} \text{built}(\text{2unitiest} dt) \right)$ $8 \text{ builts inclust } dt = 8 \left(\frac{4}{\cos t} \times \text{ surface } dt\right)$ $\frac{sw^{4}t}{\cos t} dt - 8 \left(\begin{bmatrix} 1 & (1 - \cos^{2}t)^{2} \\ \cos^{2}t \end{bmatrix} \right) dt$ $\frac{1-2\omega_{s}^{2}t+\omega_{s}^{4}t}{\omega_{s}^{2}t}dt = B\int_{-\frac{1}{2}}^{\frac{1}{2}}stdt-2+\omega_{s}^{2}t dt$ $sect = 2 + (\frac{1}{2} + \frac{1}{2}cast) dt$

 $10 - 3\pi$

11+

seit - ½ + ½ cost dt out - ½t + 4sm2t 7

 $\begin{bmatrix} \left(1 - \frac{3}{2} \times \frac{T}{4} + \frac{1}{4}\right) - \sigma \end{bmatrix}$ $\begin{bmatrix} \frac{5}{4} - \frac{3T}{4} \end{bmatrix}$

Question 12 (****+)

20,

A curve lies entirely above the x axis and has parametric equations

 $x=2t^5,$

The finite region R is bounded by the curve, the x axis, the y axis and the straight line with equation x = 2.

 $y = \frac{1}{1+2t^{\frac{5}{2}}},$

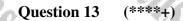
 $t \ge 0$.

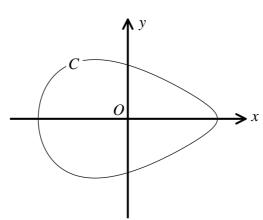
 $2 - \ln 3$

6

U= 1 + 3 $\frac{du}{dt} = \frac{5t^{3d}}{5t^{3d}}$ $dt = \frac{du}{5t^{3d}}$

2t^{\$} = u-


t=0 u=1 t=1 u=3


u du stil

 $\frac{u-1}{u}$ du I - L dy $= \left[u - \frac{1}{2} \right]^{3}$ (3- h3) - (1-lut)

Use integration in parametric to find the exact area of R.

	and the second se
27787 W14-4 SLETCH → BI ANDHOLA (HO → (0,1)) → S (NICOMH , 2: NICOMH , 2: NICOMH , → S (NICOMH , 2: NICOMH , BIT (MAI RATU) 4	ALTRONATION BY -SUBSTITUTI $4264 = \int_{-1}^{1} \frac{10t^4}{1+2t^{52}} dt$
a str y and the same	$= \int_{1}^{3} \frac{10t^{4}}{\alpha} \frac{d}{st}$
SETTING OF A SHOAMETELC INSTAGRAL	$= \int_{1}^{3} \frac{dt^{2\delta}}{u} du$
$\begin{split} & A_{2}(A_{1}, \dots, \int_{a_{1}}^{a_{2}} g(a) da = \int_{a_{1}}^{b_{2}} g(b) \frac{1}{2b_{1}} \frac{1}{2b_{1}} \int_{a_{1}}^{b_{2}} \frac{1}{b_{1}} \int_{a_{1}}^{b_{2}} \frac{1}{b_{2}} \int_{a_{1}}^{b_{2}} \frac{1}{b_{2}} \frac{1}{b_{2}} \int_{a_{1}}^{b_{2}} \frac{1}{b_{2}} \frac{1}{b_{2$	$= \int_{1}^{3} \frac{u-1}{u} du$ $= \int_{1}^{3} 1 - \frac{1}{u} du$
Mar and the manual (or summary and and	$= \left[u - \frac{1}{2} u \right]_{1}^{3}$
$4 \Im r \phi = \int_0^1 \frac{10 t^4}{1 + 2t^{\frac{1}{2}}} dt = \int_0^1 \frac{5 t^{\frac{1}{2}} (2t^{\frac{1}{2}+1}) - 5t^{\frac{1}{2}}}{1 + 2t^{\frac{1}{2}}} dt$	$= (3 - h_3) - (1)$ $= 2 - h_3$
$= \int_{0}^{1} 5t^{\frac{1}{2}} - \frac{5t^{\frac{1}{2}}}{1+2t^{\frac{1}{2}}} dt$	45. 84
$\int \frac{d\omega}{d\omega} d\omega = b \left[\frac{d\omega}{d\omega} - b \right] + C$ $= \left[\frac{\omega}{\omega} \frac{d\omega}{d\omega} - \frac{\omega}{\omega} - \frac{\omega}$	
= 2-143	

The figure above shows the closed curve C with parametric equations

 $x = \cos \theta$, $y = \sin \theta - \frac{1}{4} \sin 2\theta$, $0 \le \theta < 2\pi$.

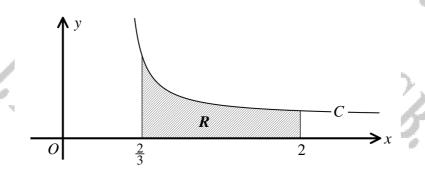
The curve is symmetrical about the x axis.

The finite region enclosed by C is revolved by π radians about the x axis, forming a solid of revolution S.

Show that the volume of S is given by

 $\pi \int_0^{\pi} \sin^3 \theta \left(1 - \frac{1}{2} \cos \theta \right)^2 \, d\theta \, ,$

and by using the substitution $u = \cos \theta$, or otherwise, determine an exact value for the volume of S.



FIRST DETERMINE THE OPENSTATION HEADING" OF THE CURVE, IN TIMUS OF O (BY INSPECTION)	
USING THE SHULLETER OF THE GUELLE AND RADIUMS	
THE TOP HAVE BY 201	
$V = \pi \int_{\alpha_1}^{\alpha_2} [y(\alpha)]^2 d\alpha = \pi \int_{\theta_2}^{\theta_2} (y(\alpha)]^2 d\theta d\theta$	
$= \pi \int_{\pi}^{0} (sm\theta - 4sm2\theta)^2 (-sm\theta) d\theta$	
$= \pi \int_{\pi}^{\pi} (GM) \partial_{\pi} - \frac{1}{7} \times 25 M \partial_{\pi} \partial_{\pi}^{2} + M $	
$=\pi \int_{-\infty}^{\pi} \frac{1}{2} e^{2\pi i \pi} \int_{-\infty}^{\pi} e^{2\pi i \pi} e^{2\pi i \pi$	

 $\begin{array}{c} \overbrace{V} = \iint_{0}^{T} \underbrace{Sup^{2}}_{i} \underbrace{(i - \underbrace{1}_{2} OAB)^{2} d\theta}_{i} \underbrace{AB}_{i} = -arg\theta}_{i} \\ \xrightarrow{MBD} \underbrace{ieft}_{i} \underbrace{ieft}_{i} \underbrace{a = comp}_{i} \xrightarrow{dg}_{i} \underbrace{BB}_{i} = -arg\theta}_{i} \\ \xrightarrow{g}_{i} d\theta = - \frac{du}{sud\theta}}_{i} \underbrace{\frac{\theta}{u}}_{i} \underbrace{i}_{i} - \frac{1}{-1}}_{i} \\ \xrightarrow{g}_{i} d\theta = - \frac{du}{sud\theta}}_{i} \underbrace{\frac{\theta}{u}}_{i} \underbrace{i}_{i} - \frac{1}{-1}}_{i} \\ \xrightarrow{g}_{i} d\theta = - \frac{du}{sud\theta}}_{i} \\ \xrightarrow$

 $\Rightarrow V \sim \pi \int ((1-u^2)(1-u + \frac{1}{4}u^2) du$ WUTTEN OUT & THOW AWAY OLD PARTS AS THE DOWNIN IS SYMMATIC ON $V = \Pi$ $1 - u + \frac{1}{4}u^2 - u^2 + u^3 - \frac{1}{4}u^4 du^4$ $2u - \frac{1}{2}u^3 - \frac{1}{10}u^5$ π [2 - ½ - 분]

Question 14 (****+)

The figure above shows the curve with parametric equations

$$x = \frac{1}{1+t}, \quad y = \frac{1}{1-t}, \quad -1 < t < 1.$$

0.

The region R, shown shaded in the figure, is bounded by the curve, the x axis and the straight lines with equations $x = \frac{2}{3}$ and x = 2.

a) Show that the area of R can be found by the parametric integral

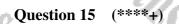
$$\int_{-\frac{1}{2}}^{\frac{2}{2}} \frac{1}{(1-t)(1+t)^2} dt,$$

and hence find the exact area of R.

b) Determine a Cartesian equation of the curve, in the form y = f(x), and by evaluating a suitable integral in Cartesian verify the answer given to part (**a**).

area = $\frac{2}{3}$ + ±ln3 BY CARRESIAN INDARRATION $\int_{-\frac{3}{2}}^{\frac{3}{2}} 4(x) dx = \int_{\frac{3}{2}}^{\frac{3}{2}}$ 2=2 - 1 =2 $\frac{1}{1-t} + \frac{1}{1+t} + \frac{1}{(1+t)^2} dt$ 2x-1 dx -> t+1 = + $\begin{bmatrix} \pm |u| + t| - \pm |u| - t| - \frac{1}{1+t} \end{bmatrix}_{t}^{2}$ - te-L s tab $h(i+t) - h(i-t) = \frac{2}{t+i} \int_{-t}^{t}$ FOR THE TREA FROM CARTESIAN INTO $ACHA = \frac{1}{2} \int_{0}^{2} \frac{2x}{2x-1} dx = \frac{1}{2} \int \frac{(2x-1)+1}{(2x-1)} dx$ $\frac{1}{4}\left[\left(\ln\frac{3}{2}-\ln\frac{1}{2}-\frac{4}{3}\right)-\left(\ln\frac{1}{2}-\ln\frac{3}{2}-4\right)\right]$ $ARFA = \frac{1}{2} \int_{0}^{x}$ $1 + \frac{1}{2x-1} dx$ $\frac{1}{2}g(x) dx = \int_{t}^{t_{2}} g(t) \frac{dx}{dt} dt$ -AR6A = [ARFA = + [2h3-2h2+3] = f[m3-pf + 7] $\rightarrow Min = \frac{1}{2} \left[x + \frac{1}{2} \ln |2x-1| \right]_{\frac{1}{2}}^{2}$ $= \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1-\frac{1}{2}} \left(-\frac{1}{(1+\frac{1}{2})^{k}}\right) dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1-\frac{1}{2}} \left(+\frac{1}{(1+\frac{1}{2})^{k}}\right) dt$ HRAA = ± [13+5] $\rightarrow hklat = \frac{1}{2} \left[\left(2 + \frac{1}{2}h_3 \right) - \left(\frac{2}{3} + \frac{1}{2}h_3 \frac{1}{3} \right) \right]$ $= \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{(1-t)(1+t)^2} dt$ 킄+źlu3 → Aeia = ± [+ ±h3 - ±h ±] CUMINATE THE PHRANETHE =+RIA = ± [±+5/43+±143] - a = 1 →ARHA = ±[++ 143] t+1 = 1 AREA = 3+ ±143 + REPRES $l \equiv A(i+b)^2 + B(i-b) + i$ 1-(+-1) 1= 40 4=± l= 28 B= ± 2-2 y= = Created by T. Madas

Р


COM

 \xrightarrow{x}

, area = $16 - 4\pi$

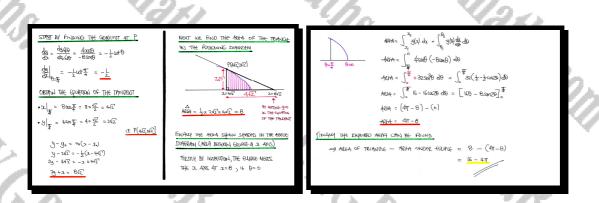
1

R

The figure above shows the ellipse with parametric equations

Т

0


 $x = 8\cos\theta$, $y = 4\sin\theta$, $0 \le \theta < 2\pi$.

The point *P* lies on the ellipse, where $\theta = \frac{1}{4}\pi$.

The straight line T is a tangent to the ellipse at P.

The finite region R, shown shaded in the figure, is bounded by the ellipse, the tangent T and the x axis.

Find an exact value for the area of R.

(

Question 16 (****+)

The figure above shows the curve C with parametric equations

 $x = \sin t$, $y = t^2$, $0 \le t \le 2\pi$.

0

It is given that C is symmetrical about the y axis.

The region bounded by C is to be revolved about the y axis by π radians to form a solid of revolution with volume V.

By considering a suitable integral in parametric, or otherwise, find an exact value for this volume.

THE VALUES OF t AT DIFFECTUR POINTS
SET 4 VOULLE INTEGRAL IN Y (PARAMETRIC)
BY RENOWING THE "RHS" OF THE WENE.
$V = \pi \int_{g_1}^{g_2} \left[2 (g_1) \right]^2 dg = \pi \int_{t_1}^{t_2} \left[2 (g_1) \right]^2 \frac{dg}{dt} dt$
= $\pi \int_{-\pi}^{\pi} (sust)^2 (2t) dt = \pi \int_{-\pi}^{\pi} (2t su^2 t) dt$

$ = \pi \left[\left[\frac{1}{2} t^{2} - \frac{1}{2} t \operatorname{sank} \right]_{0}^{\pi} + \left[-\frac{1}{2} t \operatorname{sank} \right]_{$	pî i	allowed in the	der 2	
$= \pi \int_{0}^{\pi} t - t \cos t dt$ $= \pi \int_{0}^{\pi} t dt + \pi \int_{0}^{\pi} -t \cos t dt$ $= \pi \left[\frac{1}{2} t^{n} \right]_{1}^{\pi} - \left[\frac{1}{2} - \frac{1}{2} t - \frac{1}{2} \right]_{2}^{\pi}$ $= \pi \left[\frac{1}{2} t^{n} \right]_{1}^{\pi} + \left[-\frac{1}{2} t \cos t \right]_{1}^{\pi} - \int_{0}^{\pi} \frac{1}{2} \sin t dt$		- (+++++)	est)de	
$= \pi \int_{0}^{\pi} t dt + \pi \int_{0}^{\pi} -t \cos t dt$ $= \pi \left[\frac{1}{2} t^{2} \right]^{\frac{1}{2}} + \left[-\frac{1}{2} t \cos \frac{1}{2} \right]^{\frac{1}{2}} + \frac{1}{2} \sin t dt$				
$= \pi \int_{0}^{\pi} t dt + \pi \int_{0}^{\pi} -t \cos t dt$ $= \pi \left[\frac{1}{2} t^{2} \right]^{\frac{1}{2}} + \left[-\frac{1}{2} t \cos \frac{1}{2} \right]^{\frac{1}{2}} + \frac{1}{2} \sin t dt$	=	T t - two	at Jt	
$= \pi \left[\left[\frac{1}{2} t_{n} \right]_{n}^{T} + \left[-\frac{1}{2} t_{n} \cos t \right]_{n}^{T} - \frac{1}{2} \sum_{n=1}^{T} \frac{1}{2} \cos t + \frac{1}{2$				
$= \pi \left[\left[\frac{1}{2} t_{n} \right]_{n}^{T} + \left[-\frac{1}{2} t_{n} \cos t \right]_{n}^{T} - \frac{1}{2} \sum_{n=1}^{T} \frac{1}{2} \cos t + \frac{1}{2$	-	π[tdt.	+ v [-t	coszt dt
$= \pi \left[\frac{1}{2} t^2 \right]_{+}^{\pi} + \left[-\frac{1}{2} t \operatorname{sm} 2t \right]_{-}^{\pi} - \int_{-}^{\pi} \frac{1}{2} \operatorname{sm} 2t dt$		06	70	
$= \pi \left[\frac{1}{2} t^2 \right]_{+}^{\pi} + \left[-\frac{1}{2} t \operatorname{sm} 2t \right]_{-}^{\pi} - \int_{-}^{\pi} \frac{1}{2} \operatorname{sm} 2t dt$			~~~	mm
$= \pi \left[\frac{1}{2} t^2 \right]_{+}^{\pi} + \left[-\frac{1}{2} t \operatorname{sm} 2t \right]_{-}^{\pi} - \int_{-}^{\pi} \frac{1}{2} \operatorname{sm} 2t dt$			{ <u>-t</u>	-1 }
$= \pi \left[\left[\frac{1}{2} f_{x}^{2} - \frac{1}{2} f^{2} \cos \theta \right]_{x}^{\alpha} + \int_{0}^{\alpha} f^{2} \cos \theta d\theta \right]$ $= \pi \left[\left[\frac{1}{2} f_{x}^{2} - \frac{1}{2} f^{2} \sin \theta d\theta \right]_{x}^{\alpha} + \int_{0}^{\alpha} f^{2} \sin \theta d\theta d$			È tan	et uset?
$= \pi \left[\left[\frac{1}{2} t^{2} \right]_{+} + \left[-\frac{1}{2} t \operatorname{SM2t} \right]_{-}^{\pi} + \int_{-}^{\pi} \frac{1}{2} \operatorname{SM2t} dt \right]_{-}^{\pi}$ $= \pi \left[\left[\left[\frac{1}{2} t^{2} - \frac{1}{2} t \operatorname{SM2t} \right]_{-}^{\pi} + \int_{-}^{\pi} \frac{1}{2} \operatorname{SM2t} dt \right]_{-}^{\pi} + \int_{-}^{\pi} \frac{1}{2} \operatorname{SM2t} dt \right]_{-}^{\pi}$		5 -7 -		ο Ψ
$= \pi \left[\left[\frac{1}{2} t^{2} - \frac{1}{2} t^{2} \operatorname{SM2t} \right]_{0}^{\pi} + \int_{0}^{\pi} \frac{1}{2} \operatorname{SM2t} dt \right]_{0}^{\pi}$	= T	[+]	tsm2t -)-±sinzt di
$= \pi \left[\left(\frac{1}{2} t^2 - \frac{1}{2} t \operatorname{SM2t} \right]_0^2 + \int_0^2 \frac{1}{2} \operatorname{SM2t} dt \right]_0^2$			π	• -
	π =	(1+t2 - 1+tsm2	t] + [Lonzt dt
		L	40	

PEOCEED BY TELGONOULENER IDENTITIES, GU

FINISHING OFF THE LAST INT	REATION & TVAU	JATINO
$= \pi \left[\frac{1}{2}t^2 - \frac{1}{2}tsm^2t - \frac{1}{2}t$	west I	
= T [(272-0-4)-(0-	0-4)	
$=\frac{1}{2}\pi^{3}$		

 $\frac{1}{2}\pi^{3}$

Question 17 (****+)

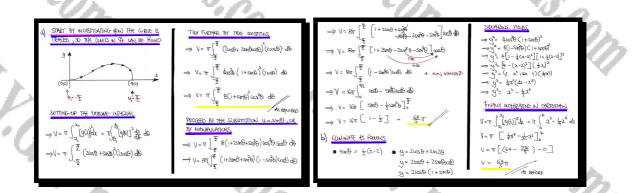
0

The figure above shows the curve with parametric equations

$$x = 2 + 2\sin\theta$$
, $y = 2\cos\theta + \sin 2\theta$, $-\frac{1}{2}\pi \le \theta \le \frac{1}{2}\pi$

Р

The curve meets the x axis at the origin O and at the point P.


The finite region bounded by the curve and the x axis is rotated by 2π radians in the x axis, forming a solid of revolution S.

a) Show that the volume of S is given by

$$\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 8(1+\sin\theta)^2 \cos^3\theta \ d\theta,$$

and hence find its exact value.

b) Determine a Cartesian equation of the curve and by forming and evaluating an appropriate integral in Cartesian verify the answer for the volume of S, found in part (a).

Q

• x

proof

12. 190. 90

The figure above shows a curve with parametric equations

 $x = \cos \theta$, $y = \sin 2\theta - \cos \theta$, $0 \le \theta < 2\pi$.

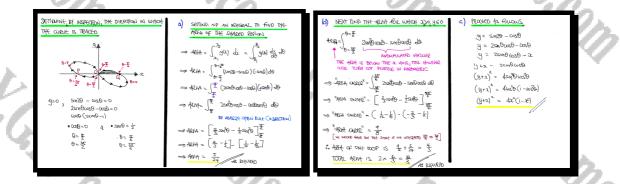
0

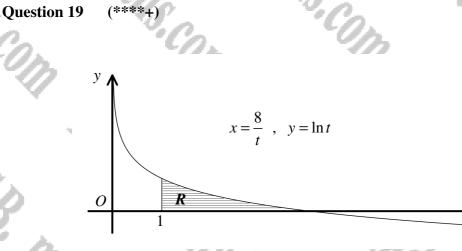
The curve, which has rotational symmetry about the origin O, crosses the x axis at the points P, Q and O.

The finite region bounded by the curve, for which $x \ge 0$, $y \ge 0$, and the x axis is shown shaded in the figure.

Show, with detailed workings, that ...

Question 18


(****+)


i. ... the area of shaded region is $\frac{5}{24}$.

ii. ... the area enclosed by the two loops of the curve is $\frac{8}{3}$.

iii. ... a Cartesian equation of the curve is

 $4x^{2}(1-x^{2}) = (x+y)^{2}.$

The figure above shows part of the curve with parametric equations

$$x = \frac{8}{t}, y = \ln t, t > 0$$

The finite region R is bounded by the curve, the x axis and the straight line with equation x = 1.

a) Show that the area of R is given by

where the t_1 and t_2 are constants to be found.

b) Evaluate the above parametric integral to determine, in exact simplified form, the area of R.

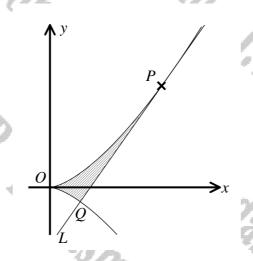
8 ln *t*

c) Find a Cartesian equation of the curve and hence verify the answer of part (b).

 $t_1 = 1$, $t_2 = 8$, $7 - 3 \ln 2$

[solution overleaf]

Created by T. Madas


(1)

(5)

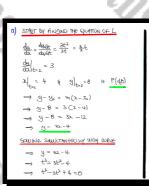
х

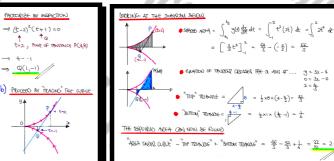
Question 20 (****+)

A semi-cubical parabola C, which consists of two sections meeting at the origin O, has parametric equations

$$x = t^2$$
, $y = t^3$, $t \in \mathbb{R}$.

The point *P* lies on *C* where t = 2.


The straight line L is the tangent to C at P and the point Q is where L re-intersects C, as shown in the figure.

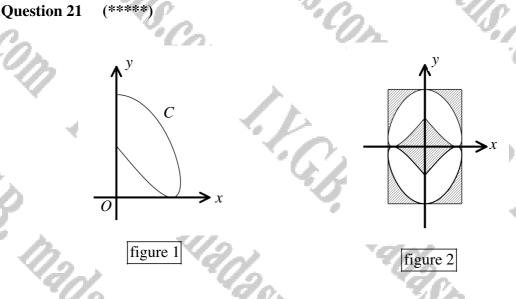

a) Find the coordinates of Q.

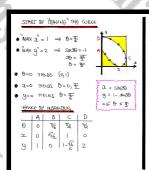
b) Determine the area of the finite region bounded by C and L, shown shaded in the figure above.

FAOTORIZE BY INSPECTION

 $Q(l_1-l)$

Q(1,-1), area = 2.7



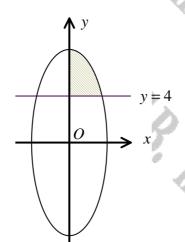

Figure 1 above, shows the curve with parametric equations

$$x = \sin 2\theta$$
, $y = 1 - \sin 3\theta$, $0 \le \theta \le \frac{1}{2}\pi$.

Figure 2 above shows a glass design. It consists of the curve of figure 1, reflected successively in the x and y axis.

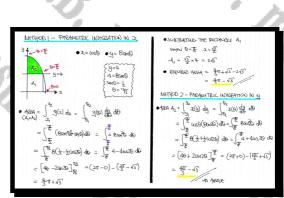
The resulting design fits snugly inside a rectangle, whose sides are tangents to the curve and its reflections, parallel to the coordinate axes. The region inside the 4 loops of the curve is made of clear glass while the region inside the rectangle but outside the 4 loops of C is made of yellow glass.

Determine the area of the yellow glass.



WING THE INTEGRATION	4GUCE THE REPUILING ABOAT OF THEY
∫ [₹] 20628 - (SM0 + 511158) d0	Yellow GLACS = $4 \times \left(z - \frac{c}{5}\right)$
∫ [€] 2ίω200 − sm0 − sm50 d0	$\frac{3l}{z}$
_ s1n20 + las0 + flas.90]. ¹⁵	
$(0 + 0 + 0) - (0 + 1 + \frac{1}{2})$	
5 - AREA OF THE LOOP	
THE BEETAWALE	
1	

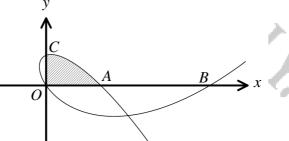
yellow area $=\frac{16}{5}$


Question 22 (****+)

A curve is defined in terms of a parameter θ , by the following equations.

 $x = \cos \theta$, $y = 8\sin \theta$, $0 \le \theta < 2\pi$.

Determine an exact value for the area of the finite region bounded by the curve, the y axis for which $y \ge 0$, and the straight line with equation y = 4 for which $y \ge 4$.



area = $\frac{4}{2}$

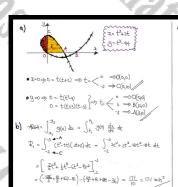
21/2.5m

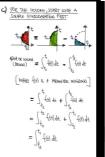
6

The figure above shows a curve with parametric equations

$$x = t^2 + 2t$$
, $y = t^3 - 9t$, $t \in \mathbb{R}$

The curve meets the coordinate axes at the origin O and at the points A, B and C.

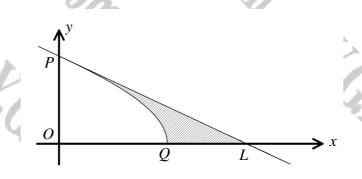

a) Determine the coordinates of A, B and C.


The finite region R, shown shaded in the figure, is bounded by the curve and the coordinate axes.

b) Find the area of R.

The finite region bounded by the curve and the y axis, for which x < 0, is revolved by 2π radians about the x axis, forming a solid S.

c) Calculate the volume of S.



IS GNOW BY $= \pi \int_{t_3}^{t_1} \left[g(t) \right]^2 \frac{dx}{dt} dt = \pi \int_{t_3}^{-2} (\frac{t^2}{2} qt)^2 (2t+2) dt = 2\pi \int_{t_3}^{-2} (t^2 q)^2 (t+1) dt$ $\Rightarrow V = 2\pi \int_{-2}^{-2} t^{2}(t_{H})(t_{-18t^{2}+6t}) dt = 2\pi \int_{-2}^{-2} (t_{H})(t_{-18t^{2}+6t_{1}}^{4}) dt$ $\Rightarrow V = 2\pi \int_{-\infty}^{\infty} t^{7} - 18t^{4} + 8t^{3} + t^{6} - 18t^{4} + 8t^{2} dt$ $\Rightarrow V = \Im \pi \left[\frac{1}{2} b t^{\theta} - 3 t^{\theta} + \frac{\theta}{4} t^{\varphi} + \frac{1}{7} b^{2} - \frac{10}{5} t^{5} + 27 t^{3} \right]_{0}^{2}$ =V - m [(32-192+374-128 + 3 + - 216)-(0)] 21 × 1572 = V = <u>3144∏</u> ≈ 282

A(3,0), B(15,0), C(0,10), area = 17.1, volume ≈ 282

Created by T. Madas Madas THER BE BE DU. IN COMPANY OF THE STREET STRE ASTRAITS COM I. X. G.B. MARIAS MARINE COM I. Y. C.B. MARIAS MARINE COM I.

Question 1 (*****)

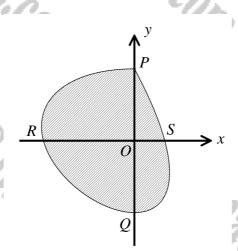
The figure above shows the curve C with parametric equations

 $x = 4\cos 3\theta$, $y = 4\sin \theta$, $0 \le \theta \le \frac{1}{6}\pi$.

The curve meets the coordinate axes at P(0,2) and at Q(4,0).

The straight line L is the tangent to C at the point P.

a) Show that an equation of L is


 $6y + x\sqrt{3} = 12.$

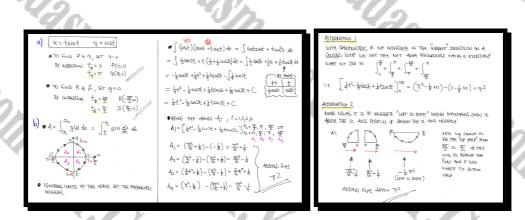
The finite region bounded by the curve C the tangent L and the x axis is shown shaded in the above figure.

b) Show further that the area of this region is exactly $\sqrt{3}$ square units.

, proof
$\begin{cases} \frac{\partial c_{n,n}}{\partial t} = -\frac{\partial c_{n,n}}{\partial t} = -\partial c$
$\begin{aligned} & \left\ \log_{\mathcal{L}} c - \frac{dy}{dx} \right\ _{b=T_{x}^{d}} &= -\frac{\delta_{\mathcal{L}_{x}}}{3} = -\frac{\delta_{\mathcal{L}_{x}}}{2} \\ & \varepsilon_{t} \otimes \delta_{t} \otimes \delta_{t$
$ \left\{ \begin{array}{c} u_{\text{therefore}}^{\text{therefore}} & u_{\text{therefore}}^{\text{therefore}} \\ u_{\text{therefore}}^{\text{therefore}} & u_{\text{therefore}}^{therefore$
$\begin{array}{c} 1000 \text{ why yes as the dark (0-0), it (growth (0,00))}\\ 1000 \text{ why yes as the dark (0-0), it (growth (0,00))}\\ 1000 \text{ why yes (0,00), it (growth (0,00))}\\ 1000 why yes (0,00), it (growth (0$
To be accurate and a second and a second and a second a s
$\begin{cases} \partial \partial$
$= 2\sqrt{2},$ $= 2\sqrt{2},$ $= (\sqrt{2})/(\sqrt{2}) = (\sqrt{2})/(\sqrt{2}) = (\sqrt{2})/(\sqrt{2})$
.: SHABED ARM = 4/3 - 3/5 e 1/3

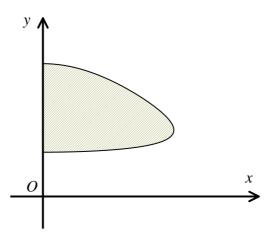
Question 2 (*****)

The figure above shows the curve C with parametric equations


$$x = t \sin t$$
, $y = \cos t$, $0 \le t < 2\pi$.

The curve meets the coordinate axes at the points P, Q, R and S.

a) Find the value of the parameter t at each the points P, Q, R and S.

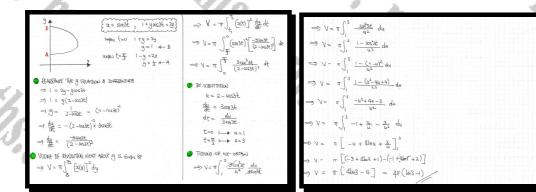

The finite region bounded by the curve C is shown shaded in the above figure.

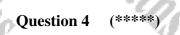
b) Show that the area of this region is exactly π^2 square units.

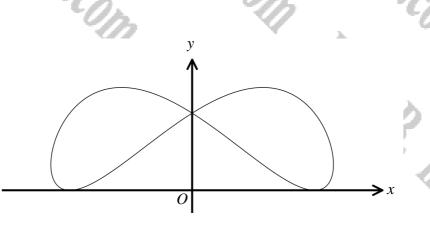
 $t_P = 0, t_S = \frac{\pi}{2}, t_Q = \pi, t_R = \frac{3\pi}{2}$

Question 3 (*****)

The figure above shows a curve given parametrically by


 $x = \sin 3t$, $1 + y \cos 3t = 2y$, $t \in \mathbb{R}$, $0 \le t \le \frac{1}{3}\pi$.


The finite region bounded by the curve and the y axis, shown shaded in the figure is revolved by 2π radians about the y axis, forming a solid of revolution.


 $4\pi [\ln 3 - 1]$

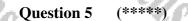
C.

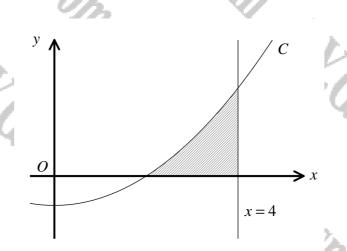
Determine an exact simplified value for the volume of this solid.

The figure above shows the curve with parametric equations

$$x = \sin\left(t + \frac{\pi}{6}\right), \ y = 1 + \cos 2t, \ 0 \le t < 2\pi$$

Given that the curve is symmetrical about the y axis, show that the area enclosed by the two loops of the curve is $\frac{4\sqrt{3}}{3}$

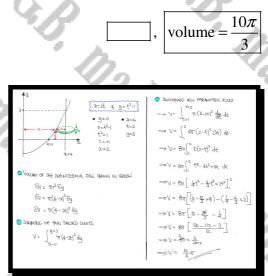

RETURNING TO THE INTERAL \Rightarrow Torm. Arm = 2 $\int_{-\infty}^{\infty} \cos(t+\overline{x}) + \frac{1}{2}\cos(3t+\overline{x}) + \frac{1}{2}\cos(t-\overline{x}) dt$ (1)7れ れんちょ [255m(七+ぞ)+ち5m(3七+を)+5m(七-ぞ)]で $+\frac{1}{5}SM\frac{6}{5}M^{-1}+SM\frac{2}{3}$ - $\left[23MO^{+}+\frac{1}{5}SM(-\frac{3}{3})+SM(-\frac{3}{3})\right]$ ON $t_{2}^{-\frac{2\pi}{2}}$ (1 + cos 2t) $\left[cos (t+\overline{s}) \right] dt$ TOTAL AREA = 2 t्न-₹ (t-₩) t y(t) Alba = $\frac{4}{3} \times \frac{\sqrt{3}}{2} + \frac{4}{3} \frac{\sqrt{3}}{2}$ $TSTAC NCIA = 2 \int_{-F}^{\frac{H}{2}} cos(t+F) + cosst cos(t+F) dt$ DHEWIND A TELGONOMITER WANDRY FOR THE 2ND (HEM $(b \in [\pm + (\underline{b} + \underline{b})] = (a \in (\underline{a} + \underline{b})) = (a \in (\underline{a} + \underline{b})) = (\underline{b} + (\underline{b} + \underline{b}))$ $(as \left[2t - (t, \overline{\mu})\right] = (as (t - \overline{\mu}) = cast (as (t, \overline{\mu}) + s)(t + \overline{\mu}))$ $\frac{1}{100}$: (0.2(2+F) + (0.2(2-F) = 20.2)(0.2(2+F)): $(0.2(2+F) = \frac{1}{2}(0.2(2+F)) + \frac{1}{2}(0.2(2+F))$

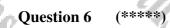

proof

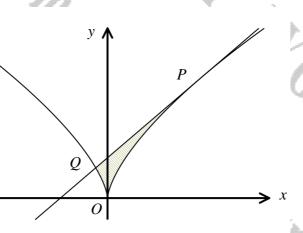
fsm∓ + sm∓

FM2+ FM2+ + F

\$sm =



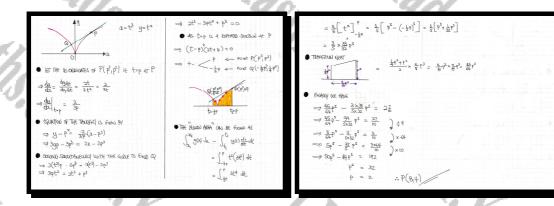

The figure above shows the curve C with parametric equations

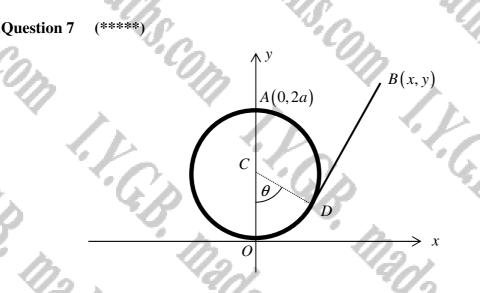

$$x = 2t , \quad y = t^2 - 1, \quad t \in \mathbb{R} .$$

The finite region, bounded by C, the x axis and the line x = 4 is revolved by 2π radians about the line x = 4, to form a solid of revolution S.

Find an exact value for the volume of S.

The figure above shows the curve with parametric equations


 $x = t^3, \quad y = t^2, \quad t \in \mathbb{R}.$


The tangent to the curve at the point P meets the curve again at the point Q.

Given that the area of the finite region bounded by the curve and the tangent, shown shaded in the above figure, is $2\frac{7}{10}$ square units, determine the coordinates of P.

 $\overline{P(8,4)}$

6

The figure above shows a set of coordinate axes superimposed with a circular cotton reel of radius a and centre at C(0,3a).

A piece of cotton thread, of length $3\pi a$, is fixed at one end at O and is being unwound from around the circumference of the fixed circular reel. The free end of the cotton thread is marked as the point B(x, y) which was originally at A(0, 6a).

The unwound part of the cotton thread *BD* is kept straight and θ is the angle *OCD* as shown in the figure above.

- a) Determine the parametric equations that satisfy the locus of B(x, y), as the cotton thread is unwound in the fashion described, for which x > 0, y > 0.
- **b**) Find the total area enclosed by the curve traced by B, in the entire x-y plane.

 $x = 3a\left[\sin\theta + (\pi - \theta)\cos\theta\right], \ y = 3a\left[1 - \cos\theta + (\pi - \theta)\sin\theta\right], \ area = \frac{3}{2}\pi a^2 \left(5\pi^2 + 6\right)$

64	AS WE CAN UNDOWND THE COTTON IN THE 38D AND 4TH QUARRANT
345 040	BUE REFINANT IS A PURPER ADDLE OF RADIUS 344, 30 MIC HERA IS
bra	+ th (3708 = = = = = 3a2
	2 "COMMON SECTION" AND - PHOMMETELIC EQUATIONS
-310	a= 3a [Sm0 + CT-0] costo]
	9= 3a [1-0059+(T-0)SMD]
	$\circ \leq \Theta \leq \pi$
P TWO THE HEAT IN PARAMETRI	
$\Rightarrow A = \int_{a_1}^{a_2} g(a) da = \int_{a_2}^{a_2} g(a) da = \int_{a_1}^{a_2} g(a) da $	
$\Rightarrow A = \int_{q}^{0} 3q \left(1 - (0 - q) + \theta_{20}) - 1\right) = A = \int_{q}^{0} 3q \left(1 - (0 - q) + \theta_{20}) - 1\right)$	$\Theta = \underbrace{\left[\underbrace{(\theta m z -)(\theta - T) + \partial z m z - \partial z m z}_{\Theta S A B} \times \left[\theta \\ \underbrace{(\theta m z -)(\theta - T) + \partial z m z - \partial z m z}_{\Theta S A B B A B A B A B A B A B A B A B A B$
$\Rightarrow A = \int_{u}^{0} q_{0}^{2} [1 - \cos\theta + (\pi - \theta)]$	sine][- (T-e) sine] de
$\Rightarrow A = \int_{0}^{\pi} qq^{2}(\pi - \theta) sm\theta [1-($	elo [ghiz(e-ij)+ azo
LET U=T-D	ALSO SUND= SM(TT-4)= SAFFERE - COSTISINU
du = - do	SMO = SMU
σ=0 ↔ u=σ	$\mu_{\text{HPRHM2}} + \mu_{\text{PRM}} = (\mu_{-}\pi)_{2} \omega = 0.2 \omega$
$\theta = \pi \mapsto \theta = 0$	$\mu_{203} - = \Theta_{203}$
$\Rightarrow A = Qq^2 \int_{\frac{\pi}{2}}^{0} t_{L,QV} q_{L} \left[1 + t_{LQQ} \right]$	+ useou] (- du)
⇒A = 9a2∫° Usinu + Usinu	wsu +uzsiniu du
∋A =9a²∫o ¹⁷ usunu + ±us	$m 2u + u^2 \left(\frac{1}{2} - \frac{1}{2} \log 2u \right) du$

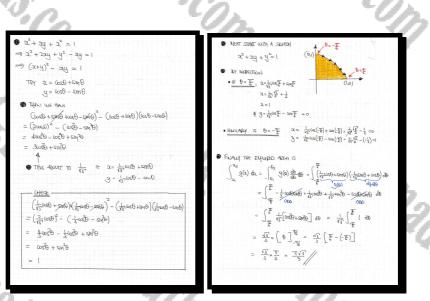
• A = 9k² $\int_{0}^{\infty} \frac{1}{4}u^{2} + \frac{1}{4}(xxxx)(-\frac{1}{2}(u^{2}xx))(-\frac{1}{2}(u^{2}xx))(-\frac{1}{2}(u^{2}x))(-\frac{1}{2}(u^$

-2πα² ST +6

Question 8 (*****)

A curve C has equation

 $x^2 + xy + y^2 = 1$, $0 \le x \le 3$.


By seeking a suitable parameterization of C in the form

 $x = A\cos\theta + B\sin\theta$ and $y = A\cos\theta - B\sin\theta$,

where A and B are suitable constants,

determine the area of the finite region in the first quadrant, bounded by the curve and the coordinate axes.

You may assume that the curve does not intersect itself.

area = $\frac{1}{9}\pi\sqrt{3}$