Created by T. Madas

INTEGRATION VOLUME OF REVOLUTION

Created by T. Madas

Question 1 (**)

The figure above shows the graph of the curve with equation

$$
y=4-x^{2}
$$

The shaded region R, is bounded by the curve and the x axis.

The region R is rotated through 2π radians about the x axis to form a solid of revolution.

Show that the volume of the solid is $\frac{256 \pi}{15}$.

Created by T. Madas

Question 2 (**)

The figure above shows part of the graph of the curve with equation

$$
y=1+\frac{2}{x}, x \neq 0 .
$$

The region R, shown shaded in the figure above, is bounded by the curve, the straight lines with equations $x=1$ and $x=2$, and the x axis.

The region R is rotated through 360° about the x axis to form a solid of revolution.

Show that the volume of the solid is

$$
\pi(3+4 \ln 2)
$$

3
) \square , proof

Created by T. Madas

Question 3 (**)

Created by T. Madas

Question $4 \quad(* *+)$

The diagram above shows the graph of the curve with equation

$$
y=\frac{6}{x+3}, x \neq-3
$$

The region R, shown shaded in the figure above, is bounded by the curve, the coordinate axes and the straight lines with equations $x=-1$ and $x=3$.
a) Show that the area of R is exactly $6 \ln 3$.

The region R is rotated by 360° about the x axis to form a solid of revolution.
b) Show that the volume of the solid generated is 12π.

Created by T. Madas

Question $5 \quad\left({ }^{* *}+\right.$)

The figure above shows the parabola with equation

$$
y=x^{2}-11
$$

The shaded region R, is bounded by the curve, the y axis and the horizontal lines with equations $y=5$ and $y=14$.

This region R is rotated through 360° about the y axis to form a solid of revolution.

Show that the volume of the solid generated is $\frac{369 \pi}{2}$. proof

Created by T. Madas

Created by T. Madas

Question $6 \quad(* *)$

The figure above shows part of the curve with equation

$$
y=2(x-1)^{\frac{3}{2}} .
$$

The shaded region, labelled as R, bounded by the curve, the x axis and the straight lines with equations $x=2$ and $x=4$.

This region is rotated by 2π radians in the x axis, to form a solid of revolution S.

Show that the volume of S is 80π.

Created by T. Madas

Question $7 \quad(* *+)$

8
4

$$
y=x^{2}+4
$$

intersected by the straight line L with equation

$$
y=8 .
$$

The shaded region R, is bounded by C, the y axis and L.

Show that when R is rotated through 2π radians about the y axis it will generate a volume of 8π cubic units.

Created by T. Madas

Question $8 \quad(* *+)$
0

\square

The figure above shows the graph of the curve with equation

$$
y=\frac{2 x+1}{\sqrt{x}}, x>0
$$

The shaded region R is bounded by the curve, the x axis and the straight lines with equations $x=1$ and $x=2$.

Find the volume that will be generated when R is rotated through 360° in the x axis.

Give the answer in the form $\pi(a+b \ln 2)$, where a and b are integers.

$$
\pi(10+\ln 2)
$$

Created by T. Madas

Created by T. Madas

Question 9 (***)

The figure above shows part of the curve with equation

$$
y=x-\frac{1}{x}, x \neq 0
$$

The shaded region bounded by the curve and the straight line with equation $x=2$ is rotated by 360° about the x axis to form a solid of revolution.

Show that this volume is $\frac{5 \pi}{6}$.

Created by T. Madas

Question 10 (***)
The curve C has equation

$$
y=2+\frac{1}{x}, x>0 .
$$

The region bounded by C, the x axis and the lines $x=\frac{1}{2}, x=2$ is rotated through 360° about the x axis.

Show that the volume of the solid formed is

$$
\pi\left(\frac{15}{2}+8 \ln 2\right)
$$

Question 11 (***)
The curve C has equation

$$
y=\sqrt{x}+\frac{4}{\sqrt{x}}, x>0
$$

The region bounded by C, the x axis and the lines $x=1, x=4$ is rotated through 360° about the x axis.

Show that the volume of the solid formed is

$$
\frac{\pi}{2}(63+64 \ln 2) .
$$

\square

Question 12 (***)
The curve C has equation

$$
y=x^{2}-3 x
$$

The region bounded by C and the x axis is rotated through 2π radians in the x axis.

Find the exact volume of the solid formed.

$$
\frac{81 \pi}{10}
$$

Created by T. Madas

Created by T. Madas

Question 13 (***)
The curve C has equation

$$
y=x^{\frac{3}{2}} \sqrt{\ln x}, x>0
$$

The region bounded by C, the x axis and the straight lines with equations $x=1$ and $x=\mathrm{e}$ is rotated through 360° about the x axis.

Use integration by parts to show that the volume of the solid formed is

Created by T. Madas

Question 14 (***)
5
O

The curve C has equation

$$
y=\sqrt{x+1}, \quad x>-1
$$

The region R is bounded by C, the y axis and the straight line with equation $y=4$ is rotated through 360° about the y axis to form a solid of revolution.

Show that the volume of the solid is $\frac{828 \pi}{5}$.

Created by T. Madas

Question 15 (***)
010

The graph below shows the curve with equation

$$
y=\frac{3}{\sqrt{6 x+1}}, x \neq-\frac{1}{6}
$$

The region R, shown in the figure shaded, is bounded by the curve, the coordinate axes and the straight line with equation $x=4$.
a) Show that the area of R is 4 square units.

The shaded region R is rotated by 2π radians about the x axis to form a solid of revolution.
b) Show that the volume of the solid generated is $3 \pi \ln 5$.

Created by T. Madas

Q Question 16 (***)
0

The figure above shows part of the graph of the curve with equation

$$
y=\frac{6}{\sqrt{x}}-3, x>0 .
$$

The point B lies on the curve where $x=1$.

The shaded region R is bounded by the curve, the coordinate axes and a straight line segment $A B$, where $A B$ is parallel to the x axis. The region R is rotated through 2π radians in the y axis to form a solid of revolution.

Show that the volume of this solid is 14π.

Created by T. Madas

Question 17 (***)
The curve C has equation

$$
y=x+\frac{1}{x^{2}}, x>0 .
$$

The region bounded by C, the x axis and the lines $x=1, x=2$ is rotated through 360° about the x axis.

Show that the volume of the solid formed is

$$
\pi\left(\frac{21}{8}+2 \ln 2\right)
$$

Created by T. Madas

Question 18 (***)

The figure above shows the graph of the curve with equation

$$
y=1+\cos 2 x, 0 \leq x \leq \frac{\pi}{2}
$$

a) Show clearly that

$$
(1+\cos 2 x)^{2} \equiv \frac{3}{2}+2 \cos 2 x+\frac{1}{2} \cos 4 x
$$

The shaded region bounded by the curve and the coordinate axes is rotated by 2π radians about the x axis to form a solid of revolution.
b) Show that the volume of the solid is

Created by T. Madas

Question $19 \quad(* * *+)$

The figure above shows the graph of the curve with equation

$$
y=1+\frac{6}{2 x+1}, x \neq-\frac{1}{2}
$$

a) Show that

$$
\left(1+\frac{6}{2 x+1}\right)^{2} \equiv 1+\frac{A}{2 x+1}+\frac{B}{(2 x+1)^{2}}
$$

where A and B are constants to be found.

The shaded region, labelled as R, bounded by the curve, the coordinate axes and the line $x=1$ is rotated by 2π radians in the x axis to form a solid of revolution.
b) Show further that the volume generated is

$$
\pi(13+6 \ln 3)
$$

\square

$$
A=12, B=36
$$

\square
\square

Created by T. Madas

Created by T. Madas

Question $20 \quad\left({ }^{* * *}+\right)$

The figure above shows the graph of the curve C with equation

$$
y=x^{2}+2,
$$

intersected by the straight line L with equation

$$
x+y=4 .
$$

The point A is the intersection of C and L. The point B is the point where L meets the x axis.

The region R, shown shaded in the figure above, is bounded by C, L and the coordinate axes. This region is rotated by 360° in the x axis, forming a solid of revolution S.

Find an exact value for the volume of S.

Created by T. Madas

Question $21 \quad(* * *+)$

$$
O \xrightarrow{\text { 个 }}
$$

The figure above shows part of the graph of the curve C with equation

$$
y=2-\frac{1}{2 x-1}, x \neq \frac{1}{2} .
$$

The shaded region bounded by C and the straight lines with equations $x=1$ and $x=2$, is rotated by 360° about the x axis, forming a solid of revolution.

Show that the volume of the solid is

Created by T. Madas

Question 22 (***+)

The figure above shows the graph of the equation

$$
y=4-2 \sqrt{x} . x \geq 0
$$

The shaded region R, bounded by the curve and the coordinate axes, is rotated through 4 right angles about the y axis to form a solid of revolution.

Show that the volume generated is $\frac{64 \pi}{5}$.

Created by T. Madas

Question $23 \quad\left({ }^{* * *}+\right)$

The figure below shows the graph of the curve C with equation

$$
y=\ln x, x>0,
$$

intersected by the horizontal straight line L with equation

$$
y=2 .
$$

The shaded region R, bounded by C, L and the coordinate axes, is rotated through 2π radians in the y axis to form a solid of revolution.

Show that the volume of the solid is

Created by T. Madas

Question $24 \quad(* * *+)$

The figure above shows part of the curve C with equation

$$
y=\frac{2}{x}-\frac{x^{2}}{4}, x>0 .
$$

The curve crosses the x axis at the point P.

The shaded region bounded by the curve, the straight line with equation $x=1$ and the x axis is rotated by 360° about the x axis to form a solid of revolution.

Show that the volume of the solid is $\frac{71 \pi}{80}$.

Question 25 (***+)
The curve C lies entirely above the x axis and has equation

$$
y=1+\frac{1}{2 \sqrt{x}}, x \geq 0 .
$$

a) Show that

$$
y^{2}=1+\frac{1}{\sqrt{x}}+\frac{1}{4 x}
$$

The region R is bounded by the curve, the x axis and the straight lines with equations $x=1$ and $x=4$.
b) Show that when R is rotated by 360° about the x axis, the solid generated has a volume

Created by T. Madas

Question 26 (***+)

The figure above shows part of the curve with equation

$$
y=\frac{x}{\sqrt{x^{3}+2}}, x^{3}>-2 .
$$

The shaded region R, bounded by the curve, the x axis and the straight line with equation $x=1$, is rotated by 360° about the x axis to form a solid of revolution.

Show that the solid has a volume of

$$
\frac{\pi}{3} \ln \left(\frac{3}{2}\right)
$$

\square , proof

Created by T. Madas

Question $27 \quad(* * *+)$

graph of the curve C with equation

$$
y=4 \sqrt{x} \mathrm{e}^{x}, x \geq 0
$$

The shaded region R bounded by the curve, the x axis and the vertical straight line with equation $x=\ln 2$, is rotated by 2π radians in the x axis, forming a solid of revolution S.

Find an exact value for the volume of S, giving the answer in the form $\pi(a+b \ln 2)$ where a and b are integers.

Created by T. Madas

The figure above shows part of the graph of the curve with equation

$$
y=\frac{12}{x}, x \neq 0 .
$$

The points A and C lie on the curve where $x=1$ and $x=4$, respectively. The point B is such so that $A B$ is parallel to the x axis and $B C$ is parallel to the y axis.

The region R, shown shaded in the figure above, is bounded by the curve and the straight line segments $A B$ and $B C$. This region is rotated by 2π radians in the x axis, forming a solid of revolution S.

Find the exact value for the volume of S.

Created by T. Madas

Question $29 \quad(* * *+)$

The figure above shows part of the graph of the hyperbola C with equation

$$
x^{2}-y^{2}=16 \text {. }
$$

The hyperbola crosses the x axis at $P(4,0)$, the point $R(5,3)$ lies on C and the point $Q(11,0)$ lies on the x axis.

The shaded region bounded by the curve, the x axis and the straight line segment $R Q$ is rotated by 2π radians in the x axis, forming a solid of revolution S.

Find an exact value for the volume of S.

Created by T. Madas

Question $30 \quad(* * *+)$

The figure above shows part of the curve C, with equation

$$
y=2 \sin 2 x+3 \cos 2 x
$$

a) Show that

$$
y^{2}=A+B \cos 4 x+C \sin 4 x
$$

where A, B and C are constants.

The shaded region R is bounded by the curve, the line $x=\frac{\pi}{4}$ and the coordinate axes.
b) Find the area of R.

The region R is rotated by 2π radians in the x axis forming a solid of revolution S.
c) Show that the volume of S is

$$
\frac{\pi}{8}(13 \pi+24)
$$

\square $A=\frac{13}{2}, B=\frac{5}{2}, C=6, \quad$ area $=2.5$

Created by T. Madas

Question 31 (***+)
The point P lies on the curve with equation

$$
y=x^{2}, \quad x \geq 0
$$

The straight line L_{1} is parallel to the x axis and passes through P. The finite region R_{1} is bounded by the curve, L_{1} and the y axis.

The straight line L_{2} is parallel to the y axis and passes through P. The finite region R_{2} is bounded by the curve, L_{2} and the x axis.

When R_{1} is fully revolved about the y axis the volume of the solid formed is equal to the volume of the solid formed when R_{2} is fully revolved about the x axis.

Determine the x coordinate of P.

Created by T. Madas

Question 32 (****)

The figure above shows part of the curve with equation

$$
y=\sec x+4 \cos x
$$

The shaded region, labelled R, bounded by the curve, the coordinate axes and the straight line with equation $x=\frac{\pi}{6}$ is rotated by 2π radians in the x axis to form a solid of revolution.

Show that the solid has a volume of

Created by T. Madas

Question 33 (****)

Figure 1

Figure 2

The figures above show part of the parabola with equation

$$
y=x^{2}
$$

The shaded region, shown in Figure 1, is bounded by the curve, the x axis and the line $x=4$. This region is revolyed by 2π radians about the x axis, to form a solid of revolution.
a) Show that the solid has a volume of $\frac{1024 \pi}{5}$.

The shaded region, shown in Figure 2, is bounded by the curve, the y axis and a horizontal line originating from a point on the parabola where $x=4$. This region is revolved by 2π radians about the y axis, to form a solid of revolution.
b) Show that the solid has a volume of 128π.
c) Hence find the value of the volume generated when the region shown in figure 1 is revolved by 2π radians about the y axis.

Created by T. Madas

Question $34 \quad(* * * *)$

The figure above shows part of the curve C with equation

$$
y=\frac{x+1}{\sqrt{x-1}}, x \geq 1
$$

The shaded region R is bounded by the curve, the x axis and the straight lines with equations $x=2$ and $x=6$. The region R is rotated by 360° about the x axis to form a solid of revolution.
a) Show that the volume of the solid is

$$
\pi(28+4 \ln 5)
$$

[continues overleaf]

Created by T. Madas
[continued from overleaf]

The solid of part (a) is used to model the wooden leg of a sofa.

The shape of the leg is geometrically similar to the solid of part (a).

b) Given the height of the leg is 6 cm , determine the volume of the wooden leg to the nearest cubic centimetre.
\square $\approx 365 \mathrm{~cm}^{3}$
\square
\square

$$
\text { b) (acour } k T \text { THE sinure shafes }
$$

$V=V \times(\operatorname{sentr} \operatorname{Aact0R})^{3}$
$V=4(28+4 \ln 5) \times(1.5)^{3}$
$V=\psi(28+4 \ln 5) \times(1.5)^{3}$
$V \simeq 365$
$V \simeq 365$

Created by T. Madas

Question 35 (****)

The figure above shows part of the curve with equation

$$
(y-3)^{2}=x+4
$$

The curve crosses the coordinate axes at the points A, B and C.
a) Show that

$$
x^{2}=y^{4}-12 y^{3}+46 y^{2}-60 y+25 .
$$

b) The shaded region bounded by the curve and the coordinate axes is rotated by 360° about the y axis to form a solid of revolution.

Show that the volume of the solid is $\frac{113 \pi}{15}$.

Created by T. Madas

$$
y=\frac{x}{x+1}, x \geq 0 .
$$

The region bounded by the curve, the x axis and the straight line with equation $x=1$ is rotated through 2π radians about the x axis to form a solid of revolution.

Created by T. Madas

Question 37 (****)

The figure above shows part of the curve with equation

$$
y=\frac{1}{\sqrt{4-x^{2}}},-2 \leq x \leq 2
$$

The shaded region, labelled as R, bounded by the curve, the coordinate axes and the straight line with equation $x=1$ is rotated by 2π radians about the x axis to form a solid of revolution.

Show that the volume of the solid is

$$
\frac{1}{4} \pi \ln 3 .
$$

Created by T. Madas

Question 38 (****)

The figure above shows the graph of the curve with equation

$$
y=x \sqrt{\sin 2 x}, 0 \leq x \leq \frac{\pi}{2}
$$

The shaded region, labelled as R, bounded by the curve and the x axis, is rotated by 360° about the x axis to form a solid of revolution.

Show that the volume of the solid generated is

$$
\frac{\pi}{8}\left(\pi^{2}-4\right)
$$

Created by T. Madas

Question 39 (****)

The figure below shows the graph of the curve with equation

$$
y=6 \sin \left(\frac{x}{4}\right), 0 \leq x \leq 4 \pi
$$

The shaded region R, is bounded by the curve and the x axis.
a) Determine the area of R.

This region R is rotated through 360° about the x axis to form a solid of revolution.
b) Show that the volume of the solid generated is $72 \pi^{2}$.

Created by T. Madas

Question 40

$$
\begin{aligned}
& (* * * *) \\
& \uparrow \\
& \\
&
\end{aligned}
$$

The figure above shows part of the graph of the curve with equation

$$
y=2 \mathrm{e}^{-x}-\mathrm{e}^{-2 x} x \in \mathbb{R}
$$

The shaded region R, bounded by the curve, the coordinate axes and the straight line with equation $x=\ln 2$, is rotated through 360° about the x axis to form a solid of revolution.

Show that the volume of the solid generated is exactly $\frac{109}{192} \pi$.

Created by T. Madas

Question 41 (****)
$41(* * * *)$

The figure babove shows the graph of the curve with equation

$$
y=x^{2}+2 .
$$

The shaded region R, is bounded by the curve, the coordinate axes and the straight line with equation $x=1$.

The region R is rotated through 360° about the \boldsymbol{y} axis to form a solid of revolution.

Show that the volume of the solid generated is $\frac{5}{2} \pi$ cubic units.

Created by T. Madas

Question 42 (****)

The figure above shows part the graph of the curve C, with equation

$$
y=\frac{3}{2(4 x+3)}, x \neq-\frac{3}{4} .
$$

The shaded region R, is bounded by the curve, the x axis and the straight lines with equations $x=-\frac{1}{2}$ and $x=\frac{1}{4}$.
a) Find the exact area of R.

This region R is rotated through 360° about the x axis to form a solid of revolution.
b) Show that the volume of the solid generated is $\frac{27}{64} \pi$.
[continues overleaf]

Created by T. Madas
[continues from overleaf]

The solid generated in part (b) is used to model a small handle for a drawer.

The solid generated in part (b) and the drawer handle are mathematically similar.
c) Given that the length of the handle is 2 cm , find the exact volume of the handle.

Created by T. Madas

Question 43 (****)

The figure above shows part of the curve with equation

$$
y=\frac{2 x+1}{x+2}, x \neq-2
$$

a) Show that \square

$$
\frac{2 x+1}{x+2}=A+\frac{B}{x+2}
$$

where A are B are constants to be found.

The shaded region, labelled R, bounded by the curve, the coordinate axes and the straight line with equation $x=4$ is rotated by 360° about the x axis to form a solid of revolution.
b) Show that the volume of revolution is

$$
\pi(19-12 \ln 3)
$$

$$
A=2, B=-3
$$

Created by T. Madas

Question 44 ($* * * * *)$
The curve C has equation

$$
y=x \mathrm{e}^{x}, x \in \mathbb{R} .
$$

The region R is bounded by the curve, the x axis and the vertical straight lines with equations $x=1$ and $x=3$.
a) Explain why R lies entirely above the x axis.

The region R is rotated by 360° in the x axis to form a solid of revolution.
b) Show that the volume of this solid is

$$
\frac{1}{4} \pi \mathrm{e}^{2}\left(13 \mathrm{e}^{4}-1\right)
$$

Created by T. Madas

Question 45 (****)

The figure above shows part of the curve with equation

$$
y=\mathrm{e}^{2 x}-9, x \in \mathbb{R}
$$

The curve crosses the coordinate axes at the points A and B. The shaded region R is bounded by the curve and the coordinate axes.
a) Determine the exact coordinates of A and B.

The region R is rotated by 2π radians about the x axis to form a solid of revolution.
b) Calculate the volume generated, giving the answer in the form $\pi(p+q \ln 3)$ where p and q are integers.
$(\ln 3,0), \quad(0,-8), \quad V=\pi(-52+81 \ln 3)$

Created by T. Madas

Show that
a) $\int_{0}^{\pi} 4 x \sin x d x=4 \pi$.
b) $\int_{0}^{\pi} \sin ^{2} x d x=\frac{\pi}{2}$.

The figure above shows part of the curve with equation

$$
y=2 x+\sin x
$$

The shaded region bounded by the curve, the x axis and the line $x=\pi$ is rotated by 2π radians about the x axis to form a solid of revolution.
c) Show that the volume of the solid is

$$
\frac{1}{6} \pi^{2}\left(8 \pi^{2}+27\right)
$$

\square , proof
\square

Created by T. Madas

Created by T. Madas

Question 47 (****)
Show that
a) $(2+\tan 3 x)^{2}=3+4 \tan 3 x+\sec ^{2} 3 x$
b) $\int \tan x d x=\ln |\sec x|+C$

The figure above shows part of the graph of the curve with equation

$$
y=2+\tan 3 x .
$$

The shaded region bounded by the curve the coordinate axes and the line $x=\frac{\pi}{9}$ is rotated by 2π radians about the x axis to form a solid of revolution.
c) Show that the volume of the solid is

Created by T. Madas

Question 48 (****)

The figure above shows the graph of the curve C with equation

$$
y=\frac{14}{x-2}, x \neq 2
$$

The points P and Q lie on C where $x=2.5$ and $x=3.75$ respectively.

The shaded region R is bounded by the curve and two horizontal lines passing through the points P and Q.
R is rotated by 2π radians about the y axis forming a solid of revolution S.
a) Find the volume of S, giving the answer in the form $\pi(a+b \ln c)$ where a, b and c are constants.

The solid S is used to model a nuclear station cooling tower.
b) Given that 1 unit on the axes corresponds to 2 metres on the actual tower, show that the cooling tower has an approximate volume of $4200 \mathrm{~m}^{3}$.

Created by T. Madas

Question 49 (****)

The figure above shows the graph of the curve with equation

$$
8 y=x^{2}, x \geq 0 \text {. }
$$

The points A and B lie on the curve. The curved surface of an open bowl with flat circular base is traced out by the complete revolution of the arc $A B$ about the \boldsymbol{y} axis.

The radius of the flat circular base of the bowl is 8 cm , and its volume is 9 litres.
Find to the nearest cm the height of the bowl.

Created by T. Madas

Question 50 (****)
$(* * * *)$

The figure above shows the graph of the curve C with equation

$$
y=2 \sin x+1, x \in \mathbb{R}
$$

The shaded region R is bounded by the curve, the line $x=\frac{\pi}{2}$ and the x axis.
a) Find the exact area of R.

The region R is rotated by 2π radians in the x axis forming a solid of revolution S.
b) Show that the volume of S is

$$
\frac{\pi}{2}(3 \pi+8)
$$

$$
\text { area }=\frac{1}{2}(\pi+4)
$$

Created by T. Madas

Question 51 (****)

The figure above shows the graph of the curve with equation

$$
y=4 x^{\frac{1}{2}} \sin x
$$

a) Find the value of $\int_{0}^{\frac{\pi}{2}} 8 x \cos 2 x d x$

The shaded region bounded by the curve, the x axis and the straight line with equation $x=\frac{\pi}{2}$ is rotated by 2π radians in the x axis to form a solid of revolution.
b) Show that the volume of the solid is

$$
\pi\left(\pi^{2}+4\right)
$$

Created by T. Madas

Question 52 (****)

The figure above shows the graph of the curve with equation

$$
y=\sin x+\cos x,-\pi \leq x \leq \pi
$$

The finite region R, shown shaded in the figure, is bounded by the curve and the coordinate axes.

When R is revolved by a full turn in the x axis it traces a solid of volume V.
Show clearly that

$$
V=\frac{1}{4} \pi(3 \pi+2)
$$

\square , proof

Created by T. Madas

Created by T. Madas

Question 53 (****)

$y=\frac{x^{2}}{1-x^{2}}$ which passes through the origin O.

The finite area bounded by the curve, the y axis and the straight line with equation $y=3$, is to be revolved in the \boldsymbol{y} axis by 360° to form a solid of revolution S.

Find an exact value for the volume of S.
\square , $\pi(3-\ln 4)$

Created by T. Madas

Created by T. Madas

Question 54 (****)

The figure above shows part of the graph of the curve C with equation

$$
y=\frac{5}{\sqrt{5 x-4}}, x>\frac{4}{5}
$$

The shaded region R is bounded by the curve, the vertical straight lines $x=1$ and $x=a$, and the x axis.

The region R is rotated by 2π radians about the x axis forming a solid of reyolution. Given that the area of R is 10 square units, show that the volume of the solid formed is $10 \pi \ln 6$ cubic units.

Created by T. Madas

Question 55 (****)

The figure above shows the graph of

$$
y=\ln x, x>0 .
$$

The shaded region R is bounded by the curve, the line $x=\mathrm{e}$ and the x axis.
R is rotated by 2π radians about the y axis, forming a solid of revolution S.

Show that the volume of S is
$\frac{1}{2} \pi\left(\mathrm{e}^{2}+1\right)$.
\square proof

Question 56 (****)
Question 56 (****)

graph of the curve with equation

$$
y=\frac{4+\sin x \cos x}{\cos 2 x}
$$

The finite area bounded by the curve, the x axis and the straight lines with equations $x=\frac{1}{12} \pi$ and $x=\frac{1}{6} \pi$, shown shaded in the figure, is fully revolved about the x axis, forming a solid, S.

Calculate the volume of S, correct to 3 significant figures.
\square , $V \approx 34.6$

Created by T. Madas

Created by T. Madas

Question 57 (****)

The figure above shows the curve with parametric equations

$$
x=2 \cos ^{2} \theta, \quad y=\sqrt{3} \tan \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

The finite region R shown shaded in the figure, bounded by the curve, the y axis, and the straight lines with equations $y=1$ and $y=3$.

Use integration in parametric to show that the volume of the solid formed when R is fully revolved about the y axis is $\frac{\pi^{2}}{\sqrt{3}}$.

Created by T. Madas

Question $58 \quad(* * * *+)$
0

The figure above shows the graph of the curve C with equation

$$
y=x \ln x, x \geq 1
$$

The shaded region R is bounded by the curve, the x axis and the vertical line $x=\mathrm{e}$.

The region R is rotated by 2π radians in the x axis forming a solid of revolution S. Find an exact value for the volume of S.

$$
\square, \frac{\pi}{27}\left(5 \mathrm{e}^{3}-2\right)
$$

Question $59 \quad(* * * *+)$

$$
f(x)=\frac{1}{8}(4 x+\sin 4 x), x \in \mathbb{R}, 0 \leq x \leq \frac{\pi}{4} .
$$

a) Show that $f^{\prime}(x)=\cos ^{2} 2 x$.

The figure above shows part of the graph of a curve C with equation

$$
y=\sqrt{x} \cos 2 x, x>0
$$

The curve meets the x axis at the origin and at the point where $x=\frac{\pi}{4}$.

The shaded region R is bounded by the curve and the x axis. The region R is rotated by 2π radians about the x axis, forming a solid of revolution S.
b) Show further that the volume of S is

Created by T. Madas

Question 60
$(* * * *+)$

The figure above shows the straight line segment $O P$, joining the origin to the point $P(h, r)$, where h and r are positive coordinates.

The point $Q(h, 0)$ lies on the x axis.

The shaded region R is bounded by the straight line segments $O P, P Q$ and $O Q$.

The region R is rotated by 2π radians in the x axis to form a solid cone of height h and radius r.

Show by integration that the volume of the cone V is given by

$$
V=\frac{1}{3} \pi r^{2} h .
$$

\square , proof

Created by T. Madas

Created by T. Madas

Question 61 (****+)
A finite region R is defined by the inequalities

$$
y^{2} \leq 4 a x, 0 \leq x \leq a, y \geq 0,
$$

where a is a positive constant.

The region R is rotated by 2π radians in the y axis forming a solid of revolution.

Determine, in terms of π and a, the exact volume of this solid.

Created by T. Madas

Question 62 (****+)
The finite region R is defined by the inequalities

$$
y \leq \arcsin x, x \leq 1, y \geq 0
$$

The region R is rotated by 2π radians in the y axis forming a solid of revolution.

Determine the exact volume of this solid.
\square $\frac{1}{4} \pi^{2}$

Created by T. Madas

Created by T. Madas

Question $63 \quad(* * * *+)$

The figure above shows the graph of the curve with equation

$$
y=\tan 2 x, 0 \leq x \leq \frac{\pi}{4}
$$

The finite region R is bounded by the curve, the y axis and the horizontal line with equation $y=1$.

The region R is rotated by 2π radians about the straight line with equation $y=1$ forming a solid of revolution.

Determine an exact volume for this solid.

Created by T. Madas

Question 64 (****+)
A curve C has equation

$$
y=\mathrm{e}^{1-\left(\frac{x}{\mathrm{e}}\right)^{2}}, x \in \mathbb{R}
$$

The finite region bounded by C, the y axis and straight line with equation $y=1$, is revolved by 2π radians about the y axis, forming a solid of revolution.

Find an exact simplified value for the volume of this solid.

Question 65 (****+)
A curve has equation

$$
y=\ln (4-x), \quad x \in \mathbb{R}, x \neq 4
$$

The finite region bounded by the curve, the x axis and the straight line with equation $x=2$, is revolved by 2π radians in the y axis.

Find the exact volume of the solid formed.

$$
V=\frac{1}{2} \pi(24 \ln 2-13)
$$

\square

\square

- Voulut of ervoution of THe "Yewow" Refron, it t ayunsare $V=\pi \pi^{2} h$ $V=\pi \times 2^{2} \times \ln 2$
$V=4 \pi \ln 2$
- Repued vowntis Given by
$V=\pi\left[16 \ln 2-\frac{13}{2}\right]-4 \pi / h_{2}$
$V=16 \pi \ln 2-\frac{13 \pi}{2}-4 \pi \ln 2$
$V=12 \pi \ln 2-\frac{13 \pi}{2}$
$V=\frac{\pi}{2}[24 \ln 2-13]$

Created by T. Madas

Question 66 (*****)
The finite region R is by the coordinate axes and the curve with equation

$$
y=\arccos x,-1 \leq x \leq 1 .
$$

The region R is rotated by 2π radians in the x axis forming a solid of revolution.

Determine the exact volume of this solid.
$\square, \pi^{2}-2 \pi$

Created by T. Madas

Created by T. Madas

Question 67 (*****)
tangent plane

The figure above shows a hemispherical bowl of radius r containing water to a height h. The water in the bowl is in the shape of a minor spherical segment.

It is required to find a formula for the volume of a minor spherical segment as a function of the radius r and the distance of its plane face from the tangent plane, h.

The circle with equation

$$
x^{2}+y^{2}=r^{2}, x \geq 0
$$

is to be used to find a formula for the volume of a minor spherical segment.

Show by integration that the volume V of the minor spherical segment is given by

$$
V=\frac{1}{3} \pi h^{2}(3 r-h),
$$

where r is the radius of the sphere or hemisphere and h is the distance of its plane face from the tangent plane.

Question 68 (*****) (a)

The figure above shows the graph of the curve with equation

$$
y=\frac{1}{x+1}, x \in \mathbb{R}, x=-1
$$

The finite region R is bounded by the curve, the x axis and the lines with equations $x=1$ and $x=3$.

Determine the exact volume of the solid formed when the region R is revolved by 2π radians about ...
a) \ldots the y axis.
b) \ldots the straight line with equation $x=3$.
\square $, \pi(4-\ln 4), 4 \pi(-1+\ln 4)$

Created by T. Madas

Question 69 (*****)
The finite region R is bounded by the curve with equation

$$
y=\sin x, 0 \leq x \leq \pi
$$

and the straight line with equation $y=\frac{1}{3}$.

The region R is rotated by 2π radians in the straight line with equation $y=\frac{1}{3}$ forming a solid of revolution.

Determine the exact volume of this solid.

Created by T. Madas

Question 70 (*****)

The figure above shows a hemispherical bowl of radius r containing water to a height h. The water in the bowl is in the shape of a minor spherical segment. It is required to find a formula for the volume of a minor spherical segment as a function of the radius r and the distance of its plane face from the tangent plane, h.

Show by integration that the volume V of the minor spherical segment is given by

$$
V=\frac{1}{3} \pi h^{2}(3 r-h)
$$

where r is the radius of the sphere or hemisphere and h is the distance of its plane face from the tangent plane.

Created by T. Madas

Question 71 (*****)
A curve has equation

$$
y=\frac{8}{x^{2}-4 x+8}, \quad x \in \mathbb{R} .
$$

The finite region R is bounded by the curve, the y axis and the tangent to the curve at the stationary point of the curve.

Determine, in simplified exact form, the volume of the solid formed when R is fully revolved about the y axis.

Question 72 ($* * * * *$)
A spherical cap of depth a is removed from a sphere of radius $n a$, where n is a positive constant, such that $n>\frac{1}{2}$. The volume of the spherical cap is less than half the volume of the sphere.

The remainder of the sphere is moulded to a right circular cone whose base is equal to that of the circular plane face of the spherical cap removed.

Given that the height of the cone is $m a$, where m is a positive constant, show that

$$
m=(n+p)(2 n+q)
$$

where p and q are integers to be found.
\square $m=(n+1)(2 n-1)$
\square

Created by T. Madas

Created by T. Madas

Question 73 (*****)
A curve has equation

$$
y^{2}=\ln |3 x-12|, \quad x \in \mathbb{R}, x \neq 4
$$

The finite region bounded by the curve, the x axis and the straight line with equation $y=1$, is revolved by 2π radians in the x axis.

Find the exact volume of the solid formed.

Created by T. Madas

Question 74 (*****)
The finite region R is bounded by the curve with equation $x=\cos y^{2}$, the y axis and the straight line with equation $y=\frac{1}{2} \sqrt{\pi}$.

Determine, in exact simplified form, the volume of the solid formed by revolving R by a full turn in the x axis.

Created by T. Madas

Question 75 (*****)

The figure above shows the curve with equation

$$
y=\frac{12}{\left(x^{2}-1\right)^{\frac{3}{2}}}, x>1 .
$$

The region R, bounded the curve, the x axis and the straight lines with equations $x=\sqrt{2}$ and $x=2$, is revolved by a full turn about the x axis, forming a solid S.
a) Show that the volume of S is given by

$$
144 \pi \int_{\frac{1}{4} \pi}^{\frac{1}{3} \pi} \operatorname{cosec} \theta \cot ^{4} \theta d \theta .
$$

b) Hence find an exact simplified expression for the volume of S.

$$
, V=2 \pi\left[14-9 \sqrt{2}+27 \ln \left(\frac{1+\sqrt{2}}{\sqrt{3}}\right)\right]
$$

Question 76 (*****)
A curve C and a straight line L have respective equations

$$
y=x^{2} \quad \text { and } \quad y=x .
$$

The finite region bounded by C and L is rotated around L by a full turn, forming a solid of revolution S.

Find, in exact form, the volume of S.
\square

$$
\frac{\pi \sqrt{2}}{60}
$$

$V=\sum \underbrace{\pi(1 H \cdot)^{2}} d u$
$V=\sum \pi\left[\frac{1}{\sqrt{2}}\left(x_{i}-x_{i}^{2}\right)\right]^{2} \frac{1}{\sqrt{2}}\left(1+2 x_{i}\right) d x$

- Tating umits
$V=\pi \frac{1}{2 \sqrt{2}} \int_{2=0}^{2+}(x-x)^{2}(1+2 x) d x$
$V=\frac{\pi}{2 \sqrt{2}} \int_{0}^{1}(1+2 x)\left(x^{2}-2 x^{3}+x^{4}\right) d x$
$V=\frac{\pi}{2 \sqrt{2}} \int_{0}^{1} x^{2}-2 x^{6}+x^{2} x+2 x^{4}+2 x^{5} d x$
$V=\frac{\pi}{2 \sqrt{2}} \int_{0}^{1} x^{2}-3 x^{u}+2 x^{5} d x$
$V=\frac{\pi}{2 \sqrt{2}}\left[\frac{1}{3} x^{3}-\frac{3}{5} x^{3}+\frac{1}{3} x^{6}\right]$.
$V=\frac{\pi}{2 \sqrt{2}}\left(\frac{1}{3}-\frac{3}{5}+\frac{1}{3}\right)$
$V=\frac{\pi}{2 \sqrt{2}} \times \frac{1}{15}$
$v=\frac{\pi}{36 \sqrt{2}}$

Created by T. Madas

