Created by DIFFFERENTIAL DIFFERENTIAL DIFFERENTIAL DIFFERENTIAL DIFFERENTIAL DIFFERENTIAL DIFFERENTIAL DIFFERENTIAL , K.G.B. HASHAHSCOM I.Y.C.B. MARASMANSCOM I.Y.C.B. MARASM FER QUATIONS (by separation of variables)

GENERAL SOLUTIONS S STRATTS COM I. Y. C.B. MARIASTRATIS COM

Question 1 (**)

Find a general solution of the differential equation

2028m

 $3y^2 \frac{dy}{dx} + 2x = 1$ giving the answer in the form $y^3 = f(x)$.

I.C.B.

Find a general solution of the differential equation

C.B.

$$\frac{dy}{dx} = xy, \ x \neq 0, \ y \neq 0,$$

giving the answer in the form y = f(x).

 $y = A e^{\frac{1}{2}x^2}$

·C.p.

 $y^3 = A - x^2 + x$

2%

1+

Created	by	T.	M	ada	a
	•	10			

Question 3 (**+)

Find a general solution of the differential equation

$$\frac{dy}{dx} = (y+1)(1-2x), \ y \neq -1.$$

21/2.87

giving the answer in the form y = f(x).

y	$=Ae^{x}$	$-x^{2}-2$
·		The second second

$\frac{dy}{d\lambda} = (y+i)(1-2\chi)$	{ ⇒ 3+1 = e ^{a-x2} +C
⇒ dy = (y+1)(1-22).da	-> 3+1 - 2 × 2 C
= +++ dy = (1-21) dr	$ = 4 + 1 = 4 e^{x-x} (4 - e^{4}) $
⇒ J gy dy = J 1-22 da	- JTRE
$\sup_{x \to \infty} y = \alpha - \alpha^2 + C$	

Question 4 (**+)

5

Find a general solution of the differential equation

 $\frac{dy}{dx} = y \tan x \,, \, y > 0$

giving the answer in the form y = f(x).

 $y = A \sec x$

dy = ytays	$\left. \right\rangle \rightarrow \ln y = \ln seca + \ln 1$
, da = ytawa da	> hly = hlysen
- tydy = tava da	9 9 = Asica
=) Jig dy = Jtayx dx	}
> luly = lulsucal+C	(

Question 5 (**+)

Find a general solution of the differential equation

giving the answer in the form y = f(x).

	$y = \ln $	$\left(2e^{x}+C\right)$
--	------------	-------------------------

⇒ \$2 =2e ^{2-y}	{⇒ Je ^y dy = Je ² dł
$\Rightarrow dy = 2e^{x-y}dz$	$\Rightarrow e^{2} = 2e^{2} + C$
= dy = 2ere da = - dy = 2e da	$\Rightarrow g = \ln [2e^{2}+c]$
$\Rightarrow \int \frac{1}{e^{3}} dy = \int 2e^{2} dx$	3

Question 6 (***)

Find a general solution of the differential equation

$$x^2 \frac{dy}{dx} = xy + y, \quad x \neq 0, \quad y \neq 0,$$

giving the answer in the form y = f(x).

[the final answer may not contain natural logarithms]

$x_5 \frac{dx}{dt} = x_0 + h$	$\langle \rightarrow h y = \int \frac{1}{2}$	+ In di
$\Rightarrow \lambda^{c} \frac{du}{d\lambda} = g(\alpha + i)$	$\left\{ \Rightarrow \ln y = \int \frac{1}{2}$	+ 2 42
=) a ² dy = y(a+1) da	$\Rightarrow \ln y = \ln z $	$ -\tilde{x} + C$
$\Rightarrow \frac{1}{2} dy = \frac{\alpha + 1}{\alpha^2} d\lambda$) y = en	l- f+C
=)] to dy =] =] ==	I y = ema	et x e
	(= y= Aa	ē ^s

Question 7 (***+)

Find a general solution of the differential equation

$$x^2 + 3\Big)\frac{dy}{dx} = xy, \ y > 0,$$

giving the answer in the form $y^2 = f(x)$.

 $y^2 = A\left(x^2 + 3\right)$

$\begin{aligned} \lambda^{2}\lambda^{2} & \int_{\partial \Omega}^{\partial u} = 2u \\ \partial \lambda^{2} + 3 & du = 2u \\ \frac{1}{2} & du = \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{1}{2} & du = \frac{1}{2} \int_{\partial \Omega} \frac{\chi}{\lambda^{2} + 3} \\ \frac{\chi}{\lambda^{2} + 3$	$ \begin{array}{c} \Rightarrow b[g]_{z} & \underline{1}b[2\dot{a}_{3}] + b[A] \\ \Rightarrow & b[g]_{z} = b[2\dot{a}_{1}\dot{a}_{2}\dot{a}_{1}\dot{b}_{+} bA \\ \Rightarrow & b[g]_{z} = b[2\dot{a}_{1}\dot{a}_{2}\dot{a}_{1}\dot{b}_{+} bA \\ \Rightarrow & b[g]_{z} = b[2\dot{a}_{1}\dot{a}_{2}\dot{a}_{1}\dot{b}_{1} \\ \Rightarrow & \underline{g}_{z} = b[2\dot{a}_{1}\dot{a}_{2}\dot{a}_{2} \\ \Rightarrow & \underline{g}_{z}^{2} = f^{2}(2\dot{a}_{2}\dot{a}_{2}) \\ \Rightarrow & \underline{g}_{z}^{2} = f^{2}(2\dot{a}_{2}\dot{a}_{2}) \end{array} $
12 - J 2 +5	1- 10.3/

Question 8 (***+)

Show that a general solution of the differential equation

is given by

where A is an arbitrary constant.

2	18
$\begin{array}{l} \displaystyle \frac{d_{q}}{dt} = \left(\frac{q}{z_{1}}\right)^{2} \\ \displaystyle \frac{d_{q}}{dt} = \left(\frac{q}{z_{1}}\right)^{2} \\ \displaystyle \frac{d_{q}}{dt} = \frac{q}{z_{1}}^{2} \\ \displaystyle \frac{d_{q}}{dt} = \frac{1}{z_{1}} \frac{d_{q}}{dt} \\ \displaystyle \frac{d_{q}}{dt} = \int_{-\frac{q}{z_{1}}}^{-\frac{q}{z_{1}}} \frac{d_{q}}{dt} \\ \displaystyle \frac{d_{q}}{dt} \\ \displaystyle \frac{d_{q}}{dt} = \int_{-\frac{q}{z_{1}}}^{-\frac{q}{z_{1}}} \frac{d_{q}}{dt} \\ \displaystyle \frac{d_{q}}$	$\begin{array}{c} g_{1} = g_{1} =$

proof

Question 9 (***+)

Find a general solution of the differential equation

$$\frac{dy}{dx} = \frac{x e^x}{\sin y \cos y},$$

giving the answer in the form f(x, y) = constant.

$$\cos 2y + 4e^{x}(x-1) = C$$
 or $e^{x}(x-1) - \sin^{2} y = C$ or $e^{x}(x-1) + \cos^{2} y = C$

an.	
dy = <u>ze²</u> → snyway dy = ze ² dz → snyway dy = ze ² dz → jznysy dy = ze ² dz → jźnyz dy = ze ² dz + c	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

Question 10 (***+)

Find a general solution of the differential equation

$$\frac{dy}{dx}\cos^2 x = y^2 \sin^2 x$$

giving the answer in the form y = f(x).

Question 11 (***+)

Find a general solution of the differential equation

$$\sec 3x \frac{dy}{dx} = \cot^2 2y$$

giving the answer in the form f(x, y) = c.

$3\tan 2y - 6y - 2\sin 3x = C$

Ε.	10. Ale	
	Secs. $\frac{dy}{dx} = (at^2 zy)$	S => 3tay 2y - by = 25133 + C.
1	util dy = 1 dr	(=) 3tangy-6y-2su32=C
-9	I tan'zy dy = I cassa di	{
-] seezy-1 dy = Jussi da	
9	$\frac{1}{2}\log^2 y - y = \frac{1}{3}\sin^3 x + \frac{1}{2}\sin^3 x + \frac{1}{2}\log^2 x + $	c

Question 12 (***+)

Find a general solution of the differential equation

 $e^{2x}\frac{dy}{dx} = \csc^2 y$

giving the answer in the form f(x, y) = c.

 $2x + 2e^{-2x} - \sin 2y = C$

1

e dy = case y	$ \begin{cases} \Rightarrow \frac{1}{2}g - \frac{1}{4}Sm^2g = -\frac{1}{2}e^{2q} + C \end{cases} $
⇒ e ² dy = cerecy dx	$\Rightarrow 2y - Sin 2g = -2e^{-2x} + C$
= the dy = the	$\Rightarrow 2y - Sm2y + 2e^{-2x} = C$
⇒ Janzy dy = Je²zz	
$\Rightarrow \int \frac{1}{2} - \frac{1}{2} \cos^2 y dy = \int e^{2\alpha} dx$	

Question 13 (****)

Show that a general solution of the differential equation

$$5\frac{dy}{dx} = 2y^2 - 7y + 3$$

is given by

F.G.B.

I.C.P.

$$\frac{dy}{dx} = 2y^2 - 7y + 3$$
$$y = \frac{Ae^x - 3}{2Ae^x - 1},$$

where A is an arbitrary constant.

$\left\{\begin{array}{c} S \stackrel{\text{de}}{=} 2 2 q^2 - 7 q + 3 \\ \end{array}\right\}$
START BY SEPARATING UNPLARIES
⇒ 5 dy = (2y²-7y+3) dr
$\implies \frac{5}{2y^2 - 7y + 3} dy = 1 dx$
$\implies \frac{s}{(2y^{-1})(y-3)} dy = 1 dy$
PARTIAL FRACTIONS ON THE LIKE OF THE O.D.E
$\Longrightarrow \frac{S}{(2y-1)(y-3)} = \frac{P}{2y-1} + \frac{Q}{y-3}$
\Rightarrow $S \Rightarrow P(y-3) + Q(2y-1)$
• lF 12)=3 ⇒ 5 = 50 → ©=1
• IF y=0 => 5=-3P-Q
=======================================
⇒ P = -2
PETURNING TO THE O.D.E
$\Rightarrow \int \frac{1}{y-3} - \frac{z}{zy-1} dy = \int 1 dz$

\implies $ h y-z - h 2y-1 = x + C$
$\implies b_1 \left \frac{y_{-3}}{2y_{-1}} \right = x + C$
= <u>y-3</u> = 2+C
$\rightarrow \frac{y-3}{2y-1} = Ae^2$, where $A=e^5$
\rightarrow $y-3 = 2Aye^2 - Ae^3$
⇒ Ae ² -3 = 2Aye ² -y
\rightarrow $Ae^{2}-3 = y(2Ae^{2}-1)$
$\Rightarrow y = \frac{Ae^{x}-3}{2Ae^{x}-1}$
AS REPURED

F.G.B.

K.C.

m

proof

Ś

Question 14 (****+)

Show that a general solution of the differential equation

e

Is.com

1.1.6.6

$$x^{x+2y}\frac{dy}{dx} + (1-x)^2 = 0$$

is given by

The Com

I.F.G.B

$$e^{x+2y} \frac{dy}{dx} + (1-x)^2 = 0$$
$$y = \frac{1}{2} \ln \left[2e^{-x} \left(x^2 + 1 \right) + K \right]$$

where K is an arbitrary constant.

I.C.B. Madasmaths.Com

	1	ί
Mari		
	3	
proof	Ľ,	1

The Com

I.C.B.

the COL

I.C.S.

1.

.

11212S1121

. NM

$e^{-x}(x^2+1)+K$],	n.
4	nan -	- Al
m	ASID.	proof
21%	$= e^{\frac{1}{2}\frac{1}{10}}\frac{1}{10}\frac{1}{10} + (1-x)^{\frac{1}{2}} = 0$ ($=$	12 - Li-2 - The sheet of
45.0	$ \begin{array}{c} \rightarrow e^{2k}e^{2k}\frac{dy}{dx} = -(1-x)^{k} \\ \rightarrow e^{2k}dy = -\frac{(1-x)^{k}}{e^{2k}}dy \\ \rightarrow \int e^{2k}dy = \int -e^{2k}(-x)^{k}dy \\ e^{2k}dy = \int -e^{2k}(-x)^{k}dy \\ e^{2k}dy = \int -e^{2k}(-x)^{k}dy \\ e^{2k}dy = -e^{2k}dy \\ e^{2k}dy \\ e^{2k}dy = -e^{2k}dy \\ e^{2k}$	$\begin{split} y &= \frac{1}{2} \left[\left[\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right) \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{$
1.	$ = \frac{1}{2} \left\{ \begin{array}{c} 2(-1) - e - 2 \\ -e^3 & e^3 \end{array} \right\} $ $ = \frac{1}{2} \left\{ \begin{array}{c} 2e^{-1} & e^{-1} \\ -e^{-1} & e^{-1} \end{array} \right\} $	
· Y.C.J	> ~	G.B.
sm.	nada.	
Alls.	, ⁻ 24 Co.	aths
	~~? ,	-0

Created by T. Madas

nadasmaths,

Question 15 (*****)

I.G.p.

I.C.B.

 $2x\frac{dy}{dx} = x - y + 3, \ x > 0.$

Determine a general solution of the above differential equation, by using the substitution $u = y\sqrt{x}$.

F.C.P.

M2(12)

Created by T. Madas

R.

(****) **Question 16**

I.C.B.

I.G.B.

I.C.B.

By using the substitution y = xu, where u = f(x), or otherwise, find a simplified general solution for the following differential equation.

2

 $y = Axe^{-x} - x$

Az

AS SHORE

I.F.G.B.

ma

Aze22

Created by T. Madas

R.

Question 17 (*****)

I.Y.C.B.

I.C.B.

I.C.B.

Use differentiation to find a simplified general solution for the following differential equation.

 $\left(x^2 - 1\right)\left(\frac{dy}{dx}\right)^2 - 2xy\left(\frac{dy}{dx}\right) + y^2 = 1.$

Created by T. Madas

5

I.C.B.

かっ

Question 18 (*****)

for some function f.

Ċ,Ŗ

I.C.P.

A circle touches the x axis at the origin O.

It is further given that the equation of such a circle satisfies the differential equation

 $\left(x^2 - y^2\right)\frac{dy}{dx} = y f(x),$

Use an algebraic method to find an expression for f(x)f(x) = 2x $x^{2} + (y-a)^{2} = a^{2}$ $3^2 + y^2 - 2ay + a^2$ ⇒ 22 + 24kk = 24 kk \Rightarrow $x + y \frac{dy}{dx} = a \frac{dy}{dx}$ $\mathcal{X} = (q - q) \frac{dq}{dx}$ $(y^2)\frac{dy}{dt} = \frac{2(a^2-y^2)}{a-y}$ -y = a2+10 -- y = 23

 $(\overline{x}^2 - y^2) \frac{dy}{dx} = \overline{x} (x^2 - y^2) \times \frac{zy}{x^2 - y^2} =$

4 -{G}) = 22

R.p.

Maria,

Question 19 (*****)

K.C.

The non zero functions u(x) and v(x) satisfy the integral equations

$$\int u(x) dx = ux^2$$
 and $\int u(x)v(x) dx = \left[\int u(x) dx\right] \left[\int v(x) dx\right]$

Determine, in terms of an arbitrary constant, a simplified expression for u(x) and a similar expression for $\left[v(x)\right]^2$.

В

Question 20 (*****)

The positive solution of the quadratic equation $x^2 - x - 1 = 0$ is denoted by ϕ , and is commonly known as the golden section or golden number.

a) Show, with a detailed method, that $F(x) = f(\phi) x^{g(\phi)}$ is a solution of the differential equation,

$$F'(x)=F^{-1}(x),$$

- where f and g are constant expressions of ϕ , to be found in simplified form.
- **b**) Verify the answer obtained in part (**a**) satisfies the differential equation, by differentiation and function inversion.

 $\frac{1}{\phi}$

F(x) =

[You may assume that F(x) is differentiable and invertible]

FORM U. HT ROP F'a) = 0 0' rA2 F-1 dy = 6e) $(\alpha) = \phi + \frac{1}{2} \alpha$ OCICINO AT THE PE AS IN THE O.D.E $\frac{1}{\Phi} = \phi - 1$ (SINCE $\phi = 1 + \frac{1}{\Phi}$) Atr $\frac{\Phi - 1}{\Phi} = 1 - \frac{1}{\Phi} = 1 - (\Phi - 1) = 2 - \frac{1}{\Phi}$ F(2) = 61-42 " q 2 = + = + = + = + FG) Fa

SPECIFIC SOLUTIONS ASSESSMENT SC. 1435 MARINE SC. 1435 MA

Question 1 (**)

Solve the differential equation

 $\frac{dy}{dx} + \frac{4x}{y} = 0, \ y \neq 0,$

subject to the condition y = 2 at x = 0.

Give the answer in the form f(x, y) = constant.

P	$4x^2 + y^2 = 4$
2	
Ph.	
20	$\left(\Rightarrow \psi^2 = -\psi^2 + C_1 \leftarrow w_{1-1} \right)$
<u>12</u>	Elm PEC 923

Question 2	(**)
------------	------

.K.C.

Solve the differential equation

 $\frac{dy}{dx} = \frac{\cos 2x}{y}, \quad x > 0, \quad y > 0,$

subject to the condition y = 6 at $x = \frac{\pi}{4}$, giving the answer in the form $y^2 = f(x)$.

 $y^2 = 35 + \sin 2x$

dy = <u>Coss</u>	S when a= \$ y=6
$\Rightarrow y dy = \cos 2x dx$ $\Rightarrow \int y dy = \int \cos 2x dx$	$\mathcal{C} \sim 32$ $\mathcal{R} = 2 \mu \overline{\omega} + C$ $\mathcal{R} = 2 \mu \overline{\omega} + C$
$\Rightarrow \pm y^2 = \pm \sin 2x + C$ $\Rightarrow \begin{bmatrix} y^2 = \sin 2x + C \end{bmatrix}$: y ² = sup2x +35

Question 3 (**)

Solve the differential equation

 $\frac{dy}{dx} = 6xy^2,$

with y = 1 at x = 2, giving the answer in the form y = f(x).

2%

14

da = Gay2	3	y = C-32
, de - Oy² de	{	y= 1 c-322 < gan sol
Jozdy = Ga de	{	Ewilin a=2 y=1
J g ² dy = Grdr	}	$I = \frac{1}{C - l2} \implies C - l2 = I$
$\neg g^{\dagger} = 3x^2 + C$	1	· q = 1
-J= Baste	l	0 13-375

Question 4 (**)

I.C.p.

Solve the differential equation

 $3\sin 3x$ $\frac{dy}{dx}$

S.C.

subject to the condition y = 3 at $x = \frac{\pi}{3}$, giving the answer in the form $y^2 = f(x)$.

 $y^2 = 7 - 2\cos 3x$

$\frac{dy}{dx} = \frac{s_{NAX}}{y}$	APPRY CONDITION X= 7, y=3
-9 y dy = 351132 da	9=-265TT+C 9=2+C
⇒∫ydy =∫3sm3a da	[C=7]
$\Rightarrow \frac{1}{2}y^2 = -\cos 32 + C$	i y= 7-26532
$\Rightarrow \left[g^{2} = -2 \cos 3a + C \right]$	~

Created by T. Madas

R.

Question 5 (**)

Solve the differential equation

 $\frac{dy}{dx} = \frac{2x}{y},$

with y = 2 at x = 1, giving the answer in the form $y^2 = f(x)$.

3

1+

11202s1

Question 6 (**)

I.G.p.

Solve the differential equation

 $\frac{dy}{dx} = \frac{10}{(x+1)(x+2)},$

subject to the condition y = 0 at x = 0, giving the answer in the form y = f(x).

nadasma

$$y = 10 \ln \left| \frac{2x+2}{x+2} \right|$$

Question 7 (**)

Solve the differential equation

$$\frac{dy}{dx} = \frac{\cos\left(\frac{1}{3}x\right)}{y},$$

subject to the condition y=1 at $x=\frac{\pi}{2}$, giving the answer in the form $y^2 = f(x)$.

$y^2 = 6\sin\left(\frac{1}{3}x\right) - 2$	
--	--

$\frac{du}{dx} = \frac{ccc(tx)}{y}$ $\Rightarrow y dy = ccc$ $\Rightarrow) y dy = 1$ $\Rightarrow \frac{ty}{t} = 3c$ $\Rightarrow \frac{ty}{t} = ccc$ $\Rightarrow \frac{dy}{dx} = \frac{1}{ccc}$	$\begin{array}{l} \displaystyle \frac{\partial y_{1}}{\partial x_{2}} = \frac{c_{K}(kx)}{y} \\ \Rightarrow \ y \ dy = c_{K}(kx) d_{1} \\ \Rightarrow \ y \ dy = \ Joc(kx) d_{2} \\ \Rightarrow \ \frac{k}{y}y_{1}^{*} = \ 3cm(kx) + C \\ \Rightarrow \ \left[g_{1}^{*} = \ 6cm(kx) + C \right] \end{array}$	$\begin{array}{c} (\text{when } z = \frac{z}{2}, \frac{z}{3} = 1 \\ 1 \leq Con_{2}^{2} + C \\ 1 \leq z + C \\ -z = -2 \\ \vdots, g_{1}^{2} = 6on_{1}(z_{1}) - 2 \end{array}$
C)	7	

Question 8 (**)

.K.C.

Solve the differential equation

 $\frac{dy}{dx} = 3x^2\sqrt{y}$

subject to the condition y = 0 at x = 1, giving the answer in the form y = f(x).

 $y = \frac{1}{4} \left(x^3 - 1 \right)^2$

$\frac{dy}{da} = 3a^2\sqrt{y}^2$	$5 \rightarrow 2y^{\frac{1}{2}} = x^{3} - 1$
-> tyrdy = 32° ch	$\zeta \Rightarrow y^{\pm} = \frac{1}{2}(x^3 - 1)$
$\Rightarrow \int y^{-\frac{1}{2}} dy = \int \Omega^2 dx$	$ = y = \frac{1}{4} (x^3 - 1)^2 $
$\Rightarrow 2g^{\frac{1}{2}} = \alpha^{3} + C$	{
2=1,y=0.2 0=1+C C=-1	

Question 9 (**)

Solve the differential equation

$$\frac{dy}{dx} = \sqrt{\frac{y}{x+1}}, \quad y \neq 0, \ x \neq -1$$

subject to the condition y = 9 at x = 8, giving the answer in the form y = f(x).

y = x + 1

Question 10 (**)

Solve the differential equation

$$\frac{dy}{dx} = 2x\sqrt{2y-1}, \quad y > \frac{1}{2}$$

subject to the condition $y = \frac{1}{2}$ at x = 0, giving the answer in the form y = f(x).

$y = \frac{1}{2} \left(x^4 + 1 \right)$

$\frac{dy}{dx} = 23x\sqrt{2y-1}^{t}$	$\left\{ \therefore (2y-1)^{\frac{1}{2}} = x^2 \right\}$
$\Rightarrow \frac{1}{(2g-1)} t^{dy} = 2t dt$	$2y - 1 = 2x^{4}$
$\Rightarrow \int (2y-i)^2 dy = \int 2x dx$	$y = \frac{1}{2}(x^{4}+1)$
$\Rightarrow \left\{ \frac{(2y-1)^2}{2x} = \frac{x^2}{x^2} + C \right\}$	
0=0+C 16 C=0	

Question 11 (**)

Solve the differential equation

$$\frac{dy}{dx} + y^2 e^x = 0,$$

subject to the condition $y = \frac{1}{2}$ at x = 0, giving the answer in the form y = f(x).

Question 12 (**)

$$\frac{dy}{dx} = \frac{2y}{x}, x > 0, y > 0.$$

Show that the solution of the above differential equation subject to the boundary condition y=3 at x=1, is given by

 $y = 3x^2.$

proof

v

 $\frac{1}{2} = e^{\lambda} + 1$

 e^{x} +

$\frac{d\sigma}{q\pi} = \frac{\sigma}{s\pi}$	{ ly = ly (Aa2)
$\Rightarrow \frac{1}{2} dy = \frac{2}{2} dx$	y = Aa ²
⇒∫±y dy = ∫ ≩ dz	$3 = 4 \times 1^2$
$\Rightarrow [n y] = 2[n x] + C$	$\frac{4 = 3}{4}$
$\Rightarrow \ln y = \ln a^2 + \ln A$	1 3 7

Question 13 (**+)

Ths.com

1.1.6.9

Solve the differential equation

madasmaths.com

Y.G.B.

I.C.

I.C.B. Madasman

 $\frac{dy}{dx} = yx^2, \ x \neq 0, \ y \neq 0,$

subject to the condition y = 1 at x = 1, giving the answer in the form y = f(x).

<i>y</i>			- Table
	· · · /	2	$y = e^{\frac{1}{3}\left(x^3 - 1\right)}$
22.		20	9
~ q ₂ ,	2.	$\frac{dy}{dt} = \frac{y_2^2}{y_1^2}$ $\Rightarrow \frac{1}{y_1} \frac{dy}{dy} = \frac{x^2}{2} \frac{dx}{dx}$ $\Rightarrow \frac{1}{y_1} \frac{dy}{dy} = \frac{1}{2} \frac{x^2}{dx}$	$\begin{cases} \omega_{\mu M \ \Delta = 1} \ y = 1 \\ 1 = A e^{\frac{1}{2}} \\ A = \frac{1}{2} \end{cases}$
-02	no.	$ h u = \frac{1}{3}x^{3} + C $ $ = e^{\frac{1}{3}x^{3}+C} $ $ = e^{\frac{1}{3}x^{3}+C} $ $ = e^{\frac{1}{3}x^{3}} (A = e^{\frac{1}{3}x^{3}}) $	$ \begin{array}{c} \Rightarrow y = e^{\frac{1}{2}x^2} \\ \Rightarrow y = e^{\frac{1}{2}x^2} \end{array} $
	18		180
°Co	~·Q	22	10
"On			
	N		

I.G.p.

i. C.B. Madasmark

27

Ths.com

. K.G.B.

6

.

112d2s112

2011

I.V.C.B. Madasn

Question 14 (**+)

Solve the differential equation

$$\frac{dy}{dx} = y^2 \sqrt{x} , \ x \neq 0 , \ y \neq 0 ,$$

with y = -2 at x = 1.

ths.com

13ths.com

I.V.G.B.

Give the answer in the form $y = \frac{A}{1 + Bx^{\frac{3}{2}}}$, where A and B are integers.

Smaths.com

I.V.G.B.

I.Y.C.B.

The Com

hs.col

I.Y.G.S.

1+

.

22

ne,

COM

I.V.C.B. Madash

Created by T. Madas

COM

Question 15 (**+)

Solve the differential equation

 $x^3 \frac{dy}{dx} = 2y^2$

subject to the condition $y = \frac{1}{2}$ at x = 1, giving the answer in the form y = f(x).

	$x^{2}+1$
P	
$a^3 \frac{dy}{da} = 2y^2$	$\begin{cases} (when \alpha = 1 \ g = \frac{1}{2} \end{cases}$
$\frac{1}{y^2} dy = \frac{2}{3^3} da$	$\begin{cases} \left\{ \begin{array}{c} \frac{1}{Y_2} = \frac{1}{1^2} + C \\ 2 = 1 + C \end{cases} \right\}$
$\int_{-\infty}^{\infty} dy = \int_{-\infty}^{\infty} 2\lambda^{2} dx$	< =
$y^{-1} = -x^{-2} + C$	$\begin{cases} g & \chi^2 \\ \Rightarrow \frac{1}{y} = \frac{(+\chi^2)}{\chi^2} \end{cases}$
$\frac{1}{y} = -\frac{1}{x^2} + C$	$\begin{cases} \Rightarrow g = \frac{\alpha^2}{\alpha^2 + 1} \end{cases}$

Question 16 (**+)

K.C.

Solve the differential equation

subject to y = 0 at x = 0, giving the answer in the form f(x, y) = constant.

$\frac{dx}{dx} + e^{x-y} = 0$	5 (when a = 0 4 = 0 }	
$\Rightarrow \frac{dy}{dx} = -e^{x-y}$	} e+e=c {	
$\Rightarrow \frac{dy}{dx} = -e^{\frac{x}{2}e^{\frac{y}{2}}}$		
$\Rightarrow \frac{1}{e^{-3}} dy = -e^{2}$	(e+e=2	
$\Rightarrow \int e^{y} dy = \int -e^{2} dx$	1	1
= e ⁵ = -e ² + C	}	
∋ [e ³ + e ² = C]	{	
	v	

Question 17 (**+)

Solve the differential equation

$$\frac{dy}{dx} = xy \,\mathrm{e}^x \,, \quad x > 0 \,, \quad y > 0 \,,$$

subject to boundary condition y = e at x = 1

Give the answer in the form $\ln y = f(x)$.

In In	$y = xe^{x} - e^{x} + 1$
10	
00.	
100 - 100 - 100	
dy = Dyex	= by = 2e - e + C
≠ dy = zyezdz {	you and
y tydy = 2et de	EUG
Jydy = Jae da	Me = e + c l = c
(PARE)	thy = 2e - e + 1
C.E. 6.3	(

5

Question 18 (**+) Solve the differential equation

$$\frac{dy}{dx} = -\frac{\sqrt{4y+1}}{x^2}$$

subject to the condition, y = 2 at $x = \frac{2}{3}$, giving the answer in the form y = f(x).

Question 19 (**+)

0

Smaths.com

I.V.G.B.

Solve the differential equation

nadasmaths.com

I.G.B.

Y.C.B.

K.C.B. Madasmaths.Com

subject to the condition y = -1 at x = 1, giving the answer in the form y = f(x).

nadasma

I.C.P.

K.C.B. Madasmatics

Ths.com

The Col

. (.)

6

.

11202SI1121

I.C.B. Madasn

Created by T. Madas

Smaths,

Question 20 (**+)

Given that y = 2 at x = 0, solve the differential equation

$$\frac{dy}{dx} = 4 + y^2,$$

giving the answer in the form y = f(x).

You may assume that

 $\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C \, .$

	100
$\frac{dy}{dx} = 4tg^{2}$ $\Rightarrow \frac{1}{4tg^{2}}dy = 1dx$	$\begin{cases} f(M) \text{ (autimar)} & \mathfrak{A} = \mathfrak{O}_1 \subseteq \mathfrak{A} = \mathfrak{O} \\ & \text{autar} = \mathfrak{O} \\ & \mathfrak{C} = \mathfrak{T} \end{cases}$
$\rightarrow \int \frac{1}{2^2 + y^2} \mathrm{d}y = \int 1 \mathrm{d}y$	$\therefore \operatorname{chrbut} \frac{g}{2} = 2x + \frac{\pi}{4}$
$\Rightarrow \frac{1}{2} \operatorname{and}_{2m} \frac{y}{2} = x + C$	$\frac{3}{2} = \tan(2\chi + \frac{1}{4})$

 $y = 2\tan\left(2x + \frac{\pi}{4}\right)$

Question 21 (***)

.K.C.

$$(x+1)\frac{dy}{dx} = 3y, \ y > 0.$$

Solve the differential equation subject to the condition y = 16 at x = 1, to show that

 $y=2(x+1)^3.$

$$\begin{split} &\Rightarrow (\delta_{11}) \frac{d_{1}}{d_{2}} = \frac{3g}{2g} d\lambda \\ &\Rightarrow \frac{1}{2} \frac{d_{1}}{d_{2}} = \frac{3g}{2g} d\lambda \\ &\Rightarrow \frac{1}{2} \frac{d_{2}}{d_{2}} = \frac{3g}{2x^{+1}} d\lambda \\ &\Rightarrow \frac{1}{2} \frac{d_{2}}{d_{2}} = \frac{1}{2x^{+1}} d\lambda \\ &\Rightarrow hg = 3h[2x^{+1} + hA] \\ &\Rightarrow hg = (h_{1})^{1} + hA \\ &\Rightarrow hg = h_{2} \left[A(2x_{1})^{1} \right] \\ \end{split}$$

proof

Question 22 (***)

Solve the differential equation

$$\frac{dy}{dx} = \frac{y}{x(2-x)}, \ y > 0$$

subject to the condition y = 1 at x = 1, giving the answer in the form $y^2 = f(x)$.

	$], y^2 = \frac{1}{2-x}$
1	
1/0-	
$\frac{dy}{dx} = \frac{3}{x(2-x)}$	S BY PARTA PRAETONS MANY
5 dy - 1 acrag de	$\left\{\begin{array}{c} z_{(2-\alpha)} = \overline{z} + \frac{z_{-\alpha}}{z_{-\alpha}} \\ z_{-\alpha} \\ $
$\int \frac{1}{2} dy = \int \frac{1}{2(2\pi)} dx$	$\begin{cases} 1+2=0 \Rightarrow 1=24 \Rightarrow \boxed{A=\frac{1}{2}} \\ (1+2=2 \Rightarrow 1=28 \Rightarrow \boxed{B=\frac{1}{2}} \end{cases}$
$\int \frac{1}{2} \frac{1}{2} \frac{1}{2} = \int \frac{1}{2} \frac{1}{2$	Same al
$\int \frac{2}{3} dy = \int \frac{1}{2} + \frac{1}{2\pi} dx$	$\begin{pmatrix} \zeta & M(M) & U = 1 & U = 1 \\ \begin{pmatrix} \zeta & H \\ 2 & -1 \end{pmatrix}$
$\leq my = mat - m2-at +$ $hg^2 = h - Aa = 2-at$	All and a second

x

1

Question 23 (***)

Find the solution of the differential equation

 $\frac{dy}{dx} = y\sin x \,, \ y > 0$

subject to the condition y = 10 at $x = \pi$, giving the answer in the form y = f(x).

 $y = 10e^{-1 - \cos x}$

Apply 2=17 y=10
IO = A e-WAT
lo = Ae A = le
3= Ee e 652
y = 100×0
$y = 10 e^{-1-c_0 x}$

Question 24 (***)

Solve the differential equation

$$x^2 \frac{dy}{dx} = y^2 - 3x^4 y^2$$

subject to the condition $y = \frac{1}{2}$ at x = 1, giving the answer in the form y = f(x).

Question 25 (***) Solve the differential equation

 $\frac{dy}{dx} = 4yx^3, \quad y \neq 0$

subject to the condition y = 1 at x = 1, giving the answer in the form y = f(x).

 $y = e^{x^4 - 1}$

$\frac{d_{4}}{d\lambda} = \frac{4yz^{3}}{1}$	$\left\{\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\int \frac{1}{2} \frac{dy}{dt} = \int \frac{dx^2}{2} \frac{dy}{dt}$ $\int \frac{1}{2} \frac{dy}{dt} = \frac{2^{4} + C}{2^{4} + C}$ $\Rightarrow \int \frac{dy}{dt} = \frac{2^{4} + C}{2^{4} + C}$	$\begin{array}{c} \therefore y = \frac{1}{e} \times e^{y} \\ y = e^{-1} \times e^{y} \\ y = e^{2^{\frac{y}{2}}} \\ y = e^{2^{\frac{y}{2}}} \end{array}$
$\Rightarrow [y = Ae^4] (Aee^4)$	

Question 26 (***)

Solve the differential equation

 $\left(1-x^2\right)\frac{dy}{dx} = y(x+1), \quad y \neq 0, \ x \neq \pm 1,$

subject to the condition y = 2 at $x = \frac{1}{2}$, giving the answer in the form y = f(x).

Question 27 (***)

Y.C.

Solve the differential equation

 $\frac{dy}{dx} = \frac{2x\ln x}{y}, \ x > 0, \ y > 0$

subject to the condition y = 2e at x = e, giving the answer in the form $y^2 = f(x)$.

 $y^2 = x^2 (2\ln x - 1) + 3e^2$

1

	100 million (100 m
dy = <u>22ha</u> ⇒ ydy = 22hada ⇒ jydy = j2hada.	$\begin{cases} @ f(b) & x = e & y = 2e \\ 4e^2 = 2e^2 - e^2 + C \\ 3e^4 = C \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & &$
$\Rightarrow \underline{1} \underline{y}^{2} = \underline{x}^{2} \underline{ y } - \underline{1} \underline{x}^{2} + C$	
$\Rightarrow \left[y^2 = 2i \ln \left[-x^2 + C \right] \right]$	

Created by T. Madas

5

Question 28 (***)

Solve the differential equation

$$\frac{dy}{dx} = 4xy - 3yx^2$$

subject to the condition y = 1 at x = 2, giving the answer in the form y = f(x).

Question 29 (***) Solve the differential equation

 $\frac{dy}{dx} = \frac{10 - y}{5}$

subject to the condition y = 1 at x = 0, giving the answer in the form y = f(x).

 $y = 10 - 9e^{-\frac{1}{5}x}$

4

	$\frac{dy}{dL} = \frac{10-y}{x}$	- Ae-sa = y
⇒	$\frac{1}{10-y} dy = \frac{1}{5} dt$	my w 5=0 3=1 3
9	$\int \frac{1}{10-y} dy = \int \frac{1}{2} d\lambda \qquad \left\{ \begin{array}{c} \\ \\ \end{array} \right.$	10-4=1
⇒	-1/10-y1 = = = = = = = = = = = = = = = = = = =	4=9 }
	h 10-y1=-1-x+C } .	y= 10-9 est
9	10-y = 2	-
P	10-y = Ae" (A=e" (

Question 30 (***)

ths.com

COM

I.V.G.B.

Show that the solution of the differential equation

$$\frac{dy}{dx} = \frac{\sqrt{2y-1}}{x^2}, \quad x \neq 0, y > \frac{1}{2}$$

subject to the condition y = 1 at x = 1, is given by

adasmaths.com

I.G.B.

I.V.C.

the com

The.

I.F.G.B.

2017

madasn.

27

1.G.S.

-

/

Created by T. Madas

COM

Question 31 (***+)

KGB. May

I.V.G.p

Solve the differential equation

 $x(x+2)\frac{dy}{dx} = y, \quad x > 0, \quad y > 0$

subject to the condition y = 2 at x = 2, giving the answer in the form $y^2 = f(x)$.

ths.com

8*x*

E,

1+

Com

11₂₀₂

I.F.G.B.

Created by T. Madas

I.C.B.

Question 32 (***+)

Solve the differential equation

$$\frac{dy}{dx} = \frac{5y}{(2+x)(1-2x)}$$

subject to the condition y = 2 at x = 0, giving the answer in the form y = f(x).

Question 33 (***+) Solve the differential equation

 $\frac{dy}{dx} = \frac{y}{(x+1)(x+3)}, \ y > 0, \ x > -1$

subject to the condition y = 2 at x = 1, giving the answer in the form $y^2 = f(x)$.

$dx = \frac{e}{(t+s^2)(1+s^2)} = \frac{b}{tb}$ $dx = \frac{b}{(t+s)(1+s^2)} = e \frac{b}{tb} \frac{1}{t} \in C$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \xrightarrow{\begin{array}{c}} \begin{array}{c} \end{array} \end{array} \xrightarrow{\begin{array}{c} \end{array} } \end{array} \xrightarrow{\begin{array}{c} \end{array} } \end{array} \xrightarrow{\begin{array}{c} \end{array} } \begin{array}{c} \end{array} \xrightarrow{\begin{array}{c} \end{array} } \end{array} \xrightarrow{\begin{array}{c} \end{array} } \xrightarrow{\begin{array} } \end{array} } \xrightarrow{\begin{array}{c} \end{array} } \end{array} \xrightarrow{\begin{array}{c} \end{array} } \xrightarrow{\begin{array}{c} \end{array} } \xrightarrow{\begin{array}{c} \end{array} } \end{array} \end{array} \xrightarrow{\begin{array}{c} \end{array} } \xrightarrow{\begin{array}{c} \end{array} } \end{array} \end{array} \xrightarrow{\begin{array}{c} \end{array} } \xrightarrow{\begin{array} } \end{array} } \xrightarrow{\begin{array} } \end{array} \end{array} } \xrightarrow{\begin{array}{c} \end{array} } \xrightarrow{\begin{array}{c} \end{array} } \xrightarrow{\begin{array} } \end{array} } \xrightarrow{\begin{array} } \end{array} } \xrightarrow{\begin{array} } \end{array} \end{array} } \xrightarrow{\begin{array} } \end{array} $
$\int \frac{1}{y} dy = \int \frac{1}{(2\pi i)(2\pi i 3)} dx \longrightarrow ($	$\cdot \downarrow 2 = -1$ $1 = 24 \implies 4 = \frac{1}{2}$ $\cdot \downarrow + 2 = -3$ $1 = -28 \implies B = -\frac{1}{2}$
$ \begin{array}{l} \Rightarrow \left \frac{1}{9} d_{3} = \sqrt{\frac{4\pi}{2\pi i}} - \frac{1}{2\pi i} dx \\ \Rightarrow \sqrt{\frac{3}{9}} d_{3} = \sqrt{\frac{3}{2}\pi i} - \frac{1}{2\pi i} d^{3} \\ \Rightarrow \sqrt{\frac{3}{9}} d_{3} = \sqrt{\frac{3}{2}\pi i} - \frac{1}{2\pi i} d^{3} \\ \Rightarrow \sqrt{\frac{3}{9}} d_{3} \left d_{3} = h\left[\frac{d(2\pi i)}{2\pi i} \right] \\ \Rightarrow \left(n\sqrt{\frac{3}{2}} = h\left[\frac{d(2\pi i)}{2\pi i} \right] \\ \Rightarrow \sqrt{\frac{3}{9}} = \frac{d(2\pi i)}{2\pi i} \\ \end{array} \right) $	$\begin{array}{c} \sum_{\substack{g \in \mathcal{G}_{1}, g \in \mathcal{G}_{2}}} \mathcal{L}_{1}(g) = L$
Question 34 (***+)

 $(3x+2)(x+3)\frac{dy}{dx} = 7y, y > 0, x > -3.$

Show that the solution of the above differential equation subject to the boundary condition, y = 6 at x = 4, is given by

$\begin{split} & \bigcup_{i=1}^{N} \left\{ \begin{array}{l} \sum_{i=1}^{N} \left\{ S_{i}(x_{i}) \right\}_{i=1}^{N} \left\{ S_{i$	$ \begin{array}{c} \left\{ \begin{array}{c} 1\\ 1\\ (\overline{(3x)}(\overline{\betatz}) \end{array} \right\} = \frac{A}{3kz} + \frac{B}{2kz} \\ \left\{ \begin{array}{c} 1\\ (\overline{(3x)}(\overline{\betatz}) \end{array} \right\} = \frac{A}{3kz} + \frac{B}{2kz} \\ \left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $
$ \begin{array}{l} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) \\ \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt$: y = <u>3(32+3)</u> 343 743

proof

Question 35 (***+)

Solve the differential equation

 $e^y \frac{dy}{dx} + x e^x = 0, \quad x < 1$

subject to the condition y = 0 at x = 0, giving the answer in the form y = f(x).

 $y = x + \ln\left(1 - x\right)$

$e^{\frac{1}{2}}\frac{du}{du} + 2e^{\frac{1}{2}} = 0$	Swhith a=0 y=0 y
nender - se	(e= 0+e+c)
metalg = -retal	{ = 1+C
=>] et dy =] - sè de (1 : e ³ = e ² - 2 ²
E BY PART 3	$e^{4} = e^{2}(1-2)$
	$y = h[e^{2}(1-a)]$
⇒e=-ie-j-ed	g = Me + h(1-a)
7 e = -2e+jed (J J S S S S S S S S S S S S S S S S S S
=) e' = -2e' +e' + C	

Question 36 (***+)

Solve the differential equation

$$(2x-3)(x-1)\frac{dy}{dx} = y(2x-1), y \neq 0$$

subject to the condition y = 10 at x = 2, giving the answer in the form y = f(x).

) [,]	$y = \frac{10(2x-3)^2}{x-1}$
do.	
$\begin{array}{l} (2z-3)(z-1)\frac{du}{dt} = \underbrace{4}(2z-1)\\ \Rightarrow \underbrace{\frac{1}{2}}_{-1} dy = \underbrace{\frac{2z-1}{(2z-3)(2z-1)}}_{-1} dz\\ \Rightarrow \underbrace{\int}_{-1}^{1} dy = \underbrace{\int}_{-1}^{2z-3} - \frac{1}{z-1} dz\\ \Rightarrow \underbrace{\int}_{-1}^{1} dy = \underbrace{\int}_{-1}^{2z-3} - \frac{1}{z-1} dz\\ \Rightarrow \underbrace{h g _{-2}}_{-2} - 2h 2z-3 -h 2z-1 ^{2} \\ \end{array}$	$\begin{array}{c c} & & & & & & & & & & & & & \\ \hline & & & & &$
$ \Rightarrow h[g] = h[\lambda_{-}q^{2}-h[\lambda_{-}]] $ $ \Rightarrow h[g] = h[\frac{A(2,2)^{2}}{2,-1}] $ $ = \frac{f(g) = A(2,2)^{2}}{2,-1} $	+ hA
A = 10	3 2-1

Question 37 (***+) Solve the differential equation

$$e^x \frac{dy}{dx} = \frac{x}{\sin 2y}, \ 0 < y < \pi \,,$$

subject to $y = \frac{\pi}{4}$ at x = 0, giving the answer in the form $\cos f(y) = g(x)$.

 $\cos 2y = 2xe^{-x} + 2e^{-x} - 2$

AND DO NOT THE OWNER OF THE OWNER	
$e^{\frac{2}{3}} \frac{dy}{dx} = \frac{x}{shzy}$	(With 2=0 4=7 3
=> Sinzy dy = = = dz	$\left \left\{ \cos \frac{\pi}{2} = 2e^{2} \left(0 \right) + c \right\} \right $
$= \int sy_{2j} dy = \int z e^{2} dz \left\{ \begin{array}{c} e^{y} & \text{PACLS } \\ z & \rightarrow i \\ -e^{2} & e^{y} \end{array} \right\}$	C=-2
$=) -\frac{1}{2}(a_{2}^{2}) = -2e^{2} - \int -e^{2} da$	(is (0524= 20 Gu)-2 /
$= -\frac{1}{2} \cos^2 y = -\pi e^2 + \int e^2 dt$	{
$\Rightarrow -\frac{1}{2}\cos^2 y = -\lambda e^2 - e^2 + C \qquad ($)
$= (cs2y = 2xe^{2} + 2e^{2} + C)$	
=> (ca2y= 2e ² (a+1)+C	

Question 38 (***+)

Solve the differential equation

$$\frac{dy}{dx} = \frac{y(13-2x)}{(2x-3)(x+1)}, \ y \neq 0$$

subject to the condition y = 4 at x = 2, giving the answer in the form y = f(x).

Question 39 (***+)

Solve the differential equation

 $\frac{dy}{dx}$ $= yx^2 \cos x, \quad x > 0, \, y > 0$

subject to the condition y = 1 at $x = \pi$, giving the answer in the form $\ln y = f(x)$.

$\ln y = x^2 \sin x + 2x \cos x - 2 \sin x + 2\pi$

a difference of the second	
di = yaiaz => tydy = razadi => tydy = faireadi >> tydy = faireadi \$1 Mar ->	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
	$= \frac{25002}{25002} - \left[-220052 - \left[-220252\right] - \left[-220252\right] - \left[-220252\right] - \left[-220252\right] - \left[-2205252\right] - \left[-220$
⇒ lhy = distrat 201000 - dany couliting X=T, s	-2.mi).+C j=1 → 0=0-2jr-0+C ⇒ C=2π
$i \cdot \ln y = x^2 \sin x + 2x \cos x$	-25Mpt. +217

Question 40 (***+)

 $2y\frac{dy}{dx} = \frac{1}{x+3}, \ y \neq 0,$

Show that the solution of the above differential equation, subject to the boundary condition y = 1 at x = 1, can be written as

 $y^2 = \ln \left| \frac{\mathrm{e}(x+3)}{4} \right|.$

100 ALC: 1	
Syde = 1	$\begin{cases} \Rightarrow y^2 = \ln x+3 + 1 - \ln 4 \end{cases}$
24 dy = ats da	$2 \Rightarrow g^2 = (n x+3 + lne - ln4)$
$\int 2y dy = \int \frac{1}{x + y} dx$	> y2= h e(x+3)
$y^2 = \ln x+3 + C$	3
(2= h4+C)	}
1 (=1-In4)	5

proof

Question 41 (***+)

K.C.

$$\frac{dy}{dx}\cos^2 4x = y, \ y > 0.$$

Show that the solution of the above differential equation subject to the boundary condition $y = e^3$ at $x = \frac{\pi}{16}$ is given by

 $y = \mathrm{e}^{\frac{1}{4}\left(11 + \tan 4x\right)}$

, proof

with the second second	=9	
	1	

- ⇒ y dy = cottadi ⇒ [t dy = [sectadi
- Jus Jacquer
- > y = othere #
- $y = e^{t}$ $y = ke^{t} b \eta k$ $(A = e^{t})$ $y = ke^{t} tb \eta k$ $(A = e^{t})$ $y = e^{t} tb \eta k$

Question 42 (***+)

Show that if y = a at t = 0, the solution of the differential equation

$$\frac{dy}{dt} = \omega \left(a^2 - y^2\right)^{\frac{1}{2}},$$

where a and ω are positive constants, can be written as

 $y = a \cos \omega t$.

You may assume that

 $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin\left(\frac{x}{a}\right) + C \, .$

$\frac{dx}{dt} = \omega \left(a^2 - x^2\right)^{\frac{1}{2}}$	ownim too x=a
$\Rightarrow \frac{1}{(a^{k}-x^{k})_{k}^{k}}dx = w dt$	a = asmc l = smc
$\Rightarrow \int_{(\overline{a^2-x^2})^{\frac{1}{2}}} dx = \int w dt$	So reasy (ut + T)
\Rightarrow arcsin $\frac{\alpha}{a} = wt + c$	2 = a [shuttes + Losuts n]]
$\implies \frac{x}{a} = sin(\omega t+c)$	- 2= a cosut
$\rightarrow x = asm(wk+c)$	As expired www

proof

1

Question 43 (***+) Solve the differential equation

 $y e^{y^2} \frac{dy}{dx} = e^{2x}, x \neq 0, y \neq 0,$

subject to the condition y = 2 at x = 2, giving the answer in the form $y^2 = f(x)$.

<u>.</u>	Ì

$\int e^{y^2} \frac{dy}{d\lambda} = e^{2\lambda}$	where 2=2 y=2
$ \Rightarrow y e^{y^2} dy = e^{2x} dx $ $ \Rightarrow \int g e^{y^2} dy = \int e^{2x} dx $	$e^{4} = e^{4} + c$ (c=0) $\therefore = e^{4^{2}} = e^{2\lambda}$
P BY ENVELE OFFICE	y 2 22
$\Rightarrow \frac{1}{2}e^{q^2} = \frac{1}{2}e^{q^2} + C$ $\Rightarrow e^{q^2} = e^{q^2} + C$	

Question 44 (***+)

$$\frac{1}{(y-2)(y+1)} \equiv \frac{P}{(y-2)} + \frac{Q}{(y+1)}, \ y \neq -1, \ 2$$

- a) Find the value of each of the constants P and Q.
- b) Hence, show that the solution of the differential equation

$$\frac{dy}{dx} = x^2 (y-2)(y+1)$$

can be written as

K.C.B. Madasm

I.G.B.

$$\frac{dy}{dx} = x^2 (y-2)(y+1)$$

$$\frac{y-2}{y+1} = Ae^{x^3}, \text{ where } A \text{ is a constant.}$$

$$= 5 \text{ when } x = 0, \text{ show clearly that}$$

$$y = \frac{4 + e^{x^3}}{2}.$$

c) Given further that y = 5 when x = 0, show clearly that

$$y = \frac{4 + e^{x^3}}{2 - e^{x^3}}.$$

G.B.

The com

120.

1+

madasn

Madasm.

$\frac{1}{(y-2)(y+1)} \equiv \frac{p}{(y-2)} + \frac{q}{(y+1)}$	(C) 2=0 y=5
$\left[1 = t(y_H) + q(y_{-2})\right]$	3 = Ae
· 14 y=2, 1= 39 → P=3 • 14 y=-1, 1= -39 =) p-3	A= =
$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - 2 \right) \left(\frac{1}{2} + 1 \right)$	241
$\Rightarrow \frac{1}{(y-2)(y+1)} dy = a^2 da$	$ = \frac{1}{9} = \frac{1}{2} = \frac$
$\rightarrow \int \frac{y_3}{y-2} - \frac{y_3}{y+1} dy = \int x^2 dx$	$= 32y - 4 = 9e^{x^2} + e^{x^2}$
$\Rightarrow \int \frac{1}{y-2} - \frac{1}{y+1} dy = \int 3\lambda^2 dy$	$1 = 2y - ye^{2} = e^{2} + 4$ $1 = y(2 - e^{2}) = e^{2} + 4$
$\rightarrow h y-2 -h y+1 = \chi^3 + C$	$y = \frac{e^{3}+4}{2-e^{2}}$
$\Rightarrow \left h\right \left \frac{y-2}{y+1}\right = \lambda^3 + C$	45 2491-1460
= <u>y-2</u> = e ^{x+c})
$\Rightarrow \frac{y-2}{y+1} = Ae^{2^{2}} (A=e^{1})$	

Created by T. Madas

C.

Question 45 (***+)

Solve the differential equation

$$\frac{dy}{dx} = \frac{y}{(2x+1)(x+1)}, \quad x > -\frac{1}{2}, \quad y > 0$$

subject to the condition y = 2 at x = 0, giving the answer in the form y = f(x).

Question 46 (***+)

5

Solve the differential equation

$$\frac{dy}{dx} = \frac{y}{x(x+1)^2}, \quad x > 0, \ y > 0$$

subject to the condition $y = \frac{1}{2}$ at x = 1, giving the answer in the form $\ln y = f(x)$.

$\ln y = \ln \left(\frac{x}{x+1} \right)$	$\left(\frac{x}{x+1}\right) + \frac{1}{x+1} - \frac{1}{2}$
2	-0
$\begin{split} \frac{dy}{dt} &= \frac{9}{\chi(2\kappa_0)^2} \\ \Rightarrow \frac{1}{y} \frac{dy}{dy} &= \frac{1}{\chi(2\kappa_0)^2} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{dy}{dy} &= \frac{1}{\chi(2\kappa_0)^2} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{1}{y} \frac{dy}{dy} &= \int \frac{1}{\chi} - (2\kappa_0)^2 - \frac{1}{y^2} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{1}{y^2} \frac{dy}{dt} &= \int \frac{1}{\chi} - (2\kappa_0)^2 - \frac{1}{y^2} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{1}{y^2} \frac{dy}{dt} &= \frac{1}{\chi} \frac{1}{\chi} - \frac{1}{\chi} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{1}{y^2} \frac{dy}{dt} &= \frac{1}{\chi} \frac{1}{\chi} - \frac{1}{\chi} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{1}{y^2} \frac{dy}{dt} &= \frac{1}{\chi} \frac{1}{\chi} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{1}{y^2} \frac{dy}{dt} &= \frac{1}{\chi} \frac{1}{\chi} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{1}{y} \frac{dy}{dt} = \frac{1}{\chi} \frac{1}{\chi} \frac{dy}{dt} \\ \Rightarrow \frac{1}{y} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{1}{\chi} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} = \frac{1}{\chi} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \frac{dy}{dt} \\ \Rightarrow \frac{dy}{dt} \frac{dy}{dt} \frac{dy}$	$\begin{cases} \theta(\theta D h_{L}, \theta A C \ u \leq \xi \\ \frac{1}{2 C \ u_{L}^{0} \ } = \frac{1}{A_{L}} + \frac{1}{S (u_{L})^{1}} + \frac{1}{S (u_{L})^$
μης. 3=1 go <u>1</u> by <u>F</u> = by <u>F</u> + <u>b</u> + C i: c= - <u>b</u>	$ \underset{(x > \eta, y > 0)}{\leftarrow} \frac{h_{\eta}}{y} = \frac{h_{\eta}\left(\frac{x}{x_{H_{\eta}}}\right) + \frac{1}{2+\epsilon}}{\sum} $

Question 47 (***+)

Solve the differential equation

$$\frac{dy}{dx} = 3x e^{3x+y}$$

subject to the condition y = 0 at x = 0, giving the answer in the form $e^y = f(x)$.

Question 48 (***+)

12,

$$-5\frac{dy}{dx} = 2y - 150, y < 75$$

Solve the above differential equation, given that when x = 0, y = 275.

Give the answer in the form y = f(x).

y = 75	$5 + 200e^{-\frac{2}{5}x}$
2.	10
$-5 \frac{dd}{dt} = \frac{2}{3} - \frac{16}{50} = -\frac{1}{5} \frac{d}{dt} = \frac{1}{5} \frac{d}{dt} = \frac{1}{5} \frac{d}{dt} = \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{d}{dt} = \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{d}{dt} = \frac{1}{5} \frac{1}{5}$	$\begin{array}{c} & \mathcal{F}_{0}^{2} \mathcal{F}_{0} + c2 \\ & \mathcal{F}_{0}^{2} \mathcal{F}_{0} + c2 \\ & \mathcal{F}_{0}^{2} \mathcal{F}_{0} + c2 \\ & \mathcal{F}_{0}^{2} \mathcal{F}_{0} \mathcal{F}_{0} \\ & \mathcal{F}_{0}^{2} \mathcal{F}_{0} \mathcal{F}_{0} \\ & \mathcal{F}_{0}^{2} \mathcal{F}_{0} \\ & \mathcal{F}_{0}^{2} $

Question 49 (***+)

tices made as many second

Smaths.com Lives

1731/3.S

I.C.B.

21/4

 $(1+x^2)\frac{dy}{dx} = x(1+y)$, with y = 0 at x = 0.

I.F.G.B. Show that the solution of the above differential equation is

 $y = (1+x^2)^{\frac{1}{2}} - 1.$ nadasmarh

maths.com

ISMATHS.COM

I.C.S.

6

2

Madasman

I.V.C.B. Madasa

Created by T. Madas

i.C.p.

Question 50 (***+)

Ĉŀ,

10,

 $x\frac{dy}{dx} = y(y+1), x > 0, y > 0$

Show that the solution of the above differential equation subject to the boundary condition $y = \frac{1}{2}$ at $x = \frac{1}{3}$, is given by

 $y = \frac{x}{1 - x}$

Adda.	, proof
Source by service that uncertainties $\Rightarrow x \frac{dy_{0}}{dy_{0}} = g(2y^{+})$ $\Rightarrow x \frac{dy_{0}}{dy} = g(2y^{+}) \frac{dy_{0}}{dy_{0}}$	PUTTING THE BOUNDARY CONDITION $(\frac{1}{4}, \frac{1}{4})$ $\Rightarrow \frac{\pm}{4\pi i} = k_{0}\frac{1}{4}$ $\Rightarrow \frac{1}{4} - \frac{1}{4}k$
$ = \int_{\frac{1}{2}} \frac{1}{2(q+1)} dy = \frac{1}{2} dz $ $ = \int_{\frac{1}{2}} \frac{1}{2(q+1)} dy = \int_{\frac{1}{2}} \frac{1}{2} dz $ $ = \int_{\frac{1}{2}} \frac{1}{2(q+1)} dy = \int_{\frac{1}{2}} \frac{1}{2} dz $ $ = \int_{\frac{1}{2}} \frac{1}{2(q+1)} dz = \int_{\frac{1}{2}} \frac{1}{2(q+1)} dz $	
$i \equiv A(q_{ij}) + bg$ $\bullet i = \frac{1}{2} q_{ij} - \frac{1}{1-4}$ $b = \frac{1}{2} q_{ij} - \frac{1}{2} q_{ij} = \frac{1}{2} q_{ij}$ $b = \frac{1}{2} q_{ij} - \frac{1}{2} q_{ij} = \frac{1}{2} q_{ij} + \frac{1}{2} q_{ij}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}$ \\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \\ \end{array} \\ \end{array}

naths.col

. G.D.

1

.

112d2s1120

I.V.C.B. Madasn

naths com

proof

L.C.B. Madasmarks.Com

I.G.B.

Question 51 (***+)

0

SMaths.com

I.F.G.B.

 $\frac{dy}{dx} = y(1+2x^2), x > 0, y > 0$

Show that the solution of the above differential equation subject to y = e at x = 1, is ¥.C.B.

 $y = x e^{x}$

madasmath

madasmaths.com

I.G.B.

I.V.C.B.

K.C.B. Madasman

Created by T. Madas

madasmans.com

Question 52 (****)

nadası,

Smaths.com

I.F.G.B.

I.C.B.

I.V.C.B

 $\frac{dy}{dx} = \frac{y^2 - 1}{x}, \ x > 0, \ y > 0$

1.1.6.9 Show that the solution of the above differential equation subject to y = 2 at x = 1, is

 $\frac{3+x^2}{3-x^2}$

21.11.5

. D

27

naths.com

.G.D.

6

2

Created by T. Madas

COM

Question 53 (****)

24

I.V.C.B. M

I.F.C.p

 $e^x \frac{dy}{dx} + y^2 = xy^2, \ x > 0, \ y > 0$

Show that the solution of the above differential equation subject to y = e at x = 1, is

 $y = \frac{1}{x}e^x$.

BOONDARY CONDITION 2=1 y=E = Ixe +c - +c 9 = Le"x (a-1)e d y= ter to exponent $= -\overline{e}^{3}(\chi_{-1}) - \int -\overline{e}^{-\chi_{-1}} d\chi$ = - e2(2-1) + ex di

3

2

proof

Com

11₂₀₂

I.F.G.B.

Created by T. Madas

Y.C.

Question 54 (****)

Solve the differential equation

 $\frac{dy}{dx} = x^2 e^{3y-x}$

subject to the condition y = 0 at x = 0, giving the answer in the form $e^{f(y)} = g(x)$.

Question 55 (****) Solve the differential equation

.K.C.

$$\frac{1}{x}\frac{dy}{dx} = \left(2x^2 + 1\right)^5 \cos^2 2y$$

subject to x = 0, $y = \frac{\pi}{8}$, giving the answer in the form $\tan f(y) = g(x)$

$$\tan 2y = \frac{1}{12} \left[\left(2x^2 + 1 \right)^6 + 11 \right]$$

as much - duritin) & WIM 220 Not
5623y day = 21(2234) da) tout = 12+C
$3e^{2}_{2}2y dy = \int x(2t+1)^{5} dt$) 1 = 12 + C C = 11 12
12tan2y = 1(28+1)6 + C 20000	: $t_{2y} 2y = \frac{1}{12} (2\lambda^2 + i)^6 + \frac{11}{12}$
$tay 2y = \frac{1}{12} (2\xi + 1)^{4} + C$	or (2)= 1/2 (22) + 1]

Question 56 (****)

I.G.B.

I.F.G.B.

Solve the differential equation

$$(2x+1) - \frac{dy}{dx}(2x-1)^3 = 0$$

COM

x

(2x-1)

 $= 4 + B(2a-1) + C(2a-1)^2$

9 (2 = 4)

3 = 4 + 8 B+C=1

· (C=0), (B=1)

y='- 1/2(22+1)2- 2(22+1)

 $\frac{2n-1}{2(2n-1)^2}$

 $y = \frac{-1}{2(2\lambda - 1)^2} - \frac{-1}{2(2\lambda - 1)^2}$

ŀ.C.p.

y =

 $(2\chi+1) = \frac{dy}{d\chi}(2\chi-1)^3$ $\Rightarrow (2\chi+1) = \frac{dy}{d\chi}(2\chi-1)^3$

 $\Rightarrow \frac{2x+1}{(2x-1)^3} dx = 1 dy$

 $\int [dy] = \int \frac{2x+1}{(2x-1)^3} dx$

- + + +

277

KCP

) 22+1 (2-1)3 th

 $\frac{1}{2}(2a-1)^{-1} + C$

 $\frac{1}{2(2x-1)^2} - \frac{1}{2(2x-1)}$

6.0

1+

./

madasn

subject to the condition y = 0 at x = 0, giving the answer as y = f(x).

20/20

Created by T. Madas

0

12

naths.col

Ths.com

Question 57 (****)

0

 $\frac{xy}{x^2 - 3x + 2}, \ x, y > 2$

Solve the differential equation above, subject to the boundary condition $y = \frac{1}{3}$ at x = 3, to show that

Question 58 (****)

Solve the differential equation

$$\frac{dy}{dx} = x\sin 2x\cos^2 y$$

subject to the condition $x = \frac{\pi}{4}$, y = 0, giving the answer in the form $\tan y = f(x)$.

Question 59 (****)

5

$$(x-1)\frac{dy}{dx} = 2x\sqrt{y}$$

Solve the differential equation above, subject to the boundary condition y = 4 at x = 2, to show that

$$\mathrm{e}^{\sqrt{y}}=\mathrm{e}^{x}(x-1)\,.$$

proof

$ \begin{array}{c} \left(b_{1}^{2} \right) \frac{dy}{dx} = 2x_{1}b_{1}^{2} \\ \Rightarrow \frac{1}{b_{1}}dy = \frac{2x_{1}}{2a_{1}}dx \\ \Rightarrow \left(y_{1}^{2}b_{1}^{2} = \int \frac{2a_{1}}{2a_{1}}dx \\ \phi^{(1)}(x,y,y,y,y) \\ \phi^{(1)}(x,y,y,y) \\ \phi^{(1)}(x,y,y) \\ \phi^{(1)}(x,y,y$	• view a=2 y=f 2=2 + m + C c=0 $i g^{\pm} = 2 + n _{a-1} $ $\Rightarrow e^{g^{\pm}} = e^{-1} a_{a-1} $ $\Rightarrow e^{g^{\pm}} = e^{-1} a_{a-1} $
$\Rightarrow \int g^{\frac{1}{2}} dy = \int 2 + \frac{2}{\lambda - 1} dx$ $\Rightarrow 2g^{\frac{1}{2}} = 2\lambda + 2h\lambda - 1 + C$ $\Rightarrow g^{\frac{1}{2}} = 2\lambda + h\lambda - 1 + C$	⇒ e ³ = e (2-1) A3 \$\$\$\$0000

Question 60 (****)

I.C.B. III

I.F.G.B.

 $\frac{dy}{dx}\sec x = y^2 - y$

Solve the differential equation above, subject to the boundary condition, $y = \frac{1}{2}$ at x = 0, to show that

I.F.G.B.

1202

14

Created by T. Madas

F.C.

Question 61 (****)

Solve the differential equation

$$\frac{dy}{dx} = \frac{y(1-x)}{(1+x)(1+x^2)},$$

subject to the condition x = 0, y = 1, giving the answer in the form $y^2 = f(x)$.

 $y^2 = \frac{(1+x)^2}{2}$

Question 62 (****)

10

Solve the differential equation

 $(1+x^2)\frac{dy}{dx} = x(1-y^2), \quad y \neq \pm 1,$

subject to the condition y = 0 at x = 0, giving the answer in the form y = f(x).

$(1+\chi^2) \frac{dy}{d\chi} = \chi(1-y^2)$ $\Rightarrow \frac{1}{1-y^2} dy = \frac{\chi}{1+\chi^2} d\chi$	$\begin{cases} Br MRETAL FRACTIONS \\ \begin{pmatrix} 1 \\ (-y)(0+y) \end{pmatrix} \equiv \frac{A}{1-y} + \frac{B}{1+y} \\ \begin{pmatrix} 1 \\ -y \end{pmatrix} = A(1+y) + B(1-y) \end{cases}$
$\int \frac{1}{(1-y)(1+y)} dy = \int \frac{x}{1+x^2} dy$	$\left\{\begin{array}{c} \downarrow_{g=1} & \downarrow_{=24} \Rightarrow A=\frac{1}{2} \\ \downarrow_{g=1} & \downarrow_{=28} \Rightarrow B=\frac{1}{2} \end{array}\right\}$
$\int \frac{1}{1-y} + \frac{1}{1+y} dy = \int \frac{\alpha}{1+y^2} dx$	(Hence
$\int \frac{1}{1-y} + \frac{1}{1+y} dy = \int \frac{2x}{1+x^2} dt$	$\left(\frac{1+y}{1-y} = 1+x^2\right)$
$- h -y + h +y = h +x^2 + h ^4$	+) $1+y = (1-y)(1+x^2)$
$\ln \left \frac{1+q}{1-q} \right = \ln \left(\frac{4}{4} (1+x^2) \right)$	$1+y = (1+x^2) - y(1+x^2)$
$ = \frac{1+y}{1-y} = A(1+x^2) $	$y + y(1+x^2) = (1+x^2) - 1$ $y(1+(1+x^2)) = x^2$
1=0 (=4	$y = \frac{3^2}{2+\chi^2}$

Question 63 (****)

ŀ.C.B.

I.C.B.

$$(1+x)\frac{dy}{dx} = y(1-x), y > 0, x > -1$$

Solve the above given differential equation, subject to the boundary condition y = 1 at x = 0, to show that

 $y = (x+1)^2 e^{-x}.$

i.G.p.

ろっ

Question 64 (****+)

0

SMaths.com

Smaths.com

I.F.G.B.

Solve the differential equation

Madasmaths.com

I.G.B.

I.V.G.B.

aths com

$$\frac{dy}{dx} = 24\cos^2 y \cos^3 x$$

subject to the condition $y = \frac{\pi}{4}$ at $x = \frac{\pi}{6}$, giving the answer in the form $\tan y = f(x)$.

I.Y.G.B.

Smaths,

nadasn

I.G.B.

21/15.1

Madasn

2011

The Com

.G.D.

G

-

madasma

COM

I.V.C.B. Madasn

Question 65 (****+)

0

SMaths.com

I.V.G.B.

2

Solve the differential equation

Madasmaths.com

I.G.B.

I.C.B.

I. C.B. Madasmaths.Com

 $\frac{dy}{dx} = 2$

subject to the condition y = 2 at x = 1, giving the answer in the form x = f(y).

nadasna

dasmaths.com

I.V.C.B. Madasa

aths.com

naths.col

1.G.D.

K

Question 66 (****+)

Smaths.com

I.F.G.B.

 $xy + (1+x)\frac{dy}{dx} = y \,.$

I.V.G.B. Solve the differential equation subject to the condition y = 3 at x = 0, to show that

 $y = 3\left(1+x\right)^2 \mathrm{e}^{-x}$

Madasmath

nadasmaths.com

I.C.B.

I.F.C.B.

I. C.B. Madasman

proof

L.C.B. Madasmatis Madasmaths.Com

naths.com

naths.col

.G.S.

G

-

112d2s112

I.V.C.B. Madasa

Created by T. Madas

madasmaris.com

. C.p.

Question 67 (****+)

 $\frac{dy}{dx}\cot x = 1 - y^2.$

Solve the differential equation above, subject to the boundary condition y = 0 at

 $x = \frac{\pi}{4}$, to show that

, Y.G.B.

I.V.G.B

 $y = \frac{1 - 2\cos^2 x}{1 + 2\cos^2 x} \,.$

, proof

2

	The second se
SEPARATING VARIABLES	
$\rightarrow \frac{dy}{dt}ata = 1 - y^2$	
→ dy artz - (1-y2) de	
$\rightarrow \frac{1}{1-y^2} dy = \frac{1}{\cot x} dx$	
$\Rightarrow \int \frac{1}{(1-y)(1+y)} dy = \int t_{0+y,2} dx$	
PROCEED WITH PARTIAL ACACITONS	
$\frac{1}{(1-y)(1+y)} = \frac{A}{1-y} + \frac{B}{1+y}$	
l = A(1+y) + B(1-y)	
• IF y=1 • IF y=-1 I= 24 I= 28 A= ± B= ±	
STORE OF THE O.D. S.	
$\Longrightarrow \int \frac{\pm}{1+y} + \frac{\pm}{1-y} dy = \int dy$	12 d2
$ \longrightarrow \int \frac{1}{i+y} + \frac{1}{i-y} dy = \int 2d$	to xinc
INTEGLATING BOTH SUDLE SUBJECT T	10 THE { JAME da = [Warel +C}
Brondady conDittion)(茶口)	
$\rightarrow \left[h[1+g] - h[1+y] \right]_{go}^{gg} = \left[2h \right]$	act Jac

I.F.G.B.

172025

Created by T. Madas

I.C.

Question 68 (****+)

I.G.B.

I.F.G.B.

 $(x+2)\frac{dy}{dx} + y(x+1) = 0, x > -2.$

Solve the differential equation above, subject to the boundary condition y = 2 at x = 0, to show that

 $y = (x+2)e^{-x}$

·G.p

9.	proof
0.	
$(\alpha + 2) \frac{du}{du} + (\alpha + 1)y = 0$, $\alpha > -2$	3
$\begin{array}{l} (x_{1}) \frac{d_{1}}{d_{2}} = -g(x_{1}x_{1}) \\ \Rightarrow -\frac{1}{2} \frac{d_{2}}{d_{2}} = \frac{g(x_{1}x_{1})}{g(x_{2}x_{2})} - \frac{d_{1}}{d_{2}} \\ \Rightarrow \int -\frac{1}{2} \frac{d_{2}}{d_{2}} = \frac{1}{2} \frac{g(x_{2}x_{2})}{g(x_{2}x_{2})} - \frac{d_{1}}{d_{2}} \\ \Rightarrow \int -\frac{1}{2} \frac{d_{2}}{d_{2}} = \int 1 - \frac{1}{2x_{2}} \frac{d_{1}}{d_{2}} \\ \Rightarrow \int -\frac{1}{2} \frac{d_{2}}{d_{2}} = \frac{1}{2} - \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} _{2} = -\frac{1}{2} + \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} _{2} = -\frac{1}{2} + \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} _{2} = -\frac{1}{2} + \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} = -\frac{1}{2} - \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} = -\frac{1}{2} - \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} = -\frac{1}{2} - \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} = -\frac{1}{2} \frac{d_{1}}{d_{2}} + \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} = -\frac{1}{2} \frac{d_{1}}{d_{2}} + \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} = -\frac{1}{2} \frac{d_{1}}{d_{2}} + \frac{1}{2} \frac{d_{1}}{d_{2}} + C \\ \Rightarrow \int y _{2} = -\frac{1}{2} \frac{d_{1}}{d_{2}} + \frac{1}{2} \frac{d_{1}}{d_{$	And warding of the second state of the second

ŀ.C.p.

Madasn

proof

2

Created by T. Madas

2017

Question 69 (****+)

A curve y = f(x) satisfies the differential equation

$$y = 1 - \frac{dy}{dx} \frac{x+1}{(x-1)(x+2)}, y > 1, x > -1$$

a) Solve the differential equation to show that

$$\ln(y-5) + \frac{1}{2}x^{2} + 4x - 2\ln(x+1) = C$$

When x = 0, y = 2.

F.C.B. Madasm

I.C.B.

b) Show further that

$$y = 1 + (x+1)^2 e^{-\frac{1}{2}x^2}$$

(9)	$\begin{split} \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} $	$\begin{split} &\Rightarrow -h_{1} _{1} \cdot g = \frac{1}{2}x^{2} - 2h_{1} _{2}x_{1} + C \\ &= 3\pi (g) \cdot a_{1} \cdot a_{2} - 1 \\ &\Rightarrow -h_{1}(y_{1}) = \frac{1}{2}x^{2} - 2h_{1}(y_{1}) + C \\ &\Rightarrow h_{1}(y_{-1}) = -\frac{1}{2}x^{2} + 2h_{2}(y_{+1}) + C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{+1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{2}x^{2} - 2h_{1}(y_{-1}) = C \\ &\Rightarrow h_{1}(y_{-1}) + \frac{1}{$	
(b)	$\begin{array}{l} \label{eq:linear_eq} \begin{split} & \mbox{linear_eq} & \mbox{linear_eq} \\ & \mbox{inear_eq} \\ & inea$	$\begin{cases} \Rightarrow \underline{\vartheta}_{-1} = e^{b(y_1)^2 - \frac{1}{2}y_1^2} \\ \Rightarrow \underline{\vartheta}_{-1} = e^{b(y_1)^2 - \frac{1}{2}y_1^2} \\ \Rightarrow \underline{\vartheta}_{-1} = (x_1)^3 x_1 e^{\frac{1}{2}y_2} \\ \Rightarrow \underline{\vartheta}_{-1} = (x_1)^3 e^{\frac{1}{2}y_2} \\ $	

COM

madasn.

Om

Madasn

F.G.B.

proof

G,

F.G.B.

Created by T. Madas

2017

1.

(****+) Question 70

, Y.G.B.

I.C.B.

Solve the differential equation

$$50\frac{dy}{dx} = 20 - \sqrt{y} \; ,$$

COM

S,

6

.

given that when x = 0, y = 0, giving the answer in the form x = f(y).

naths.col

1:0.

6

.

202.sm

ne,

COM

I.V.C.B. Madasn

Ths.com

 $2x - e^{-2x}$

 $y = \frac{1}{2}$

Question 71 (****+)

SM3/hs.com

I.V.G.B

3

0

Solve the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 1,$$

given that $y = -\frac{1}{4}$ and $\frac{dy}{dx} = 1$ at x = 0, giving the answer in the form y = f(x). dx

200

Created by T. Madas

00

Y.C.A

Question 72 (****+)

A curve y = f(x) satisfies the differential equation

$$\frac{dy}{dx} = \frac{k(9-x)}{y}, \quad y > 0, \quad 0 \le x \le 9,$$

where k is a positive constant.

I.C.B.

I.C.B.

It is further given that $y = \frac{1}{2}$, $\frac{dy}{dx} = 2$ at x = 1.

I.F.C.

Find the possible values of x when $\frac{dy}{dx} = \frac{1}{5}$.

3/8	I.
$\frac{du_1}{d\lambda} = \frac{k(1-x)}{y} \text{subsect to } y = \frac{1}{2}, \frac{du_1}{d\lambda} = 2 \text{AT } x = 1$	
SUBSTITUTE OUN CONTINUE IN OUT THE OD. THE STUTTES	
$\Rightarrow \pm = \pm (2-1)$	
⇒ 1 - ek	
= 2-5	
Some the o.D.E by schnattud of unrimedes	
$\Rightarrow \int dy = k(9-2) dk$	
$\Rightarrow \int y dy = \int k(q,x) dx$	
$\implies \frac{1}{2}y^2 = -k(q-\chi)^2 \times \frac{1}{2} + C$	
$\Rightarrow y^2 = C - k(9-x)^2$	
1990y :1=1, y=2	
$\Rightarrow \frac{1}{4} = C - \frac{1}{8}(9-1)^2$	
=> \$= C - 8	
\Rightarrow $C = 8 + \frac{1}{4} = \frac{33}{4}$	
$\therefore y^2 = \frac{33}{4} - \frac{1}{6} (9-3)^2$	
No.)	
MOND SELLING OF 2 KD HE ODE	
$\rightarrow 8_{1} \in I(q-x)$	
$-99 = \frac{5}{3}(9-2)$	
1. University of the second statement of the second stat statement of the second statement of the s	-

$\frac{1000}{2} \frac{(r_{+}r_{+})^{2}}{r_{+}^{2}} \stackrel{\text{def}}{=} \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right)^{2}$	
Frinth Wasa for 20/17	
$\begin{array}{l} \displaystyle \underbrace{g_{z}^{2}}_{z} & \frac{2\lambda}{24} - \frac{1}{6}\left(\frac{q}{q}-\lambda\right)^{2} \\ \displaystyle \underbrace{g_{z}^{2}}_{z} & \frac{e\chi}{64}\left(\frac{q}-\lambda\right)^{2} \end{array} \right) \implies \text{ contribute.} \end{array}$	
$\Rightarrow \frac{33}{4} - \frac{1}{6} \left(\left(q - \chi \right)^2 + \frac{2\zeta_2}{66} \left(\left(q - \chi \right)^2 \right) \right) \times 64$ $\Rightarrow 33 \times 16 + 8 \left(q - \chi \right)^2 = 2 \times \left(q - \chi \right)^2 = 2$	
$=$ $33_{x16} = 33(9-3)^{2}$	
$= (1-\alpha)^{2}$	
$\Rightarrow q_{-\lambda} = \langle 4 \rangle$	~
-4 -4 -4 -4	
$\Rightarrow x < \frac{s}{b}$	

Y.G.B.

 $x = 5 \cup x = 13$

I.F.G.B.

.Y.G.J.

1

(****+) **Question 73**

Y.C.B. Madasm

I.C.p

A curve passes through the point with coordinates $[1, \log_2(\log_2 e)]$ and its gradient function satisfies

Find the equation of the curve in the form y = f(x)

I.G.p.

$\frac{dy}{dx} = 2^y, \ x \in \mathbb{R}, \ x < 2.$	1. V. C. S. I.V.
n the form $y = f(x)$	
5. 化	$], y = -\log_2 \lfloor (2-x) \ln 2 \rfloor $
20	905 985
90.	REWOIL IN THIS OF THE GRANISTIAN FORTION & SPARET WORKEY
- On	$ = \frac{\partial g_1}{\partial x_1} = 2^2 \qquad \Rightarrow \int e^{\frac{1}{2}y_1y_2} e^{-\int (-\frac{1}{2}y_1) e^{-\frac{1}{2}y_2} e^{-\frac{1}{2}y_1y_2} e^$
1210	$\Rightarrow \frac{dy}{dx} = e^{\frac{dy}{2}} \Rightarrow \frac{e^{\frac{dy}{2}}}{e^{\frac{dy}{2}}} = e^{\frac{dy}{2}} (x+c)$
th.	$\Rightarrow dy = e^{3Hz} dz \qquad \Rightarrow \frac{1}{100} = (3-3) \ln 2$ $\Rightarrow \frac{1}{100} dy = 1 dz \qquad \Rightarrow e^{3Hz} = \frac{1}{100}$
	(-2)h2 (-2
n. 0	$\Rightarrow 2^3 = \frac{1}{(\lambda - 3)} _{12} \Rightarrow 2^3 = \frac{1}{(\lambda - 3)} _{12}$
100	$\Rightarrow 1 = \frac{1}{(2-1)k_2} \Rightarrow \log_2^{2-1} = \log_2\left[\frac{1}{(2-1)k_2}\right]$ $\Rightarrow \log_2 e = \frac{1}{(2-1)k_2} \Rightarrow q = -\log[2(2-1)k_2]$
	$\Rightarrow \frac{ a_{-1} _{Q_{-}}}{ a_{-} _{Q_{-}}} = \frac{ a_{-1} _{Q_{-}}}{ a_{-} _{Q_{-}}}$
	$\Rightarrow \frac{1}{r^{\log r}} = \frac{1}{(\bar{a}-1)\log r}$
1. V-	⇒ 4-1-1 → 1-2
2 · CB	S.
201	m go.

nn

2%

Created by T. Madas

2017

10

1.G.5.

1

mana

 $y = \frac{1}{e^{\frac{1}{6}\pi}}$

(*****) **Question 75**

C.B.

Determine, in the form y = f(x), a simplified solution for the following differential equation.

$$\frac{dy}{dx}\cos x + 4y^{2}\sin x = \sin x, \quad y = \frac{15}{34} \text{ at } x = \frac{1}{3}\pi$$

$$(1 + y) = \frac{\sec^{4} x - 1}{2(\sec^{4} x + 1)}$$

11.21/3.51

C.B.

nadasn.

Question 76 (*****)

The function v = f(t) satisfies the differential equation

$$\frac{dv}{dt} = k \left[\frac{1}{v} - \frac{1}{h} \right],$$

 $(h-v)\mathrm{e}^{\frac{k}{h}t+v} = A$

where k and h are non zero constants.

Given that v = h - 1 at t = 0, solve the differential equation to show that

where A is a non zero constant.

R,

1.0,

, proof

2

Question 77 (*****)

I.G.B.

I.C.B.

The function y = f(x) satisfies the differential equation

$$\frac{dy}{dx} = k \left[\frac{1}{h} - \frac{1}{x} \right],$$

 $e^{y-x} = (y+2)^2$

where k and h are non zero constants.

It is further given that y = -1, $\frac{dy}{dx} = -1$, $\frac{d^2y}{dx^2} = 2$ at x = -1.

Solve the differential equation to show that

SUBJECT TO	y=-1, dy	-=-1, 32	£=2 AT	λ≈-1
START BY OI	STATINING T	HE 2NO D	SQUIATUUE	fiest
dy = k	+ 1/4			
dy _ d	(k. k)		4 (1)	
dit di	(++5)	= 0+k	哉(f)	
$\frac{d^2q}{dx^2} = k($	- 1/2) dy			
APPRY CONDUTIO) y=-l	dy = -1	dg = 2	
	- 2- L	(-)()	012	
	-) 27 K	(-)(-)		
0.001		L.		
HARD CONDITIO	m g = -1	d) = -1	INRO THE	0. D.E
	3-1-	2 + 2 h + -1		
	⇒ -\=	$\frac{2}{h} = 2$		
	-> 1.	2		
	= h=	2	-	

all the	1000
24 LATTROWBE BE WON LAND 3.0.0 345	
$\frac{dy}{dx} = 2\left(\frac{1}{2} + \frac{1}{3}\right)$	
$\Rightarrow \frac{dy}{dt} = 1 + \frac{2}{y}$	
$\rightarrow \frac{dy}{\partial x} = \frac{y+z}{y}$	
$-) \frac{y}{y+2} dy = 1 dx$	-
$\rightarrow \frac{(y+2)-2}{y+2} dy = 1 dx$	
$\implies \left(1 - \frac{2}{y+2}\right) dy = 1 dy$	•
MINGRAFF SUBJECT TO THE GONDATION 2=-1 y=-1	
$-\infty \int_{1}^{y} \frac{2}{y_1 2} dy = \int_{1}^{z} dx$	
$ = \left[g - 2\ln \left[g r 2 \right]_{-1}^{\frac{1}{2}} = \left[2 \right]_{-1}^{\frac{2}{2}} $	
$\Rightarrow \left[y - 2h(y+2) \right] - \left[r \right]^{-} = x - (r)$	
$-9 \ln e^{y} - \ln (y_{42})^{2} = 2$	
$\left h \left(\frac{e^{y}}{(y+2)} \right) \right = \lambda$	
$\rightarrow e^{3} = e^{3}$	
$e^{y_1 z_1 r}$ $e^{y_1 z_1 r}$ $e^{(y_1 z_2)^2}$	
· · · · · · · · · · · · · · · · · · ·	

, proof

F.C.P.

F.G.B.

GA

in the

Question 78 (*****)

F.G.B.

I.C.P.

The function y = f(x) satisfies the differential equation

$$\frac{d}{dx}\left(yx^{2}\right) = \frac{dy}{dx}\frac{d}{dx}\left(x^{2}\right), \quad x > 0$$

subject to the condition y = 4 at x = 3.

Find a simplified expression for y = f(x).

C.P.

かっ

(****) **Question 79**

Use appropriate techniques to solve the following differential equation.

Created by T. Madas

.
(*****) **Question 80**

0

SM2/IS-COM

I.V.G.B

1

Solve the differential equation

 $\frac{d^2 y}{dx^2} + 4\left(\frac{dy}{dx}\right)$ =1,

given that y = 0 and $\frac{dy}{dx} = \frac{1}{6}$ at x = 0, giving the answer in the form y = f(x).

$$y = \frac{1}{4} \ln \left[\frac{1+2e^{4x}}{3} \right] - \frac{1}{2}x$$

⇒ 3

⇒ y

= 4-

$\Rightarrow A = \frac{1}{2} \int \frac{(u-t)-1}{(u-t)+1} \times \frac{du}{4(u-t)}$	😨 MPPLY THE CAST CONDITION
$\rightarrow g = \frac{1}{8} \int \frac{u_{-2}}{u(u_{-1})} du$	2=0,y=0 0= ↓193-0+E
🕐 PARTIAR FRAFTICINSC ASAIN	E = - ₩3
$\Rightarrow y = \frac{1}{6} \int \frac{2}{u} - \frac{1}{u-1} du$	= y= = th(2000 - th3 - ta
$\Rightarrow y = \frac{1}{6} (2m u - ln u-1] + D$	$\Rightarrow y = \frac{1}{4} \ln \left(\frac{2e^{4x} + 1}{3} \right) - \frac{1}{2} \lambda$
$\Rightarrow y = \frac{1}{2} \ln \left \frac{u^2}{u-i} \right + D$	
$\Rightarrow \mathcal{Y} = \frac{1}{6} \left[\ln \left[\frac{(2e^{\frac{1}{4}}+1)^2}{2e^{\frac{1}{4}}} \right] + D \right]$	
$= y = \frac{1}{6} \ln \left[\frac{2e^{ik} + i}{e^{2k}} \right]^2 + E$	
$\Rightarrow \Psi = \frac{1}{4} \ln \left[\frac{2e^{\Psi L_{4}}}{e^{2\omega}} \right] + E$. C.

1/2 + E

= y= = + (2e4+1) - = = = = = =

20

aths.com

.G.D.

1+

202.sm

20

2017

I.V.C.B. Madasn

Created by T. Madas

2017

I.C.B.

ins,

 $f(x) = \sqrt{3} + \sqrt{x^2 - 1}$

 $= \frac{\sqrt{x^2-1}}{2}$

I.F.G.B.

Madasn

4.4

Question 82 (*****)

I.G.B.

maths,

I.F.G.B.

$$\frac{dy}{dx} = \sqrt{\frac{y^4 - y^2}{x^4 - x^2}}, \ x > 0, \ y > 0.$$

Find the solution of the above differential equation subject to the boundary condition $y = \frac{2}{\sqrt{3}}$ at x = 2.

Give the answer in the form $y = \frac{2x}{f(x)}$, where f(x) is a function to be found.

UARIABULS $\frac{dq}{d\lambda} = \sqrt{\frac{q^4 - q^2}{\alpha^4 - \chi^2}} = \frac{|q|}{|\alpha|} \sqrt{\frac{q^4 - 1}{\lambda^4 - 1}} = \frac{|q|}{\alpha \sqrt{\frac{q^4 - 1}{\lambda^4 - 1}}} = \frac{4}{\alpha \sqrt{\frac{q^4 - 1}{\lambda^4 - 1}}} = 4t \ \lambda_1 q > 0$ secd e aicad $e \frac{1}{x}$ $\int \frac{1}{\sqrt{y^2 - 1}} \, dy = \int \frac{1}{2\sqrt{2^2 - 1}} \, dx$ 17-1 0 ecy)+ f $d_{k=}\int \frac{1}{sech \int sech \int s$ 1 2472-1 $= \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{2^{k-1}}}{2} \times \frac{1}{2}$ $\frac{\sqrt{3^2}}{23}$ + $\frac{\sqrt{3^2-1}}{23}$ 13'+ 122-1' $y = \frac{2x}{\sqrt{5}^{2} + \sqrt{2^{2}-1}}$ 化剂 ∓ = ₹+c

Created by T. Madas

I.C.A

Question 84 (*****)

I.V.C.P

The non zero function f(x) satisfies the integral equation

$$\int f(x) dx = \int \sqrt{f(x)} dx, \quad f(0) = \frac{1}{4}$$

Use the substitution $f(x) = \left(\frac{dy}{dx}\right)^2$, to find a simplified expression for f(x).

Ths.com

 $f(x) = \frac{1}{4}e^{4x}$

1.G.S.

4

Com

Mada

I.F.G.B.

Created by T. Madas

I.V.C.B

Question 85 (*****)

1.2,

It is required to sketch the curve with equation y = f(x), defined over the set of real numbers, in the greatest domain.

The curve has the property that at every point on the curve, the second derivative equals to the first derivative **squared**.

Showing all the relevant details, sketch the graph of y = f(x), given further that the curve passes through the point (0,2) and the gradient at that point is 1.

graph

nana.

Created by T. Madas

Question 86 (*****)

It is given that a function with equation y = f(x) is a solution of the following differential equation.

 $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + y = 0.$

Show with a clear method that

F.G.B.

I.G.B.

I.F.G.B.

ma

1

Created by T. Madas

50,

Question 87 (*****)

dasmaths.cj

Smaths.com

I.V.G.B

Ż

Solve the following differential equation

Created by T. Madas
*****)
Ving differential equation

$$y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 2y \frac{dy}{dx} = 0, \quad y(0) = 2, \quad \frac{dy}{dx}(0) = -\frac{1}{2}.$$

Give the answer in the form $y^2 = f(x)$.

207

. G.D.

1+

2012.51

Madasn

I.F.G.B.

 $y^2 = 3 + e^{-2x}$

Created by T. Madas

2017

.Y.C.B.

Question 88 (*****)

I.C.B. III

I.C.B.

The function with equation y = f(x) satisfies the differential equation

 $\frac{d^2 y}{dx^2} = \frac{2}{2x - 1} \left(1 - \frac{dy}{dx} \right), \quad y(0) = 1, \quad \frac{dy}{dx}(0) = -1.$

Solve the above differential equation giving the answer in the form y = f(x).

 $y = x + \ln |2x - 1| + B$ $\Rightarrow \quad \frac{d^2 u}{dx^2} = \frac{2}{2x-1} \left(1 - \frac{dy}{dx} \right)$ IF a=0, y=1 =>. B=1 $\Rightarrow (2x-1)\frac{d^2y}{dx^2} = 2(1-\frac{dy}{dx})$ · y= x+ h/22-1/+1 $(2x-1)\frac{d^2y}{dx^2} = 2 - 2\frac{dy}{dx}$ (2x-1) dy +2 dy = 2 $(2x-1)\frac{dy}{dx} = 2$ $(2x-1) \frac{dy}{dx} = 2x + A$ $\frac{dy}{dx} = \frac{2x+4}{2x-1}$ dy = -1 AT 2=0, GUES A=1 $\Rightarrow \frac{dy}{dx} = \frac{2x+1}{2x-1}$ $\Rightarrow y = \int \frac{2x+1}{2x-1} dx$ $\Rightarrow M = \int \frac{(2x-1)+2}{2x-1} dx$ $= y = \int 1 + \frac{2}{22-1} d2$

 $y = x + 1 + \ln |2x - 1|$

I.Y.G.B.

na

3

Created by T. Madas

I.V.C.

Question 89 (*****)

The positive solution of the quadratic equation $x^2 - x - 1 = 0$ is denoted by ϕ , and is commonly known as the golden section or golden number.

a) Show, with a detailed method, that $F(x) = f(\phi) x^{g(\phi)}$ is a solution of the differential equation,

$$F'(x)=F^{-1}(x),$$

- where f and g are constant expressions of ϕ , to be found in simplified form.
- **b**) Verify the answer obtained in part (**a**) satisfies the differential equation, by differentiation and function inversion.

 $\frac{1}{\phi}$

F(x) =

 x^{ϕ}

[You may assume that F(x) is differentiable and invertible]

Created by T. Madas