WORDED DIFFERENTIAL TATIONS VIASINALISCON (by I.V.G.B. MARASINALISCON I.V.G.B. MARASIN IFFERLIN EQUATIONS Maration of variables

TASIDALISCOUL I. Y.C.B. MARASHALISCOUL I.Y.C.B. MARASH , Madasmaths

Question 1 (**)

Ý.G.B.

I.F.G.p.

nadasm

The gradient of a curve satisfies

$$\frac{dy}{dx} = \frac{1}{3y^2(x-1)}, \ x > 1$$

Given the curve passes though the point P(2,-1) and the point Q(q,1), determine the exact value of q.

·C.p

212SM

# <u>2</u>	
$\frac{l_2}{l_2} \approx \frac{l}{-3y^2(x-l)}$	$i = \left[y^{3} = -1 + \left y(x-1) \right] \right]$
$\int_{-\infty}^{\infty} dy = \frac{1}{x-1} dx$	when y=1
$y^2 dy = \int \frac{1}{x-i} dz$	$i^3 = -1 + \ln(2-i)$
$y^3 = \ln(x-i) + C$	$2 = \ln(\alpha - i)$ $e^{2} = \alpha - i$
When a=2 y=-1	$\chi = 1 + e^2$
(-1)3 = Jut + C	

F.G.B.

Madasn.

 $q = 1 + e^2$

Created by T. Madas

COM

Question 2 (**+)

2

2

Water is draining out of a tank so that the height of the water, h m, in time t minutes, satisfies the differential equation

 $\frac{dh}{dt} = -k\sqrt{h} \; ,$

where k is a positive constant.

The initial height of the water is 2.25 m and 20 minutes later it drops to 1 m.

a) Show that the solution of the differential equation can be written as

 $h = \frac{(60-t)^2}{1600}$

b) Find after how long the height of the water drops to 0.25 m.

$\begin{aligned} \frac{dh}{dt} &= -kh^{\frac{1}{2}} \\ \Rightarrow 4h &= -kh^{\frac{1}{2}}dt \\ \Rightarrow \frac{1}{h^{\frac{1}{2}}}dk &= -kdt \\ \Rightarrow \int h^{\frac{1}{2}}dk &= \int -kdt \end{aligned}$	where $t \ge 2$, $h \ge 1$ $1 = \frac{5}{2} - 208$ 2 < 3 - 408 $B = \frac{1}{40}$ $\therefore h^4 = \frac{3}{2} - \frac{1}{40}h$ $\left[\frac{1}{4} = \frac{66 - \frac{1}{40}}{40} \right]$
⇒ 2h = -k+C	$\frac{6}{40} = \frac{66 - 1}{40}^2$
⇒ ht = A-Bt	$h = \frac{(6o - t)^2}{16oo} - \frac{4}{4} \frac{150000}{1600}$
When too hor 2.25	(b) ashing h = 0.25
$\sqrt{2:3^{7}} = A$ $A = \frac{3}{2}$	0.25 = (60-4)2
	400 = (60 - +.)2
-> h2= 3- Be	20 = 60 - 6.
	t=40

2

40

Question 3 (**+)

The radius, $r \mod 0$ of a circular ink stain, t seconds after it was formed, satisfies the differential equation

 $\frac{dr}{dt} = \frac{k}{r}$

where k is a positive constant.

The initial radius of the stain is 4 mm and 8 seconds later it has increased to 20 mm.

a) Solve the differential equation to show that

 $r = 4\sqrt{3t+1} \; .$

b) Find the time when the stain will have a **circumference** of 56π .

c) Explain why this model is only likely to hold for small values of t.

t = 16

$\frac{dr}{dt} = \frac{k}{r}$ $\Rightarrow r dr = k dt$ $\Rightarrow \int r dr = \int k dt$ $\Rightarrow \frac{kr^2}{2r^2} = kt + C$	$ \begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\end{array} \\ \end{array}\end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}\end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}\end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
=> [r= At+B]	28 = 4.4 3641
• when to P = 20	$7 = \sqrt{36 \pi^{1}} 49 = 36 40 = 36 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 7 + $
$20^{2} = 8A + 16$ $A = 4B$ $\Rightarrow [T^{2} = 4Bt + 16]$	(C) BECHISE IT PENDERS THAT IT WILL GROW LANGER FRANK

Question 4 (**+)

An entomologist believes that the population P insects in a colony, t weeks after it was first observed, obeys the differential equation

 $\frac{dP}{dt} = kP^2$

where k is a positive constant.

Initially 1000 insects were observed, and this population doubled after 4 weeks.

a) Find a solution of the differential equation, in the form P = f(t).

b) Give two different reasons why the model can only work for small values of t.

(a) $\frac{dP}{dt} = kP^{2}$ $\rightarrow \frac{1}{P^{2}}dF = k dt$ $\rightarrow -P^{2} = kt + C$ $\rightarrow -\frac{1}{P} = kt + C$ $\rightarrow -\frac{1}{P} = kt + C$ $\rightarrow -\frac{1}{P} = kt + B$	• when two P: boo $\frac{1}{1000} = B$ $\frac{1}{1000} = 4A + \frac{1}{1000}$ $\frac{1}{100} = 4A + \frac{1}{1000}$ $\frac{1}{100} = \frac{1}{1000}$ $\frac{1}{10} = \frac{1}{1000}$
	unts infinite unts regulist

8000

Question 5 (**+)

The area, $A \text{ km}^2$, of an oil spillage on the surface of the sea, at time t hours after it was formed, satisfies the differential equation

When t = 1, A = 0.25.

- **a**) Find a solution of the differential equation, in the form A = f(t).
- b) Determine the largest area that the oil spillage will ever attain.

$\begin{array}{c} (\mathbf{a}) \frac{d\lambda}{d\tau} = \frac{\lambda^2}{\tau^2} \\ $	$\begin{array}{c} -\frac{1}{\sqrt{2}} \log \zeta_{1}^{2} \\ \Rightarrow \frac{1}{\sqrt{2}} = \frac{3}{2} + \frac{1}{\sqrt{2}} \\ \Rightarrow \frac{1}{\sqrt{2}} = \frac{3}{2} + \frac{1}{\sqrt{2}} \\ \Rightarrow \frac{1}{\sqrt{2}} = \frac{3}{2} + \frac{1}{\sqrt{2}} \\ \Rightarrow \sqrt{2} + \frac{1}{\sqrt{2}} = \frac{3}{2} + \frac{1}{\sqrt{2}} \\ \Rightarrow \sqrt{2} + \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}} + \frac{1}{\sqrt{2}} \\ \Rightarrow A_{+} = \frac{44\pi}{(2\pi+1)} \end{array}$	(L)	$\begin{array}{l} A = \frac{442}{qP_{12}Q_{22}+1}\\ Free Mg UNGEE\\ A \approx \frac{442}{144}\\ \therefore A \rightarrow \frac{4}{3} \end{array}$

E

Question 6 (***)

The mass, m grams, of a burning candle, t hours after it was lit up, satisfies the differential equation

$$\frac{dm}{dt} = -k(m-10),$$

where k is a positive constant.

a) Solve the differential equation to show that

$m = 10 + A e^{-kt},$

where A is a non-zero constant.

The initial mass of the candle was 120 grams, and 3 hours later its mass has halved.

b) Find the value of *A* and show further that

 $k = \frac{1}{3} \ln\left(\frac{11}{5}\right).$

c) Calculate, correct to three significant figures, the mass of the candle after a further period of 3 hours has elapsed.

	1.	
	$\frac{dw}{dt} = -k(w_{1-10}) \qquad . \qquad \ \ \ \ \ \ \ \ \ \ \ \ $	(=3 m=6) => 60=10+110e=32
	I du = -k dt	$\Rightarrow 50 = 10e^{3k}$ $\Rightarrow \frac{5}{11} = e^{-3k}$
-	$\int \frac{1}{m-10} = \int -k dk$	$\Rightarrow \frac{11}{5} = e^{3\xi}$
	$ \eta _{W-b} = -kt + C$ -kt+C	⇒ 3k = h ± ⇒ k = ±h ±
	4-10 = e	As Equieno
	m-10 = Aet (Are)	(((= 10 + 110 = 10+)t)
=>	M = 10 + Aet AS REPUEN	wlm = 6, $\Rightarrow w = 10 + 110 e^{-2ln \frac{11}{3}}$
(L) {	t=o m=120) = M = 10 + 110 × 25
	120 = 10 + te° - 4=110	$\Rightarrow W_1 = 10 + \frac{250}{11}$
	4= 10 + 110e Ef	$\Rightarrow u_1 = \frac{360}{11} \approx 32.7$

A = 110, $m \approx 32.7$

Question 7 (***)

A radioactive isotope decays in such a way so that the number N of the radioactive nuclei present at time t days, satisfies the differential equation

where k is a positive constant.

a) Show clearly that

where A is a non zero constant.

Initially there were 6.00×10^{24} radioactive nuclei and 10 days later this number reduced to 6.25×10^{22} .

 $N = Ae^{-1}$

b) Show further that k = 0.45643, correct to five decimal places.

c) Calculate the number of the radioactive nuclei after a further period of 10 days has elapsed.

 6.51×10^{20}

Question 8 (***)

The number of fish x in a small lake at time t months after a certain instant, is modelled by the differential equation

 $\frac{dx}{dt} = x(1-kt),$

where k is a positive constant.

We may assume that x can be treated as a continuous variable.

It is estimated that there are 10000 fish in the lake when t = 0 and 12 months later the number of fish returns back to 10000.

a) Find a solution of the differential equation, in the form x = f(t).

b) Find the long term prospects for this population of fish.

 $x = 10000 e^{t - \frac{1}{12}t^2}$

(9) $\frac{dx}{dt} = x(1-bt)$	I = e ^{12-72k} I = -72k E = -72k = 0 E
$\Rightarrow \frac{1}{2} dq = (1-b+)dt$	} Let
⇒J±de = JI-ktot	2 : 2= 10000e t- 12+2
$\Rightarrow \ln x = t - \frac{1}{2} k t^2 + C$	2 (b) 4s t - 0 00
$\Rightarrow a = e^{\frac{1+2kt^2+C}{2kt^2+C}}$ $\Rightarrow \boxed{a = A e^{\frac{1+2kt^2}{2kt^2}}}$ $\bullet when two a = 10000$	$\begin{array}{c} e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ e^{\frac{1}{2}} & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ & \vdots & e^{\frac{1}{2}} & e^{\frac{1}{2}} \\ & & e^{\frac{1}{2}} & e^{\frac{1}{2}} \end{array}$
10000 = 400 4 = 10000	- 10 Will 616,20,104 017 017
=)] == 10000 e ^t - 58+2	~
· when there a = 10000	
10000 = 10000 e.12-72k	

Question 9 (***)

R,

K.C.

The area, $A \text{ km}^2$, of an oil spillage is growing in time t hours according the differential equation

 $\frac{dA}{dt} = \frac{4e^t}{\sqrt{A}}, \ A > 0.$

The initial area of the oil spillage was 4 km^2 .

- a) Solve the differential equation to show that
- **b**) Find, to three significant figures, the value of t when the area of the spillage reaches 1000 km².

 $A^3 = 4\left(3e^t + 1\right)^2.$

	0	5'	7
$l \approx$	= 8	.)	/
		- 11	E.

(9) $\frac{dA}{dt} = \frac{4e^{t}}{A^{2}}$	(b) $A = 1000$ $1000^3 = 4(3e^6 + 1)^3$
$=94^{\frac{1}{2}}dA = 4e^{\frac{1}{2}}dt$	$\frac{1000}{4} = 4(3e^{\frac{1}{2}}+1)^{\frac{1}{2}}$
$\Rightarrow \frac{2}{3}t^{\frac{3}{2}} = 4e^{t} + C$ $\Rightarrow 4e^{t} + C$	$+\sqrt{\frac{1003^{3}}{4}} = 3e^{\pm}+1$
+C	(5811,5939 = 3e-41
(=0 A=4	(5810)m_ = 3et
42 - 6+C	\$270-121 c -e+
<=Z ⇒ A ² = 6€ +Z	t = 8.57
$\Rightarrow A^{\frac{3}{2}} = 2(3e^{\frac{1}{4}})$	1/
$\Rightarrow A^3 = 4 (3t^2+1)^2$	

Question 10 (***+)

A cylindrical tank of height 150 cm is full of oil which started leaking out from a small hole at the side of the tank.

Let h cm be the height of the oil still left in the tank, after leaking for t minutes, and assume the leaking can be modelled by the differential equation

$$\frac{dh}{dt} = -\frac{1}{4}(h-6)^{\frac{3}{2}}.$$

a) Solve the differential equation to show that ...

i. ...
$$t = \frac{8}{\sqrt{h-6}} - \frac{2}{3}$$
.

ii. ... $\sqrt{h-6} = \frac{24}{3t+2}$

b) State how high is the hole from the bottom of the tank and hence show further that it takes 200 seconds for the oil level to reach 4 cm above the level of the hole.

6cm

	1.485	
$a = \frac{1}{4} \left(1 - \frac{1}{4} \left(1 - c \right)^{\frac{1}{2}}$	j thuce (o when has
+ dt	$ = \frac{1}{\sqrt{h-C_1}} = \frac{1}{8} E \rightarrow \frac{1}{12} $	at =0
-> [(1-c)]=d4 =]-t+dt	$\left\langle \Longrightarrow \frac{N_{f-\ell}}{N} := \ell + \frac{3}{2} \right\rangle$	IF NO WORF GRENCE
$\Rightarrow -2(\underline{b}-\underline{c})^{\underline{b}} = -\frac{1}{4}\underline{t} + C$	$\Rightarrow t = \frac{B}{N_1 - c_1} - \frac{2}{3}$	t= 8 N4-61-3
= (4-6)2 = ++C	$\Rightarrow t + \frac{2}{3} = \frac{8}{4k-\zeta^3}$	- 1 - 2
=) 1 = +C	$\Rightarrow \frac{3 + 2}{3} = \frac{8}{\sqrt{1-6^3}}$	to B minutes
when too k= 150	$\Rightarrow \frac{3}{3t+2} = \frac{\sqrt{b-t}}{8}$	lt 3 to minutes lt 3 minutes
N144 = C C~ 12	= 34 36+2 = N4-4	14- 200 Sie
	4	7

Question 11 (***+)

Water is leaking out of a hole at the side of a tank.

Let the height of the water in the tank is y cm at time t minutes.

The rate at which the height of the water in the tank is decreasing is modelled by the differential equation

$\frac{dy}{dt} = -6(y-7)^{\frac{2}{3}}.$

When t = 0, y = 132.

a) Find how long it takes for the water level to drop from 132 cm to 34 cm.

The tank is filled up with water again to a height of 132 cm and allowed to leak out in exactly the same fashion as the one described in part (a).

b) Determine how long it takes for the water to stop leaking.

t=1, t=2.5

(a) $\frac{du}{dt} = -6(u-7)^{\frac{2}{3}}$	S when y= 34	
$\Rightarrow \frac{1}{(y-r)^2} dy = -6 dt$	$(34-7)^{\frac{1}{3}} = 5-24$	
$\Rightarrow \int (\underline{u}-\overline{\eta})^{\frac{3}{2}} dy = \int -6 dt$	2t = 2	
$\Rightarrow 3(9-7)^{\frac{1}{3}} = -4t + C$	(IF NO MORE WHEN dy =0 (IF NO MORE CHANGE W Y)	
$\frac{(y-7)^{5}}{(y-7)^{5}} = 4 - 2t$	HAVE yer	
$(132-7)^{\frac{1}{3}} = 4$ (4 = 5)	2t=5 t=25	
(4-7) = S-22	-	

Question 12 (***+)

The speed, $v \text{ ms}^{-1}$, of a skydiver falling through still air t seconds after jumping off a plane, can be modelled by the differential equation

 $8\frac{dv}{dt} = 80 - v \,.$

The skydiver jumps off the plane with a downward speed of 5 ms^{-1}

a) Solve the differential equation to show that

$v = 80 - 75 e^{-\frac{1}{8}t}$.

b) Find the maximum possible speed that the skydiver can achieve and show that this speed is independent of the speed he jumps off the plane

You may assume that the skydiver cannot possible jump at a speed greater than his subsequent maximum speed.

 $80\,\mathrm{ms}^{-1}$

	$8\frac{dv}{dt} = 80 - v$	(+ (v= 80+ 4= t)
1	eo-v dv = g de	> when t=0 v=s
3	Job dv = Job dt) 5= 80 + 4 e°
-)	-h/80-1) = 5++C	S= 80+A
	h180-v1=-66+C	(+=-75
	80-V = e +6+C	1. V=80-75e-1t
=)	BO-V= A= t (A	
=)	Bo + Aet=V	2HOIR D
	$8 \frac{dv}{vt} = 80 - v$	MANN VEBO du =0
	$\frac{\partial e}{\partial r} = \frac{1}{2} \left(\theta^0 - r \right)$	FOLGHY JOUN H 200474 VILL 2014 OUN OWN CHEE TRANS HIT OF

Question 13 (***+)

A population P, in millions, at a given time t years, satisfies the differential equation

$$\frac{dP}{dt} = P(1-P).$$

Initially the population is one quarter of a million.

a) Solve the differential equation to show that

$$\frac{3P}{1-P} = e^t$$

b) Show further that

c) Show mathematically that the limiting value for this population is one million.

1 + 3e

d) Find, to two decimal places, the time it takes for the population to reach three quarters of its limiting value.

 $t \to \infty$, $P \to 1$, $|t = \ln 9 \approx 2.20$

Question 14 (***+)

The number of foxes N, in thousands, living within an urban area t years after a given instant, can be modelled by the differential equation

$$\frac{dN}{dt} = 2N - N^2, \ t \ge 0.$$

Initially it is thought 1000 foxes lived within this urban area.

a) Find a solution of the differential equation, in the form N = f(t).

N =

b) Find the long term prospects of this population of foxes, as predicted by this model, clearly showing your reasoning.

-21

 $1 + e^{-1}$

 $2e^{2t}$

 $e^{2t} + 1$

or N =

population $\rightarrow 2000$

Question 15 (***+)

A machine is used to produce waves in the swimming pool of a water theme park.

Let x cm be the height of the wave produced above a certain level in the pool, and suppose it can be modelled by the differential equation

$$\frac{dx}{dt} = 2x\sin 2t \,, \ t \ge 0 \,,$$

where t is the time in seconds.

When t = 0, x = 6.

a) Solve the differential equation to show

 $x = 6 e^{1 - \cos 2t}$

b) Find the maximum height of the wave.

x _{max}	≈ 44.3	cm
------------------	--------	----

9	da dit = Zisim2t	{ It a= Gene Cost
\$	$\frac{1}{2}dx = 2sm2t dt$	2=6=-62
7	$\int \frac{1}{2\pi} dx = \int 2SW2t dt$	A RANEW
	lha = -0.52t + C	6 Experiential grows larger as
	$a = e^{-6s2t+c}$ $a = Ae^{-6s2t} (A=e^{t})$	(4 M4 N4ED 1 - COL2t to be help 745 (3 2 (helpe) col2t=-1)
	$\begin{array}{c} t_{\pi\circ} \chi_{\pi\circ} \\ G = A \overline{e}^{(60)} \\ G = A \overline{e}^{-1} \\ G = A \end{array}$) . Q _{uax} = 6 e ² ≈ 443 a _m
3	A= 6e x = 6e x =	

Question 16 (***+)

Food is placed in a preheated oven maintained at a constant temperature of 200 °C.

Let θ °C be temperature of the food t minutes after it was placed in the oven.

It is assumed that θ satisfies the differential equation

$$\frac{d\theta}{dt} = k \left(200 - \theta \right),\,$$

where k is a positive constant.

a) Solve the differential equation to show that

$$\theta = 200 + A e^{-kt} \, ,$$

where A is a non zero constant.

When a food item was placed in this oven it had a temperature of 20 °C and 10 minutes later its temperature had risen to 120 °C.

b) Show further that $k \approx 0.0811$.

c) Find the value of t when the food item reaches a temperature of 160 °C.

= k (200-B) = kdt 0 = th do = Jede + Aet (A=-B) -k++0

 $t \approx 18.55$

Question 17 (****)

Consider the following identity for t.

$$\frac{1}{t(t^2+1)} \equiv \frac{At+B}{t^2+1} + \frac{C}{t} \,.$$

a) Find the value of each of the constants A, B and C.

In a chemical reaction the mass, m grams, of the chemical produced at time t, in minutes, satisfies the differential equation

$$\frac{dm}{dt} = \frac{m}{t\left(t^2 + 1\right)}$$

b) Find a general solution of the differential equation, in the form m = f(t).

Two minutes after the reaction started the mass produced is 10 grams.

- c) Calculate the mass which will be produced after a further period of 2 minutes.
- **d**) Determine, in exact surd form, the maximum mass that will ever be produced by this chemical reaction.

$$\boxed{A = -1, B = 0, C = 1}, \boxed{m = \frac{kt}{\sqrt{t^2 + 1}}}, \boxed{\frac{20}{17}\sqrt{85} \approx 10.85}, \boxed{m_{\text{max}} = 5\sqrt{5}}$$

Question 18 (****)

The population of a herd of zebra, P thousands, in time t years is thought to be governed by the differential equation

$$\frac{dP}{dt} = \frac{1}{20} P(2P-1)\cos t \,.$$

It is assumed that since P is large it can be modelled as a continuous variable, and its initial value is 8.

a) Solve the differential equation to show that

 $P = \frac{8}{16 - 15e^{\frac{1}{20}\sin t}}$

b) Find the maximum and minimum population of the herd.

 $P_{\min} = 4620$ $P_{\rm max} = 34642$

Question 19 (****)

A population p, in millions, is thought to obey the differential equation

 $\frac{dp}{dt} = kp\cos kt$

where k is a positive constant, and t is measured in days from a certain instant.

When t = 0, $p = p_0$.

a) Solve the differential equation to find p in terms of p_0 , k and t.

The value of k is now assumed to be 3.

b) Calculate, correct to the nearest minute, the time for the population to reach p_0 again, for the first time since t = 0.

a) SOWING BY SEPARATING UMPLABLES	W TAKING K= 3 THE SEVENDO BECAUS
a) sounds of schedules adjusted a) def = kposelt b) de = kposelt b) f de = koalt dt b) f de = koalt dt b) f de = f koalt dt b) f de = f koalt dt c)	b) THEND L-3, THE SECTION SECONDS $\Rightarrow P = P_{0} e^{-Strict}$ $\Rightarrow P_{0} = P_{0} e^{-Strict}$ $\Rightarrow I_{1} = e^{-Strict}$ $\Rightarrow I_{1} = e^{-Strict}$ $\Rightarrow I_{1} = e^{-Strict}$ $\Rightarrow Strict = 0$ $\Rightarrow St = + strip-stript, -tr, o, tr, 2tr, 3tr,$ $\Rightarrow St = + strip-stript, -tr, o, tr, 2tr, 3tr,$ $\Rightarrow St = + strip-stript, -tr, o, tr, 2tr, 3tr,$ $\Rightarrow St = + stript = strip$

 $p = p_0 e^{\sin kt}$

1508 min

Question 20 (****)

Cars are attached to a giant wheel on a fairground ride, and they can be made to lower or rise in height as the wheel is turning around.

Let the height above ground of one such car be h metres, and let t be the time in seconds, since the ride starts.

It may be assumed that h satisfies the differential equation

$$\frac{dh}{dt} = \frac{3}{2}\sqrt{h}\sin\left(\frac{3t}{4}\right).$$

a) Solve the differential equation subject to the condition t = 0, h = 1, to show

$$\sqrt{h} = 2 - \cos\left(\frac{3t}{4}\right).$$

- **b**) Find the greatest height of the car above ground.
- c) Find the value of t when the car reaches a height of 8 metres above the ground for the third time, since the ride started.

t ≈11.77

Question 21 (****)

During a chemical reaction a compound is formed, whose mass m grams in time t minutes satisfies the differential equation

$$\frac{dm}{dt}=k(m-6)(m-3),$$

where k is a positive constant.

a) Solve the differential equation to show that

$$\frac{m-6}{m-3} = A \,\mathrm{e}^{3kt}\,,$$

where A is a non zero constant.

When the chemical reaction started there was no compound present, and when $t = \ln 16$ the mass of the compound has risen to 2 grams.

b) Show further that

$$m = \frac{6 - 6e^{-\frac{1}{4}t}}{2 - e^{-\frac{1}{4}t}}$$

c) Show that in practice, 3 grams of the compound can never be produced.

Sel as	
(dm = k(u-6)(u-3)	5 BY PHETTAL REACTIONS
$\Rightarrow \frac{1}{(m-6)(m-3)} dm = k dt$	$\begin{cases} (w_{1-\epsilon})(w_{2-3}) \Rightarrow w_{1-\epsilon} + \frac{B}{w_{1-\epsilon}} \\ (\equiv A(w_{1-3}) + B(w_{1-\epsilon}) \\ \end{pmatrix} \end{cases}$
$\Rightarrow \int \frac{1}{(m+\epsilon)(m+3)} dm \ge \int k dt$	$\begin{cases} b & m=3 \rightarrow 1a - 3B \rightarrow B - \frac{1}{3} \\ b & m=6 \rightarrow 1 - 3A \rightarrow A - \frac{1}{3} \end{cases}$
$\Rightarrow \int \frac{1}{h_{H}-c} - \frac{1}{h_{H}-3} du_{H} = \int k dk$	man
⇒] tu-6 - tu-3 dun ≈] 3k dt	
\Rightarrow $ h u-s - h u-s = 3kt + c$	$-\frac{4}{m-c} = 2e^{3OUt}$
$\Rightarrow \frac{ h M-C }{ h-2 } = 3kt+C$ $\Rightarrow \frac{M-C}{ h-2 } = \frac{3kt+C}{e}$	$\frac{W-G}{W-3} = 2e^{\frac{1}{2}t}$
======================================	$ \{ \begin{array}{c} u_{-6} = 2e^{\frac{1}{2}t}(u_{-3}) \\ u_{-6} = 2me^{\frac{1}{2}t} - 6e^{\frac{1}{2}t} \end{array} $
45 ELENAW	$M = 2me^{4t} = 6 - 6e^{4t}$ $M(1 - 2e^{4t}) = 6 - 6e^{4t}$
(b) • whim t=0, M=0 0-6 = 1 e	un = 6-6e ^{‡t}
4 = 2 $\frac{W_{0-6}}{W_{0-3}} = 26^{314}$	WUDRY TOPISOTION BY $e^{\frac{1}{4}t}$ $M = 6e^{\frac{1}{4}t} - 6$
· when to hills, un 2	$e^{\frac{1}{2}t}$ or $m = \frac{6 - 6e^{\frac{1}{2}t}}{6}$
$\frac{2-6}{2-3} = 2e^{3k\ln k}$ + = 2e^{3k\ln k}	2- et At RHWRN
2 = = = ^{3k} ln/6 ln2 = 3k/n/6	и з
Juz = 3k(41,4z)	(recurring vyauf is 3 (res while be definition in Riverice)
12k = 1 $k = \frac{1}{2}$	

proof

Question 22 (****)

During a chemical reaction a compound is formed, whose mass y grams in time t minutes satisfies the differential equation

$$\frac{dy}{dt} = k\left(1-2y\right)\left(1-3y\right), \ t \ge 0,$$

where k is a positive constant.

a) Solve the differential equation to show that

$$\ln\left|\frac{1-2y}{1-3y}\right| = kt + C$$

where C is a constant.

When the chemical reaction started there was no compound present, and when $t = \ln 4$ the mass of the compound has risen to 0.25 grams.

b) Show further that

c) State, with justification, the limiting value of y as t gets large.

THE UPPLABLES with t=0, y=0 $\frac{du}{dt} = k(1-2y)(1-3y)$ => Jat= 0+C ldy = k-C1-2y)C1-3y)d(6.0 $\rightarrow \ln \left| \frac{1-2y}{1-3y} \right| = kt \rightarrow$ with t= 14, y=z $\frac{1}{(1-2y)(1-3y)} dy = k dt$ $\left| h_{1} \right| \frac{1 - \frac{1}{2}}{1 - \frac{3}{2}} = k \ln 4$ $\frac{1-2y}{1-3y} = e^{kt}$ ettal Reactions $\left| \frac{1}{\sqrt{4}} \right| = 2k\ln 2$ 1-24 = (1-34) ett $\frac{1}{\left(1-2y\right)\left(1-3y\right)} \equiv \frac{A}{1-2y} + \frac{g}{1-3y}$ 1 2 = 2kln2 1- 2y = et-3yet 1 = 2k $I \equiv A(1-3y) + B(1-2y)$ -2y - e^{kt}-1 k= ± y(3et-2) = et-1 • H y= 1 , 1= - 1/2 × A= -2. $y = \frac{e^{kt}-1}{v}$ • 14 y= 1 , 1= 18 B=3 RETURNING TO THE O.D. E $= \int \frac{-2}{1-2y} + \frac{2}{1-3y} dy = \int k dt$ - hli-zyl - hli-zyl = kt + C $b_1 \left| \frac{1-2y}{1-3y} \right| = kt + C$ AS BEDWEND

 $\rightarrow \infty, y$

Question 23 (****+)

During a chemical reaction a compound is formed, whose mass x grams, in time t minutes, satisfies the differential equation

 $\frac{dx}{dt} = k\left(4+x\right)\left(4-x\right)e^{-t}, t \ge 0,$

where k is a positive constant.

When the chemical reaction started there was no compound present.

The limiting mass of the compound is 2 grams.

Find the value of t, when half the limiting mass of the compound has been produced.

۰.,		
ſ	$\frac{dx}{dt} = k(4+x)(4-x)e^{-k} + so x=0$	$\Rightarrow \ln \left \frac{4+x}{4-x} \right - \ln t = 8t - 8ke^{\frac{1}{2}}$
P	SEPARATING UARIARIES	$\Rightarrow \left \eta \right \frac{4+2}{4-2} \left = et(J - e^{-t}) \right $
1	$\rightarrow \frac{1}{(4\pi)^{(4-\chi)}} d\chi = -k e^{-k} dt$	1000 ks t-++00 2-+2
	$\rightarrow \int_{\lambda=0}^{t} \frac{1}{(4+\lambda)(d-\lambda)} d\lambda = \int_{\lambda=0}^{t} \frac{1}{\lambda} e^{-t} dt$	
	$\frac{kr}{c-4} + \frac{h}{c+4} = \frac{1}{(c+2)(c+1)} + \frac{h}{c+2}$	Finatus us Have
	ι 🚋 Α(4-λ) + B(4+2)	$\Rightarrow \ln \left \frac{4+x}{4-x} \right = \left(\ln 3 \right) \left(1 - e^{t} \right)$
ł	• 14 2=4 1= 88 • 14 2=-4 1× 84 B=t 4= t	$\Rightarrow _{y_1} \left \frac{4+1}{4-1} \right = (l_{h,3})(1-e^{-t})$ $\Rightarrow _{y_1} = \frac{1}{2} = _{y_3} \leq (1-e^{-t})$
ſ	RETURNING TO THE O.D.C.	3
F F	$\Rightarrow \int_{2\infty}^{\infty} \frac{dt}{4+x} + \frac{dt}{4-x} dx = \int_{t=0}^{t} t e^{-t} dt$	$ \xrightarrow{h_1 \cdot 5_3} = 1 - e^{-t} $ $ \xrightarrow{h_1 \cdot 5_3} = 1 - \frac{h_1 \cdot 5_3}{h_2} $
	$\Rightarrow \int_{\frac{1}{4+2}}^{x} \frac{1}{4+2} + \frac{1}{4+2} dz = \int_{\frac{1}{4+2}}^{t} 8t e^{t}$	
	$\Rightarrow \left[\left h \right 4 + 2 \right]_{p}^{1} - \left[-8ke^{t} \right]_{p}^{t}$	\Rightarrow -t = $l_{0}(0.535024)$
	$\implies \left[h \left \frac{4 + x}{4 + x} \right \right]_{*}^{2} = \left[8 k e^{t} \right]_{+}^{2}$	t = 0.625

 $t \approx 0.625$

Question 24 (****+)

The equation of motion of a small raindrop falling freely in still air, released from rest, is given by

 $m\frac{dv}{dt} = mg - kv,$

where m kg is the mass of the raindrop, $v \text{ ms}^{-1}$ is the speed of the raindrop t seconds after release, and g and k are positive constants.

a) Solve the differential equation to show that

 $v = \frac{mg}{k} \left(1 - \mathrm{e}^{-\frac{k}{m}t} \right).$

The raindrop has a limiting speed V. (It is known as terminal velocity).

b) Show that the raindrop reaches a speed of $\frac{1}{2}V$ in time $\frac{m}{k}\ln 2$ seconds.

proof

(a) Mat = mg - kv	(b) Theminude Velocety 15 V
$\Rightarrow \frac{M}{Mg - kv} dv = 1 dt$ $\Rightarrow \int \frac{Mg - kv}{Mg - kv} dv = \int I dt$	$\left\{\begin{array}{c} V = \frac{\log q}{K} & \left(\frac{\log d w}{\log q} = 0\right) \\ 0 & \frac{\log d w}{\log q} = 0 \\ 0 & \frac$
== - K pr/mg-rul = + c	$ \begin{array}{c} & \underset{W \neq w}{\overset{W \neq w}{\rightarrow}} & \underbrace{V = \frac{1}{2} V = \frac{m_{A}}{2k}} \\ & \underset{Z \neq w}{\overset{W \neq w}{\rightarrow}} & \underbrace{m_{A}}{\frac{1}{2k} \left[1 - \frac{k}{2k} t \right]} \end{array} $
⇒ ln/ mg-kv/= -k+c	$\left\langle = \frac{1}{2} = 1 - e^{\frac{k}{N}t}\right\rangle$
⇒ mg-kv = Ae th t (A=e)	$\left\langle \rightarrow e^{\frac{k}{h_1}t} = \frac{1}{2} \right\rangle$
→ mg + Aet = kv	$\Rightarrow e^{\frac{k}{M_1}t} = 2$
> V= MB + Aet	$= \frac{k}{m}t = \ln 2$
wither two v=0	$= t = \frac{M_1}{K} \ln 2$
$O = \frac{mg}{k} + A$	{
A= -ma- K	5
\implies $V = \frac{mg}{k} - \frac{mg}{k} e^{\frac{k}{m}t}$	ζ
$ \Rightarrow V = \frac{mg}{k} \left[1 - \frac{e^{\frac{k}{k}t}}{2k} \right] $	{

Question 25 (*****)

The population P of a colony of birds, in thousands, is assumed to vary according to the differential equation

 $\frac{dP}{dt} = P e^{-0.5t} , P > 0, t \ge 0,$

where t is the time in years.

R,

Y.C.B.

It is further assumed that P is large enough to be treated as a continuous variable.

Solve the differential equation to show that P will reach half its limiting value when

 $t = 2\ln\left(\frac{2}{\ln 2}\right).$

6. 10
$\frac{dP}{dt} = Pe^{-0.5L}, t \ge 0, t \ge 0$
SOWING BY SPOTENTING UMBITABLES
$\Rightarrow \frac{1}{p} dP = e^{-\delta t} dt$
$\rightarrow \int \frac{1}{2} d\theta = \int e^{-\frac{1}{2}} dk$
\Rightarrow $\ln P = -2e^{-0.5t} + C$
$\Rightarrow P = e^{-2e^{\circ st} + C}$
$=$ $P = e^{-ze^{-zt}} \times e^{-zt}$
$\rightarrow P - A_e^{-ie^{-i\xi}} (A - e^{i})$
NOW LET THE INITIAL POPULATION RE R, R>O
⇒ Po = Ae ⁻² ⇒ Re ²
HEALE WE HAVE
$\Rightarrow P = P_e e^{2} e^{-ost} = P_e e^{2-2e^{ost}}$
THE UNITING WALL OF THE ROPULATION IS Pe
SINCE 13 t are end
$P \longrightarrow P_{e} e^{z-2xo}$
$P \rightarrow P_{0}e^{2}$
b) K.S. Key, K.M.S. K. S. & Sang and S.S. Keyler, S.

, proof

6

Question 26 (*****)

Water is leaking from a hole at the side of a water tank.

The tank has a height of 3 m and is initially full. It is thought that while the tank is leaking, the height, H m, of the water in the tank at time t hours, is governed by the differential equation

$$\frac{dH}{dt} = -k \,\mathrm{e}^{-0.1t} \,,$$

where k is a positive constant.

The height of the water drops to 2 metres after 10 hours.

Find in exact simplified form ...

a) ... an expression for H in terms of t.

b) ... the height of the hole from the ground.

3= A + B

7 = Ae' + B

within to b , H=2

SOWING TO FIND

lim H = <u>2e-</u> Lim H = <u>2e-</u>

Question 27 (*****)

The equation of motion of a small raindrop falling freely in still air, released from rest, is given by

$$mv\frac{dv}{dx} = mg - kv ,$$

where m kg is the mass of the raindrop, $v \text{ ms}^{-1}$ is the speed of the raindrop x metres below the point of release, and g and k are positive constants.

a) Solve the differential equation to show that

$$\frac{k}{m}x = \frac{mg}{k}\ln\left(\frac{mg}{mg - kv}\right) - v.$$

The raindrop has a limiting speed V. (It is known as terminal velocity).

b) Show clearly that the raindrop reaches a speed of $\frac{1}{2}V$, after a falling through a distance of $\frac{V^2}{2g}(-1+\ln 4)$ metres.

 $-v + \frac{g_{1}}{4} m \left(\frac{g_{2}}{4-4v} \right)$ -V + * h (- 5. V= & = & $\left(V = \frac{WA}{E} \right)$ V= ma A da in= Aa+c 0 = alug = C In (g-Av) = Az + 3- me + Alug - # hg (g-A)

proof

Question 28 (*****)

The equation of motion of a small raindrop falling freely in still air, released from rest, is given by

 $m\frac{dv}{dt} = mg - kv^2,$

where m kg is the mass of the raindrop, $v \text{ ms}^{-1}$ is the speed of the raindrop t seconds after release, and g and k are positive constants.

a) Solve the differential equation to show that

$$v = \frac{1}{c} \left(\frac{1 - e^{-2cgt}}{1 + e^{-2cgt}} \right), \text{ where } c^2 = \frac{k}{mg}$$

The raindrop has a limiting speed V.

(It is known as terminal velocity).

b) Show that the raindrop reaches a speed of $\frac{1}{2}V$ in time $\sqrt{\frac{m}{4kg}} \ln 3$ seconds.

proof

Question 29 (*****)

The equation of motion of a small raindrop falling freely in still air, released from rest, is given by

 $mv\frac{dv}{dx} = mg - kv^2,$

where m kg is the mass of the raindrop, $v \text{ ms}^{-1}$ is the speed of the raindrop x metres below the point of release, and g and k are positive constants.

a) Solve the differential equation to show that

 $v^2 = c^2 \left(1 - e^{-\frac{2k}{m}x} \right)$, where $c^2 = \frac{mg}{k}$

The raindrop has a limiting speed V. (It is known as terminal velocity).

b) Show that the raindrop reaches a speed of $\frac{1}{2}V$, after covering a distance of

 $\frac{V^2}{2g}\ln\left(\frac{4}{3}\right)$ metres.

(0)	WIV du = mg - ku2	 S (b) 45 a→∞
Ť	<u>mg_kv</u> dv = 1 da	V->C V=c
\rightarrow	$\frac{V}{m_q - b_0^2} dv = -\frac{L}{m} dx$	WINTY V= 12V = 12C
	$\frac{-2kv}{m_{el}^2 - kv^2} dv = \frac{-2k}{m} du$	$\left\langle - \left(\frac{1}{2} c \right)^2 = c^2 \left(1 - e^{-\frac{-2k}{k_1} 2} \right) \right\rangle$
	$\int \frac{-2kv}{mg - kv^2} dv = \int \frac{-2k}{m} dx$	$= \frac{1}{4} = 1 - e^{\frac{-2k}{m_1}}$
	$\left \left \left \left \frac{1}{m_{g}} - \frac{1}{m_{s}} \right ^{2} \right = -\frac{2k}{m_{s}} 2 + B$	$ \Rightarrow e^{\frac{2k}{2k}\lambda} = \frac{3}{4} \\ \Rightarrow e^{\frac{2k}{2k}\lambda} = \frac{4}{2} $
\rightarrow	$m_g - kv^2 = A e^{\frac{2k}{m}z} (A = e^{\frac{2k}{m}})$	$\Rightarrow \frac{2k}{n_1} x = \frac{\ln \frac{k}{3}}{3}$
	$kv^{2} = mg + \frac{1}{2}e^{-\frac{2k}{M_{1}}2}$	$\Rightarrow x = \frac{1}{2k} \ln \frac{k}{3}$
	$v^{2} = \frac{W_{0}}{K} + \frac{1}{N} e^{\frac{2k}{M}2}$	$ \left\langle \begin{array}{c} \Rightarrow \alpha = \frac{\log_{x}}{\kappa} x \frac{1}{2g} \ln \frac{4}{5} \\ \Rightarrow \alpha = c^{2} x \frac{1}{2g} \ln \frac{4}{5} \end{array} \right\rangle $
\rightarrow	$V_z = C_z + A e_{\frac{M_z}{M_z}}$	$\Rightarrow a = \frac{\sqrt{2}}{24} \ln \frac{1}{24}$
	- REPOR CONDUCTIONS 2=0 V=0	A 24 Stepubro
	$o = c^2 + A$ $A = -c^2$	5
	$V^{2} = C^{2} - C^{2} e^{-\frac{2k}{M}\lambda}$	2
1	$V^2 = C^2 \left(1 - e^{\frac{2\pi}{2}}\right)$	

proof

uasmaths.com

asmaths.com

Creat. DIFFERENTIAL EQUATIONS IN CONTEXT WITH MODELLING ASIRALISCORT F. Y. G.B. MARASIRALISCORT F. Y. G.B. MARASIN

Question 1 (**)

The number of bacterial cells N on a laboratory dish is increasing, so that the <u>hourly</u> rate of increase is 5 times the number of the bacteria present at that time.

Initially 100 bacteria were placed on the dish.

- a) Form a suitable differential equation to model this problem.
- **b**) Find the solution of this differential equation.
- c) Find to the nearest minute, the time taken for the bacteria to reach 10000.

dN

dt

Question 2 (**)

The gradient at any point (x, y) on a curve y = f(x) is proportional to the square root of the y coordinate of that point.

- a) Form a suitable differential equation to model this problem.
- **b**) Find a general solution of this differential equation, in terms of suitable constants.

 $\frac{dy}{dx} = k\sqrt{y}$

The curve passes though the points P(4,4) and Q(6,16).

c) Find a solution to the differential equation in the form y = f(x).

 $y = (x-2)^2$

 $\sqrt{y} = Ax + B$

Question 3 (**)

A certain brand of car is valued at $\pounds V$ at time t years from new.

A model for the value of the car assumes that the rate of decrease of its value is proportional to its value at that time.

a) By forming and solving a suitable differential equation, show that

 $V = A e^{-kt},$

where A and k are positive constants.

The value of one such car when new is £30000 and this value halves after 3 years.

b) Find, to the nearest $\pounds 100$, the value of one such car after 10 years.

One such car is to be scrapped when its value drops below $\pounds 500$.

c) Find after how many years this car is to be scrapped.

(a) $\frac{dv}{dt} = -kV$	(b) eteo Vezacoo
	30000 = A e
$\Rightarrow \frac{1}{\sqrt{dv}} = -k dt$	4 = 30000
⇒ J f du = J-kdt	V= 30000 e
	• t= 3 V= 15000
$\Rightarrow \int h V = -c E + C$	(5000 = 30000 = 3k
\Rightarrow V = e^{kt+c}	1 = = = 3k
=> v= Ae (t=e)	·2 = e ^{3L}
A de di	k= \$142
() 500 = 30000 e	V= 30000 2(1102)t
(c) 500 = 30000 e	when to 10
(1) (1)	V= 2976.37//
Go = ({z 42})+ huGo = ({z 42})+	V = \$3000
t= 3/160 x 18 yars	
M2	

Question 4 (**+)

Water is leaking out of a tank from a tap which is located 5 cm from the bottom of the tank.

The height of the water, h cm, is decreasing at a rate proportional to square root of the difference of the height of the water and the height of the tap.

a) Model this problem with a differential equation involving h, the time t in minutes and a suitable proportionality constant.

The initial height of the water in the tank is 230 cm and 5 minutes later it has dropped to 105 cm.

- **b**) Find a solution of the differential equation of part (**a**), in the form t = f(h).
- c) Calculate the time taken for the height of the water to fall to 30 cm.

d) State how many minutes it takes for the tank to stop leaking.

C there is more a	82-21= \$ 4001 = 2015 4 5 = 5 = 5 5= 82 1=8
$\begin{array}{c} \frac{dk}{dt} = -k \cdot \frac{l}{k} - \frac{k}{2} \\ p \neq f_{max} \\ $	$\begin{cases} (k-s)^{\frac{1}{2}} = (r-z)^{\frac{1}{2}} \\ +z = (r-c)(r-z)^{\frac{1}{2}} \\ (k-s)^{\frac{1}{2}} \\ (k-s)^{\frac{1}{2}} \\ (k-s)^{\frac{1}{2}} \\ (k-s)^{\frac{1}{2}} \\ (k-s)^{\frac{1}{2}} \\ (k-s)^{\frac{1}{2}} \\ +z = (r-z)^{\frac{1}{2}} \\ +z = (r$

Question 5 (***)

A laboratory dish with 100 bacterial cells is placed under observation and 65 minutes later this number has increased to 900 cells.

Let y be the number of bacterial cells present in the dish after t minutes, and assume that y can be treated as a continuous variable.

The rate at which the bacterial cells reproduce is inversely proportional to the square root of the number of the bacterial cells present.

a) Form a differential equation in terms of y, t and a proportionality constant k

 $y^{\frac{3}{2}} = At + B$

b) Solve the differential equation to show

where A and B are constants to be found.

) Show that the solution to this problem can be written as

 $y^3 = 40000 \left(2t + 5\right)^2.$

d) Calculate, to the nearest **hour**, the time when the number of bacterial cells reaches 7000.

dy

dt

A = 400

B = 1000, $t \approx 24$

£d_ = KF+C) => (000 = 40000 (26+5)
(y= 4++B)	$\rightarrow \frac{7000^3}{40000} = (26+5)^2$
Now too y=100	$\Rightarrow 857.5000 = (2 + 5)^2$
1003 = B) => +350/70 = 24+5
B = 1000	$\Rightarrow 2t = 350\sqrt{20} - 5$
y= At+1000	$\Rightarrow t = \frac{1}{2}(-5+35+375)$
• NEXT t= 65 y=900	(=> + ~ 1461.655 munify
900 = 65 A + 1000	$ \begin{pmatrix} \Rightarrow t \approx 1461.655 \text{ munify} \\ \Rightarrow t \approx 24.360 \text{ have} \end{pmatrix} \stackrel{*}{=} \stackrel{*}{=}$
27000 = 654+100 A = 400	5. 24 Hours

Question 6 (***)

The number x of bacterial cells in time t hours, after they were placed on a laboratory dish, is increasing at the rate proportional to the number of the bacterial cells present at that time.

a) If x_0 is the initial number of the bacterial cells and k is a positive constant, show that

$x = x_0 e^{kt}.$

b) If the number of bacteria triples in 2 hours, show that $k = \ln \sqrt{3}$.

$\frac{d\alpha}{dt} = k\alpha$	(b)	when t= 2 = 320
tda= kdt		3% = % e ^{2k}
Jaca = Jede		$3 = e^{2k}$ $\ln 3 = 2k$
Infad = 6+C		2K= 1N3
x = ett+C		k= 1/113
a= Aet (A=e')		k = hus
teo a=a.		
a = te		
$A = x_0$ $x = x_0 e^{bt}$		

proof

Question 7 (***)

During a car service, the motor oil is drained out of the engine.

The rate, in $\text{cm}^3 \text{s}^{-1}$, at which the oil is drained out, is proportional to the volume, $V \text{ cm}^3$, of the oil still left inside the engine.

a) Form a differential equation involving V, the time t in seconds and a proportionality constant k.

Initially there were 4000 cm^3 of oil in the engine.

b) Find a solution of the differential equation, giving the answer in terms of k.

It takes T seconds to drain half the oil out of the engine.

c) Show clearly that

 $kT = \ln 2.$

dV $V = 4000 \,\mathrm{e}^{-kt}$ =-kVdt

a) $\frac{dv}{dt} = -kv$	(G) V= 4000 e kt
RATE DOWNS PRADEROWAL	S WENT T V=2000
dy = -by	> 200 = 4000 e
$= \frac{1}{2} \int dv = \frac{1}{2} \int dv$	(ラ セーモイ
$\Rightarrow V = -ff + c$	$\rangle \Rightarrow 2 = e^{kT}$
$\rightarrow V_{0} = -kt + C$ $\rightarrow V_{0} = -kt + C$	$\Rightarrow h_2 = kT$
⇒ V = Ae (A=e)	> kt = ly2
et=o V=400	-43 ELANELO
1000= teo 1= 1000 //	} .
== 4000 -kt	{

Question 8 (***)

A species of tree is growing in height and the typical maximum height it can reach in its lifetime is 12 m.

The rate of growth of its height, H m, is proportional to the difference between its height and the maximum height it can reach.

When a tree of this species was planted, it was 1 m in height and at that instant the tree was growing at the rate of 0.1 m per month.

a) Show clearly that

 $110\frac{dH}{dt} = 12 - H ,$

where t is the time, measured in months, since the tree was planted.

- b) Determine a simplified solution for the above differential equation, giving the answer in the form H = f(t).
- c) Find, correct to 2 decimal places, the height of the tree after 5 years.
- d) Calculate, correct to the nearest year, the number of years it will take for the tree to reach a height of 11 m.

], $H = 12 - 11e^{-\frac{1}{110}t}$, 5.62 m], $t = 110\ln 11$ months ≈ 22 years

	dH dt = + k (12-H) the hadronal Hear	H = height t = time
		H = 12
	• $\frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	t=0 H=1
	$6 - 1 = \frac{1}{k} (12 - 1)$ $K = \frac{1}{10}$	d# dt (= t=
	• $\frac{dt}{dt} = \frac{1}{100}(12-tt)$	
	110 gt = 12-1+ +5 DEPOILED	
6)	SOLUMG THE ODE. BY SCANDATIN	o. UARIASIE
	⇒ 110 d# = (2-4) dt	
	$\implies \frac{110}{12-H} dH = 1 dH$	
	$\Rightarrow \int \frac{110}{12-4} dt = \int 1 dt$	
	- 110/m/12-H/ = ++ C	
	\implies $\ln \mathbf{R}-\mathbf{H} = -\frac{1}{10}\mathbf{t} + C$	
	→ 12-4 = ethet+C	

(Ase) = 12 + A : H = 12 - 11 e 263.76 _ mours ~ 22 XAA

Question 9 (***)

An area of neglected lawn is treated with weed killer. Before the treatment started, the area covered by the weed was 75 m^2 and two days later it has reduced to 33.7 m^2 .

Let the area of the lawn covered with weed be $A m^2$, t days after it was treated.

The rate at which the area covered by the weed is decreasing, is proportional to the area still covered by the weed.

By forming and solving a suitable differential equation, express A in terms of t.

ALL THE DELIVIANT INFORMATION t=0 A=75 t=2 A=337 kt dt = J-kolt (A>0) (... ()

 $A \approx 75 \,\mathrm{e}^{-0.4t}$

Question 10 (***+)

The number, x thousands, of reported cases of an infectious disease, t months after it was first reported, is now dropping. The rate at which it is dropping is proportional to the square of the number of the reported cases.

It is assumed that x can be treated as a continuous variable.

a) Form a differential equation in terms of x, t and a proportionality constant k.

Initially there were 2500 reported cases and one month later they had dropped to 1600 cases.

b) Solve the differential equation to show that

c) Find after how many months there will be 250 reported cases.

 $\frac{dx}{dt} = -kx^2$, t = 16

Question 11 (***+)

The value of a machine, in thousands of pounds, t years after it was purchased is denoted by $\pounds V$.

The value of this machine at any given time is depreciating at rate proportional to its value **squared**, at that time.

a) Given that the initial value of the machine was $\pounds 12000$, show that

$$r = \frac{12}{at+1},$$

where a is a positive constant.

b) Given further that the machine depreciated by £4000 two years after it was bought, find its value after a **further** period of ten years has elapsed.

· · · · · · · · · · · · · · · · · · ·	n -0
A) COLLETING ALL THE INDEMATION $\frac{dV}{dV} = - \left \frac{1}{2} \sqrt{2} \right ^2$ $(V = volume, m theorem is in the second sec$	(d)
$ \frac{d v}{d t} = -\frac{k}{k} \sqrt{2} $ $ \frac{v}{t} = \frac{1}{1} \frac{v_{\text{slug}}}{v_{\text{slug}}} v_{$	$\implies 8 = \frac{12}{24 + 1}$ $\implies 16a + 8 = 12$
SOLUTING BY SEPTERTING UNRUMBLES	
$\implies -\frac{1}{\sqrt{2}} dv = k dt$ $\implies \int -\frac{1}{\sqrt{2}} dv = \int k dt$ $\implies \int \frac{1}{\sqrt{2}} = kt + C$	Reversion the Revuel $\longrightarrow V = \frac{12}{\frac{12}{2^{n+1}}}$
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$	$\Rightarrow V = \frac{12}{\frac{1}{2} \times 12} + (4 \text{ forme Rado})$ $\Rightarrow V = 3$
$\implies \frac{1}{V} = \frac{1}{LL + \frac{1}{2L}}$ $\implies \dot{V} = \frac{1}{LL + \frac{1}{2L}}$ Multiply Top 4, Bottom on the	÷ ± 3000
$V = \frac{v_c}{at+1}$ $V = \frac{v_c}{at+1}$ $V = \frac{v_c}{at+1}$	
-fs stened	

, £3000

Question 12 (***+)

Water is leaking out of a hole at the bottom of a tank.

Let the height of the water in the tank be y cm at time t minutes.

At any given time after the leaking started, the height of the water in the tank is decreasing at a rate proportional to the cube root of the height of the water in the tank.

When t = 0, y = 125 and when t = 3, y = 64.

By forming and solving a differential equation, find the value of y when $t = 7\frac{7}{12}$.

10	and the second sec
$\begin{array}{c} \hline \textbf{POLULING. A DIFFEGESTIAL QUATICAL} \\ \hline du \\ dt \\$	
MARY THE CONDITIONS GIVEN	
$\begin{array}{rcl} t_{=0} & y = 125 \implies 123^{\frac{3}{2}} & B \\ & \longrightarrow & \frac{B = 25}{2} \\ \implies & y^{\frac{3}{2}} = & At + 25 \\ t_{=3} & y = 6t \implies 6y^{\frac{1}{2}} = & A \times 3 + 25 \end{array}$	

, y = 3.375

Question 13 (***+)

Water is pouring into a container at a constant rate of $600 \text{ cm}^3\text{s}^{-1}$ and is leaking from a hole at the base of the container at the rate of $\frac{3V}{4} \text{ cm}^3\text{s}^{-1}$, where $V \text{ cm}^3$ is the volume of the water in the container.

a) Show clearly that

 $-4\frac{dV}{dt} = 3V - 2400,$

where t is the time measured in seconds.

Initially there were 200 cm³ of water in the container.

b) Show further that

 $V = 800 - 600 \,\mathrm{e}^{-\frac{3}{4}t}$

c) State the maximum volume that the water in the container will ever attain.

	- AP-1
	$V_{\rm max} = 800$
N 1	D.
	<u> </u>
1) { IN : 0+ = 600 } {	\Rightarrow 3V = 2400 + $Ae^{\frac{3}{4}t}$ $A=e^{c}$
$\begin{cases} 00T: \frac{dV}{dt} = -\frac{3}{4}V \end{cases}$	$\Rightarrow [v = 8\infty + 4e^{3t}]$
KIT: ON = GOO-3-V	Wim to V=200
	200 = 800 + Ae" 200 = 800 + A
$\frac{dv}{dt} = 6\infty - \frac{3}{4}V$	A=-600
4 du = 2400 -3V	A = -600 $\therefore V = 800 - 600e^{-\frac{1}{2}t}$
-4 de = 31-2400 45 8441860	// 43 KSpured
AL (AS REPUIRE)	(c) As t-ro et -ro
$\frac{1}{3V-2460} dV = -\frac{1}{4} dt$	V> 8∞
\Rightarrow $\int \frac{1}{3v-2460} dv = \int -\frac{1}{4} dt$	IE MAX & BOD CUY
⇒ th (3V-2400) = -2++C	5 7
=> 14 3V-2401 = -2++C	\
⇒ 3V-240 = e ^{4+C}	
	·

Question 14 (***+)

A body is moving and its distance, x metres, is measured from a fixed point O at different times, t seconds.

The body is moving in such a way, so that the rate of change of its distance x is inversely proportional to its distance x at that time.

When t = 0, x = 50 and when t = 4, x = 30.

Determine the time it takes for the body to reach O.

REASTIAL KOUATION Ax 900 = 44 4 a = DISTONO 1 44 =-1600 t=0, x=50 t=4, x=30 IN UNREADLY PROPORTIONAL TO : SOWING BY SOPHRATING UNRIABLES 2500 4t = 25de = K dt t= 6.25 Ldt Itdt TO FIND THE CONSTITUTS APPU/ a $So^2 = 8$ => 22 = At +250

t = 6.25

Question 15 (***+)

The value of a computer system V, in hundred of \pounds , t years from when it was new, is depreciating at a rate proportional to its value <u>cubed</u>, at that time t.

The value of the computer system when it was new, was $\pounds 1000$.

a) By forming and solving a differential equation, show that

$$\frac{1}{V^2} = At + \frac{1}{100},$$

where A is a positive constant.

b) Given that the value of the computer system halves after one year, find the value of t when the system is worth ± 250 .

12		
۵)	FORM + DIFFRENTIAL EDUATION ROM THE GIVEN INFORMATION	using the fact that which to
	$\frac{dV}{dt} = -kV^{3}$ $\begin{cases} V = VAUE, w = boo \\ t = TAUE, w = vAUE, $	$= \frac{1}{s^2} = \frac{1}{s^2} + \frac{1}{s} = \frac{1}{s}$ $= \frac{1}{s^2} = \frac{1}{s} + \frac{1}{s} = \frac{1}{s}$
	dé 4 4 4 VAUE OBEO PRARE RATE DESERVATER	$\Rightarrow \underline{A} = \frac{3}{100}$
	BOUND BY SOMPLATIONS OF UNRIABLES	$\Rightarrow \frac{1}{\sqrt{2}} = \frac{3}{100} \pm \pm \frac{1}{100}$
	$\Rightarrow dv = -kv^3 dt$	FINALLY WHAN V=2.5 (Vn====250
	$\implies \int -v^{-3} dv = \int k dk$	$\frac{1}{25^2} = \frac{3}{100} t + \frac{1}{100}$
	$= \frac{1}{2}V^2 = \frac{1}{2}E + C$	$\implies \frac{1}{625} = \frac{3}{100} + \frac{1}{100}$
	$\rightarrow \frac{1}{2\gamma^2} = k\epsilon + C$	-> ~ = 3t + 1 '
_	APPLY THE GIVAN CONDITION t=0 V=10 (\$1000)	=, 3t = 15
	$ \Rightarrow \frac{1}{2\pi b^2} = C $ $ \Rightarrow \frac{C < \frac{1}{220}}{2\pi b^2} $	→ t=s
	$\implies \frac{1}{2\sqrt{\lambda}} = kt + \frac{1}{200}$	
	$\implies \frac{1}{\sqrt{2}} = 2kt + \frac{1}{\log}$ (let $A = 2k$)	
	-> L = At + Loo To Exputed	
		1

, |t=5|

(\$500/HALF

Question 16 (***+)

Water is pouring into a container at a constant rate of 0.05 m³ per hour and is leaking from a hole at the base of the container at the rate of $\frac{4V}{5}$ m³ per hour, where V m³ is the volume of the water in the container.

a) Show clearly that

$-20\frac{dV}{dt} = 16V - 1,$

where t is the time measured in hours.

Initially there were 4 m^3 of water in the container.

b) Show further that

 $V = \frac{1}{16} \left(1 + 63 \, \mathrm{e}^{-\frac{4}{5}t} \right) \, .$

c) State, with justification, the minimum volume that the water in the container will ever attain.

a) SETTING - A DIARRASTIAL GROATION	$\implies 161 = 1 + 4e^{-\frac{4}{3}t} (4 = e^{t})$
$ N = Row$: $\frac{dy}{dt} = 0 \cdot as$ $cut = Flow : = \frac{dy}{dt} = -\frac{dy}{dt}$	$\implies \forall = \frac{1}{16} + \sqrt{e^{\frac{4}{3}t}}$
NET from : $\frac{du}{dt} = 0.05 - \frac{40}{-5}$	-APPLY THE INITIAL GOLDITION t-0 V= 14
$ \Rightarrow \frac{du}{dt} = \frac{1}{2o} - \frac{uv}{3} $ $ \Rightarrow -2o\frac{du}{dt} = -1 + 16v $ $ \times (-2o)$	$\implies 4 = \frac{1}{16} + \frac{1}{16}$ $\implies 4 = \frac{23}{16}$
$= \frac{2\pi c^{2N}}{2t} = \frac{1}{2N} - 1$	$\Rightarrow V = \frac{1}{16} + \frac{63}{16} e^{\frac{1}{8}t}$
b) source by septerting unertailes	\Rightarrow V = $\frac{1}{16}\left[1 + 63e^{\frac{1}{2}k_{1}}\right]$ It exputs
$\Rightarrow -20 dv = (16v - 1) dt$ $\Rightarrow -\frac{20}{16v - 1} dv = (dt)$	4 45 t-200, ē ^t -200
$\Rightarrow \int \frac{-z_0}{16v-1} dv = \int v dt$	$: V \rightarrow \frac{1}{16} = 0.0625$
$\Rightarrow -\frac{5}{4} \ln \left \log - 1 \right = t + C$. THE VOULULE WILL THID TO 0.0625 W3 (62.5 litrs)
$\Rightarrow \ln kv - l = -\frac{4}{5}t + C$	
$\Rightarrow 6v-l = e^{\frac{4}{3}t+C}$	
-3t c → (6y-1 = e x e	

 $V_{\min} = \frac{1}{16}$

(****) **Question 17**

A population P, in millions, at a given time t years, is growing at a rate equal to the product of the population squared and the difference of the population from one million.

Initially the population is one quarter of a million.

a) Form and solve a differential equation to show that

$$t = \ln \left| \frac{3P}{1-P} \right| - \frac{1}{P} + 4.$$

b) State the limiting value for this population.

 $\rightarrow \infty, P \rightarrow 1$

 $\frac{\overline{dP}}{\overline{}} = P^2 \left(1 - P\right)$

dt

Question 18 (****)

In a laboratory a dangerous chemical is stored in a cylindrical drum of height 160 cm which is initially full.

One day the drum was found leaking and when this was first discovered, the level of the chemical had dropped to 100 cm, and at that instant the level of the chemical was found to be dropping at the rate of 0.25 cm per minute.

In order to assess the contamination level in the laboratory, it is required to find the length of time that the leaking has been taking place.

It is assumed that the rate at which the height of the chemical was dropping is proportional to the square root of its height.

- a) Form a suitable differential equation to model the above problem, where the time, in minutes, is measured from the instant that the leaking was discovered.
- **b**) Find a solution of the differential equation and use it to calculate, in hours and minutes, for how long the leaking has been taking place.

)	FOLLING A DIFFECTUAL OPUATION		APRY THE CONDITION too h-100 m
	$\frac{dh}{d\epsilon} = -kh^{\frac{1}{2}}$ $\frac{dh}{f} = -kh^{\frac{1}{2}}$	$\begin{cases} \begin{array}{c} \left(e_{0}\right) \\ \left(e_{0}\right$	=) $2 \times 100^{\frac{1}{2}} \approx -\frac{1}{40} \times 0 + C$ =) $C \approx 20$ =) $2h^{\frac{1}{2}} = 20 - \frac{1}{40}t$ The lenging streng unitarial (= 1600)
	$-0.75 = -k \times 100^{\frac{1}{2}}$ $10k = 0.02$ $k = \frac{1}{40}$ $\frac{dk}{dt} = -\frac{1}{40} \left \frac{k}{2} \right $		
2	$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$		- DOW HAS BEEGD (ARING BE 3 Hous of 32 MURA

Question 19 (****)

A grass lawn has an area of 225 m^2 and has become host to a parasitic weed.

Let $A m^2$ be the area covered by the parasitic weed, t days after it was first noticed.

The rate at which A is growing is proportional to the square root of the area of the lawn already covered by the weed.

Initially the parasitic weed has spread to an area of 1 m^2 , and **at that instant** the parasitic weed is growing at the rate of 0.25 m^2 per day.

By forming and solving a suitable differential equation, calculate after how many days, the weed will have spread to the entire lawn.

 $t = 8\sqrt{A} - 8$, 112 days

 $A^{\frac{1}{2}} = \frac{1}{4}t + 2$

White LAMA IS INFECTED

	S.A.
ROMING A DIFFRENTIAL QUATION	
$\frac{dH}{dt} = + k \sqrt{A}^{2}$	A = HEA COUNTED (WY) }
A Souther back of the new Augurian Propositional Rate Graning	
APPLY STEALISHT AWAY THE CONDITION dA	2 (c) = 0.25 = 0.25
→ 0.25 = k×√1 → k=‡	⇒ :
$\Rightarrow \frac{dA}{dt} = \frac{1}{4}A^{\frac{1}{2}}$	
Sour by sometion of unerables $\Rightarrow JA = \pm A^{\pm} Jt$	
$ = \frac{1}{4^{4}} dt = \frac{1}{4} dt$	
$\Rightarrow \int A^{-\frac{1}{2}} dA = \int \frac{1}{2} dk$	
$\Rightarrow 2A^{\pm} = \frac{1}{4}t + C$	
$\Rightarrow 2 \times l^{\frac{1}{2}} = 0 + C$	
-) C = 2	

Question 20 (****)

A snowball is melting and its shape remains spherical at all times.

The volume of the snowball, $V \text{ cm}^3$, is decreasing at constant rate.

Let t be the time in hours since the snowball's radius was 18 cm.

Ten hours later its radius has reduced to 9 cm.

Show that the volume V of the melting snowball satisfies

 $V=97.2\pi(80-7t),$

and hence find the value of t when the radius of the snowball has reduced to 4.5 cm.

volume of a sphere of radius r is given by $\frac{4}{3}\pi r^3$

$\frac{dv}{dt} = -k$	V = VOULAT OF SNOWBAL (m)}			(= 9
CONTRIPUT BATE- PATE HEING/DECEMBING-	•t=0, Γ= 18 V = ξ×π×18 ³ V = 7776π		FINALLY • V	vritnu I= ymr
sectentine unpaneles ⇒ dv = -k dt ⇒ [1dv = [-k dt	•t=b, r≈9 V= g ×π×9 ³ V= 972π		Ĵ	121.5π 1.25 = 7t =
$\Rightarrow V = -k + C$			Ť	t=
Αρριν t=0, ν=ττζεπ → ττζεπ = C → ν= ττζεπ - kt		4		
Apply t=10 , v= 972m				
⇒ $92\pi = -10K + 7776\pi$ ⇒ $10k = 6804\pi$ ⇒ $K = 6804\pi$				

t = 11.25

- $V = \frac{4}{3}\pi r^2 = \frac{4}{3}\pi (4.5)^2 = 121.5\pi \text{ out}^3$
- ⇒ ^{121,}5π = 97,2π (€ο-7t)

-> t= 11.25 toues

Question 21 (****)

The temperature in a bathroom is maintained at the constant value of 20°C and the water in a hot bath is left to cool down.

The rate, in °C per second, at which the temperature of the water in the bath, T °C, is cooling down, is proportional to the difference in the temperature between the bathwater and the room.

Initially the bathwater had a temperature of 40°C, and at that instant was cooling down at the rate of 0.005°C per second.

Let t be the time in seconds, since the bathwater was left to cool down.

a) Show that

$$\frac{dT}{dt} = -\frac{1}{4000} (T - 20)$$

b) Solve the differential equation of part (**a**), to find, correct to the nearest minute, after how long the temperature of the bathwater will drop to 36°C.

, 15 minutes

FORMING A DIFRCENTIAL QUATION	$\implies T_{-20} = e^{-\frac{1}{400}t} + C$
$ \begin{array}{c} \frac{dT}{dt} = -\frac{k(T-2\alpha)}{T-2\alpha} \\ & \begin{array}{c} T = Tremestret: C \ unity \\ (*c) \\ T = Tremestret: C \ unity \\ (*c) \\ T = Tremestret: C \ unity \\ (*c) \\ T = Tremestret: C \ unity \\ (*c) \\ T = Tremestret: C \ unity \\ (*c) \\ T = Tremestret: C \ unity \\ T = T \ unit$	$ T - 20 = e^{-\frac{1}{200}c_x} e^{c_x} e^{c_x} $
$(ac-b^{2}) = 220 \cdot 0 - (ac-b^{2}) = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} =$	$ \overrightarrow{T} = 2b + 20e^{-\frac{1}{2b}t} $ finduy (u)(u) T=36 $ \overrightarrow{9} 36 = 2b + 20e^{-\frac{1}{2b}t} $ $ \overrightarrow{9} 16 = 2be^{-\frac{1}{2b}t} $
$\begin{array}{rcl} \underbrace{2343643940}_{234364792} & Vel \mbox{ constraints}_{1} Vel \mbox{ constraints}_{2} Vel \mbox{ constraints}_{2} & - \frac{Tb}{2b} & \leftarrow \\ \underbrace{(sc-7)}_{0ab} & Tb}_{0ab} - \frac{Tb}{cs-7} & \leftarrow \\ tb \\ \underbrace{b}_{0ab} - \int_{1}^{1} - t & - t \\ tc \\ - t \\ \underbrace{cost}_{0ab} - t \\ - t \\ \end{array}$	$\Rightarrow \frac{q}{2} = e^{\frac{1}{2}\frac{q}{m}t}$ $\Rightarrow e^{\frac{1}{2}\frac{q}{m}t} = \frac{q}{2}$ $\Rightarrow \frac{1}{4200} t = \frac{1}{16}\left(\frac{q}{2}\right)$ $\Rightarrow t = 4000 \ln(125)$ $\Rightarrow t \approx 192.57 (24c)$ $\Rightarrow t \approx 192.57 (24c)$ $\Rightarrow t \approx 14.87 (24c)$
	·· APPRox 15 mm

Question 22 (****)

The gradient at a point on the curve C with equation y = f(x) is proportional to the product of its x and y coordinates. The gradient at the point (2,6) is $\frac{3}{2}$.

a) Show that

F.G.B. III

I.C.B.

b) Solve the differential equation to show that

(a) $\frac{da}{dx} = \frac{d}{dx} \frac{\partial a}{\partial x} \frac{\partial a}{\partial x} + \frac{\partial a}{\partial x} \frac{\partial a}{\partial x} \frac{\partial a}{\partial x} + \frac$	$\begin{cases} \rightarrow g = A e^{\frac{i k^{3}}{4}} \left(A = e^{i}\right) \\ \qquad $
(b) $\int dy = \int dx dx$ $\Rightarrow \int \int \frac{1}{y} dy = \int \frac{1}{16}x^{2} + C$ $\Rightarrow y = e^{\frac{1}{2}x^{2}+C}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $

Y.C.P.

M2(12

proof

3

1

Question 23 (****)

Hot tea in a cup has a temperature T °C at time t minutes and it is left to cool in a room of constant temperature T_0 .

Newton's Law of cooling asserts that the rate at which a body cools is directly proportional to the excess temperature of the body and the temperature of its immediate surroundings.

a) Assuming the tea cooling in the cup obeys this law, form a differential equation in terms of T, T_0 , t and a proportionality constant k.

b) Show clearly that

 $T = T_0 + A \,\mathrm{e}^{-kt}\,,$

where A is a constant.

Initially the temperature of the tea is 80 °C and 10 minutes later is 60 °C.

The room temperature remains constant at 20 °C.

c) Find the value of t when the tea reaches a temperature of 40 °C.

dΤ $=-k(T-T_0)$, $|t \approx 27.1|$ dt

$(a) \frac{d1}{dt} = -k(T-T_{a})$ $f \qquad The transformation of the tran$	Havebay/J
- stand	
(b) $\frac{1}{T-t} dT = -k dt$	So when to To GO
= J - t dT = J-k dt	$ \begin{array}{c} \Rightarrow 60 = 20 + 60 e^{-i\alpha k} \\ \Rightarrow 40 = 60 e^{-i\alpha k} \end{array} $
$\Rightarrow h _{T-T_{n}} = -k + C$	$ \begin{array}{c} \rightarrow \frac{2}{3} = e^{i\kappa k} \\ \Rightarrow \frac{2}{3} = e^{i\kappa k} \end{array} $
→ T_T = et+C	$s \rightarrow h_{\frac{3}{2}} = lok$
\Rightarrow $\tau - \tau_{e} = A_{e}^{-kt} (t_{e}e^{t})$	$\rangle \rightarrow k \approx \frac{10}{\Gamma} \text{ M} \frac{5}{r} \approx 0.04022$
$\Rightarrow T = T_0 + A_e^{-kt}$ $\Rightarrow T = T_0 + A_e^{-kt}$ $\Rightarrow Broken$	T= 20+60 to -0-04655€
E) which to TOBO, TOD	\$ 40 = 20 + 600.00055£
80 = 20 + Ae"	20 = 60 € 0.04055 €
80 = 20 + A	(-> -= = = = = = = = = = = = = = = = = =
4-60]	= 3 = e ⁰⁻⁰⁴⁰⁵⁵⁽⁻
: [T= 20+60 =]	$ \begin{array}{c} \Rightarrow t \approx 21 \\ \Rightarrow t \approx 100 \\ \end{array} $

Question 24 (****)

At time t hours, the rate of decay of the mass, x kg, of a radioactive substance is directly proportional to the mass present at that time. Initially the mass is x_0 .

 $x = x_0 e^{-kt}$

a) By forming and solving a suitable differential equation, show that

where k is a positive constant.

When t = 5, $x = \frac{1}{4}x_0$.

b) Find the value of t when $x = \frac{1}{2}x_0$.

(a) $\frac{dx}{dt} = -kx$ $\frac{dx}{dt} = -kx$ $\frac{dx}{dt} = -kx$ $\frac{dx}{dt} = -kdx$ $\frac{dx}{dt} = -kdt$ $\frac{dx}{dt} = -kdt$ $\frac{dx}{dt} = -\frac{kdt}{dt}$ $\frac{dx}{dt} = -\frac{kdt}{dt}$ $\frac{dx}{dt} = -\frac{kdt}{dt}$ $\frac{dx}{dt} = -\frac{kdt}{dt}$	(L)	$\begin{array}{c} \overbrace{\alpha = \chi_{e} c^{\frac{1}{4}t}}^{\text{(a)}}\\ \bullet t = 5 5 = \frac{1}{4}\chi\\ f_{e}\chi' = \chi e^{-t}\\ f_{e}\chi' = \chi e^{-t}\\ \xi = b_{e}\\ \overbrace{k = b_{e}}^{\text{(b)}}\\ \overbrace{k = \frac{1}{4}b_{e}}^{\text{(b)}}\\ \overbrace{k = \frac{1}{4}b_{e}}^{\text{(b)}}\end{array}$
Likin two $2 = 3_{e}$ $x_{e} = \lambda e^{e}$ $\frac{4 = 3a}{4}$ $\therefore x = x_{e} e^{-\frac{1}{4}a}$ 4 = 2a		$\begin{array}{c} \bullet uhin_1 = \frac{1}{2}Z_{u} \\ \Rightarrow \frac{1}{2}Z_{u} = Z_{u} = \frac{1}{2}Z_{u} \\ \Rightarrow \frac{1}{2}Z_{u} = Z_{u} = \frac{1}{2}Z_{u} \\ \Rightarrow \frac{1}{2}Z_{u} = \frac{1}{2}Z_{u} = \frac{1}{2}Z_{u} \\ \Rightarrow \frac{1}{2}Z_{u} \\ \Rightarrow \frac{1}{2}Z_{u} = \frac{1}{2}Z_{u} \\ \Rightarrow \frac{1}{2}Z_{u} \\ \Rightarrow \frac{1}{2}Z_{u} = \frac{1}{2}Z_{u} \\ \Rightarrow \frac{1}{2$

Question 25 (****)

At a given instant a lake is thought to contain 20000 fish and the following model is assumed for times t weeks after that instant.

The number of fish N, in tens of thousands is increasing at a rate 0.2N, fish are dying at a rate $0.1N^2$ and fish are harvested at the constant rate of 1000 per week.

a) Show clearly that

 $\frac{dN}{dt} = -\frac{1}{10} \left(N - 1 \right)^2.$

b) Solve the above differential equation giving the answer in the form N = f(t).

- c) Find after how many weeks the number of fish will drop to 16250.
- d) State the long term prospects for the fish population.

the first (horn N=2 (20 0.2N - 0.1N2 - 0.1 10+(t+10) $\frac{10}{0+1}$ +1 = $\frac{dN}{dt} = -\frac{1}{10} \left[N^2 - 2N + 1 \right]$ ++20 $= \frac{dN}{dt} = -\frac{1}{10} \left(N - 1 \right)^2$ N = 1.625 SOWING BY SEPARATING UNRUMBLEF 1.625 = t+20 +w-12dt = 1.62st + 16-25 $\frac{1}{(N-1)^2} dN = -\frac{1}{10} dt$ 0.625t = 3.75 $\Rightarrow ((N-n)^2 dN = \int -\frac{1}{6} dt$ $\frac{t_{+20}}{t_{+10}} \rightarrow 1$ -1++C · PORXAT

t + 20

6, population \rightarrow 10000

Question 26 (****)

An object is moving in such a way so that its coordinates relative to a fixed origin O are given by

 $x = 4\cos t - 3\sin t + 1$, $y = 3\cos t + 4\sin t - 1$

where t is the time in seconds.

Initially the object was at the point with coordinates (5,2).

a) Show that the motion of the particle is governed by the differential equation

$\frac{dy}{dx} = \frac{1-x}{1+y}.$

b) Find, in exact form, the possible values of the *y* coordinate of the object when its *x* coordinate is 2.

 $y = -1 \pm 2\sqrt{6}$

Question 27 (****+)

In a cold winter morning when the temperature of the air is 10°C, Ben the builder pours a cup of coffee out of his flask.

Let x be the temperature of the coffee, in $^{\circ}C$, t minutes after it was poured.

The rate at which the temperature of the coffee is decreasing is proportional to the square of the difference between the temperature of the coffee and the air temperature.

The initial temperature of the coffee is 80°C and ten minutes later the temperature of the coffee has dropped to 40°C.

By forming and solving a suitable differential equation show that

 $x = \frac{20t + 1200}{2t + 15},$

and hence find after how many minutes the coffee will have a temperature of 20°C.

, t = 45

FORMING & DIFFRENTIAL GRUATION	$\frac{1}{252} = A \in$
$ \begin{cases} x \cdot \text{Different (Market C(C))} \\ t \cdot \text{Than (Market)} \\ t - o, x = 80 \\ t - (o, x = 40) \end{cases} \qquad $	$a_{201} \times \begin{pmatrix} \frac{1}{2} + \frac{1}{2} \frac{1}{2} = \frac{1}{2-2} & e^{-\frac{1}{2}} & e^{-\frac{1}{2}} \\ a_{1} + \frac{1}{2} + \frac{1}{2} = \frac{1-2}{21-32} & e^{-\frac{1}{2}} & e^{-\frac{1}{2}} \\ a_{1} + \frac{1}{2} + \frac{1}{21-32} & e^{-\frac{1}{2}} & e^{-\frac{1}{2}} & e^{-\frac{1}{2}} \\ a_{1} + \frac{1}{2} \\ a_{1} + \frac{1}{2} + \frac{1}{$
SOUTING BY SOUTHAND OF OPPLATION OF OPPLATING SOUTHAND OF OPPLATION OF OPPLATIO	$(2i+\pm 2)d + o2oi = x \iff 2i+\pm 2$
$\Rightarrow d_{2} = -k(2-10)^2 dt$	$\Rightarrow 2 = \frac{20t + 200}{2t + 15}$ A sepulsio
	FINALLY WHIN a= 20
$ \rightarrow -(x-b)^{-1} = -kt + C $ $ \Rightarrow \frac{1}{x-b} = At + B $	$\frac{1020}{2-10} = 2(+15)$
APPLY THE CONDITIONS GIVEN	$2(+ \mathcal{H} = 20)$ $\mathcal{H} = 0^{0}$
t_{n_0} , $a=80 \implies \frac{1}{70} = B$ $\implies \frac{1}{2-n} = At + \frac{1}{70}$	<u>t - 4s</u>
$t = 10, \infty = 40 \implies \frac{1}{30} = 10 + \frac{1}{70}$	

Question 28 (****+)

Mould is spreading on a wall of area 20 m^2 and when it was first noticed 2 m^2 of the wall was already covered by this mould.

Let A, in m^2 , represent the area of the wall covered by the mould, after time t weeks.

The rate at which A is changing is proportional to the product of the area covered by the mould and the area of the wall not yet covered by the mould.

After a further period of 2 weeks the area of the wall covered by the mould is 4 m^2

proof

m (2)

(3)t

 $(\lambda + \star (\frac{\lambda}{2})^t)$ - $(\lambda + \star (\frac{\lambda}{2})^t$

By forming and solving a suitable differential equation, show that

FORMING & DIAPARSITIAL EQUATION	RETURNING TO THE INTERPAL
• A_{\pm} Ref controls by locals (μ_{i}^{2}) • $t = \text{THE}$ (veres) $\frac{dA}{dt} = + \frac{k}{k} A(20-A)$ A(20-A) A(2	
$\implies \frac{1}{A(2o-4)} dA = k dt$	$\Rightarrow \frac{4}{20-4} = k e^{\alpha t} (\alpha = 2\alpha k, k = e^{t})$
$\implies \int \frac{1}{A(2n-4)} dA = \int k dt$	$\frac{1}{2}$ (and then t=0, A=2 $\Rightarrow \frac{2}{2^{-2}} = 8e^{\circ}$
$\frac{Q}{h-ac} + \frac{q}{A} = \frac{1}{p} \frac{1}{(h-ac)h}$	$ \begin{array}{c} \longrightarrow & B = \frac{1}{2} \\ \longrightarrow & \frac{A}{20 - A} = \frac{1}{4} e^{xt} \\ \implies & \frac{A}{20 - A} = e^{xt} \end{array} $
$ \begin{array}{c} 0 \left[\mathbf{F} \mathbf{A} = 0 \\ 22\mathbf{P} = \mathbf{i} \\ \mathbf{P} = \frac{1}{2\mathbf{a}} \\ \mathbf{P} = \frac{1}{2\mathbf{a}} \\ \mathbf{Q} = \frac{1}{2\mathbf{b}} \\ \mathbf{Q} = \frac{1}{2$	$\frac{APRY}{aaariaa} \frac{t=2}{t=2}, \frac{\lambda-4}{\lambda} \Rightarrow \frac{X}{\lambda-4} = e^{2x}$ $\Rightarrow \frac{4}{t} = e^{2x}$ $\Rightarrow 2x = h\frac{1}{t}$

Question 29 (****+)

The mass of a radioactive isotope decays at a rate proportional to the mass of the isotope present.

The half life of the isotope is 80 years.

Determine the percentage of the original amount which remains after 50 years.

, Y	<i>S</i> ,	, 64.8%
FOULING & DIARGENTIAL ROUATION		- m= Me-tt
dm dt t = - Lm t mace notice resour Revenue. Secretations - Londe = t dm = - k dt	(M=MAS (54 11)) = THL (MCS) = THL (MCS) = N + 80 m + 1M	"Has use of $\mathcal{B}^{0} \longrightarrow t \circ \mathcal{B}_{0} \ u \sim \frac{1}{2}M$ $\rightarrow \frac{1}{2}M \sim Me^{-\mathcal{B}K}$ $\rightarrow \frac{1}{2} = e^{-\mathcal{B}K}$ $\rightarrow \frac{1}{2} = e^{-\mathcal{B}K}$ $\rightarrow \frac{1}{2} = e^{-\mathcal{B}K}$ $\rightarrow (e^{\mathcal{B}K})^{0} - 2$ $\Rightarrow e^{\mathcal{B}K} = 2^{\frac{1}{2}} \approx 10^{1}05$ (or $k \approx 0.008668$)
⇒ Jtm dm = J-kdt		Finally with t-so
$\implies h _{W} = -kt + C$		\rightarrow $W_{\rm H} = Me^{-Sk}$
$m = e^{-tt+C}$ $m = e^{-tt} e^{c}$ $m = Ae^{-tt} (A = e^{c})$		$ = m = M(e^{w_1})^{S} $ $ = m = M \times 2^{\frac{2}{6}} $
APPLY LONDITION M=M, 4T t=0		$\therefore \text{ Pleternal when RMMARS} = \frac{2^{\frac{2}{2}}}{M} = \frac{1}{2^{\frac{2}{2}}} = 0.648$
⇒ N= 4e° → t= M		

Question 30 (****+)

A small forest with an area of 25 km² has caught fire.

Let A, in km^2 , be the area of the forest destroyed by the fire, t hours after the fire was first noticed.

The rate at which the forest is destroyed is proportional to the difference between the total area of the forest squared, and the area of the forest destroyed squared.

When the fire was first noticed 7 km^2 of the forest had been destroyed and **at that instant** the rate at which the area of the forest was destroyed was 7.2 km² per hour.

a) Show clearly that

$$50\frac{dA}{dt} = \frac{5}{8}(625 - A^2)$$

b) Solve the differential equation to obtain

$$\frac{25+A}{25-A} = \frac{16}{9} e^{\frac{5}{8}t}$$

c) Show further that 14 km² of the forest will be destroyed, approximately 66 minutes after the fire was first noticed.

proof

10.	7 <i>N</i> .	Dr.	X
a) FOOLING THE DIFFEOSTIAL PUTTION	6) SEPARATINO UMRIABLES	APPLY THE CONDITION too to 7	
$ \begin{cases} A= Mith of Receir Demondo (Lag) \\ t= Tabe (No plass) \\ t=0 , A=7 , \frac{dA}{dE} \Big _{Auo} = 72 \\ Ar7 \end{cases} $	$ \Rightarrow 50 dA = \frac{2}{6} (csc - A^2) dt $ $ \Rightarrow \frac{so}{6sc - A^2} dA = \frac{5}{6} dt $ $ \Rightarrow \int \frac{so}{(2c + A)(sc - A)} dA = \int \frac{5}{6} dt $		
$\begin{array}{l} \frac{dA}{d\tau} = + k \left(2s^2 - A^2 \right) \ \mbox{definition} \ \mbo$	$\begin{array}{rcl} & \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	$\Rightarrow \frac{2t+4}{2t-4} = \frac{4}{7}e^{\frac{4}{7}t}$ (c) findus with 4-14 $\Rightarrow \frac{2t+4}{2t-4} = \frac{1}{7}e^{\frac{4}{7}t}$	
APPLY THE CONVERTIONS $\frac{dA}{dE} _{A=7} = 7.2$ $\Rightarrow 7.2 = k(2S^2 - 7^2)$ $\Rightarrow 7.2 = Stek$	$f = q \qquad i = q$	$\frac{\mathrm{d}}{\mathrm{d}}_{g} = \frac{\mathrm{d}}{\mathrm{d}}_{g} = \frac{\mathrm{d}}{\mathrm{d}}_{g} = \frac{\mathrm{d}}{\mathrm{d}}_{g}$ $\frac{\mathrm{d}}{\mathrm{d}}_{g} = \frac{\mathrm{d}}{\mathrm{d}}_{g} = \frac{\mathrm{d}}{\mathrm{d}}_{g}$	
$ \Rightarrow L = \frac{1}{100} $ $ \Rightarrow \frac{1}{100} \left(\frac{1}{100} - \frac{1}{100} \right) $ $ \Rightarrow \frac{1}{100} \left(\frac{1}{100} - \frac{1}{100} \right) $ $ \Rightarrow \frac{1}{100} \left(\frac{1}{100} - \frac{1}{100} \right) $	$\implies h _{224}A - h _{22-A} = \frac{5}{8}C + C$ $\implies h _{\frac{224}{24}-A} = \frac{5}{8}C + C$	1) → \$t~ 0 (2003022) → t ∝ 1.10(4 1/2025	
	$\Rightarrow \frac{X_{1}A}{X_{-}A} = e^{\frac{1}{2}\frac{1}{4}C}$ $\Rightarrow \frac{21_{-}A}{X_{-}A} = e^{\frac{1}{2}\frac{1}{4}}e^{\frac{1}{4}}$ $\Rightarrow \frac{21_{-}A}{X_{-}A} = 8e^{\frac{3}{4}\frac{1}{4}} (B = e^{\frac{1}{4}})$	\Rightarrow t ~ 66.287 www.hy <u>It fitter fit matrix</u>	

Question 31 (****+)

The initial population of a city is 1 million.

Let P be the number of inhabitants in millions, t be the time in years, and treat P as a continuous variable.

The rate at which the population of this city is growing per year, is proportional to the product of its population and the difference of its population from 3 million.

 $\frac{2P}{3-P} = e^{at}$

a) By forming and solving a differential equation, show that

where *a* is a positive constant.

The city doubles its population to 2 million, after ten years.

b) Find the value of a in terms of $\ln 2$.

c) Rearrange the answer in part (a) to show that

The second second second	
(a) $\frac{dP}{dt} = \frac{k P(3-P)}{p}$ $\frac{dP}{p} = \frac{k}{p} \frac{P(3-P)}{P(3-P)}$ $\frac{P(3-P)}{P(3-P)} \frac{dP}{p} = \frac{k}{p} \frac{dt}{p}$ $\frac{P(3-P)}{p} \frac{dP}{p} = \frac{k}{p} \frac{dt}{p} = \int \alpha dt$ $\frac{P(3-P)}{p} \frac{dP}{p} = \frac{k}{p} \frac{dt}{p} = \int \alpha dt$ $\frac{P(3-P)}{p} \frac{dP}{p} = \alpha t + C$ $\Rightarrow \frac{P(3-P)}{p} = \alpha t + C$ $\Rightarrow \frac{P}{3-P} = \alpha t + C$ $\Rightarrow \frac{P}{3-P} = \alpha t + C$ $\Rightarrow \frac{P}{3-P} = \alpha t + C$	$\begin{cases} \frac{1}{P(z, \phi)} \stackrel{\text{def}(z, \phi)}{=} \frac{1}{z_{1}} \stackrel{\text{def}(z, \phi)}{=} \stackrel{\text{def}(z, $
(b) when two Praz $ \Rightarrow \frac{4}{3-2} = e^{i\alpha_{1}} $ $ \Rightarrow 4 = e^{i\alpha_{1}} $ $ \Rightarrow 0a = b.4 $ $ \Rightarrow 0a = \frac{1}{3} b.2 $ (c) $\frac{7p}{3-p} = e^{at} $ $ \Rightarrow 2P = (3-p)e^{at} $ $ \Rightarrow 2P = (3-p)e^{at} $ $ \Rightarrow 2P = 2e^{at} $ $ \Rightarrow 2P = 2e^{at} $	$P = \frac{3e^{h\xi}}{2+e^{h\xi}} \xrightarrow{\text{lumbur hyd}}_{\text{the form}}$ $P = \frac{3e^{h\xi}}{2e^{h\xi}}$ $P = \frac{3}{1+2e^{\frac{2}{h}RH}}$ $P = \frac{3}{1+2e^{\frac{2}{h}RH}}$ $P = \frac{3}{1+2e^{\frac{2}{h}RH}}$ $P = \frac{3}{1+2e^{\frac{2}{h}RH}}$ $R = \frac{3}{1+2e^{\frac{2}{h}RH}}$

Question 32 (****+)

A variable x decreases with time t, both in suitable units, at a rate directly proportional to the value of x^3 at that time.

If the value of x is half of its initial value when t = 3, determine the value of t when x has reduced to 20% of its initial value.

START WITH THE CONDUCT O.D.F.	PLY CONDUTTION WHEN t=3 21= \$2. (HALF)
$\frac{dx}{dt} = -k\alpha^3$	$\implies \left(\frac{1}{2}\chi_0\right)^2 = \frac{\chi_0^2}{D_X 3 + 1}$
SOLLE BY SECARATING UARMALLS	$\rightarrow \frac{1}{4}x_{e}^{2} = \frac{2e^{2}}{3b+1}$
$-\frac{1}{2^{2}}dx = k dt$	$\Rightarrow \frac{1}{4} = \frac{1}{30+1}$
J Jeac	⇒ 3D+1 = 4
$\frac{1}{2}\alpha^2 = kt + c$	⇒ D=I
	$\therefore \begin{array}{c} \chi^2 = \frac{3t_0^2}{\pm \pm 1} \end{array}$
z = x + x	462 a= = = 2 a, (20%)
NOW WENGED AND ARRITMANY STROTTING FAMILE, SAY too , 2=2.	$\left(\frac{L}{\zeta}\chi\right)^2 = \frac{\chi_0^2}{\pm v^2}$
$\Omega_0^2 \approx \frac{1}{b+2}$	$\frac{1}{2\zeta}\chi_0^2 = \frac{\chi_0^2}{t+1}$
$B = \frac{1}{2^2}$	$\frac{1}{2\varsigma} = \frac{1}{t+1}$
$\alpha^2 = \frac{1}{At + \frac{1}{2\lambda}}$	t+1 = 25
Initiative prove the second second	t= 24
$3^2 = \frac{\gamma_e^2}{4\pi^2 + 1}$	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array}$	

t = 24

Question 33 (****+)

An object is released from rest from a great height and allowed to fall down through still air, all the way to the ground.

Let $v \text{ ms}^{-1}$ be the velocity of the object t seconds after it was released.

The velocity of the object is increasing at the constant rate of 10 ms^{-1} every second.

At the same time due to the air resistance its velocity is decreasing at a rate proportional its velocity at that time.

The maximum velocity that the particle can achieve is 100 ms⁻¹

Show clearly that ...

- **a)** ... $10 \frac{dv}{dt} = 100 v$.
- **b**) ... $v = 100(1 e^{-0.1t})$

Question 34 (****+)

An object is placed on the still water of a lake and allowed to fall down through the water to the bottom of the lake.

Let $v \text{ ms}^{-1}$ be the velocity of the object t seconds after it was released.

The velocity of the object is increasing at the constant rate of 9.8 ms^{-1} every second.

At the same time due to the resistance of the water its velocity is decreasing at a rate proportional to the square of its velocity at that time.

The maximum velocity that the particle can achieve is 14 ms

Show clearly that ...

a) ... $20 \frac{dv}{dt} = 196 - v^2$.

b) ... $v = 14 \left(\frac{1 - e^{-1.4t}}{1 + e^{-1.4t}} \right)$

 $\begin{array}{c} (d) \quad (d)$

proof

Question 35 (****+)

Water is pouring into a container at a constant rate of 200 $\text{ cm}^3\text{s}^{-1}$ and is leaking from a hole at the base of the container at a rate proportional the volume V of the water already in the container.

- a) Form a differential equation connecting the volume $V \text{ cm}^3$, the time t in seconds and a proportionality constant k.
- **b**) Show that a general solution of the differential equation is given by

 $V = \frac{200}{k} + A e^{-kt}$,

where A is a constant.

The container was initially empty and after 10 seconds the volume of the water V is increasing at the rate of $100 \text{ cm}^3 \text{s}^{-1}$.

c) Show further that

2000

dV200 - kVdt

Question 36 (****+)

There are 20,000 chickens in a farm and some of them have been infected by a virus. Let x be the number of infected chickens **in thousands**, and t the time in hours since the infection was first discovered.

The rate at which chickens are infected is proportional to the product of the number of chickens infected and the number of chickens not yet infected.

a) Form a differential equation in terms of x, t and a proportionality constant k.

When the disease was first discovered 4000 chickens were infected, and chickens were infected at the rate of 32 chickens per hour.

b) Solve the differential equation to show that

$$t = 100 \ln \left[\frac{4x}{20 - x} \right]$$

c) Rearrange the answer in part (b) to show further that

$$=\frac{20}{1+4e^{-0.01t}}$$

d) If a vet cannot attend the farm for 24 hours, since the infection was first discovered, find how many extra chickens will be infected by the time the vet arrives.

$$\boxed{\frac{dx}{dt} = kx(20 - x)}, \ \boxed{823}$$

Question 37 (****+)

An unstable substance Z decomposes into two different substances X and Y, and at the same time X and Y recombine to reform substance Z. Two parts of Z decompose to one part of X and one part of Y, and at the same time one part of X and one part of Y recombine to reform two parts of Z. As a result at any given time the mass of X and Y are equal.

The rate at which the mass of Z reduces, due to decomposition, is k times the mass of Z present. The rate at which the mass of Z increases, due to reforming, is 4k times the product of the masses of X and Y.

Initially there are 6 grams of Z only.

a) Show that if x grams is the mass of X present, t seconds after the reaction started, then

$$\frac{dx}{dt} = k\left(3 - x - 2x^2\right).$$

3 + 2e

b) Find a solution of the above differential equation, in the form x = f(t).

c) Find the limiting values of the three substances.

d) Show that when the mass of Z is 5 grams, $kt = \frac{1}{5} \ln(\frac{8}{3})$.

(a) $\begin{cases} \chi_{1}^{2} \\ \chi_{2}^{2} \\ \chi_{3}^{2} \\ \chi_{4}^{2} \\ \chi_{4}^{2} \\ \chi_{5}^{2} $	$ \begin{array}{l} \Rightarrow b \left b_{1} - l - b_{1} \right a_{1} a_{1} \right = -5kt + C \\ \Rightarrow b \left \frac{2}{2k+3} \right = -5kt + C \\ \Rightarrow \frac{2}{2k+3} = -ke^{-2kt} \left(f_{1} \cdot e^{k} \right) \\ \hline \left(\frac{2}{2k+3} - \frac{1}{3} - \frac{1}{2} e^{k} \right) \\ \Rightarrow \frac{2}{2k+3} = -\frac{1}{3} e^{-kt} \\ \Rightarrow \frac{2}{2k+3} = -\frac{1}{3} e^{-kt} \\ \Rightarrow \frac{2}{3k+3} e^{kt} = 3 - 3e^{-kt} \\ \Rightarrow \frac{2}{3k$
WHAN Z=5, 6-20=5	48 or Z q y of XqY So e 51 t 32
$\frac{390643}{500} = -\frac{7}{26} \frac{5}{245} = -\frac{7}{26} \frac{5}{26} \frac{5}{2$	$e^{\frac{2}{3}t} = \frac{1}{3} \ln \frac{1}{3}$ $kt = \frac{1}{3} \ln \frac{1}{3}$ $kt = \frac{1}{3} \ln \frac{1}{3}$

 $x \mapsto 1, y \mapsto 1, z \mapsto 4$

Question 38 (*****)

Fungus is spreading on a wall and when it was first noticed $\frac{1}{3}$ of the wall was already covered by this fungus.

Let x represent the proportion of the wall not yet covered by the fungus, t weeks after the fungus was first required. The rate at which x is changing is proportional to the square root of the proportion of the wall not yet covered by the fungus.

When the fungus was first noticed it was spreading at rate that if it this rate was to remain constant from that instant onwards the fungus would have covered the entire wall in 4 weeks.

Determine the proportion of the wall covered by the fungus, 4 weeks after it was first noticed.

 $\frac{5}{6}$

 $-2\left(\frac{2}{3}\right)^{\frac{1}{2}} = -\frac{\sqrt{4}}{\sqrt{2}}(q)$ $-2\sqrt{\frac{2}{5}} = -\frac{\sqrt{6}}{\sqrt{6}}$

 $-2\sqrt{\frac{2}{5}} = -\frac{\sqrt{6}}{5}$ $-2\sqrt{\frac{12}{5}} = -\sqrt{\frac{6}{5}}$

- 46

• $\frac{dx}{dt} = \frac{1}{t} \ln \sqrt{x}^{2}$ Also of the cerve Pleas of the cerve is becausing.	WERKIS IN PORTIONS (BACTION
📀 APPY THE (ONDITION)	1-2 2
2=3) =-1	t=0, a== ; da = 1
BARDEL SOUNDE THE O.D.E	
$-\frac{1}{6} = -k \sqrt{\frac{2}{3}}$	Weeks Weeks E +
$\frac{1}{6} = k \sqrt{\frac{2}{3}}$	Wedes week 4 85 t
K = 문 1호,	$1 - \frac{1}{3} = \frac{2}{3}$
L = 10 12	3 : 4 = 1
K = 2 16	F IT WAS TO THURD
$k = \frac{1}{12}\sqrt{k^2}$	
Sowing the ode by septeration	c untimeres ; we require a w
$\Rightarrow \frac{d\alpha}{dt} = -\frac{1}{12}\sqrt{\epsilon}\sqrt{\alpha}$	
$\Rightarrow \frac{1}{\sqrt{x'}} dx = -\frac{\sqrt{\varepsilon}}{2} dt$	
$\Rightarrow \int_{x_{n} \frac{x_{n}}{2}}^{x} dx = \int_{x_{n} \frac{x_{n}}{2}}^{x_{n} \frac{1}{2}} dx$	
$\Rightarrow \left[2x^{\frac{1}{2}}\right]_{\frac{3}{2}}^{a} = \left[-\frac{cx}{c^{2}}t\right]$	4 o

Question 39 (*****)

The mass of a radioactive isotope decays at a rate proportional to the mass of the isotope present at that instant.

The half life of the isotope is 12 days.

Show that the proportion of the original amount of the isotope left after a period of 30 days is $\frac{1}{8}\sqrt{2}$.

2~	19	∂
din = -km M = MAES PRESES dt = -km t= TALF M_ DAY		$\implies w_{H} = w_{0} e^{-kt}$ $\implies w_{H} = w_{0} e^{-(\frac{k}{12}M^{2})}t$
t=0 manual t=0 manual t=12 matur	CARBITRARY)	$\implies u_1 = u_{0}(e^{\ln 2})^{-12T}$
SPREATING VARIABLES & SOWING		$\implies \boxed{u_{1} = u_{1_0} \times 2^{-\frac{4}{1_0}}}$
- In dw = - L dt	ø	WATERS t= 30
⇒ (the day = (-kdt		$M = M_0 \times 2^{-\frac{30}{12}}$
		M = M0 × 2 5
\Rightarrow ln m = -k+ C		$W_{l} = W_{lo} \times \frac{l}{2.56}$
m = e		2
$\implies m = A \bar{e}^{kE} (A = e^{-k})$		M = M = I
APPCY THE ABST CONDITION, t=0 M=MO		$W_1 = W_6 \times \frac{l}{4\sqrt{\Sigma}}$
Monte" A = Mo		$W_1 = w_{t_0} \times \frac{\sqrt{2^3}}{4\sqrt{2}\sqrt{2^3}}$
= m = More		$M = M \times \frac{\sqrt{2}}{8}$
@ APPLY THE SECOND CONDITION, t=12 m=2	- 1410	I.E. THE PROPORTION LIFT OF THE OPIGNAL UP, IS BUT
1-mo = mo		1/
$\frac{1}{2} = e^{-i2k}$		
2 = e ⁽²⁾		
12k = 142		
$k = \frac{1}{12} \ln 2$		

proof

Question 40 (*****)

A shop stays open for 8 hours every Sunday and its sales, $\pounds x$, t hours after the shop opens are modelled as follows.

The rate at which the sales are made, is **directly proportional** to the time left until the shop closes and **inversely proportional** to the sales already made until that time.

Two hours after the shop opens it has made sales worth £336 and sales are made at the rate of £72 per hour.

a) Show clearly that

=4032(8-t).

b) Solve the differential equation to show

 $x^2 = 4032t(16-t).$

c) Find, to the nearest \pounds , the Sunday sales of the shop according to this model.

The shop opens on Sundays at 09.00. The owner knows that the shop is not profitable once the rate at which it makes sales drops under £24 per hour.

d) By squaring the differential equation of part (a), find to the nearest minute, the time the shop should close on Sundays.

 ± 508 , 14.10 = k(B-t)

" 2 dz = 4032(8-E) 4032 (8-t) dt (d) Request day < 24 = 4032 8-t dt $\propto \frac{dx}{dt} = 4032(8-t)$ 4032 (86-54)+($x^{2}\left(\frac{dx}{dt}\right)^{2} = 4032\left(8 - t\right)^{2}$ 4032 (16t +2)+ $4682 \pm (16 - t) \left(\frac{d_0}{dt}\right)^2 = 4682 \left(8 - t\right)^2$ $\left(\frac{da}{dt}\right)^2 = \frac{4032(g-t)^2}{+(u-t)^2}$ LET the = 24 $\frac{4032(8-t)^2}{t(16-t)}$

Question 41 (*****)

At time t = 0, one litre of a certain liquid chemical is added to a tank containing 20 litres of water. The chemical reacts with the water forming a gas, and as a result of this reaction both the volumes of the water and the chemical are reduced.

At time t minutes since the chemical reaction started, the respective volumes of the chemical and the water used in the reaction, are (1-v) litres and 4(1-v) litres.

The rate at which the volume of the chemical in the tank reduces, is proportional to the product of the volume of the chemical and the volume of the water, still left in the tank.

Given that 2 minutes after the reaction started the volume of the chemical remaining

is $\frac{4}{19}$ of a litre, show that

 $2^t = \frac{v+4}{5v}.$

 $\begin{array}{c} 1-V \ \text{is the transmer or intermediate in the operation is the operation intermediate in$

t=2 V= 19	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	t=p
\Rightarrow $\ln \dot{v} - \ln v+4 + \ln 5$	= _kt.
$\Rightarrow \ln \frac{SV}{V+4} = -kt$	
$\Rightarrow \frac{SV}{V+4} = e^{-bt}$	
· APPCY t= 2 V= the	· FINALLY WE MAY TIDY
$\rightarrow \frac{5(\frac{1}{3})}{\frac{4}{3}+4} = e^{-2k}$	$\Rightarrow \frac{SV}{V+U} = e^{-U}$
$\rightarrow \frac{20}{4+76} = e^{2k}$	$\Rightarrow \frac{\nabla + 4}{\nabla V} = e^{kt}$
$\Rightarrow \frac{20}{80} = e^{-2\xi}$	$\Rightarrow \frac{V+\psi}{SV} = (e^k)^t$
$\rightarrow \frac{1}{4} = e^{2k}$	$\Rightarrow \frac{V+4}{2V} = (e^{142})^{t}$
$\Rightarrow 4 = e^{2k}$ $\Rightarrow hf = ak$	$\Rightarrow \frac{v+4}{sv} = 2^{t}$
\rightarrow $k = l_{H2}$	

proof

Question 42 (*****)

?ŀ

1.2,

At every point P(x, y) which lie on the curve C, with equation y = f(x), the y intercept of the tangent to C at P has coordinates $(0, xy^2)$.

Given further that the point Q(1,1) also lies on C determine an equation for C, giving the answer in the form y = f(x).

You might find the expression for $\frac{d}{dx}\left(\frac{x}{y}\right)$ useful in this question.

2

Question 43 (*****)

In a chemical reaction two substances X and Y bind together to form a third substance Z. In terms of their masses in grams, 1 part of substance X binds with 3 parts of substance Y to form 4 parts of substance Z.

Let z grams be the mass of substance Z formed, t minutes after the reaction started.

The rate at which Z forms is directly proportional to the product of the masses of X and Y, present at that instant.

Initially there were 10 grams of substance X, 10 grams of substance Y and none of substance Z, and the initial rate of formation of Z was 1.6 grams per minute.

a) Show clearly that

$$1000\frac{dz}{dt} = (40-z)(40-3z).$$

b) Solve the differential equation to show that

$$=\frac{40(1-e^{-0.08t})}{3-e^{-0.08t}}$$

c) State, with justification, the maximum mass of the substance Z that can ever be produced.

Question 44 (*****)

A shop opens on Saturdays at 09.00 and stays open for 9 hours has its sales modelled as follows.

The rate at which the sales are made, is **directly proportional** to the time left until the shop closes and **inversely proportional** to the sales already made until that time.

One hour after the shop opens it has made sales worth ± 500 and at that instant sales are made at the rate of ± 2000 per hour.

The owner knows that the shop is not profitable once the rate at which it makes sales drops under $\pounds 200$ per hour.

, 14.00

Use a detailed method to find the time the shop should close on Saturdays.

= - 1 (9-+)2 + 5 × 6 528 x = 0.5 ($\pm 5\infty$ 330 + 165 + 33 $\frac{dx}{dt}$ to = 2 $66 - (9 - t)^2$ $= 66 - (q - f)^2$ A112(da)2 = (q-t) 642 = 8 66 - (9-4)2 APPLY THE CONDITION dz ===== $\Rightarrow \left(\frac{d\alpha}{dt}\right)^2 = \frac{(q-t)^2}{8(46 - (q-t)^2)}$ di = 0.2 = 1 (tro re pre) $\frac{(q-t)^2}{8(6-(q-t)^2)}$

Question 45 (*****)

Initially a tank contains 25 litres of fresh water.

At time t = 0 salt water of concentration 0.2 kg of salt per litre begins to pour into the tank, at the rate of 1 litre per minute, and at the same time the salt water mix begins to leave the tank at the rate of 1.5 litre per minute.

The concentration of the salt water mix in the tank is thereafter maintained uniform, by constant stirring.

Let x kg be the mass of salt dissolved in the water in the tank, at time t minutes.

a) Show by detailed workings that

dxdt 50-

b) Verify by differentiation that the general solution of the differential equation of part (a), is

$$x = \frac{1}{10}(50-t) + A(50-t)^3,$$

where A is an arbitrary constant.

Determine as an exact simplified surd the maximum value of x.

(a) FRESTUT THE VOLUME OF THE WATER V = 25 - 0.52 BY INSPECTIO NOW THE SALT	N ISO TAN'E <u>SUPPIE</u> IN SO MINUTES	ତ
$ \Rightarrow \frac{d}{dt} = \frac{1}{5} \times \left[- \frac{x}{5x} \right]^{-1} $ $ \Rightarrow \frac{d}{dt} = \frac{1}{5} - \frac{3x}{5x} $	Alternative from the power of	
$ \begin{array}{l} (b) 2 = \frac{1}{b}(2n+1) + \lambda(2n+1)^3 \\ \Rightarrow \frac{d_1}{dt} = -\frac{1}{b^2} - 3\lambda(2n+1)^2 \\ \xrightarrow{\text{Mon Solumine Boolegoide}} \\ \Rightarrow \frac{d_1}{dt} = -\frac{1}{b^2} - 3\frac{2}{a^2t} - \frac{1}{b^2} \\ \Rightarrow \frac{d_1}{dt} = -\frac{1}{b^2} - \frac{3}{a^2t} - \frac{1}{b^2} \\ \Rightarrow \frac{d_1}{dt} = \frac{1}{b^2} - \frac{3}{a^2t} - \frac{1}{b^2} \\ \xrightarrow{\text{Mon Solumine Boolegoide}} \end{array} $	$\left[\frac{1}{4(g_0-\xi)^2} = \frac{x}{2^{1-g_1}} - \frac{1}{10}\right]$	

10

 $x_{\rm max}$

Question 46 (*****)

The point P lies on the curve C with equation y = f(x).

It is further given that C passes through the origin O and lies in the first quadrant.

The normal to C at P meets the x axis at the point A.

The point B is the foot of the perpendicular of P onto the x axis.

Given that for all positions of P,

 $\left|OA\right|^2 = 9\left|OB\right|,\,$

determine in simplified form an equation of C.

elet the point P your Walnasie
@ THGS GRAAINNT AT P IS GUNS BY
$\frac{dy}{dz}\Big _{p} = \frac{dY}{dX}$
· EQUATION OF THE NORMAL # P(X,Y) IS GIVEN BY
$g - Y = -\frac{1}{g_{X}}(x - X)$
$\partial - \lambda = - \frac{q_X}{q_X}(\pi - x)$
WHAN (y=0 (ar POWT A)
$-\gamma = -\frac{d\chi}{d\gamma}(x - \chi)$
$\gamma \frac{d\gamma}{dx} = \infty - X$
X = X + Y dX d- x to rep of A
$(a_0/e^2 = 2 AO)$
$\left(\chi + \gamma \frac{d\gamma}{d\chi}\right)^{a} = 9\chi$
$\chi + \gamma \frac{dy}{dx} = +3\chi^{\frac{1}{2}}$

Ydy = $3x^{\frac{1}{2}} - x dx$ талин тин окал С=0 $y^{2} = 4\chi^{\frac{3}{2}} - \chi^{2}$ BOT WONE WES IN HE FIRST QUADRAWS $Y = \sqrt{4X^{\frac{1}{2}} - X^{2}}$

4x

(*****) **Question 47**

An unstable substance Z decomposes into two different substances X and Y, and at the same time X and Y recombine to reform substance Z. Two parts of Z decompose to one part of X and one part of Y, and at the same time one part of Xand one part of Y recombine to reform two parts of Z. As a result at any given time the mass of X and Y are equal.

The rate at which the mass of Z reduces, due to decomposition, is k times the mass of Z present. The rate at which the mass of Z increases, due to reforming, is 4ktimes the product of the masses of X and Y.

proof

-Sk dt

Initially there are 6 grams of Z only.

Show that when the mass of Z is 5 grams, $kt = \frac{1}{5} \ln\left(\frac{8}{3}\right)$.

 $= \left[\ln |\alpha_{-1}| - \ln |\alpha_{+3}| \right]^{2} = \left[-\operatorname{Skt} \right]_{*}^{t}$ $=(h_{+}-h_{+})-(h_{-}-h_{3})=$ de=-kz+4kay => ln = - ln4 + lm3 $\Rightarrow \frac{d}{dt}(6-2\alpha) = -\frac{1}{6}(6-2\alpha) + \frac{1}{12}\alpha^{2}\alpha^{2}$ => 5kt = 1n4 - 1u3 - 1n4 $= -2 \frac{dx}{dt} = -k \left[6 - 2\alpha - 4\alpha^2 \right]$ \implies 5kt = $|\eta \downarrow - |\eta \downarrow + |\eta \downarrow$ $= -\frac{\mathrm{d}x}{\mathrm{d}t} = 4(2x^2 + x - 3)$ = stt = h B 2-31,800 QML - TTA $\Rightarrow kt = \frac{1}{5} h \frac{8}{3}$ $= \frac{1}{2k+\alpha-3}$ da = -k dt $\exists \frac{1}{(2x+3)(x-1)} dx = -k dt$ METAL PLANTIQUE & COULD AS ANTIPA $\frac{1}{3}$ + $\frac{-\frac{2}{3}}{2x+3}$ $\int \frac{1}{\alpha - i} - \frac{2}{2\chi + 3} dx = \int$

Created by T. Madas

```
Question 48 (*****)
```

The point P and the point R(0,1) lie on the curve with equation

$$f(y) = g(x), |y| \leq 1.$$

The tangent to the curve at P meets the x axis at the point Q.

Given that |PQ|=1 for all possible positions of P on this curve, determine the equation of this curve, in the form f(y) = g(x).

 $ye^{\sqrt{1-y}}$

 $= e^{\pm x}$

The final answer may not contain natural logarithms.

DIFFERENTIAL EQL. VITH RELATED VARIABLES TASTRAILS COM I. Y. C.P. MARASTRAILS COM

Question 1 (***)

A container is in the shape of a hollow right circular cylinder of base radius 50 cm and height 100 cm.

The container is filled with water and is standing upright on horizontal ground. Water is leaking out of a hole on the side of the container which is 1 cm above the ground.

Let *h* cm be the height of the water in the container, where *h* is measured from the ground, and *t* minutes be the time from the instant since h = 100.

The rate at which the volume of the water is decreasing is directly proportional to the square root of the height of the water in the container.

a) By relating the volume and the height of the water in the container, show that

dh dt

where A is a positive constant.

volume of a cylinder of radius r and height h is given by $\pi r^2 h$

When t = 2, h = 64

b) Determine the value of t, by which no more water leaks out of the container.

	-126		
٩	FORM A DIFFERENTIAL EQUATION		<u>^</u>
	$\Rightarrow \frac{dV}{dt} = -kh^{\frac{1}{2}} \leftarrow Ro$	THE WORKT	
	$\Rightarrow \frac{dv}{dh} \times \frac{dh}{dt} = -kh^{\frac{1}{2}}$		
	\Rightarrow (2000T) × $\frac{dh}{dC} = -k_{h}^{\frac{1}{2}}$		181
	=) dh = - k ht	$V = \pi \Gamma^2 h^{\eta}$ $V = \pi x s_0^2 x h$	
	$\Rightarrow \frac{dL}{dt} = -Ah^{\frac{1}{2}}$	V = 10.00 m V = 2500 m $\frac{1}{2} V = 2500 \text{ m}$	
b)	SCUING THE DIFFERSIVE EQUATION BY	SEPARATING UNUMBLES	
	$\implies dh = -\lambda h^{\frac{1}{2}} dt$		FINA
	⇒ thà ch - A dt		TRUM
	$\Rightarrow h^{\frac{1}{2}}dh = -Adt$		
	$\Rightarrow \int b^{-\frac{1}{2}} dl = \int -A dt$		
	$\Rightarrow 2k^{\pm} = -At + C$		
	P		- C

Py con	DATTION t=0, h=100
11	2×100 = 0+C
	C = 20
	2ht = 20 - 4t
7	2h- 11 10 11
K CONDI	NON t=2, h=64
-	2×642 = 20 - A×2
⇒	16 = 20-2A
-	24 = 4
	A=2.
->	4-2
-	$2h^{\pm} = 20 - 2t$
3	h= 10-t
y with	wheel
	1 = 10 - t
-	1~ 10 - f
->	t=q
	-/
	//
	·

t=9

Question 2 (***)

The shape of a weather balloon remains spherical at all times. It is filled with a special type of gas and is floating at very high altitude.

The rate at which the volume of the balloon is decreasing is directly proportional to the square of the surface area of the balloon at that instant.

Let r m be the radius of the balloon, t hours since r = 5.

a) By relating the volume, the surface area and the radius of the weather balloon show that

 $\frac{dr}{dt} = -kr^2,$

where k is a positive constant.

volume of a sphere of radius r is given by $\frac{4}{3}\pi r^3$

surface area of a sphere of radius r is given by $4\pi r^2$

When t = 10, r = 4.8.

b) Determine the value of t when r = 4

= 60

Question 3 (***+)

At time t seconds, a spherical balloon has radius r cm and volume V cm³.

Air is pumped into the balloon so that its volume is increasing at a rate inversely proportional to its volume at that time.

a) Show clearly that

 $\frac{dr}{dt} = \frac{A}{r^5} ,$

where A is a positive constant.

The initial radius of the balloon is 2 cm and when t = 1 it has increased to 3 cm.

b) Show further that

 $r^6 = 665t + 64$.

c) Find the value of r when t = 6.

volume of a sphere of radius r is given by $\frac{4}{3}\pi r^3$

$\frac{dv}{dt} = k \frac{1}{V}$	(b) $\frac{dr}{dt} = \frac{d}{t^3}$
$k \left[\frac{dv}{dt} = \frac{k}{v} \right]$	$r^{s}dr = A dt$
$\frac{dv}{dr} \times \frac{dr}{dt} \approx \frac{k}{V}$	$\int r^{s} dr = \int A dt$ $\frac{1}{2}r^{s} = At + C$
BOT BATHONIU 7	$t^c = Ac + B$
$\begin{cases} Shylexat \\ V = 4\pi r^{3} \end{cases}$	· Whin two r=2
$\frac{dW}{dr} = 4\pi r^2$	64 - B
SUBSTRIFE S	(⁶ = At+64 • whm t=1 r=3
C O.DE C A MANIBURY	729 = 4 + 64
+twice {	A = 665
$4\pi r^2 s \frac{dr}{dt} = \frac{k}{\frac{4}{3}\pi r^3}$	1. T' = GSt+64 AS REPARAD
$\frac{dr}{dt} = \frac{k}{\frac{4}{3}\pi^3 \pi^3 \pi^2} \left($	$r^{b} = 665 \times 6 + 64$ $r^{b} = 405 \psi$
an e k	Γ = 3.95
$\frac{d\Gamma}{dt} = \frac{3k}{16\pi^2 \ell^2}$	}
dr = A)
A= 34	N
(Ian A	2

Question 4 (***+)

A container is the shape of a hollow **inverted** right circular cone has base radius 20 cm and height 80 cm. The container is filled with water and is supported in an upright position.

Water is leaking out of a hole at the vertex of the cone.

Let *h* cm be the height of the water in the container, where *h* is measured from the vertex of the cone, and *t* minutes be the time from the instant since h = 80.

The rate at which the volume of the water is decreasing is directly proportional to the height of the water in the container.

a) By relating the measurements of the container to that of the volume of the water in the container, show that

 $\frac{dh}{dt} = -\frac{A}{h},$

where A is a positive constant.

volume of a cone of radius r and height h is given by $\frac{1}{3}\pi r^2 h$

When t = 1, h = 78.

b) Determine the value of *t* by which all the water would have leaked out of the container.

 $t \approx 20.25...$

Question 5 (****)

Water is drained from a large hole at the bottom of a tank of height 4 m.

Let $V \text{ m}^3$ and x m be the volume and the height of the water in the tank, respectively, at time t minutes since the water started draining out.

Suppose further that the shape of the tank is such so that V and x are related by

$V = \frac{5}{3}x^3.$

The rate at which the volume of the water is drained is proportional to the square root of its height, so that it can be modelled by the differential equation

 $\frac{dV}{dt} = -kx^{\frac{1}{2}}.$

where k is a positive constant.

a) Given that it takes 32 minutes to empty the full tank, show that ...

i. ... $5x^{\frac{3}{2}}\frac{dx}{dt} = -k$.

ii. ... $t = 32 - x^{\overline{2}}$.

[continues overleaf]

[continued from overleaf]

When the tank is completely empty, water begins to pour in at the constant rate of 0.5 m^3 per minute and continues to drain out at the same rate as before.

b) Show further that ...

.C.

I.C.B.

 $\mathbf{i.} \quad \dots \quad \frac{dx}{dt} = \frac{1 - 4\sqrt{x}}{10x^2}$

ii. ... the height of the water cannot exceed $\frac{1}{16}$ of a metre.

2t= 64-21 a) CEING THE O.D.E GUM t= 32-2⁵ $(t) = \frac{du}{dt} = -kx^{\frac{1}{2}}$ A LIPUIRHO 25MODELLING THE O.D.E BY LOOKING AT THE CARGINAL O.D.C $\frac{dv}{dx} \times \frac{dx}{dt} = -kx^{\frac{1}{2}}$ $\frac{d_1}{dt} = -tx^{\frac{1}{2}} + \frac{1}{2}$ = -kat 52° dz = 4 4 1482467 16 004THZ.IN. AN 2495867 005TTH/7 8497 $V = \frac{5}{3} x^3$ THE BATHS AS BIFORE $\frac{dN}{d\lambda} = 5\lambda^2$ dy = - +2 t JUN 2000/10 -> Satat = -k dt = + - 2a2 $\int \operatorname{St}^{\frac{3}{2}} d\lambda = \int -k dt$ \Rightarrow $2a^{\frac{5}{2}} = -kt + C$ with too, a=4 (GUN) → 2×4⁵ = - k×0+c → c = 64 (II) framer THE ⇒ 22[€]~ 64- Et $\frac{1}{1} - 4\alpha^{\frac{1}{2}} = 0$ with tase (TANE IS $\Rightarrow 2xo^{\frac{1}{2}} = G_{4} - \frac{1}{2}x32$ $\Rightarrow 0 = 64 - 321$ $\Rightarrow 1 = 2$ = 2x2- at- at The oper operation DANAE な 長) IT CANART G

, proof

.C.P.

Mana,

2

Question 6 (****)

Gas is kept in a sealed container whose volume, $V \text{ cm}^3$, can be varied as needed.

The pressure of the gas P, in suitable units, is such so that at any given time the product of P and V remains constant.

The container is heated up so that the volume of the gas begins to expand at a rate inversely proportional to the volume of the gas at that instant.

Let t, in seconds, be the time since the volume began to expand.

a) Show clearly that

dP

where A is a positive constant.

When t = 0, P = 1 and when t = 2, $P = \frac{1}{3}$.

b) Solve the differential equation to show that

, proof

Question 7 (****)

A cylindrical tank has constant radius of 0.9 m.

The volume, $V \text{ m}^3$, of the water in the tank has height h m.

Water can be poured into the tank from a tap at the top of the tank and can be drained out of a tap at the base of the tank, which are initially both turned off.

Water then starts pouring in at the constant rate of 0.36π m³ per minute and at the same time water begins to drain out at the rate of $0.45\pi h$ m³ per minute.

a) Given further that t is measured from the instant when both taps were turned on, show that

 $9\frac{dh}{dt} = 4 - 5h.$

Initially the water in the tank has a height of 4 m.

b) Solve the above differential equation to show that

$$h = \frac{4}{5} \left(1 + 4 e^{-\frac{5}{9}t} \right)$$

c) Find the value of t when h = 1.6.

 $\frac{18}{5}\ln 2 \approx 2.50$

(i) $W = 0.36\pi$	
$OOT FOOLD: \frac{dN}{dT} = -0.45 \pi h$	
NET FLOW: du = 0.36T-0	tsth {
	2 2 111119 2
$\frac{dv}{dt} \approx \frac{dt}{dt} = 0.36\eta$	$\int d^{\varepsilon} \tau \cdot \pi = V \left\{ d^{\varepsilon} \pi^{2} + 0 - 1 \right\}$
0.807 dh = 0.307	/-0-45th { V= TT (0.9) h {
81 dh = 36 -	
9 th = 4-5	sh (dy
	As REFUREAD
(b) $9\frac{dh}{dt} = 4-sh$	{ yourse
$\Rightarrow \frac{9}{x-x} dx = 1 dt$	$\int dt = \frac{q}{2} + \frac{q}{2} e^{-\frac{q}{2}t}$
	{ h- #[1+4=5+7 //
$\Rightarrow \int \frac{q}{4-sh} dh = \int l dt.$	Ar Elipoiero
$\Rightarrow -\frac{q}{5} \ln 4-sh = \pm + C$	(c) where h=1.6
	$1.6 = \frac{4}{2}\left(1 + 4e^{\frac{2}{3}t}\right)$
\Rightarrow $h_1 4 - Sh_1 = -\frac{5}{5} + + \frac{5}{5} + \frac{5}{5} + $	2=1+403t
\Rightarrow 4-Sh = $e^{\frac{\pi}{2}t+C}$	1 = 4 = 3 t
-> 4-51 = Ae 3 (A=e	$\left \frac{1}{4} = e^{\frac{2}{6}} e^{\frac{1}{6}} \right $
$\Rightarrow 4 + Ae^{\frac{5}{5}t} = sh$	$4 = e^{\frac{3}{3}t}$
$\Rightarrow \left[h = \frac{4}{5} + Ae^{\frac{5}{5}t}\right]$	$hvt = \frac{2}{2}t$
-> (u- 1+ ue	$(t = \frac{9}{2} + \frac{9}{2} +$
why t=0 h=4	(t~2.50 /
$4 = \frac{4}{c} + Ac^*$	1
$A = \frac{16}{5}$	

Question 8 (****+)

The shape of a weather balloon remains spherical at all times. It is filled with a special type of gas and is floating at very high altitude. Gas started escaping from its valve so that the rate at which its surface area is decreasing is directly proportional to the square of its surface area at that time.

Let V m³ be the volume of the balloon, t hours since V = 1000.

a) By relating the volume, the surface area and the radius of the weather balloon show that

 $\frac{dV}{dt} = -kV^{\frac{5}{3}},$

where k is a positive constant.

volume of a sphere of radius r is given by $\frac{4}{3}\pi r^3$

surface area of a sphere of radius r is given by $4\pi r^2$

When t = 20, V = 729.

b) Determine the value of t when V = 512.

A.

≈48

Question 9 (****+)

A water tank has the shape of a hollow inverted hemisphere with a radius of 1 m.

It can be shown by calculus that when the depth of the water in the tank is h m, its volume, V m³, is given by the formula

$$V=\frac{1}{3}\pi h^2(3-h).$$

Water is leaking from a hole at the bottom of the tank, in m³ per hour, at a rate proportional to the volume of the water left in the tank at that time.

a) Show clearly that

$$\frac{dh}{dt} = -\frac{kh(3-h)}{3(2-h)}$$

where k is a positive constant.

The water tank is initially full.

b) Solve the differential equation to show further that

 $3h^2 - h^3 = 2e^{-kt} \, .$

proof

+ ENPURION

NON OUT THE INTERBATION FORMING AN O.D.E $\int \frac{2}{h} - \frac{1}{3-h} dh = -kt + C$ → dv = ~ kV 2h|h| + h|3-h| = -kt + C $\rightarrow \frac{dv}{dk} \times \frac{dk}{dt} = -kV$ $|b||^2 + |b||_3 - |b|| = -bt + C$ => x(21-12) d1 = -k x 1-x (2-1)
$$\begin{split} & \forall = \frac{1}{3} \mathfrak{m}_{1}^{2} (\mathfrak{a} - \mathfrak{h}) \\ & \forall = \pi (\mathfrak{h}^{2} - \frac{1}{3} \mathfrak{h}^{3}) \end{split}$$
 $|h||h^2(3-h)| = -h_{t+C}$ $|h^2(3-h)| = e^{-h_{t+C}}$ $\Rightarrow \int (2-h) \frac{dh}{dt} = -\frac{1}{3}kh^{2}(3-h)$ $\frac{du}{dh} = \pi \left(2h - h^2 \right)$ $\implies 3h^2 - h^3 = e^{it} \times e^{it}$ \Rightarrow $(2-h) \frac{dh}{dt} = -\frac{1}{2}kh(3-h)$ $\rightarrow 3k^2 - k^3 = Ae^{kt}$ $\frac{dL}{dL} = -\frac{kh(3-l)}{3(2-h)}$ As Etgener they the within analitral too, but (without now) SCRARATING . WARLAPHES $\frac{3(2-h)}{h(3-h)} dh = -k dt$ $\therefore \quad \underline{3l^2 - l_1^3} = 2e^{-l_1^4}$ $\rightarrow \int \frac{3(2-k)}{h(3-k)} dh = \int -k dt$ OBTAIN THE PARTIAL ABACTIONS $\equiv \frac{A}{L} + \frac{8}{3-1}$ A(3-k) + Bk6 = 3A A = 2 $\frac{3(2-k)}{(k-1)} = \frac{2}{k} - \frac{1}{3-k}$

Question 10 (****+)

A large water tank is in the shape of a cuboid with a rectangular base measuring 10 m by 5 m, and a height of 5 m.

Let h m be the height of the water in the tank and t the time in hours.

At a certain instant, water begins to pour into the tank at the constant rate of 50 m^3 per hour and at the same time water begins to drain from a tap at the bottom of the tank at the rate of $10h \text{ m}^3$ per hour.

a) Show clearly that

 $5\frac{dh}{dt} = 5 - h \, .$

b) Show further that it takes 5ln3 hours for the height of the water to rise from 2 m to 4 m.

THE ARE ARE		
a) Freehalds. And on the field of the free field of the	$\begin{array}{c} \hline \\ V = boxeta \ or \ write \\ V = S_{N}(c)A_{1} \\ V = S_{N}(c)A_{1} \\ V = S_{N}(c)A_{1} \\ S_{1} \\ S_{2} \\ S_{2}$	$ \begin{array}{c} \longrightarrow & h_{\pm} & \underline{x} + A_{\pm}^{-1} \underline{k}^{-1} \\ \hline \underline{Ne(a_{\pm})} & \underline{b} = 0 & \underline{h} = 2 \\ 2 & \underline{x} + A_{\pm}^{-0} \\ 2 & \underline{z} + A \\ A & \underline{z} - 2 \\ & \vdots & \underline{h} = \underline{x} - 3\underline{e}^{-\frac{1}{2}\underline{k}} \\ \hline \underline{NH(a_{\pm})} & \underline{h} = \underline{k} \\ \hline \underline{NH(a_{\pm})} & \underline{h} = \underline{k} \\ \hline \underline{A} & \underline{z} - 3\underline{e}^{-\frac{1}{2}\underline{k}} \\ \hline \underline{A} & \underline{z} - 3\underline{e}^{-\frac{1}{2}\underline{k}} \\ \underline{A} & \underline{z} - 3\underline{z} \\ \underline{A} & \underline{z} \\ \underline{A} & \underline{z} \\ \underline{A} & \underline{A} & \underline{z} \\ \underline{A} & \underline{A} & \underline{A} & \underline{A} \\ \underline{A} & \underline{A} & \underline{A} & \underline{A} & \underline{A} \\ \underline{A} & \underline{A} & \underline{A} & \underline{A} & \underline{A} \\ \underline{A} & \underline{A} & \underline{A} & \underline{A} & \underline{A} & \underline{A} \\ \underline{A} & \underline{A} & \underline{A} & \underline{A} & \underline{A} & \underline{A} \\ \underline{A} & \underline{A} & \underline{A} & A$
b) South by sample of there is the formation of the set of the se		$e^{S^2 - 3}$ $ft = k_3$ $\frac{t = Sk_3}{2}$

proof

Question 11 (****+)

Water is leaking out of a hole at the base of a cylindrical barrel with constant cross sectional area and a height of 1 m.

It is given that t minutes after the leaking started, the volume of the water left in the barrel is $V \text{ m}^3$, and its height is h m.

It is assumed that the water is leaking out, in m^3 per minute, at a rate proportional to the square root of the volume of the water left in the barrel.

a) Show clearly that

 $\frac{dh}{dt} = -B\sqrt{h} ,$

where B is a positive constant.

The barrel was initially full and 5 minutes later half its contents have leaked out.

b) Solve the differential equation to show that

$$\sqrt{h} = 1 - \frac{1}{10} (2 - \sqrt{2})t$$

c) Show further that

 $t=5\left(2+\sqrt{2}\right)\left(1-\sqrt{h}\right).$

d) If T is the time taken for the barrel to empty, find h when $t = \frac{1}{2}T$.

$\begin{array}{c} 0 \text{ver All forms that} \\ \Rightarrow \frac{d_{1}}{d_{1}} = -k_{1}k_{2}^{\frac{1}{2}} \\ \Rightarrow \frac{d_{1}}{d_{2}} = -k_{1}k_{2}^{\frac{1}{2}} \\ \Rightarrow \frac{d_{1}}{d_{1}} = -k_{2}k_{2}^{\frac{1}{2}} \\ \qquad \frac{d_{1}}{d_{1}} = -k_$
$\begin{array}{c c} \bullet & d_{P^{CM}(r)} & constrain \\ \hline & h^{t} = I + P_{t} \\ \hline & h^{t} = I + P_{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} = I - \frac{h}{h} \left(2, G \right) \\ \hline & h^{t} = I - P_{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} = I - h^{t} \left(2, G \right) \\ \hline & h^{t} = I - P_{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} = I - h^{t} \left(2, G \right) \\ \hline & h^{t} = I - H^{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} = I \\ \end{array} \begin{array}{c} \bullet & h^{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} = I \\ \end{array} \begin{array}{c} \bullet & h^{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} \end{array} \begin{array}{c} \bullet & h^{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} \end{array} \begin{array}{c} \bullet & h^{t} \\ \end{array} \begin{array}{c} \bullet & h^{t} \end{array} \begin{array}{c} \bullet \end{array} \begin{array}{c} \bullet & h^{t} \end{array} \end{array} \begin{array}{c} \bullet & h^{t} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \bullet & h^{t} \end{array} \begin{array}{c} \end{array} \begin{array}{c} \bullet & h^{t} \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \bullet & h^{t} \end{array} \end{array} \begin{array}{c} \end{array} \end{array} \begin{array}$

 $-\frac{1}{10}(2-\sqrt{2}) \frac{1}{2}$ $-\frac{1}{10}(2-\sqrt{2}) \times \frac{5}{2}(2+\sqrt{2})$

Question 12 (****+)

A snowball is melting and its shape remains spherical at all times. The volume of the snowball, $V \text{ cm}^3$, is decreasing at a rate proportional to its surface area.

Let t be the time in hours since the snowball's surface area was 4 m^2

Sixteen hours later its surface area has reduced to 2.25 m^2 .

By forming and solving a suitable differential equation, determine the value of t by which the snowball would have completely melted.

= 64

volume of a sphere of radius r is given by $\frac{4}{3}\pi r^3$

surface area of a sphere of radius r is given by $4\pi r^2$

Created by T. Madas

 $\Rightarrow 0 = -\frac{1}{32(36\pi)^{\frac{1}{6}}}t + \frac{2}{(36\pi)^{\frac{1}{6}}}t$

Question 13 (****+)

Water is pouring into a long vertical cylinder at a constant rate of $2400 \text{ cm}^3 \text{s}^{-1}$ and leaking out of a hole at the base of the cylinder at a rate proportional to the square root of the height of the water already in the cylinder.

The cylinder has constant cross sectional area of 4800 cm^2 .

a) Show that, if H is the height of the water in the cylinder, in cm, at time t seconds, then

$$\frac{dH}{dt} = \frac{1}{2} - B\sqrt{H} ,$$

where *B* is positive constant.

The cylinder was initially empty and when the height of the water in the cylinder reached 16 cm water was **leaking out of the hole**, at the rate of $120 \text{ cm}^3 \text{s}^{-1}$.

b) Show clearly that

$$\frac{dH}{dt} = \frac{80 - \sqrt{H}}{160}$$

c) Use the substitution $u = 80 - \sqrt{H}$, to find

[continues overleaf]

[continued from overleaf]

2A

F.G.B. Ma

I.C.B.

d) Solve the differential equation in part (b) to find, to the nearest minute, the time it takes to fill the cylinder from empty to a height of 4 metres.

Created by T. Madas

.Y.G.B.

madası,

Question 14 (****+)

At time t seconds, a spherical balloon has radius r cm and surface area $S \text{ cm}^2$

The surface area of the balloon is increasing at a constant rate of 24π cm²s⁻¹.

a) Show that

 $\frac{dr}{dt} = \frac{3}{r}.$

At time t seconds the balloon has volume $V \text{ cm}^3$.

b) By considering $\frac{dV}{dr} \times \frac{dr}{dt}$, show further that

$$\frac{dV}{dt} = \sqrt[3]{1296\pi^2 V} \ .$$

c) Solve the differential equation of part (b) to show

$$V^{\frac{2}{3}} = \frac{2}{3} \left(1296\pi^2 \right)^{\frac{1}{3}} t + \text{constant} .$$

d) Given that the initial volume of the balloon was $64\pi \text{ cm}^3$, find an exact simplified value of V when $t = \sqrt[3]{36}$.

volume of a sphere of radius *r* is given by $\frac{4}{3}\pi r^3$ surface area of a sphere of radius *r* is given by $4\pi r^2$

, $V = 80\pi\sqrt{10} \approx 795$

[solution overleaf]

Question 15 (****+)

A large cylindrical water tank has a height of 16 m and a horizontal cross section of constant area 20 m^2 .

Water is pouring into the tank at a constant rate of 10 m³ per hour and leaking out of a tap at the base of the tank at a rate \sqrt{x} m³ per hour, where x is the height of the water in the tank, in m, at time t hours.

a) Show that

 $20\frac{dx}{dt} = 10 - \sqrt{x} \; .$

The water in the cylinder had an initial height of 9 m.

b) Solve the differential equation of part (**a**) to find, correct to the nearest hour, the time it takes to fill up the tank.

a) STAT MORELINK & A ROUGH IN France MERRICALS = $-\sqrt{2}$ IN France MERRICALS = $-\sqrt{2}$ MIT France MERRICALS = 4 $\frac{dy}{dx} = \frac{1}{dt} = 10 - \sqrt{2}$ $\frac{dy}{dx} = \frac{1}{dt} = \frac{1}{2}$ $\frac{dy}{dx} = \frac{1}{dt} = \frac{1}{2}$ $\frac{dy}{dx} = \frac{1}{dt} = \frac{1}{2}$ BY SUBSTITUEAD AT THE INTERAL of THE LIFE	$ \int_{u=7}^{u} \frac{1}{u} \left[-\frac{1}{2}(u-u) + \frac{1}{4} \right] = \left[t \right]_{u}^{t} $ $ \Rightarrow \int_{u=7}^{t} \frac{1}{u} \left[-\frac{1}{2}(u-u) + \frac{1}{4} \right] = \left[t \right]_{u}^{t} $ $ \Rightarrow \int_{0}^{t} \frac{1}{2}(\frac{1}{u}-\frac{1}{4}) + \frac{1}{4} = t $ $ \Rightarrow t = 40 \int_{0}^{t} \frac{1}{u-u} + \frac{1}{4} = t $ $ \Rightarrow t = 40 \int_{0}^{t} \frac{1}{u-u} + \frac{1}{4} = t $ $ \Rightarrow t = 40 \int_{0}^{t} \left[-\frac{10}{u} + \frac{1}{4} + \frac{1}$
$\begin{array}{c} u_{\pm} = v_{0} - u_{1}^{2} \\ \sqrt{u_{2}^{2}} = v_{-1} \\ \alpha_{2} \sim (v_{0} - u_{1})^{2} \\ \frac{\partial u_{1}}{\partial \alpha_{1}} = -2.(v_{0} - u_{1}) \\ \frac{\partial u_{2}}{\partial \alpha_{2}} = -2.(v_{0} - u_{1}) \end{array}$	

 $t \approx 22$

Question 16 (*****)

A water tank has the shape of a hollow inverted hemisphere of radius r cm.

The tank has a hole at the bottom which allows the water to drain out.

Let V, in cm^3 , and y, in cm, be the volume and the height of the water in the tank, respectively, at time t seconds.

At time t = 0 the empty tank is placed under a running water tap. The rate at which the volume of the water in the tank is changing is proportional to the difference between the tank's constant diameter and the height of the water at that instant.

 $V = \frac{1}{3}\pi \left(3ry^2 - y^3\right).$

It can be shown by calculus that V and y are related by

a) Show clearly that ...

i. $\dots \frac{dy}{dt} = \frac{k}{\pi y}$,

where k is a positive constant.

ii. ... the time it takes to fill the tank is $\frac{\pi r^2}{2k}$ seconds.

[continues overleaf]

[continued from overleaf]

Y.G.B.

When the tank is full the running tap is instantly turned off but the water in the tank continues to leak out from the hole at the bottom.

b) Show it takes three times as long to empty the tank than it took to fill it up.

5

Mana.

Question 17 (*****)

A large water tank is in the shape of a cuboid with a rectangular base measuring 10 m by 5 m, and a height of 5 m.

Let h m be the height of the water in the tank and t the time in hours.

At a certain instant, water begins to pour into the tank at the constant rate of 50 m^3 per hour and at the same time water begins to drain from a tap at the bottom of the tank at the rate of $10h \text{ m}^3$ per hour.

Show that it takes $5\ln 3$ hours for the height of the water to rise from 2 m to 4 m.

$ \begin{array}{c} \mathcal{W}: \frac{d t}{d t} = \mathcal{D} \\ \mathcal{H}: \frac{d t}{d t} = -b \\ \mathcal{H}: \mathcal{H} \end{array} $		1 1
Net: $\frac{dv}{dt} = so - ich$		\rightarrow
Recart the vocult and the effect V= solo		
$\implies \frac{d \eta}{d h} \times \frac{d \eta}{d t} = s_0 - s_1 \eta + s_1 \eta + s_2 \eta$		
>> So dh = So - Kh		
$\Rightarrow s \frac{dh}{dt} = s - h$		
	1	
SEPARATE UMPLARIES & SOULE O.D.E		
$\implies \frac{z-h}{z} q p = 1 q f$		>
• USE INITIAL CONDITION		
OF t=0 h=2, AFTH2 OF THE INTERAL		
$ = \int_{-\frac{1}{2}}^{\frac{1}{2}+\frac{1}{2}} dh = \int_{-\frac{1}{2}}^{\frac{1}{2}+\frac{1}{2}} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}+\frac{1}{2}} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}+\frac{1}{2}} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}+\frac{1}{2}+\frac{1}{2}} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}} dt = \int_{-\frac{1}{2}}^{\frac{1}{2}+1$		٩
$\Rightarrow -sl_{h}[s-l_{h}] = \cdot t + C \qquad \Rightarrow \begin{bmatrix} s_{h_{2}} \\ -sl_{h}[s-l_{h}] \end{bmatrix}_{2}^{4} = \begin{bmatrix} t \\ t \end{bmatrix}_{1}^{\frac{1}{2}}$		
\Rightarrow $ h s-h = C - \frac{1}{5}t$ $\Rightarrow - \frac{5}{5}hT + \frac{1}{5}h3 = \frac{1}{5} - \frac{1}{5}h$		
$\Rightarrow s - h = e^{C_{\text{f}} t} \qquad \text{if } t_2 - t_1 = s \ln 3$		

= Ae-st 5 + Aelt= h h = S + dest he for he h=5-30 5t when h=1

proof

Question 18 (*****)

Water is leaking out of a hole at the base of a cylindrical barrel with constant cross sectional area and a height of 1 m.

It is given that t minutes after the leaking started, the volume of the water left in the barrel is $V \text{ m}^3$, and its height is h m.

It is assumed that the water is leaking out, in m^3 per minute, at a rate proportional to the square root of the volume of the water left in the barrel. The barrel was initially full and 5 minutes later half its contents have leaked out.

If T is the time taken for the barrel to empty, find h when $t = \frac{1}{2}T$

 $h = \frac{1}{4}$

Question 19 (*****)

Water is leaking out of a hole at the base of a cylindrical barrel with constant cross sectional area and a height of H m.

It is given that t minutes after the leaking started, the volume of the water left in the barrel is $V \text{ m}^3$, and the height of the water is h m.

It is assumed that the water is leaking out, in m^3 per minute, at a rate proportional to the square root of the height of the water still left in the barrel.

The barrel was initially full and T minutes later all the water has leaked out.

Show by a complete calculus method that

 $h = H\left(1 - \frac{t}{T}\right)^2, \quad 0 \le t \le T.$

$\begin{array}{c} \hline \begin{array}{c} \hline \\ \hline $	$ \Rightarrow \exists k^{\pm} = 2tt^{\pm} - \frac{2t^{\pm}}{2}t $ $ \Rightarrow \begin{bmatrix} t = & t^{\pm} & \frac{1}{2}t \\ \Rightarrow & t^{\pm} = & \frac{1}{2}t \\ \Rightarrow & t^{\pm} & \frac{1}{2}t \\ \Rightarrow & \frac{1}{2}t = & \frac{1}{2}t \\ \Rightarrow & \frac{1}{2}t \\ \Rightarrow$
dt = dt $dt = dt$	
Southing by significant of which haves	
$\Rightarrow \frac{1}{1 \pm dh} = -B dt$	
μ2.	
→ (l-± dh =)-B df	
$\rightarrow 2k^{\frac{1}{2}} = -Bt + C$	1. A standard by a sure of the later on a first interaction of the second seco second second sec
topy condition too h=4	and the state of the second state of the secon
→ 2 ⁴¹ [±] - C	
$\Rightarrow 2l^{\frac{1}{2}} = 2H^{\frac{1}{2}} - Bt$	
$\Rightarrow [\lambda 1] = \lambda 4 - 64$	
APPLY CANDITION t=T, h=0	
$\implies BT = 24^2$	a dealer here any second on the large terms of the large dealer of the second
$- B = \frac{24^{\frac{1}{2}}}{2}$	
To be an an and the second	

proof

Question 20 (*****

A water tank has the shape of a hollow inverted hemisphere of radius r cm.

The tank has a hole at the bottom which allows the water to drain out.

Let V, in cm^3 , and y, in cm, be the volume and the height of the water in the tank, respectively, at time t seconds.

At time t = 0 the empty tank is placed under a running water tap. The rate at which the volume of the water in the tank is changing is proportional to the difference between the tank's constant diameter and the height of the water at that instant. When the tank is full the running tap is instantly turned off but the water in the tank continues to leak out from the hole at the bottom.

Show it takes three times as long to empty the tank than it took to fill it up.

You may use without proof that V and y are related by $V = \frac{1}{3}\pi (3ry^2 - y^3)$.

proof

$ \frac{dv}{dt} = +k(zr-y) k > 0 $ $ \Rightarrow \frac{dv}{dt} \times \frac{dy}{dt} = k(zr-y) $	3. V
$\Rightarrow \pi(2ry-y^2) \frac{dy}{dt} = k(2r-y)$	$V = \frac{1}{2} \frac{1}{2} \frac{1}{2} \left(3 \frac{n^2}{2} - \frac{n^3}{2}\right)$
$\Rightarrow \boxed{\frac{d_{W}}{dt} = \frac{k}{\pi y}}$	$\frac{dh}{d\theta} = \pi (3d^2 - d_p)$
$ \begin{aligned} & \qquad $	
$\frac{t_{12}}{t_{12}} = \frac{t_{12}}{2K}$	
VYTTRE, GOING, IN	mitue leakease. (Aterpeticanae to cy)
• THE THE O.D.E when NOW MODELS THE $\frac{1}{dt}$ = - $\frac{1}{2}$, k/o - $\frac{1}{2}$ = - $\frac{1}{2}$, k/o - $\frac{1}{2}$	

Created by T. Madas

Question 21 (*****)

A water tank has the shape of a hollow inverted hemisphere with a radius of 1 m, which is initially full.

Water is leaking from a hole at the bottom of the tank, in m^3 per hour, at a rate proportional to the volume of the water left in the tank at that time.

Show that if the height of the water in the tank is h m, then

 $3h^2 - h^3 = 2e^{-kt}$

where k is a positive constant.

volume of a sphere of radius r is given by $\frac{4}{3}\pi r^3$

proof

Question 22 (*****)

At time t seconds, a spherical balloon has radius r cm, surface area $S \text{ cm}^2$ and volume $V \text{ cm}^3$. The surface area of the balloon is increasing at a constant rate of $24\pi \text{ cm}^2 \text{s}^{-1}$.

Show that

 $\frac{dV}{dt} = \sqrt[3]{1296\pi^2 V}$

and given further that the initial volume of the balloon was $64\pi \text{ cm}^3$, find an exact simplified value for V when $t = \sqrt[3]{36}$.

volume of a sphere of radius *r* is given by $\frac{4}{3}\pi r^3$ surface area of a sphere of radius *r* is given by $4\pi r^2$

 $V = 80\pi\sqrt{10} \approx 795$