Created by T. Madas

INTEGRATION STRUC
EXAM
QUESTIONS PARTI

Created by T. Madas

Question 1 (**)
Evaluate each of the following integrals, giving the answers in exact form.
a) $\int_{0}^{2} \frac{1}{\sqrt{4 x+1}} d x$.
b) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cos 3 x d x$

Question 2 (**)

By using the substitution $u=4+3 x^{2}$, or otherwise, find

], 1,
\square

Created by T. Madas

Question 3 (**)
Show clearly that

$$
\int_{0}^{\frac{1}{3}} x \mathrm{e}^{3 x} d x=\frac{1}{9}
$$

Question $4{ }^{(* *)}$

$$
\frac{3 x-5}{x-1} \equiv A+\frac{B}{x-1}
$$

a) Determine the value of each of the constants A and B.
b) Hence find

$$
\int \frac{3 x-5}{x-1} d x
$$

$$
A=3, \quad B=-2,3 x-2 \ln |x-1|+C
$$

Created by T. Madas

Question 5 (**)
Evaluate each of the following integrals, giving the answers in exact form.
a) $\int_{0}^{4} \mathrm{e}^{\frac{1}{2} x} d x$.

Created by T. Madas

Question 6 (**)

$$
\frac{5 x+13}{(2 x+1)(x+4)} \equiv \frac{A}{2 x+1}+\frac{B}{x+4}
$$

a) Determine the value of each of the constants A and B.
b) Evaluate

$$
\int_{0}^{4} \frac{5 x+13}{(2 x+1)(x+4)} d x
$$

giving the answer as a single simplified natural logarithm.

By using the substitution $u^{2}=1-x^{2}$, or otherwise, show that

$$
\int_{0}^{1} 5 x\left(1-x^{2}\right)^{\frac{3}{2}} d x=1
$$

Question 8 (**)
Use integration by parts to find the value of

$$
\int_{0}^{\frac{\pi}{4}} 4 x \cos 4 x d x
$$

Question 9 (**)

By using the substitution $u=1-x^{2}$, or otherwise, find

$$
\int \frac{12 x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x
$$

\square
\square
$+$

Created by T. Madas

Question 10 (**)
Evaluate each of the following integrals, giving the answers in exact form.
a) $\int_{0}^{3} \frac{4}{2 x+3} d x$.

Created by T. Madas

Question $12 \quad(* *)$

$$
\frac{30}{(x+3)(9-2 x)} \equiv \frac{A}{x+3}+\frac{B}{9-2 x}
$$

a) Determine the value of each of the constants A and B.
b) Evaluate

$$
\int_{1}^{4} \frac{30}{(x+3)(9-2 x)} d x
$$

giving the answer as a single simplified natural logarithm.

Created by T. Madas

Question 13 (**)

Evaluate each of the following integrals, giving the answers in exact form.
a) $\int_{0}^{\frac{1}{3}} \mathrm{e}^{-3 x} d x$.
b) $\int_{0}^{\frac{\pi}{4}} \sin \left(2 x+\frac{\pi}{4}\right) d x$.

Question $14 \quad(* *+)$

By using the substitution $u^{2}=16-7 x^{2}$, or otherwise, show that

$$
\int_{0}^{1} \frac{x}{\sqrt{16-7 x^{2}}} d x=\frac{1}{7}
$$

Created by T. Madas

Question 15 (**+)
Determine the value of the positive constant k given further that

$$
\int_{k}^{8} \frac{4}{2 x-1} d x=1.90038
$$

Give the value of k to an appropriate degree of accuracy.
\square , $k \approx 3.4$

Question $16 \quad\left({ }^{* *}+\right.$)
By using the substitution $u=1+4 \ln x$, or otherwise, find

Created by T. Madas

Question $17 \quad\left({ }^{* *}+\right.$)

$$
\frac{8 x}{4 x-3} \equiv A+\frac{B}{4 x-3}
$$

a) Determine the value of each of the constants A and B.
b) Hence, or otherwise, evaluate

$$
\int_{1}^{3} \frac{8 x}{4 x-3} d x
$$

giving the answer in terms of natural logarithms.

$$
A=2, B=6,4+3 \ln 3
$$

Question 18 (**+)
Use an appropriate integration method to find

$$
\int(x+1) \mathrm{e}^{x+1} d x
$$

\square $x \mathrm{e}^{x+1}+C$

Created by T. Madas

Created by T. Madas

Question 19 (**+)

$$
f(x)=4 x \mathrm{e}^{2 x}
$$

a) Use integration by parts to find $\int f(x) d x$.
b) Find an exact vale for $\int_{0}^{\ln 2} f(x) d x$.
\square $2 x \mathrm{e}^{2 x}-\mathrm{e}^{2 x}+C,-3+8 \ln 2$

Question 20

Evaluate each of the following integrals, giving the answers in exact form.
a) $\int_{0}^{1} \frac{9}{(2 x+1)^{2}} d x$.
b) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin \left(4 x+\frac{\pi}{6}\right) d x$

Created by T. Madas

Created by T. Madas

Question $21 \quad\left({ }^{* *}+\right.$)
By using the substitution $u=\ln x$, or otherwise, find an exact value for

Created by T. Madas

Question $22 \quad(* *+)$

$$
f(x) \equiv \frac{x-5}{x^{2}+5 x+4}
$$

a) Express $f(x)$ in partial fractions.
b) Find the value of
giving the answer as a single simplified logarithm.
\square $f(x) \equiv \frac{3}{x+4}-\frac{2}{x+1}$, $\int_{0}^{2} f(x) d x=\ln \left(\frac{3}{8}\right)$

Question 23 (**+)
By using the substitution $u^{2}=4 \cos x-1$, or otherwise, find

Created by T. Madas

Question 24 (**+)
Use the substitution $u=\sqrt{2 x-7}$ to find

$$
\int_{4}^{8} \frac{6 x}{\sqrt{2 x-7}} d x
$$

Created by T. Madas

Question $26 \mathbf{(* *}^{(*)}$
Determine the value of the positive constant k given further that

$$
\int_{k}^{\frac{1}{2}} \frac{6}{\mathrm{e}^{2-3 x}} d x=0.1998
$$

Give the value of k to an appropriate degree of accuracy.
\square $k \approx 0.44$

Created by T. Madas

Question 27 (***)

$$
y=\frac{3 x}{2+x-x^{2}}
$$

a) Calculate the three missing values of y in the following table.

\boldsymbol{x}	0	0.25	0.5	0.75	1
\boldsymbol{y}	0				1.5

b) Use the trapezium rule with all the values from the completed table of part (a) to find an estimate for

$$
\int_{0}^{1} \frac{3 x}{2+x-x^{2}} d x
$$

c) Use a suitable method to find the exact value of

$$
\int_{0}^{1} \frac{3 x}{2+x-x^{2}} d x
$$

$\square, 0.3429,0.6667,1.0286, \ln 2$

a) | x | 0 | 0.25 | 0.5 | 0.75 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0 | 0.3429 | 0.665 | 1.0266 | 1.5 |

$$
\begin{aligned}
& \begin{aligned}
& \approx \frac{0.25}{2}[0+1.5+2(0.32+29+06667+1-286)] \\
& \approx 0.697-0.698 \\
& \text { c) } \begin{aligned}
\int_{0}^{1} \frac{3 x}{2+x-x^{2}} d x & =\int_{1}^{0} \frac{3 x}{x^{2}-x-2} d x \\
& =\int_{1}^{0} \frac{3 x}{(x-2)(x+1)} d x
\end{aligned} \$ \text { dx }
\end{aligned}
\end{aligned}
$$

\square

Created by T. Madas

Question 28 (***)
Use a suitable substitution to find

$$
\int \frac{30 x}{\sqrt{1-2 x}} d x
$$

$5(1-2 x)^{\frac{3}{2}}-15(1-2 x)^{\frac{1}{2}}+C$
\square

Created by T. Madas

Question 29 (***)

$$
\frac{x^{2}+3}{x-1} \equiv A x+B+\frac{C}{x-1} .
$$

a) Determine the value of each of the constants A, B and C.
b) Hence, or otherwise, evaluate

$$
\int_{2}^{4} \frac{x^{2}+3}{x-1} d x
$$

giving the answer in terms of natural logarithms.

Question 30 (***)
Use the substitution $u=1+2 \cos x$ to find

$$
\int_{0}^{\frac{\pi}{2}}(1+2 \cos x)^{3} \sin x d x
$$

Question 31 (***)
By using the substitution $u=3 x+1$, or otherwise, find

$$
\int_{0}^{5} x \sqrt{3 x+1} d x
$$

$$
\frac{204}{5}=40.8
$$

Question 32 (***)
Use an appropriate integration method to find an exact value for

$$
\int_{0}^{\frac{\pi}{3}} 6 x \sin 3 x d x
$$

\qquad

Question 33 (***)
By using the substitution $u=\sec x$, or otherwise, find

$$
\int \tan x \sec ^{4} x d x
$$

$$
\frac{1}{4} \sec ^{4} x+C
$$

\square

Created by T. Madas

Question 34 (***)

$$
\frac{3 x^{3}+2 x^{2}-3 x+8}{x+2} \equiv A x^{2}+B x+C+\frac{D}{x+2} .
$$

a) Find the value of each of the constants A, B, C and D.
b) Hence find

$$
A=3, B=-4, C=5, D=-2, x^{3}-2 x^{2}+5 x-2 \ln |x+2|+C
$$

40

Created by T. Madas

Question 35 (***)

$$
f(x) \equiv \frac{5}{3 x^{2}-5 x}
$$

a) Express $f(x)$ in partial fractions.
b) Find the value of

$$
\int_{3}^{5} f(x) d x
$$

giving the answer as a single simplified logarithm.

Question 36 (***)
By using the substitution $u=\mathrm{e}^{x}$, or otherwise, show clearly that

Question 38 (***)
By using the substitution $u=1+x^{2}$, or otherwise, find

$$
\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x
$$

$$
\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-\left(1+x^{2}\right)^{\frac{1}{2}}+C
$$

Question 39 (***)
Use integration by parts to find the value of

$$
\int_{1}^{\mathrm{e}} \ln x d x
$$

, 1

Question 40 (***)
Find the value of the constant k given that

$$
\int_{0}^{1} k\left(\mathrm{e}^{2 x}+4 x\right) d x=\mathrm{e}^{2}+3
$$

Question 41 (***)
Evaluate each of the following integrals, giving the answers in exact form.
a) $\int_{0}^{\ln 2}\left(\mathrm{e}^{x}+2 \mathrm{e}^{-x}\right)^{2} d x$.

Question 42 (***)

By using the substitution $u=\tan x$ and the trigonometric identity $1+\tan ^{2} x=\sec ^{2} x$, show clearly that

Created by T. Madas

Question 44 (***)
By using the substitution $u=x^{\frac{1}{2}}$, or otherwise, find

$$
\int \frac{1}{4 x^{\frac{1}{2}} \sqrt{x^{\frac{1}{2}}-1}} d x
$$

\square

$$
\left(x^{\frac{1}{2}}-1\right)^{\frac{1}{2}}+C
$$

\square
$\Rightarrow u=x^{\frac{1}{2}}$
$\Rightarrow a=x$
$\rightarrow \frac{d x}{d u}=2 u$
$\Rightarrow d u=2 u d u$
TenNSEPMino The imetrite at crithin
$\int \frac{1}{4 x^{2} \sqrt{x^{2}-1}} d x=\int \frac{1}{4 x \sqrt{u-1}}(3 x d u)$
$=\int \frac{1}{2}(u-1)^{-\frac{1}{2}} d u$ $=\frac{\frac{1}{2}}{\frac{1}{2}}(u-1)^{\frac{1}{2}}+C$

$$
=\sqrt{\sqrt{x}-1}+c
$$

$$
=(u-1)^{\frac{1}{2}}+c
$$

Question 44 (***)
a) Use integration by parts to find

$$
\int x \cos \left(\frac{1}{2} x\right) d x
$$

b) Hence determine

$$
\int x^{2} \sin \left(\frac{1}{2} x\right) d x
$$

$$
\begin{aligned}
& \square, 2 x \sin \left(\frac{1}{2} x\right)+4 \cos \left(\frac{1}{2} x\right)+C \\
& -2 x^{2} \cos \left(\frac{1}{2} x\right)+8 x \sin \left(\frac{1}{2} x\right)+16 \cos \left(\frac{1}{2} x\right)+C \\
& \hline
\end{aligned}
$$

a) \qquad
$\cdots=\underline{2 \sin \frac{1}{2} x}-\int 2 \sin \frac{1}{2} x d x$
$=2 x \sin \frac{1}{2} x+4 \cos \frac{1}{2} x+C$
b) USING (nItGRATION By PARTS a Pnet (a)
$\int x^{2} \sin \frac{1}{2} x d x=\cdots$
$-\frac{-2 x^{2} \operatorname{ar} \frac{1}{2} x}{}-\int-4 x \cos \frac{1}{2} x d x$
$=-2 x^{2} \cos \frac{1}{2} x+4 \int x \cos \frac{1}{2} x d x$
$=-x^{2} \cos \frac{1}{2} x+d\left[2 \sin \frac{1}{2} x+4 \cos \frac{1}{2} x\right]+c$ $=-2 x^{2} \cos \frac{1}{2} x+8 x \sin \frac{1}{2} x+16 \cos \frac{2}{2} x+c$

Created by T. Madas

Question 45 (***)
By using the substitution $u=x^{2}+6 x$, or otherwise find

Use the substitution $u=10 \cos x-1$ to find

$$
\frac{1}{2}\left(x^{2}+6 x\right)^{\frac{2}{3}}+C
$$

Question 46 (***)

Created by T. Madas

Question 47 (***)

$$
\frac{2 x^{2}-x+6}{x^{2}(3-2 x)} \equiv \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{3-2 x} .
$$

a) Determine the value of each of the constants A, B and C.
b) Evaluate

$$
\int_{2}^{3} \frac{2 x^{2}-x+6}{x^{2}(3-2 x)} d x
$$

giving the answer in the form $p-\ln q$, where p and q are constants.

Created by T. Madas

Question 48 (***+)

x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{5 \pi}{12}$
y	0	0.1309	0.4534	0.7854		0.6545

The table above shows tabulated values for the equation

$$
y=x \sin 2 x, 0 \leq x \leq \frac{5 \pi}{12}
$$

a) Complete the missing value in the table.
b) Use the trapezium rule with all the values from the table to find an approximate value for

$$
\int_{0}^{\frac{5 \pi}{12}} x \sin 2 x d x
$$

c) Use integration by parts to find an exact value for $\int_{0}^{\frac{5 \pi}{12}} x \sin 2 x d x$.

$$
0,0.9069,0.682,5 \frac{5 \pi \sqrt{3}}{48}+\frac{1}{8}
$$

Question $49 \quad\left({ }^{* * *}+\right.$)
By using the substitution $u=\mathrm{e}^{x}+1$, or otherwise, find

$$
\int \frac{\mathrm{e}^{2 x}-2 \mathrm{e}^{x}}{\mathrm{e}^{x}+1} d x
$$

\square

$$
\mathrm{e}^{x}-3 \ln \left(\mathrm{e}^{x}+1\right)+C
$$

Question 50 (***+)
By using the substitution $u=1-\cos x$, or otherwise, find

Created by T. Madas

Question 51 (***+)
By using the substitution $u^{2}=\mathrm{e}^{x}-1$, or otherwise, find

$$
\int_{\ln 2}^{\ln 5} \frac{3 \mathrm{e}^{2 x}}{\sqrt{\mathrm{e}^{x}-1}} d x
$$

$$
]
$$

Question 53 (***+)
By using the substitution $u=\mathrm{e}^{x}+1$, or otherwise, find the exact value of

$$
\int_{0}^{1} \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{x}+1} d x
$$

Question 54 (***+)
By using the substitution $u=\sin x$, or otherwise, find

Created by T. Madas

Question 55 (***+)

$$
I=\int(x-1)(4-x)^{\frac{1}{2}} d x, x \in \mathbb{R}, x \leq 4
$$

a) Use the substitution $u=(4-x)^{\frac{1}{2}}$ to find an expression for I.
b) Show that the answer of part (a) can be written as

$$
I=-\frac{2}{5}(x+1)(4-x)^{\frac{3}{2}}+C .
$$

c) Use integration by parts to verify the answer of part (b).

Created by T. Madas

Question 56 (***+)

Find the value of the constant k given that

$$
\int_{0}^{\ln 4}(4 k-1) \mathrm{e}^{2.5 x}+k \mathrm{e}^{-0.5 x} d x=190
$$

Question 57 (***+)
By using the substitution $u=2 x-1$, or otherwise, show that

$$
\int \frac{2 x}{\sqrt{2 x-1}} d x=\frac{2}{3}(x+1) \sqrt{2 x-1}+C .
$$

Created by T. Madas

Question $58 \quad\left({ }^{* * *}+\right)$

$$
f(x) \equiv \frac{70}{x(x-2)(x+5)}
$$

a) Express $f(x)$ in partial fractions.
b) Show that $\int_{3}^{4} f(x) d x$ can be written in the form $p \ln 3+q \ln 2$, where p and q are integers to be found.

$$
f(x) \equiv \frac{2}{x+5}+\frac{5}{x-2}-\frac{7}{x}, \int_{3}^{4} f(x) d x=11 \ln 3-15 \ln 2
$$

$$
\int \frac{1}{\cos ^{2} x \tan ^{2} x} d x
$$

Created by T. Madas

Question 60 (***+)

$$
f(x) \equiv \frac{2 x+2}{(1-x)(1-2 x)} .
$$

a) Express $f(x)$ in partial fractions.
b) Show that $\int_{1.5}^{2} f(x) d x$ can be written in the form $p \ln 2+q \ln 3$, where p and q are integers to be found.

$$
f(x) \equiv \frac{6}{1-2 x}-\frac{4}{1-x}, \int_{1.5}^{2} f(x) d x=7 \ln 2-3 \ln 3
$$

Question 61 (***+)
Use a suitable method to find

$$
x \ln \left(\frac{x}{2}\right)-x+C
$$

Created by T. Madas

Created by T. Madas

Question 62 (***+)

$$
f(x) \equiv \frac{32-17 x}{(x+1)(3 x-4)^{2}}
$$

a) Express $f(x)$ in partial fractions.
b) Show that

$$
\int_{0}^{1} f(x) d x
$$

can be evaluated in the form $p+\ln q$, where p and q are integers to be found.

$$
\frac{f(x) \equiv \frac{4}{(3 x-4)^{2}}-\frac{3}{(3 x-4)}+\frac{1}{(x+1)}, \int_{0}^{1} f(x) d x=1+\ln 8}{}
$$

Question 63 (***+)
Use a trigonometric identity to find the exact value of

$$
\int_{0}^{\frac{\pi}{4}} \sin ^{2} 2 x d x
$$

\square

Use integration by parts twice to find an exact value for

$$
\int_{0}^{\frac{\pi}{2}} 4 x^{2} \cos x d x
$$

\square $\pi^{2}-8$

Created by T. Madas

Created by T. Madas

Question $65 \quad(* * *+)$

$$
\frac{2}{(u-2)(u+2)} \equiv \frac{A}{u-2}+\frac{B}{u+2} .
$$

a) Find the value of A and B in the above identity.
b) By using the substitution $u=\sqrt{x}$, or otherwise, find

$$
\int \frac{1}{\sqrt{x}(x-4)} d x
$$

$$
A=\frac{1}{2}, \quad B=-\frac{1}{2}, \quad \frac{1}{2} \ln \left|\frac{\sqrt{x}-2}{\sqrt{x}-2}\right|+C
$$

Question 66 (***+)
By using the substitution $u=\cos x$, or otherwise, find

$$
\int \frac{1+\cos x}{\sin x} d x
$$

$$
\ln |\cos x-1|+C
$$

\square

Created by T. Madas

Question 67 (***+)
Use integration by parts to show that

$$
\begin{aligned}
& \int \frac{4 \ln x}{x^{3}} d x=-\frac{1+2 \ln x}{x^{2}}+C \\
& \sin x-\frac{1}{3} \sin ^{3} x+C
\end{aligned}
$$

Question 68 (***+)
By considering the differentiation of a product of two appropriate functions, find

$$
\int \mathrm{e}^{x}\left(\tan x+\sec ^{2} x\right) d x
$$

$$
\mathrm{e}^{x} \tan x+C
$$

Created by T. Madas

Question 69 (***+)

$$
\frac{2 x^{2}-3}{(x-1)^{2}} \equiv A+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}
$$

a) Determine the value of each of the constants A, B and C.
b) Evaluate

$$
\int_{2}^{3} \frac{2 x^{2}-3}{(x-1)^{2}} d x
$$

giving the answer in the form $p+\ln q$, where p and q are constants.

Question $70 \quad\left({ }^{* * * *)}\right.$
By using the substitution $u=2 x-1$, or otherwise, find

$$
\int \frac{16 x^{2}}{2 x-1} d x
$$

$$
(2 x-1)^{2}+4(2 x-1)+2 \ln |2 x-1|+C=4 x^{2}+4 x+2 \ln |2 x-1|+C
$$

Question 71 (***+)
Use integration by parts to show that

$$
\int_{0}^{\frac{\pi}{4}} 4 x \sec ^{2} x d x=\pi-2 \ln 2
$$

Created by T. Madas

Question 72 (***+)

$$
\frac{18}{(3 u-1)(3 u+1)} \equiv \frac{A}{3 u-1}+\frac{B}{3 u+1} .
$$

a) Find the value of A and B in the above identity.
b) By using the substitution $x=u^{2}$, or otherwise, find

Question 73 (***+)
Use an appropriate integration method to find an exact value for each of the following integrals
a) $\int_{0}^{\frac{\pi}{4}} \cos ^{2} x-\sin ^{2} x d x$.b) $\int_{1}^{\mathrm{e}} 4 x \ln x d x$.

$$
\frac{1}{2}, \mathrm{e}^{2}+1
$$

Question $74 \quad(* * *+)$
Use the substitution $u=x^{2}$, followed by integration by parts to find

$$
\int x^{3} \mathrm{e}^{x^{2}} d x
$$

\square

$$
\square, \frac{1}{2} \mathrm{e}^{x^{2}}\left(x^{2}-1\right)+C
$$

Created by T. Madas

Question 75 (***+)
Use integration by parts to find the exact value of

$$
\int_{\sqrt{\mathrm{e}}}^{\mathrm{e}} 16 x^{3} \ln x d x
$$

$$
3 \mathrm{e}^{2}\left(\mathrm{e}^{2}-1\right)
$$

Question 76 (***+)
By using the substitution $u=\sqrt{2 x-3}$, or otherwise, find an expression for $\int(2 x-1) \sqrt{2 x-3} d x$

Created by T. Madas

Question 77 (***+)

$$
\frac{3 x^{2}-2 x+1}{2 x(x-1)^{2}} \equiv \frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}} .
$$

a) Determine the value of each of the constants A, B and C.
b) Evaluate

$$
\int_{4}^{9} \frac{3 x^{2}-2 x+1}{2 x(x-1)^{2}} d x
$$

giving the answer in the form $p+q \ln 4$, where p and q are constants.

Created by T. Madas

Question $78 \quad\left({ }^{* * *}+\right.$)
It is given that

$$
\sin 3 x \equiv 3 \sin x-4 \sin ^{3} x
$$

a) Prove the above trigonometric identity, by writing $\sin 3 x$ as $\sin (2 x+x)$.
b) Hence, or otherwise, find the exact value of

Created by T. Madas

Question 79 (***+)
Use integration by parts to find an exact value for

Created by T. Madas

Question $80 \quad\left({ }^{(* * *}+\right)$

x	0	$\frac{\pi}{18}$	$\frac{\pi}{9}$	$\frac{\pi}{6}$
y	0	0.1632		0.2500

The table above shows tabulated values for the equation

$$
y=\sin x \cos 2 x, 0 \leq x \leq \frac{\pi}{6}
$$

a) Complete the missing value in the table.
b) Use the trapezium rule with all the values from the table to find an approximate value for

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{6}} \sin x \cos 2 x d x \tag{3}
\end{equation*}
$$

c) By using the substitution $u=\cos x$, or otherwise, find an exact value for

Created by T. Madas

Created by T. Madas

Question $81 \quad\left({ }^{* * *}+\right.$)

$$
\frac{12 x^{2}+x+3}{(6 x+1)\left(2 x^{2}+1\right)} \equiv \frac{A}{6 x+1}+\frac{B x+C}{2 x^{2}+1}
$$

a) Determine the value of each of the constants A, B and C.
b) Evaluate

$$
\int_{0}^{2} \frac{12 x^{2}+x+3}{(6 x+1)\left(2 x^{2}+1\right)} d x
$$

giving the answer in the form $p \ln q$, where p and q are constants.

Created by T. Madas

Question $82 \quad\left({ }^{* * *}+\right.$)
By using the trigonometric identity

$$
\cos 2 \theta \equiv 2 \cos ^{2} \theta-1
$$

Created by T. Madas

Question $83 \quad\left({ }^{* * *}+\right.$)

The figure above shows the graph of the curve with equation

$$
y=(x-a)(x-b)^{4}
$$

where a and b are positive constants.

The shaded region R is bounded by the curve and the x axis.
By using integration by parts, or otherwise, show that the area of the shaded region is

$$
\frac{1}{30}(a-b)^{6}
$$

Question $84 \quad\left({ }^{* * *}+\right.$)
By using the substitution $u=\sqrt{x}$, or otherwise, show that

$$
\int_{0}^{36} \frac{1}{\sqrt{x}(\sqrt{x}+2)} d x=\ln 16
$$

Question 85 (***+)
By using the substitution $u=3 x-1$, or otherwise, find

$$
\int \frac{9 x^{2}}{3 x-1} d x
$$

$$
\frac{1}{6}(3 x-1)^{2}+\frac{2}{3}(3 x-1)+\frac{1}{3} \ln |3 x-1|+C
$$

Created by T. Madas

Question 86 (***+)
By using the substitution $u=2 x+3$, or otherwise, show clearly that

$$
\int_{-1}^{0} 6 \ln (2 x+3) d x=9 \ln 3-6 .
$$

proof

Question 87 (***+)

By using the substitution $u=\tan x$, or otherwise, find

$$
\int \sec ^{4} x d x
$$

$\tan x+\frac{1}{3} \tan ^{3} x+C$

Created by T. Madas

Question $88 \quad(* * *+)$

$$
f(t) \equiv \frac{2}{(t-1)(t+1)} \equiv \frac{A}{(t-1)}+\frac{B}{(t+1)} .
$$

a) Find the value of each of the constants A and B in the above identity.
b) Use the substitution $x=t^{2}-2, t>0$ to show that

Created by T. Madas

Question $89 \quad\left({ }^{* * *}+\right.$)

x	0	$\frac{2 \pi}{5}$	$\frac{4 \pi}{5}$	$\frac{6 \pi}{5}$	$\frac{8 \pi}{5}$	2π
y	0	0.2031	0.8602			0

The table above shows some tabulated values for the equation

$$
y=\sin ^{3}\left(\frac{1}{2} x\right), 0 \leq x \leq 2 \pi .
$$

a) Complete the missing values in the table.
b) Use the trapezium rule with all the values from the table to find an approximate value for

$$
\int_{0}^{2 \pi} \sin ^{3}\left(\frac{1}{2} x\right) d x
$$

c) By using the substitution $u=\cos \left(\frac{1}{2} x\right)$, or otherwise, find the value of the integral of part (b).

- $1.2,0.8602,0.2031,0.672, \frac{8}{3}$
\square

Created by T. Madas

Question 90 (***+)
Use trigonometric identities to integrate

$$
\int \frac{\cos 2 x}{1-\cos ^{2} 2 x} d x
$$

\square $-\frac{1}{2} \operatorname{cosec} 2 x+C$

Question 91 (****)
By using the substitution $u=2 x^{\frac{5}{2}}+1$, or otherwise, find an exact simplified value for

$$
\int_{0}^{1} \frac{10 x^{4}}{2 x^{\frac{5}{2}}+1} d x
$$

\square , $2-\ln 3$

Created by T. Madas

Question 92 (****)

$$
\frac{2 u^{2}}{u-1} \equiv A u+B+\frac{C}{u-1}
$$

a) Find the value of each of the constants A, B and C in the above identity.
b) Use the substitution $u=\sqrt{x}$ to show

$$
A=2, B=2, C=2
$$

Created by T. Madas

Question 93 (****)

$$
\int_{1}^{9} \frac{1}{2 x(1+\sqrt{x})} d x
$$

a) Show that the substitution $u=\sqrt{x}$ transforms the above integral to
where x_{1} and x_{2} are constants to be found.
b) Hence find an exact value for the original integral.

Created by T. Madas

Question 94 (****)

$$
f(x) \equiv \frac{x^{3}}{x^{2}-4}, x \neq \pm 2
$$

a) Use a suitable substitution to show that

$$
\int_{\sqrt{6}}^{\sqrt{8}} f(x) d x=1+\ln 4
$$

b) Express $f(x)$ in the form

$$
A x+B+\frac{C}{x-2}+\frac{D}{x+2}
$$

where A, B, C and D are constants to be found.
c) Use the result part (b) to verify the result of part (a). $A=1, B=0, C=2, D=2$

By using the cosine double angle identities and the fact that $\frac{d}{d x}(\tan x)=\sec ^{2} x$, show clearly that

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1-\cos 2 x}{1+\cos 2 x} d x=\frac{1}{6}(4 \sqrt{3}-\pi)
$$

Question 96 (****)

Use the substitution $x=\sin \theta$ to find the exact value of

Created by T. Madas

Question 97 (****)

$$
f(x) \equiv \frac{1}{x\left(x^{2}+1\right)}, x \neq 0 .
$$

a) Use the substitution $x=\tan \theta$ to find

$$
\int f(x) d x
$$

b) Find the value of each of the constants A, B and C, so that

$$
f(x) \equiv \frac{A}{x}+\frac{B x+C}{x^{2}+1} .
$$

c) Use the result of part (b) to independently verify the answer of part (a).

$$
\ln \left(\frac{x}{\sqrt{x^{2}+1}}\right), A=1, B=-1, C=0
$$

Created by T. Madas

Question 98 (****)

$$
\frac{4 x^{3}-x^{2}+20 x-4}{x^{2}+4} \equiv A x+B+\frac{C x+D}{x^{2}+4} .
$$

a) Determine the value of each of the constants A, B, C and D.
b) Hence show that

$$
\int_{0}^{2} \frac{4 x^{3}-x^{2}+20 x-4}{x^{2}+4} d x=6+2 \ln 2
$$

$$
A=4, B=-1, C=4, D=0
$$

Question 99 ($* * * *$)
Use a cosine double identity and integration by parts to find

$$
\int 4 x \cos ^{2} x d x
$$

Created by T. Madas

Question 100 (****)
By using the substitution $u=2 x^{2}-8 x+3$, or otherwise, find the exact value

$$
\int_{4}^{6} \frac{x-2}{2 x^{2}-8 x+3} d x
$$

Question 101 (****)

$$
\frac{6 u}{(u-2)(u+1)} \equiv \frac{A}{u-2}+\frac{B}{u+1} .
$$

a) Find the value of each of the constants A and B in the above identity.
b) By using the substitution $u=\sqrt{x}$, or otherwise, show that

$$
\int_{0}^{1} \frac{3}{(\sqrt{x}-2)(\sqrt{x}+1)} d x=-\ln 4
$$

$$
A=4, \quad B=2
$$

Created by T. Madas

Created by T. Madas

Question 102 (****)

$$
\frac{4 t^{2}}{t-1} \equiv A t+B+\frac{C}{t-1}
$$

a) Determine the value of each of the constants A, B and C.
b) Use the substitution $t=x^{\frac{1}{4}}$ to show

$$
\int_{16}^{81} \frac{1}{x^{\frac{1}{2}}-x^{\frac{1}{4}}} d x=14+4 \ln 2
$$

\square $, A=4, B=4, C=4$

Created by T. Madas

Question 103 ($* * * * *)$
It is given that

$$
\int_{k}^{2 k} \frac{3 x-5}{x(x-1)} d x=\ln 72
$$

determine the value of $k, 0<k<1$.

Question 104
(****)
By using the substitution $u=2 x^{\frac{3}{2}}-1$, or otherwise, find an expression for the integral

$$
\begin{array}{ll}
\int \frac{6 x^{2}}{2 x^{\frac{3}{2}}-1} d x \\
& \square, 2 x^{\frac{1}{2}}+\ln \left|2 x^{\frac{3}{2}}-1\right|+C \\
\end{array}
$$

Created by T. Madas

Question 105 (****)
Use the substitution $t=\sqrt{1-x^{3}}$ to show that

Created by T. Madas

Question 106 (****)
Use an appropriate substitution, followed by partial fractions, to show that

$$
\int_{\mathrm{e}^{3}}^{\mathrm{e}^{5}} \frac{5}{2 x\left[(\ln x)^{2}+\ln x-6\right]} d x=\ln \left(\frac{3}{2}\right)
$$

You may assume that the integral converges.

Created by T. Madas

Question 107 (****)

$$
\frac{2 u^{3}}{u+1} \equiv A u^{2}+B u+C+\frac{D}{u+1} .
$$

a) Find the value of each of the constants A, B and C in the above identity.
b) Use the substitution $u=\sqrt{x}$ to show
$A=2, B=-2, C=2, D=-2$

Created by T. Madas

Created by T. Madas

Question 109 (****)
a) Show by multiplying the numerator and denominator of the integrand by $(1+\cos x)$, that the above integral can eventually be written as
b) Hence show further that

Question 109
By using the substitution $x=9 \sin ^{2} \theta$, or otherwise, find the exact value of

$$
\int_{0}^{\frac{9}{4}} \frac{1}{\sqrt{x(9-x)}} d x
$$

\square
\qquad $\int_{0}^{\frac{\pi}{6}}$
\qquad $18 \sin \theta \cos \theta d \theta$

Question 110 (****)
It is given that

$$
\cos ^{4} \theta \equiv \frac{3}{8}+\frac{1}{2} \cos 2 \theta+\frac{1}{8} \cos 4 \theta
$$

a) Prove the validity of the above trigonometric identity.
b) Use the substitution $u=\sin \theta$ to show

$$
\int_{0}^{1} \sqrt{\left(1-x^{2}\right)^{3}} d x=\frac{3 \pi}{16}
$$

$=\frac{1}{4}+\frac{1}{2} \cos 2 \theta+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{2} \cos 4 \theta\right)=\frac{3}{8}+\frac{1}{2} \cos 2 \theta+\frac{1}{8} \cos 4 \theta$
(b) $\int_{0}^{1} \sqrt{\left(1-x^{2}\right)^{3}} d x=\ldots$ by sustitution ...
$=\int_{0}^{\pi / 2} \sqrt{\left(1-\sin ^{2} \theta\right)^{3}} \cos \theta d \theta=\int_{0}^{\frac{\pi}{2}} \cos ^{3} \theta \cos \theta d \theta$ $=\int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{2}} \frac{3}{\theta}+\frac{1}{2} \cos 2 \theta+\frac{1}{8} \cos 4 \theta d \theta$ $=\left[\frac{3}{8} \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{32} \sin 44\right]_{0}^{\frac{\pi}{2}}=\frac{3 \pi}{16}-0=\frac{3 \pi}{16}$

Created by T. Madas

Question 111 (****)

$$
y=\frac{x^{2}+2 x-2}{x^{2}-2 x+2}
$$

a) Find the value of each of the constants A, B and C, so that

$$
y \equiv A+\frac{B x+C}{x^{2}-2 x+2}
$$

b) Hence, or otherwise, show that

Created by T. Madas

Question 112 (****)

$$
f(x) \equiv \frac{2}{x+\sqrt{2 x-1}}, x \geq \frac{1}{2}
$$

a) Use the substitution $u=\sqrt{2 x-1}$ transforms to show

$$
\int_{1}^{5} f(x) d x \equiv \int_{u_{1}}^{u_{2}} \frac{4 u}{(u+1)^{2}} d u
$$

where u_{1} and u_{2} are constants to be found.
b) By using another suitable substitution, or otherwise, show that
?

\square , proof

Created by T. Madas

Created by T. Madas

Question 113 (****)
Use integration by parts find an exact value in terms of e, for the integral

Created by T. Madas

Question 115 (****)

$$
\frac{1}{u(u+1)} \equiv \frac{A}{u}+\frac{B}{u+1} .
$$

a) Find the value of A and B in the above identity.
b) By using the substitution $u=\mathrm{e}^{x}$, or otherwise, show that

$$
A=1, B=-1
$$

Question 116 (****)
By completing the square in the expression $4 x^{2}+4 x$, or otherwise, show that

$$
9 \int \frac{4 x^{2}+4 x}{\sqrt{2 x+1}} d x=A(2 x+1)^{\frac{5}{2}}+B(2 x+1)^{\frac{1}{2}}+C
$$

where A and B are constants to be found and C is the arbitrary constant of the integration.

$$
A=\frac{1}{5}, \quad B=-1
$$

Created by T. Madas

Created by T. Madas

Question 117 (****)

$$
u^{3}+1 \equiv(u+1)\left(u^{2}+A u+1\right) .
$$

a) Determine the value of A in the above identity.
b) Use the substitution $u=\mathrm{e}^{x}$ to show

$$
A=1, B=\frac{1}{2}, C=-\frac{1}{2}
$$

Question 118 (****)
Use the substitution $u=x^{\frac{1}{4}}$ to find

$$
\int_{1}^{16} \frac{2 x^{\frac{1}{4}}+1}{4 x^{\frac{5}{4}}+4 x} d x
$$

giving the final answer as an exact simplified natural logarithm.

Created by T. Madas

Question 119 (****)

$$
\frac{x^{3}}{x^{2}+1} \equiv A x+B+\frac{C x+D}{x^{2}+1} .
$$

a) Determine the value of each of the constants A, B, C and D.
b) Use integration by parts to show that

$$
\int x \ln \left(x^{2}+1\right) d x=\frac{1}{2}\left(x^{2}+1\right) \ln \left(x^{2}+1\right)-\frac{1}{2} x^{2}+C .
$$

$$
A=1, B=0, C=-1, D=0
$$

By writing $\sec x$ as the fraction $\frac{\sec x}{1}$ and multiplying the numerator and the denominator by $(\sec x+\tan x)$, find

$$
\int \sec x d x
$$

Created by T. Madas

Question 121 (****)

$$
\frac{4}{(1-u)^{2}(1+u)} \equiv \frac{A}{(1-u)^{2}}+\frac{B}{1-u}+\frac{C}{1+u} .
$$

a) Find the value of A, B and C in the above identity.
b) Hence by using a suitable substitution find the exact value of

Question 122 (****)
Use the substitution $u=\ln x$, followed by integration by parts to find

$$
\int \frac{1-\ln x}{x^{2}} d x
$$

$$
\frac{\ln x}{x}+C
$$

Question 123 (****)

$$
y=\arctan x, x \in \mathbb{R}
$$

a) By writing the above equation as $x=\tan y$, show clearly that

$$
\frac{d y}{d x}=\frac{1}{1+x^{2}} .
$$

b) Use integration by parts and the result of part (a) to find

Created by T. Madas

Question 124 (****)

$$
f(x) \equiv \frac{4 x^{2}-23 x+21}{x^{2}-4 x+3}, x \neq 1, x \neq 3 .
$$

a) Express $f(x)$ in partial fractions.
b) Hence find an exact value for

$$
f(x) \equiv 4-\frac{1}{x-1}-\frac{6}{x-3}, 2-\ln \left(\frac{3}{128}\right)
$$

Question 125 (****)
By using the substitution $u=(2 x+1)^{\frac{1}{2}}$, or otherwise, show that

Use the substitution $u=x^{2}+2$, followed by integration by parts to show that

$$
\int 2 x^{3} \ln \left(x^{2}+2\right) d x=1+2 \ln 2
$$

Created by T. Madas

Question 127 (****)
By considering the trigonometric expansions of $\sin (5 x+3 x)$ and $\sin (5 x-3 x)$, show clearly that

$$
\int_{0}^{\frac{\pi}{4}} \cos 3 x \sin 5 x d x=\frac{1}{4}
$$

Question 128 (****)

By using the substitution $x=2+(u-1)^{2}$, or otherwise, find

$$
\int \frac{1}{1+\sqrt{x-2}} d x
$$

Created by T. Madas

Question 129 (****)

$$
\frac{6 t^{3}}{t+1} \equiv A t^{2}+B t+C+\frac{D}{t+1}
$$

a) Determine the value of each of the constants A, B, C and D.
b) Use the substitution $t=x^{\frac{1}{6}}$ to show

$$
\int_{1}^{64} \frac{1}{\sqrt{x}+\sqrt[3]{x}} d x=11+6 \ln \left(\frac{2}{3}\right)
$$

$$
A=6, B=-6, C=6, D=-6
$$

Created by T. Madas

Question 130 (****)

$$
f(x)=8 x \ln (2 x+1), x>-\frac{1}{2}
$$

a) Use the substitution $u=2 x+1$ to show that

$$
\int f(x) d x=\int(2 u-2) \ln u d u .
$$

b) Use integration by parts to show that

$$
\int f(x) d x=\left(4 x^{2}-1\right) \ln (2 x+1)-2 x^{2}+2 x+C \text {. }
$$

Created by T. Madas

Question 131 (****)

$$
y=\frac{(1+\sin x)^{2}}{\cos ^{2} x}
$$

a) Calculate the two missing values of the following table.

x	$\frac{\pi}{6}$		$\frac{\pi}{4}$	$\frac{7 \pi}{24}$
y	3		5.8284	8.6784

b) Use the trapezium rule with all the values from the completed table of part (a) to find an estimate for

$$
\int_{\frac{1}{6} \pi}^{\frac{1}{3} \pi} \frac{(1+\sin x)^{2}}{\cos ^{2} x} d x
$$

c) Use trigonometric identities to find the exact value of

$$
\int_{\frac{1}{6} \pi}^{\frac{1}{3} \pi} \frac{(1+\sin x)^{2}}{\cos ^{2} x} d x
$$

$$
\square, x=\frac{5 \pi}{24}, 4.112,4-\frac{1}{6} \pi
$$

Created by T. Madas

Question 132 (****)

$$
y=\ln (\sec x+\tan x)
$$

a) Express $\frac{d y}{d x}$ as a single trigonometric function.
b) Hence find

$$
x \sec x-\ln |\sec x+\tan x|+C
$$

Question 133 (****)
Use the substitution $x=2 \sin \theta$ to find the exact value of

Created by T. Madas

Created by T. Madas

Question 134 (****)

$$
\frac{u^{2}}{u^{2}-9} \equiv A+\frac{B}{u-3}+\frac{C}{u+3} .
$$

a) Find the value of A, B and C in the above identity.
b) By using the substitution $u=\sqrt{x^{2}+9}$, or otherwise, find

$$
\int \frac{\sqrt{x^{2}+9}}{x} d x
$$

$$
\frac{3}{2}, \sqrt{x^{2}+9}+\frac{3}{2} \ln \left|\frac{\sqrt{x^{2}+9}-3}{\sqrt{x^{2}+9}+3}\right|+C
$$

$$
B=\frac{3}{2}, C=-\frac{3}{2},, \sqrt{x^{2}+9}+\frac{3}{2} \ln \left|\frac{\sqrt{x^{2}+9}-3}{\sqrt{x^{2}+9}+3}\right|+C
$$

Question 135 (****)
By using the substitution $u=2^{x}$, or otherwise, find an exact value for

$$
\int_{0}^{3} \frac{2^{x}}{\sqrt{2^{x}+1}} d x
$$

Question 136 (****)
Use the substitution $x=\tan \theta$ to show that

where m and n are integers.

0

Created by T. Madas

Created by T. Madas

Question 137 (****)

Use trigonometric identities to find

$\int 32 \sin ^{2} x \cos ^{2} x d x$.

Question 138 (****)

By using the substitution $u^{2}=1+\tan x$, or otherwise, find

$$
\int \sec ^{2} x \tan x \sqrt{1+\tan x} d x
$$

Created by T. Madas

Created by T. Madas

Question 139 (****)

$$
\frac{2 u^{2}}{(u-1)(u+1)} \equiv A+\frac{B}{u+1}+\frac{C}{u-1} .
$$

a) Find the value of A, B and C in the above identity.
b) By using the substitution $u^{2}=x+1$, or otherwise, find an exact value for

$$
\int_{3}^{8} \frac{\sqrt{x+1}}{x} d x
$$

The table below shows some tabulated values for the equation $y=\frac{\sqrt{x+1}}{x}, 3 \leq x \leq 8$.

x	3	4	5	6	7	8
y	0.6667	0.5590	0.4899		0.4041	0.3750

c) Complete the missing value in the table.
[continued from overleaf]
d) Use the trapezium rule with all the values from the table to find an approximate value for
e) Calculate the difference between the exact value, found in part (b), and the trapezium rule estimate, found in part (d), and hence state whether the trapezium rule produces an overestimate or an underestimate.

10, $A=2, B=-1, C=-1,2+\ln \left(\frac{3}{2}\right), 0.4410,2.4148,0.0093$

Created by T. Madas

Question 140 (****)
Use the substitution $x=\sec \theta$ to show that

$$
\int_{\sqrt{2}}^{2} \frac{2}{x^{2} \sqrt{x^{2}-1}} d x=\sqrt{m}-\sqrt{n}
$$

where m and n are integers.

Question 141 (****)

Use the substitution $x=\tan ^{2} \theta$ to find an exact value for

$$
\int_{0}^{1} \frac{\sqrt{x}}{x+1} d x
$$

Created by T. Madas

Created by T. Madas

Question 142 (****)

$$
y=\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{x}+1}, x \in \mathbb{R}
$$

a) Calculate the missing values of x and y in the following table.

\boldsymbol{x}	$\ln 2$	x_{2}	x_{3}	x_{4}	$\ln 8$
\boldsymbol{y}	1.333	y_{2}	y_{3}	y_{4}	7.111

b) Use the trapezium rule with all the values from the completed table of part (a) to find an estimate for

$$
\int_{\ln 2}^{\ln 8} \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{x}+1} d x
$$

c) Use the substitution $u=\mathrm{e}^{x}+1$ to find an exact simplified value for

$$
\int_{\ln 2}^{\ln 8} \frac{\mathrm{e}^{2 x}}{\mathrm{e}^{x}+1} d x
$$

\square

$$
\frac{3}{2} \ln 2,2 \ln 2, \frac{5}{2} \ln 2,2.090,3.2,4.807, \approx 4.966-\ln 3
$$

Created by T. Madas

Question 143 (****)
It is given that the value of

$$
\int_{0}^{\frac{1}{3} \pi}\left(k \cos ^{2} x-\sec ^{2} x\right) \sin x d x
$$

is 2 , where k is a non zero constant.

Determine the value of k.

Created by T. Madas

Question 144
(****)

Find the value of

$$
\int_{0}^{1} f(x) d x
$$

\square , 4
given further that the integral exists.

Created by T. Madas

Created by T. Madas

Question 145 (****)

$$
\frac{u^{2}}{u^{2}-1} \equiv A+\frac{B}{u-1}+\frac{C}{u+1} .
$$

a) Find the value of A, B and C in the above identity.
b) Use the substitution $u=\sqrt{1-\mathrm{e}^{2 x}}$ to show

$$
A=1, \quad B=\frac{1}{2}, \quad C=-\frac{1}{2}
$$

$$
\int_{0}^{\ln \frac{1}{2}} \sqrt{1-\mathrm{e}^{2 x}} d x=\frac{\sqrt{3}}{2}+\ln (2-\sqrt{3}) .
$$

\square

Created by T. Madas

Question 146 (****)
By using the substitution $u=\sqrt{x^{3}+1}$, or otherwise, find an expression for

$$
\begin{aligned}
& 1, \text { or otherwise, find an expression for } \\
& \int \frac{9 x^{5}}{\sqrt{x^{3}+1}} d x \\
& 2\left(x^{3}+1\right)^{\frac{3}{2}}-6\left(x^{3}+1\right)^{\frac{1}{2}}+C
\end{aligned}
$$

$$
\sin (A+B) \equiv \sin A \cos B+\cos A \sin B
$$

a) Use the above trigonometric identity to show that

$$
\sin 3 x \equiv 3 \sin x-4 \sin ^{3} x
$$

Question 148 (****)
Use the substitution $t=3+\sqrt{x}$ to find the value of the following integral

$$
\int_{1}^{36} \frac{1}{\sqrt{x^{\frac{3}{2}}+3 x}} d x
$$

, 4

By using the substitution $u=\frac{1}{x}$, or otherwise, show that

$$
20 \int_{0}^{4}\left(\frac{1}{x^{2}}+\frac{1}{x^{3}}\right) \mathrm{e}^{\frac{1}{x}} d x=-\frac{1}{x} \mathrm{e}^{\frac{1}{x}}+C \text {. }
$$

Question 150 (****)
By using the substitution $u=\cos x$, or otherwise, show clearly that

Question 151 (****)
Use the substitution $x=2 \cos \theta$ to show that

Created by T. Madas

Question 152 (****)

$$
y=\frac{4 x+3}{3 x+4}, x \neq-\frac{4}{3}
$$

a) Calculate the five missing values of x and y in the following table.

x	0				32
y	$\frac{3}{4}$	$\frac{35}{29}$	$\frac{67}{52}$		

b) Use the trapezium rule with all the values from the completed table of part (a) to find an estimate for

$$
\int_{0}^{32} \frac{4 x+3}{3 x+4} d x
$$

c) Use the substitution $u=3 x+4$ to find the exact value of

$$
\int_{0}^{32} \frac{4 x+3}{3 x+4} d x
$$

$$
\begin{array}{r}
8,16,24 \\
\frac{99}{76}, \frac{131}{100}
\end{array}, 38.6, \frac{128}{3}-\frac{14}{9} \ln 5=\frac{1}{9}[384-14 \ln 5]
$$

Created by T. Madas

Question 153 (****)
Determine, in terms of a, the value of the following integral.

$$
\int_{\frac{2}{a}}^{\frac{17}{a}} \frac{2 a x}{\sqrt{a x-1}} d x, a \neq 0 .
$$

You may find the substitution $u^{2}=a x-1$ useful in this question.
\square $\frac{96}{a}$

	x=2
$\int_{\frac{2}{4}}^{\frac{2}{2}} \frac{2 x}{\sqrt{2 x-1}} d=\int_{1}^{t} \frac{2 x+}{y}\left(\frac{3 x}{x} x d\right)$	
$=\int_{1}^{4} 4 x d x$	
$\int_{1}^{4} \frac{4 x}{4} \frac{4 x}{x} d x$	
$=\frac{5}{4} \int^{4}$ ax ${ }^{4}$ du	
$=\frac{1}{6} \int_{1}^{4} x^{2}+1 d x$	
$=\frac{1}{8}\left[\left(\frac{1}{2}+4\right)-(5+\cdots)\right]$	

Created by T. Madas

Question 154 (****)
Use the substitution $x=\tan \theta$ to show that

$$
\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1-x^{2}}{1+x^{2}} d x=\frac{1}{3}(\pi-2 \sqrt{3})
$$

\square

Question 155 (****)
By using the substitution $u=\sqrt{x+2}$, or otherwise, find an expression for

$$
\int \frac{1}{(x+1) \sqrt{x+2}} d x
$$ $\int_{\frac{\pi}{5}}^{\frac{\pi}{3}} 1-\left(\operatorname{set}^{2} \theta-1\right) d \theta=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 2-\sec ^{2} \theta d \theta$ $[2 \theta-\tan \theta]_{\frac{\pi}{3}}^{\frac{\pi}{3}}=\left(\frac{2 \pi}{3}-\sqrt{3}\right)-\left(\frac{\pi}{3}-\frac{\sqrt{3}}{3}\right)$ $\frac{\pi}{3}-\frac{2}{3} \sqrt{3}=\frac{1}{3}(\pi-2 \sqrt{3})$ As repureso

3
3

$$
\ln \left|\frac{\sqrt{x+2}-1}{\sqrt{x+2}+1}\right|+C
$$

Created by T. Madas

Question 156
Use appropriate integration techniques to show that

$$
\int_{0}^{\frac{1}{4} \pi^{2}} \sin \sqrt{x} d x=N,
$$

where N is a positive integer.

Created by T. Madas

Question 157 (****)
By using the substitution $x=\tan \theta$, or otherwise, find the value of

Created by T. Madas

Question 158
(****)

$$
y=\left(1+\cot ^{2} x\right) \sec ^{2} x, \quad 0<x<\frac{1}{2} \pi
$$

a) Calculate the three missing values of x in the following table.

\boldsymbol{x}	$\frac{1}{6} \pi$				$\frac{1}{3} \pi$
\boldsymbol{y}	$\frac{16}{3}$	$32-16 \sqrt{3}$	4	$32-16 \sqrt{3}$	$\frac{16}{3}$

b) Use the trapezium rule with all the values from the completed table of part (a) to find an estimate for

$$
\int_{\frac{1}{6} \pi}^{\frac{1}{3} \pi}\left(1+\cot ^{2} x\right) \sec ^{2} x d x
$$

c) Use an appropriate integration method to find an exact simplified value for

$$
\int_{\frac{1}{6} \pi}^{\frac{1}{3} \pi}\left(1+\cot ^{2} x\right) \sec ^{2} x d x
$$

\square

$$
\frac{5 \pi}{24}, \frac{\pi}{4}, \frac{7 \pi}{24}, 2.34, \frac{4}{3} \sqrt{3}
$$

Question 159 (****+)
Use appropriate integration techniques to evaluate

$$
\int_{\sqrt{5}}^{\sqrt{60}} \sqrt{1+\frac{4}{x^{2}}} d x
$$

Give the answer in the form $a+b \ln 3$, where a and b are positive integers.

$$
5+\ln 3
$$

Question 160 (****+)
Use a suitable substitution to show that

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos ^{2} x+3 \cos x+2} d x=\ln \left(\frac{9}{8}\right)
$$

Question 161 (****)
Use partial fractions to determine, in exact simplified form, the value of the following integral.

$$
\int_{0}^{\frac{1}{2}} \frac{2 x^{3}-5 x^{2}+5}{\left(x^{2}-3 x+2\right)\left(x^{2}-2 x+1\right)} d x
$$

\square $5+\ln \left(\frac{3}{8}\right)$

- Retwrenve To The intaret whet The FeAtTON SPuT
$\cdots=\int_{0}^{\frac{1}{2}} \frac{1}{x-2}-2(x-1)^{-3}+2(x-1)^{-2}+\frac{1}{x-1} d x$
$=\left[\ln |x-2|+(x-1)^{-2}-2(x-1)^{-1}+\ln |x-1|\right]_{0}^{\frac{1}{2}}$
$=\left[\ln |x-2|+\ln |x-1|+\frac{1}{(x-1)^{2}}-\frac{2}{x-1}\right]_{0}^{\frac{1}{2}}$
$=\left(\ln \frac{3}{2}+\ln \frac{1}{2}+\frac{1}{\frac{1}{4}}-\frac{2}{-\frac{1}{2}}\right)-(\ln 2+\ln 1+1+2)$
$=\ln \frac{3}{2}+\ln \frac{1}{2}-\ln 2+4+4-1-2$
$=5+\ln \frac{\frac{2}{7}}{2}$
$=\underline{\underline{5+\ln \frac{3}{8}}}$

Created by T. Madas

Question 162 (****)
Use the substitution $u=\sin x$ to find an expression for

$$
\int \frac{\cos x+\tan x}{1+\tan ^{2} x} d x
$$

Question $163(* * * *+)$
Use the substitution $u=1+\sqrt{x}$ to evaluate

$$
\int_{0}^{9} \frac{3 x}{1+\sqrt{x}} d x
$$

Created by T. Madas

Created by T. Madas

Question $164 \quad(* * * *+)$

$$
y=\frac{x^{2}}{2 x+1}, x \neq-\frac{1}{2}
$$

a) Calculate the two missing values of y in the following table.

\boldsymbol{x}	0	0.1	0.2	0.3	0.4	0.5
\boldsymbol{y}	0	$\frac{1}{120}$	$\frac{1}{35}$		0	$\frac{1}{8}$

b) Use the trapezium rule with all the values from the completed table of part (a) to find an estimate, correct to 4 significant figures, for the following integral.

$$
\int_{0}^{\frac{1}{2}} \frac{x^{2}}{2 x+1} d x
$$

d) Use the substitution $u=2 x+1$ to find an exact simplified value for

$$
\int_{0}^{\frac{1}{2}} \frac{x^{2}}{2 x+1} d x
$$

e) Hence deduce, by referring to parts (b) and (c), the approximate value of $\ln 2$ correct to 2 significant figures.
\square $, \frac{9}{160}, \frac{4}{45}, 0.02445, \frac{1}{16}[-1+2 \ln 2], \ln 2 \approx 0.70$

Created by T. Madas

Question 165 (****+)

$$
f(x)=-x^{2}+4 x-3,1 \leq x \leq 3
$$

a) Show clearly that $f(2+\sin \theta)=\cos ^{2} \theta$.
b) Hence find the exact value of

Created by T. Madas

Question 166 (****+)

$$
f(x)=\ln \left(\frac{1+x}{1-x}\right),|x|<1
$$

a) Show that $f(x)$ is an odd function.
b) Find an expression for $f^{\prime}(x)$ as a single simplified fraction, showing further that $f^{\prime}(x)$ is an even function.
c) Determine an expression for $f^{-1}(x)$.

Created by T. Madas

[continued from overleaf]

The figure below shows part of the graph of $f(x)$.

d) Use the substitution $u=\mathrm{e}^{x}+1$ to find the exact value of
e) Hence find an exact value for the area of the shaded region, bounded by $f(x)$, the coordinate axes and the line $x=\frac{1}{2}$.

$$
f^{\prime}(x)=\frac{2}{1-x^{2}}, \quad f^{\prime}(x)=\frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}, \ln \left(\frac{4}{3}\right), \quad \operatorname{area}=\frac{1}{2} \ln 3-2 \ln 2 \approx 0.262
$$

Question 167 (****+)
By using the substitution $u=\sqrt{x}$ find

$$
\int_{1}^{4} \frac{1}{x(2+\sqrt{x})} d x
$$

giving the answer as an exact single natural logarithm.

Created by T. Madas

Question 169 (****+)

$$
\frac{1}{x\left(x^{2}+1\right)} \equiv \frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

a) Find the value of each of the constants A, B and C.
b) Use the substitution $x=\cos \theta$ to show

$$
A=1, B=-1, \quad C=0
$$

Question 170
$(* * * *+)$
By using the substitution $u=1-\tan ^{2} x$, or otherwise, find the exact value of

$$
\int_{0}^{\frac{\pi}{6}} \tan x \sec 2 x d x
$$

Question 171 (****+)
a) Show clearly that $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$.
b) Use trigonometric identities to find

$$
\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x
$$

(b)

$$
\int \frac{1}{2}
$$

$$
\int \frac{1}{\frac{1}{\left(\frac{1}{2}-\frac{1}{2} \cos 2\right)\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right)}} d x
$$

$$
=\int \frac{4}{1-\cos ^{2} 2 x} d x=\int \frac{4}{\sin ^{2} 2 x} d x
$$

$$
=\int 4 \operatorname{cosec}^{2} 2 x d x=\ldots \text { by part }(a)
$$

$$
=-2 \cot 2 x+c
$$

Arctanatint
$\int \frac{1}{\sin ^{2} x \cos ^{2} x} d$

$$
\begin{aligned}
d x & =\int \frac{1}{(\sin x \cos x)^{2}} d x=\int \frac{1}{\left[\frac{1}{2}(2 \sin x \cos x)\right]^{2}} d x \\
& =\int \frac{1}{\left(\frac{1}{2} \sin ^{2} x\right)^{2}} d x=\int \frac{1}{\frac{1}{4} \sin ^{2} 2 x} d x \\
& =\int \frac{4}{\sin ^{2} 2 x} d x=\int 4 \cos \operatorname{cec}^{2} 2 x d x \\
& =\ldots \text { by pat (a) } \ldots=-2 \cot 2 x+C
\end{aligned}
$$

Atravitive $\int \frac{1}{\cos ^{3} s^{2} x^{2} x} d x=\int \frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x \sin ^{2} x} d x=\int \frac{\cos ^{2} x}{\cos ^{2} \sin x}+\frac{\sin ^{2} x}{\cos ^{2} x x^{2}+2 x} d x$ $=\int \cos ^{2} x+\operatorname{stc}^{2} x d x=\tan x-\cot x+C$

Question 172 (****+)
Use the substitution $x=\operatorname{cosec} \theta$ to find the exact value of

$$
\int_{\sqrt{2}}^{2} \frac{\sqrt{x^{2}-1}}{x} d x
$$

$$
\sqrt{3}-1-\frac{\pi}{12}
$$

$$
\begin{aligned}
& =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=-\frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x}=-\frac{1}{\sin ^{2} x} \\
& t=\text {-wath }
\end{aligned}
$$

a) Write down an expression for $\frac{d}{d x}\left(\mathrm{e}^{\cos x}\right)$.

Created by T. Madas

Question 174 (****+)
By using trigonometric identities, show that

Question 175 (****+)
By using the substitution $u=\sin 2 x$, or otherwise, find an exact simplified value for the following trigonometric integral.

$$
\int_{0}^{\frac{1}{4} \pi} \frac{1-\tan ^{2} x}{\sec ^{2} x+2 \tan x} d x
$$

\square $\frac{1}{2} \ln 2$

vame tit skemura	
Serut hermbe wos sut a Coms	
 	沰
	$\frac{1}{1+2 \sin x \cos x} d u$
$\frac{1}{2}[m\|+4\|]_{0}^{1}=\frac{1}{2}[m-2 x]$	

Question $176 \quad(* * * *+)$
By using a suitable substitution, or otherwise, find the value of

Created by T. Madas

Question 177 (****+)
a) Use the substitution $u=2 x-1$ to show that

$$
\int_{1}^{5} \frac{x+1}{(2 x-1)^{\frac{3}{2}}} d x=2
$$

b) By using integration by parts and the result of part (a), find the value of

Created by T. Madas

Question 178 (****+)
Use the substitution $u=\ln x$ to show that

Created by T. Madas

Question 179
(****+)

$$
J=\int_{-1}^{1} \frac{1}{1+\mathrm{e}^{-x}} d x
$$

a) Show that the substitution $u=1+\mathrm{e}^{-x}$ transforms J into

$$
\int_{1+\mathrm{e}}^{1+\mathrm{e}^{-1}} \frac{1}{u(1-u)} d u
$$

b) By expressing $\frac{1}{u(1-u)}$ into partial fractions show clearly that $J=1$.

Created by T. Madas

Question 180 (****+)
Use the substitution $x=\tan \theta$ to find the exact value of

$$
\int_{0}^{1} \frac{8}{\left(1+x^{2}\right)^{2}} d x
$$

\square $\pi+2$

Question 181 (****+)
Use the substitution $u=400-20 \sqrt{x}$ to show that

Created by T. Madas

Question 182 (****+)
It is given that

$$
\frac{\left(2 x^{2}-10 x+7\right)\left(x^{2}-3 x-3\right)}{(x-4)^{2}} \equiv A x^{2}+B x+C+\frac{D}{x-4}+\frac{E}{(x-4)^{2}}
$$

a) Find the value of A, B, C, D and E in the above identity.
b) Hence find the exact value of

$$
\int_{0}^{3} f(x) d x
$$

$A=2, B=0, C=-1, D=1, E=-1, \frac{57}{4}-\ln 4$

Created by T. Madas

Question 183 (****+)

$$
x=\frac{1}{2}(-1+4 \tan \theta),-\frac{1}{2} \pi<\theta<\frac{1}{2} \pi .
$$

a) Use trigonometric identities to show that

$$
4 x^{2}+4 x+17=16 \sec ^{2} \theta
$$

b) Hence find the exact value of

$$
\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{1}{4 x^{2}+4 x+17} d x
$$

\square a)
a) SUBSTTUVE, EXPPNO \& TIOY
$4 x^{2}+4 x+17=4\left[\frac{1}{2}(-1+4 \tan \theta)\right]^{2}+4\left[\frac{1}{2}(-1+4 \tan \theta \theta)\right]+17$
$=4 \times 5(-1+4 \tan \theta)^{2}+2(-1+4 \tan \theta)+\pi$
$=1-8 \tan \theta+16 \tan ^{2} \theta-2+86 \cos \theta+17$
$=16+16 \tan ^{2} \theta$
$=16\left(1+\tan ^{2} \theta\right)$
$=16 \sec ^{2} \theta$
b) BY suBstiotian From Pter (a)
$\Rightarrow x=\frac{1}{2}(-1+4 \tan \theta)=-\frac{1}{2}+2 \tan \theta$
$\Rightarrow \frac{d x}{d \theta}=2 \sec ^{2} \theta$
$\Rightarrow d x=2 \operatorname{stc}^{2} \theta d \theta$

- when $x=-\frac{1}{2}$

Created by T. Madas

Question 184
(****+)
It is given that

$$
\sin (A+B) \equiv \sin A \cos B+\cos A \sin B
$$

Use the above trigonometric identity to show that

$$
\sin 3 x \equiv 3 \sin x-4 \sin ^{3} x
$$

and hence find

Created by T. Madas

Question 185 (****+)

Use the substitution $u=x+\frac{\pi}{4}$ to show that

Created by T. Madas

Question 186 (****+)
By using the substitution $u=\sqrt[3]{x}$, or otherwise, show that

$$
\int_{0}^{\sqrt{27}} \frac{2}{x+\sqrt[3]{x}} d x=6 \ln 2
$$

\square proof

$\begin{aligned} & \left.=3 \ln h_{x+1}\right]_{0}^{\sqrt{8}}=3[h 4-x \mid \\ & =3 \times 2 h_{2} \end{aligned}$	
$=\frac{6 h_{2}}{}$	

Created by T. Madas

Question 187 (****+)

$$
I=\int_{0}^{1} \frac{3}{\left(1+8 x^{2}\right)^{\frac{3}{2}}} d x
$$

a) Use the substitution $x=\frac{1}{\sqrt{8}} \tan \theta$ to show that

$$
I=\frac{3}{\sqrt{8}} \sin (\arctan \sqrt{8}) .
$$

b) Show, presenting detailed calculations, that $I=1$.

Created by T. Madas

Question 188 (****+)

$$
I=\int_{1}^{2} \frac{1}{x^{2}-x \sqrt{x^{2}-1}} d x
$$

a) Show that the substitution $x=\sec \theta$ transforms I to

$$
I=\int_{0}^{\frac{1}{3} \pi} \frac{\tan \theta}{\sec \theta-\tan \theta} d \theta
$$

b) Hence use trigonometric identities to show that

$$
I=1+\sqrt{3}-\frac{1}{3} \pi
$$

\square , proof

a)	USING THE SOB mtitron gued
	$x=\sec \theta \quad x=1 \longmapsto \theta=0$
	$\frac{d x}{d \theta}=\sec \theta \tan \theta \quad \quad x=2 \longmapsto \theta=\frac{\pi}{3}$
	$d x=\sec \theta \tan \theta d \theta$
	Tetusformina tit intantc
	$\int_{1}^{2} \frac{1}{x^{2}-2 \sqrt{3^{2}-1}} d x=\int_{0}^{\frac{\pi}{3}} \frac{\sec \theta \tan \theta}{\sec ^{2} \theta-\sec \theta \sqrt{\sec ^{2} \theta-1}} d \theta$
	$=\int_{0}^{\frac{\pi}{3}} \frac{\operatorname{scc} \theta \tan \theta}{\sec ^{2} \theta-\sec \theta \sqrt{\tan ^{2} \theta} \theta} d \theta=\int_{0}^{\frac{\pi}{3}} \frac{\sec \theta \tan \theta}{\sec ^{2} \theta-\sec \theta(\tan \theta \mid} d \theta$
	$=\int_{0}^{\frac{\pi}{3}} \frac{\operatorname{ban} \theta}{\sec \theta-\tan \theta} d \theta$ As repuras
b)	$\operatorname{cosin} G(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)=\sec ^{2} \theta-\tan ^{2} \theta=1$
	$=\int_{0}^{\frac{\pi}{3}} \frac{\tan \theta(\tan \theta+\sec \theta)}{(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)} d \theta$
	$=\int_{0}^{\frac{\pi}{3}} \frac{\tan ^{2} \theta+\tan \theta \operatorname{ses} \theta}{1} d \theta$
	$=\int \tan ^{2} \theta+\tan \theta \sec \theta d \theta$
	$=\int \operatorname{sic}^{2} \theta-1+\tan \theta \operatorname{stc} \theta d \theta$

$=[\tan \theta-\theta+\sec \theta]_{0}^{\frac{\pi}{5}}$
$=\left(\sqrt{3}-\frac{\pi}{3}+2\right)-(0-0+1)$
$=\sqrt{3}-\frac{\pi}{3}+1$

Created by T. Madas

Question 189
$(* * * *+)$
Use integration by parts to find the value of

Created by T. Madas

Question 190
$(* * * *+)$

$$
\sin 2 x \equiv \frac{2 \tan x}{1+\tan ^{2} x}
$$

a) Prove the validity of the above trigonometric identity.
b) Express $\frac{8}{(3 t+1)(t+3)}$ into partial fractions.
c) Hence use the substitution $t=\tan x$ to show that

$$
\int_{0}^{\frac{\pi}{4}} \frac{8}{3+5 \sin 2 x} d x=\ln 3
$$

$$
\frac{8}{(3 t+1)(t+3)}=\frac{3}{3 t+1}-\frac{1}{t+3}
$$

a) STHETING ProM THE R.H.S
b)
c)

$\Rightarrow d x=\frac{d t}{\sec ^{2} x}$
$\Rightarrow d x=\frac{d t}{\tan ^{3} x+1}$
$\Rightarrow d x=\frac{d t}{1+t^{2}}$

- Witin $x=0, t=0$ TRAnsforming The initfral
$\int_{0}^{\frac{\pi}{4}} \frac{\theta}{3+5 \sin x} d x=\int_{0}^{\frac{\pi}{T}} \frac{8}{3+5\left(\frac{2 \tan x}{1+\tan ^{2} x}\right)} d x \leftarrow \mathrm{BY} \operatorname{PRKT}(4)$
$=\int_{0}^{1} \frac{8}{3+5\left(\frac{2 t}{1+t^{2}}\right)}\left(\frac{d t}{1+t^{2}}\right) \leftarrow \mathrm{Bt} \pi+\operatorname{sus} \sin \pi \boldsymbol{i t i o n}$
$=\int_{0}^{1} \frac{8}{3(1+2)+10 t} d t=\int_{0}^{1} \frac{8}{3 t^{2}+10 t+3} d t$
$=\int_{0}^{1} \frac{B}{(3 t+1)(t+3)} d t=\int_{0}^{1} \frac{3}{3 t+1}-\frac{1}{t+3} d t \leftarrow B y(b)$
$=[\ln |3 t+1|-\ln |t+3|]_{0}^{1}=(\ln 4-\ln 4)-(\ln t-\ln 3)$ $=\ln 3$ Asequctes

It is given that for some constants A and B

$$
6 \sin x \equiv A(\cos x+\sin x)+B(\cos x-\sin x)
$$

a) Find the value of A and the value of B.
b) Hence find

$$
\int \frac{6 \sin x}{\cos x+\sin x} d x
$$

$$
, A=3, B=-3,3 x-3 \ln |\cos x+\sin x|+C
$$

Question 192 (****+)

Use the substitution $x=2 \sin \theta$ to show that

Created by T. Madas

Question 193 (****+)
Use the substitution $u=1+x^{2} \mathrm{e}^{-3 x}$ to find an expression for

$$
0
$$

, $\ln \left(1+x^{2} e^{-3 x}\right)+C$

$$
\int \frac{x(2-3 x)}{\mathrm{e}^{3 x}+x^{2}} d x
$$

Created by T. Madas

Question 194 (****+)
Use the substitution $u=\frac{1}{x}+x \mathrm{e}^{x}$ to find an expression for

Created by T. Madas

Question 195 (****+)

$$
\int \frac{1}{\sqrt{x^{2}+x^{n}}} d x, n \neq 2, x \geq 0
$$

a) Show that the substitution $u^{2}=1+x^{n-2}$ transforms above integral into

$$
\frac{1}{n-2} \int \frac{2}{(u-1)(u+1)} d u
$$

b) Use partial fractions to find, in terms of x and n, an integrated expression for the original integral.

$\frac{1}{n-2} \ln \left|\frac{\sqrt{1+x^{n-2}}-1}{\sqrt{1+x^{n-2}}+1}\right|+C$Ving The substiution Gutw $u=\left(1+x^{n-2}\right)^{\frac{1}{2}}$ $\Rightarrow u^{2}=1+x^{n-2} \quad \Longleftrightarrow \quad x^{n-2}=u^{2}-1$ $\Rightarrow 2 u \frac{d u}{d l}=(h-2) x^{n-3}$
$\Rightarrow 2 u d u=(n-2) x^{n-3} d z$ $\Rightarrow d_{1}=\frac{2 u}{(n-2) u^{n-3}} d u$
TeAnsforming Tite intieral
$\int \frac{1}{\sqrt{x^{2}-x^{n}}} d x=\int \frac{1}{|x| \sqrt{1-x^{n-2}}} d x \quad(x \geqslant 0)$
$=\int \frac{1}{x_{x} \# 4} \frac{2 d}{(n-2) x^{n-1}} d u=\int \frac{2}{(n-2) a^{n-2}} d u$
$=\int \frac{2}{(n-2)\left(u^{2}-1\right)} d u=\frac{1}{n-2} \int \frac{2}{(u-1)(u+1)} d u$ \&s repures
b) PloLeed BY PRRTIIA FEACTIONS
$\frac{2}{(u-1)(u+1)} \equiv \frac{A}{u-1}+\frac{B}{u+1}$
$2 \equiv A(u+1)+B(u-1)$

- IF $u=1 \quad$ - If $u=-1$
$\begin{array}{ll}2=2 A & 2=-2 B \\ A=2 & B=-1\end{array}$
.$=\frac{1}{n-2} \int \frac{1}{u-1}-\frac{1}{u+1} d u$
$=\frac{1}{n-2}[\ln |u-1|-\ln |u+1|]+C$
$-\frac{1}{n-2} \ln \left|\frac{u-1}{u+1}\right|+c$
$=\frac{1}{n-2} \ln \left|\frac{\sqrt{1+x^{n-2}}-1}{\sqrt{1+x^{n-2}}+1}\right|+C$

Created by T. Madas

Question 196

$$
(* * * *+)
$$

$$
f(x) \equiv 2-\sqrt{x-1}, x \geq 1
$$

a) Find a simplified expression for $g(x)$ so that $f(x) g(x)=1$.
b) Hence, or otherwise, find

$$
\int \frac{5-x}{2-\sqrt{x-1}} d x
$$

Created by T. Madas

Question 197 (****+)
By using the substitution $u=1+\sin ^{2} x$, or otherwise, show clearly that

$$
\int_{0}^{\frac{\pi}{4}} \frac{4 \tan x}{1+\sin ^{2} x} d x=\ln 3
$$

Created by T. Madas

Question 198
(****+)

$$
\sec x \equiv \frac{\cos x}{1-\sin ^{2} x}
$$

a) Prove the validity of the above trigonometric identity.
b) Use the substitution $u=\sin x$ to show that

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec x d x=\frac{1}{2} \ln \left(\frac{7+4 \sqrt{3}}{3}\right)
$$

c) Show clearly that

Created by T. Madas

Question 199 (${ }^{* * * *+) ~}$
Use the substitution $x=2 \sec \theta$, to find the exact value of

$$
\begin{equation*}
\int_{\frac{4}{\sqrt{3}}}^{4} \frac{6}{\left(x^{2}-4\right)^{\frac{3}{2}}} d x \tag{3}
\end{equation*}
$$

Created by T. Madas

Question 200
$(* * * *+)$
Use the substitution $u=1+x \mathrm{e}^{\sin x}$ to find an exact simplified value for the following definite integral.

Created by T. Madas

Question 201
(****+)

$$
I=\int \frac{1}{x^{2} \sqrt{4-x^{2}}} d x
$$

a) Use the substitution $x=2 \sin \theta$ to show clearly that

$$
I=-\frac{\sqrt{4-x^{2}}}{4 x}+C
$$

b) Verify the answer to part (a) by using the substitution $u=\frac{2}{x}$.

Created by T. Madas

Question 202 (****+)
By using the substitution $x=-\frac{1}{2}+\frac{1}{2} \sin \theta$, or otherwise, find the exact value of

$$
\int_{-\frac{1}{4}}^{0} \frac{3}{\sqrt{-x(x+1)}} d x
$$

(-HGNCt THE inltgrac now Becounts

$$
\begin{aligned}
\int_{-\frac{1}{4}}^{0} \frac{3}{\sqrt{-x(x+1)}} d x & =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{3}{\frac{1}{2} \cos \theta}\left(\frac{1}{2} \cos \theta d \theta\right) \\
& =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 3 d \theta \\
& =[3 \theta]_{\frac{\pi}{6}}^{\frac{\pi}{2}} \\
& =\frac{3 \pi}{2}-\frac{\pi}{2}
\end{aligned}
$$

shoromina the dinominatur of the INTHertind
$\begin{aligned} &= \sqrt{-\left(-\frac{1}{2}+\frac{1}{2} \sin \theta\right)\left(-\frac{1}{2}+\frac{1}{2} \sin \theta+1\right)} \\ &=\sqrt{\left(\frac{1}{2}-\frac{1}{2} \sin \theta\right)\left(\frac{1}{2}+\frac{1}{2} \sin \theta\right)}\end{aligned}$
$=\sqrt{\frac{1}{4}-\frac{1}{4} \sin ^{2} \theta}$
$=\sqrt{\frac{1}{4}\left(1-\sin ^{2} \theta\right)}$
$=\sqrt{\frac{1}{4} \cos ^{2} \theta}$
$=\underline{\underline{\frac{1}{2} \cos \theta}}$

Created by T. Madas

Question 203
By using multiplying the numerator and denominator of the integrand by $(\sec x+1)$, and manipulating it further by various trigonometric identities, show clearly that

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{6}{\sec x-1} d x=12-\pi
$$

proof

Created by T. Madas

Question 204 (****+)
By changing the base of the logarithmic integrand into base e and further using integration by parts, show that

giving the answer in the form $\ln |f(x)|$
$\ln |\sin x|+C$

Created by T. Madas

Question 206 (****+)
By using the substitution $u=\tan x$, or otherwise, find the exact value of

Question 207 (****+)
Use trigonometric identities and integration by parts to find an exact value for

$$
\int_{0}^{\frac{\pi}{2}} 9 x \sin x \sin 2 x d x
$$

\square $3 \pi-4$

Question 208

$$
I \equiv \int \frac{1}{1+\sin 2 x} d x
$$

a) Integrate I by multiplying the numerator and denominator of the integrand by $(1-\sin 2 x)$.
b) Hence evaluate

$$
\int_{0}^{\frac{\pi}{8}} \frac{1}{1+\sin 2 x} d x
$$

c) Use the substitution $t=\tan x$ to integrate I.
d) Hence evaluate

$$
\frac{1}{2} \tan 2 x-\frac{1}{2} \sec 2 x+C, \frac{1}{2}(2-\sqrt{2}),-\frac{1}{1+\tan x}+C, \frac{1}{2}
$$

\square
(b) $\int_{0}^{\frac{\pi}{8}} \frac{1}{1+\sin 2} d x=\frac{1}{2}[\tan 2 x-\sec x a]^{\frac{\pi}{8}}=\frac{1}{2}[(1-\sqrt{2})-(0-1)]$
 $=\int \frac{\sec ^{2} x}{\operatorname{sen}^{2} x^{2} x+2 \tan x} d x=\int \frac{1+\tan ^{3} x}{1+\tan ^{2} x+2 \tan x} d x$ $\int \frac{1+\tan ^{2} x}{(1+\tan x)^{2}} d x$
\qquad $\frac{d z}{d z}=\sec x$ $\}=\int \frac{1}{\left(1+t^{2}\right.} d t=-\frac{1}{1+t}+c$ (d) Finaluy $\int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} d x=\left[-\frac{1}{1+\tan x}\right]_{0}^{\frac{\pi}{4}}=\left[\frac{1}{1+\tan x}\right]_{\frac{\pi}{4}}^{0}$

Created by T. Madas

Question 209

Show clearly that

Question 210
(****+)
Use the substitution $u=1+x^{2} \operatorname{cosec} x$ to find an expression for

$$
\int \frac{2 x-x^{2} \cot x}{x^{2}+\sin x} d x
$$

\square , $\ln \left|1+x^{2} \operatorname{cosec} x\right|+C$

Created by T. Madas

Question 211 (****+)
Use a suitable trigonometric substitution to find an exact simplified value for

$$
\int_{0}^{a} x^{\frac{1}{2}} \sqrt{a-x} d x
$$

where a is a positive constant.

Created by T. Madas

Question $212(* * * *+)$

$$
f(u) \equiv \frac{1}{u^{2}+5 u+6}
$$

a) Express $f(u)$ into partial fractions.

$$
I=\int_{\arcsin \frac{3}{5}}^{\arccos \frac{3}{5}} \frac{1}{(\sin x+2 \cos x)(\sin x+3 \cos x)} d x
$$

b) Express I in the form

$$
I=\int_{\arcsin \frac{3}{5}}^{\arccos \frac{3}{5}} \frac{\sec ^{2} x}{g(\tan x)} d x
$$

where g is a function to be found.
c) Hence show that

$$
I=\ln \left(\frac{a}{b}\right)
$$

where a and b are positive integers to be found.
, $f(u) \equiv \frac{1}{u+2}-\frac{1}{u+3}, g(\tan x) \equiv(2+\tan x)(3+\tan x), \quad I=\ln \left(\frac{150}{143}\right)$

Question 213 (****+)
Find in exact simplified form an expression for

$$
\int \frac{3 x}{x-\sqrt{x^{2}-1}} d x
$$

\square

$$
x^{3}+\left(x^{2}-1\right)^{\frac{3}{2}}+C
$$

\square
$\int \frac{3 x}{x-\sqrt{x^{2}-1}} d x=\int \frac{3 \cosh \theta(\sinh \theta d \theta)}{\cosh \theta-\sqrt{\cosh ^{2} \theta-1}}$
$=\int \frac{3 \cosh \theta \sinh \theta}{\cosh \theta-\sinh \theta} d \theta$
$=\int \frac{3 \cosh \theta \sinh \theta(\cosh \theta+\sinh \theta)}{(\cosh \theta-\sinh \theta)(\cosh \theta+\sinh \theta)} d \theta$
$=\int \frac{3 \cos 7 \theta \sinh \theta+3 \cosh ^{2} \sinh ^{2} \theta \theta}{\cosh ^{2} \theta-\sinh ^{2} \theta} d \theta$ $\left\{\cosh ^{2}+\sinh ^{2} \theta=1\right\}$
$\int 3 \cos \pi \theta \sin h+36 \cosh \theta \sinh ^{2} \theta d \theta$ - By Retconationl
$=\cos ^{3} \theta+\sin ^{3} \theta+c$
$=\cosh ^{2} \theta+\left(\sqrt{\cosh ^{2} \theta-1}\right)^{3}+C$
$=x^{3}+\left(x^{2}-1\right)^{\frac{3}{2}}+c$

Created by T. Madas

Question 214 (****+)
Use the substitution $u=\sin x+x \tan x$ to find an expression for

Question $215 \quad(* * * *+)$
Find, in exact simplified form, the value of

Question 216 (******)
By using the substitution $u=1+\cos ^{4} x$, or otherwise, find the exact value of

$$
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{4 \cot ^{3} x}{1+2 \cot ^{2} x+2 \cot ^{4} x} d x
$$

\square , $\ln \left(\frac{5}{4}\right)$

$$
\begin{aligned}
& \begin{array}{l}
=\int_{1}^{\frac{5}{7}} \frac{1}{\sin ^{4} x+2 \cos ^{2} x \sin ^{2} x+2 \cos ^{4} x} d u \\
=\int_{1}^{\frac{5}{7}} \frac{1}{\left(1-\cos ^{2} x\right)^{2}+2 \cos ^{2} x\left(1-\cos ^{3} x\right)+2 \cos ^{4} x} d u
\end{array} \\
& =\int_{1}^{\frac{5}{4}} \frac{1}{1-2 \operatorname{coc}^{2} x^{2} x+\cos ^{4} x+20^{2} x-2 \cos ^{4} x+2 \cos ^{8} x} d u \\
& \begin{array}{l}
=\int_{1}^{\frac{5}{4} \frac{1}{1+\cos t} d u} d \sin x=\int^{\frac{1}{a}} \frac{1}{a} d u(+\cos x
\end{array} \\
& =[\ln |4|]_{1}^{\frac{1}{7}} \\
& =\ln \frac{5}{4}-y x^{\prime} \\
& =\ln _{\frac{1}{4}}
\end{aligned}
$$

Created by T. Madas

Question 217 (*****)

$$
\frac{2}{u(u-2)} \equiv \frac{A}{u-2}+\frac{B}{u} .
$$

a) Find the value of each of the constants A and B.
b) By using the substitution $u=1+\cos ^{2} x$, or otherwise, show clearly that

$$
\int \frac{4 \cot x}{1+\cos ^{2} x} d x=-\ln \left(\operatorname{cosec}^{2} x+\cot ^{2} x\right)+C .
$$

$$
A=1, B=1
$$

Created by T. Madas

Question 218
(*****)
By using the substitution $\tan \theta=\sqrt{x^{3}-1}$, or otherwise, find an exact value for the following integral.

Created by T. Madas

Question 219 (*****)
Use appropriate integration methods to find an exact simplified value for

Plocead BY A surstitution
$\theta=\arcsin x$
$\sin \theta=x$
$d x=\cos \theta d y$
Tensfocm Th intain
$\int_{0}^{\frac{1}{2}} \cos (5 \arcsin x) d x=\int_{0}^{\frac{\pi}{6}}(\cos s \theta)(\cos \theta d \theta)=\int_{0}^{\frac{\pi}{8}} \cos \theta \cos \theta \theta d \theta$

$\left\{\begin{array}{l}\cos (\theta) \theta) \equiv \cos 5 \theta \cos \theta-\sin 5 \theta \sin \theta \\ \cos (\theta-\theta) \equiv \cos 5 \theta \cos \theta+\sin 8 \sin \theta\end{array}\right\}$ todanc.
$\Rightarrow \cos \theta+\cos \theta=2 \cos 3 \theta \cos \theta$
$\Longrightarrow \cos 5 \theta \cos \theta \equiv \frac{1}{2} \cos 6 \theta+\frac{1}{2} \cos 4 \theta$
EANONNG To THE int Geal
$=\int_{0}^{\frac{\pi}{t}} \frac{1}{2} \cos 6 \theta+\frac{1}{2} \cos 4 \theta d \theta=\left[\frac{1}{2} \sin \theta \theta+\frac{1}{8} \sin 4 \theta\right]_{0}^{\frac{\pi}{8}}$
$=\left(0+\frac{\sqrt{3}}{16}\right)-(0+0)$

Created by T. Madas

Created by T. Madas

Question 220 (*****)
By using the substitution $\mathrm{e}^{x}=\frac{1}{u}$, or otherwise, show clearly that

$$
\int \frac{9}{\mathrm{e}^{x} \sqrt{\mathrm{e}^{2 x}-9}} d x=\frac{\sqrt{\mathrm{e}^{2 x}-9}}{\mathrm{e}^{x}}+C
$$

Question 221 (*****)
By using a reciprocal substitution, or otherwise, find the value of the following integral.

$$
\int_{1}^{2} \frac{x^{2}-1}{x^{3} \sqrt{2 x^{4}-2 x^{2}+1}} d x
$$

Show clearly that

Created by T. Madas

Question 224 (*****)

Use appropriate integration techniques to show that

$$
I=\frac{1}{6}[a+b \sqrt{3}],
$$

where a and b are integers to be found.

Created by T. Madas

By using a suitable trigonometric substitution, show clearly that

$$
\int_{0}^{\frac{1}{2}} \sqrt{\frac{16 x}{1-x}} d x=\pi-2
$$

Question 227 (*****)
Find an exact simplified value for

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\sin x \sin 2 x} d x
$$

$$
\frac{1}{2} \ln \left[\frac{2+\sqrt{3}}{\sqrt{3}}\right]+1-\frac{\sqrt{3}}{3}
$$

Created by T. Madas

Question 228 (******)
Evaluate the following definite integral.

$$
\int_{0}^{1} \mathrm{e}^{\arccos x} d x
$$

Give the answer in exact simplified form.

Created by T. Madas

Question 229 (*****)
Use a suitable trigonometric substitution to find the exact value of

Question 230 (*****)
By using trigonometric identities, show that

$$
\int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \frac{\sin ^{6} x+\cos ^{6} x}{\sin ^{2} x \cos ^{2} x} d x=\frac{1}{8}(16-3 \pi) \text {. }
$$

\square proof

Toy Brace EuAwatting
$=\left[\tan -\frac{1}{\tan }-35\right]_{-\frac{\pi}{8}}^{\frac{\pi}{8}}$
$=\left[\frac{\tan ^{2} x-1}{\tan x}-3\right]_{5}^{\frac{1}{5}}$
$-\left[32+\frac{1-\tan x^{3}}{\tan }\right]_{\frac{\pi}{8}}^{\frac{\pi}{8}}$
$=\left[3+2\left(\frac{1-x_{2}^{2} x}{2 \operatorname{lox} x}\right)\right]^{T_{7}}$
$=[3+20+23] \frac{⿱^{4}}{}$
$=\left[3 x+\frac{2}{\tan 2}\right]_{\frac{7}{4}}^{\frac{7}{4}}$

$=-\frac{3 \pi}{8}+2$
$=\frac{1}{8}(6-3 \pi) / /$

Question 231 (*****)
Find, in exact simplified form, the value of the following integral.

By using a suitable cosine double angle trigonometric identity find

Created by T. Madas

Question 233 (*****)
By expressing the integrand in the form $\sec ^{2} x f(\tan x)$, or otherwise, find a simplified expression for the following integral.

$$
\int \frac{3 \sin ^{2} x \cos ^{2} x}{\left(\cos ^{3} x-\sin ^{3} x\right)^{2}} d x
$$

\square $\frac{1}{1-\tan ^{3} x}+C$

Created by T. Madas

Question 234 (*****)

$$
\sec x \equiv \frac{1+\tan ^{2}\left(\frac{x}{2}\right)}{1-\tan ^{2}\left(\frac{x}{2}\right)}
$$

a) Prove the validity of the above trigonometric identity.
b) Express $\frac{2}{1-t^{2}}$ into partial fractions.
c) Hence use the substitution $t=\tan \left(\frac{x}{2}\right)$ to show that

$$
\int \sec x d x=\ln \left|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C .
$$

$$
\frac{2}{1-t^{2}}=\frac{1}{1+t}+\frac{1}{1-t}
$$

Created by T. Madas

Question 235 (*****)
By using the substitution $\mathrm{e}^{x}=\frac{1}{t}$, or otherwise, show clearly that

$$
\int \frac{4}{\mathrm{e}^{x} \sqrt{\mathrm{e}^{2 x}+4}} d x=-\frac{\sqrt{\mathrm{e}^{2 x}+4}}{\mathrm{e}^{x}}+C
$$

proof

Created by T. Madas

Question 237 (*****)
Use the substitution $x=\frac{1}{u}$ to find the value of

$$
\int_{\frac{1}{2}}^{2} \frac{\ln x}{1+x^{2}} d x
$$

0

Created by T. Madas

Question 239 (*****)

The figure above shows the graph of the curve with equation

$$
y=(x-q)(x-p)^{2}
$$

where p and q are positive constants.

The curve meets the x axis at the points A and B. The region R, shown shaded in the figure, is bounded by the curve and the x axis.
a) Show that the area of the shaded region is

$$
\frac{1}{12}(p-q)^{4}
$$

The point C is the local maximum of the curve. The rectangle $A M C N B$ is such so that $M C N$ is parallel to the x axis and both $A M$ and $B N$ are parallel to the y axis.
b) Show that the area of the rectangle $A M C N B$ is $\frac{16}{9}$ times as large as the area of R, regardless of the values of p and q.

$$
\begin{aligned}
& \text { Question } 240 \quad(* * * * *) \\
& f(x)=\frac{\text { Created by T. Madas }}{(\cos 7 x+\cos x)^{2}+(\sin 7 x+\sin x)^{2}}, x \in \mathbb{R} .
\end{aligned}
$$

$$
\text { Use trigonometric identities to find the exact value of } \int_{\frac{1}{12} \pi}^{\frac{1}{9} \pi} f(x) d x \text {. }
$$

Use trigonometric identities to find the exact value of $\int_{\frac{1}{12} \pi}^{\frac{1}{9} \pi} f(x) d x$.
$, \square, \square \frac{2-\sqrt{2}}{12}, \square$

Created by T. Madas

Question 241 (*****)
Use a suitable trigonometric manipulation to find an exact simplified answer for the following integral.

Question 242 (*****)

$$
f(x)=3 \sin x-\cos x+3, x \in \mathbb{R} .
$$

$$
g(x)=\sin x+\cos x, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form

$$
A \times g(x)+B \times g^{\prime}(x)+3
$$

where A and B are constants.
b) Express $g(x)$ in the form

$$
R \cos (x-\varphi)
$$

where R and φ are positive constants.
c) Hence find a simplified expression for

$$
\int \frac{f(x)}{g(x)} d x
$$

$\square, A=1, B=-2, \quad R=\sqrt{2}, \quad \varphi=\frac{1}{4} \pi$, $x-2 \ln |\sin x+\cos x|+\frac{3}{2} \sqrt{2} \ln \left|\sec \left(x-\frac{1}{4} \pi\right)+\tan \left(x-\frac{1}{4} \pi\right)\right|+C$

a)

$$
\begin{aligned}
& \frac{\text { Differenviatt } g(x)}{g^{\prime}(x)=\cos x-\sin x} \\
& \text { Equatt a compaet coeffichis } \\
& \Rightarrow f(x) \equiv A \times g(x)+B \times g^{\prime}(x)+3 \\
& \Rightarrow 3 \sin x-\cos x+y^{\prime} \equiv A(\sin x+\cos x)+B(\cos x-\sin x)+3 \\
& \Rightarrow 3 \sin x-\cos x \equiv(A-B) \sin x+(A+B) \cos x \\
& \left\{\begin{aligned}
& A-B=3 \\
& A+B=-1
\end{aligned}\right\} \quad \therefore \begin{aligned}
2 A & =2 \\
A & =1 \quad \& \quad B=-2
\end{aligned} \\
& \Rightarrow f(x)=g(x)-2 g^{\prime}(x)+3
\end{aligned}
$$

b)

c) $\int \frac{f(x)}{g(x)} d x=\int \frac{g(x)-2 g^{\prime}(x)+3}{g(x)} d x$
$=\int 1+\frac{2 g^{\prime}(x)}{g(x)}+\frac{3}{g(x)} d x$
$=\int 1 d x+2 \int \frac{g^{\prime}(x)}{g(x)} d x+\int \frac{3}{g(x)} d x$
$=x+2 \ln |g(x)|+\int \frac{3}{\sqrt{2} \cos \left(x-\frac{4}{4}\right)} d x$
$=x+2 \ln |g(x)|+\frac{3}{\sqrt{2}} \int \sec \left(x-\frac{\pi}{4}\right) d x$ NOTING THAT \int sea $d x=\ln |\sec x+\tan x|+C$
$\left.\rightarrow \int \frac{f(x)}{g(x)} d x=x+2 \ln |\sin x+\cos x|+\frac{3}{2} \sqrt{2} \ln \right\rvert\, \sec \left(x-\frac{\pi}{4}\right)+\tan \left(x-\frac{\pi}{4}\right)$

$+\frac{t c}{C}$

Created by T. Madas

Question 243 (*****)
Use the substitution $x=2 \sec \theta$, to find a simplified expression for

Question 244 (*****)
Find an exact simplified value for

Given that a and b are integers, evaluate
$\int_{-\pi}^{\pi}(\cos a x-\sin b x)^{2} d x$.

Created by T. Madas

Question 246 (*****)

$$
I=\int_{1.5}^{2} \frac{(x-2)\left(2 x^{2}-5 x-1\right)}{(x-1)(x-3)} d x
$$

Use appropriate integrations techniques to show that

$$
I=\frac{5}{4}-\ln k,
$$

where k is a positive integer.
\square , $k=6$

Created by T. Madas

Question 247 (*****)

$$
I=\int_{0}^{1}\left(x^{\frac{7}{6}}+4 x^{\frac{2}{3}}\right)^{-\frac{3}{4}} d x
$$

Use appropriate integration techniques to show that

$$
I=8[\sqrt[4]{5}-\sqrt{2}]
$$

Created by T. Madas

Question 248
(*****)

$$
I=\int_{0}^{\frac{1}{4} \pi} \frac{1}{9 \cos ^{2} x-\sin ^{2} x} d x
$$

By using a tangent substitution, or otherwise, show that

$$
I=\frac{1}{6} \ln 2 .
$$

\square , proof

Created by T. Madas

Question 249 (*****)
Find an exact simplified value for the following definite integral.

$$
\int_{0}^{\infty} \frac{\mathrm{e}^{8 x}-\mathrm{e}^{2 x}}{\left(\mathrm{e}^{8 x}+3\right)\left(\mathrm{e}^{2 x}+3\right)} d x
$$

You may assume without proof that the integral converges.

V \square $\frac{1}{4} \ln 2$

$$
\square
$$

$$
4
$$

Created by T. Madas

Question 250
$(* * * * *)$

$$
I=\int_{-\frac{5}{2}}^{\frac{7}{2}} \frac{4 x+1}{\sqrt{35+4 x-4 x^{2}}} d x
$$

By writing $35+4 x-4 x^{2}$ in completed the square form, followed by a suitable trigonometric substitution, show that

$$
I=\frac{3}{2} \pi
$$

\square , proof

Created by T. Madas

Question 251 (*****)

$$
I=\int_{-1}^{1}(x+3) \sqrt{7-6 x-x^{2}} d x
$$

a) Use a suitable trigonometric substitution to show that $I=8 \sqrt{3}$.
b) Verify the answer of part (a) by an alternative method.
\square , proof

Created by T. Madas

Use trigonometric identities to find the value of

Created by T. Madas

Question 253 (*****)
Use suitable integration techniques to show that

$$
\int_{0}^{1} \frac{x^{2}}{\left(x^{2}+1\right)^{3}} d x=\frac{\pi}{32}
$$

p, proof

Question 254 (*****)
Use suitable integration techniques to show that

$$
\int_{-\frac{1}{6} \ln 3}^{\frac{1}{6} \ln 3} 6
$$

\square proof

$$
\begin{aligned}
& =[-2 \theta a t \theta+2 \ln |\sin \theta|]_{\frac{\pi}{6}}^{\frac{\pi}{3}} \\
& =[2 \ln (\sin \theta)-2 \theta \cot \theta]_{\frac{\pi}{4}}^{\frac{\pi}{3}} \\
& =\left[2 \ln \left(\sin \frac{\pi}{3}\right)-\frac{2 \pi}{3} \omega+\frac{\pi}{3}\right]-\left[2 \ln \left(\sin \frac{\pi}{6}\right)-\frac{\pi}{3} a+\frac{\pi}{4}\right] \\
& =2 \ln \sqrt{3} \frac{3}{3} \cdot \frac{2 \pi}{3} \cdot \sqrt{3} \quad \quad \ln \frac{1}{2}+\frac{\pi}{3} \times \sqrt{3} \\
& =\ln \frac{3}{4}-\frac{2 \pi \sqrt{3}}{9}+\ln 4+\frac{\pi \sqrt{3}}{3} \\
& =\ln \left(\frac{3}{4} \times 4\right)+\left(-\frac{7}{9}+\frac{1}{3}\right) \sqrt{3} 4 \\
& =\ln 3+\frac{\sqrt{3} \pi}{9}
\end{aligned}
$$

Created by T. Madas

Question 255 (*****)
Use suitable integration techniques to show that

$$
\int_{0}^{\frac{1}{2} \pi} \frac{1+\cos x+\sin x-\tan x}{1+\tan x} d x=1
$$

You may assume that the above integral converges.

Created by T. Madas

Question 256 (*****)
Use a suitable trigonometric substitution to find a simplified expression for

$$
\frac{9}{2} \arcsin \left(\frac{x-2}{3}\right)+\frac{1}{2}(x-2) \sqrt{(1+x)(5-x)}+C
$$

Created by T. Madas

Question 257 (*****)

The figure above shows a cubic curve that crosses the x axis at $A(a, 0)$ and touches the x axis at $B(b, 0)$, where a and b are positive constants. The point C is a local maximum of the curve.
a) Find the x coordinate of C, in terms of a and b.

The point D lies on the x axis so that $C D$ is parallel to the y axis.
b) Show that $|A B|=3|A D|$.

The region R is bounded by the curve, the line segment $C D$ and the x axis.

Question 258 (*****)
By considering the derivatives of $\mathrm{e}^{x} \sin x$ and $\mathrm{e}^{x} \cos x$, find

$$
\frac{1}{2} \mathrm{e}^{x}(5 \cos x-\sin x)+C
$$

Question 259 (******)
Use integration by parts and suitable trigonometric identities to find

$$
\int \sec ^{3} x d x
$$

\square

$$
\frac{1}{2} \sec x \tan x+\frac{1}{2} \ln |\sec x+\tan x|+C
$$

Question 260
(******)
By using the substitution $\sqrt{x}=\tan \theta$, or otherwise, find a simplified expression for the following integral.

Created by T. Madas

Question 261 (*****)
Find the value of the following definite integral.

$$
\int_{\frac{1}{2}}^{2} \frac{1}{x+x^{4}} d x
$$

Give the answer in the form $\ln k$, where k is a positive integer.

Created by T. Madas

Question 262 (*****)

$$
I=\int_{-2}^{2} \frac{1}{\sqrt{1-a x+a^{2}}} d x, a>0, a \neq 0
$$

Find the two possible values of I, giving the answer in terms of a where appropriate.

Created by T. Madas

Question 263 (*****)

$$
I=\int \frac{\cos ^{3} x}{\left(1+\sin ^{2} x\right) \sin x} d x
$$

By using the substitution $u=\sin x+\operatorname{cosec} x$, or otherwise, show that

$$
I=\ln \left|\frac{\sin x}{1+\sin ^{2} x}\right|+\text { constant }
$$

\square , proof

anco

$u=\sin x+\cos \cos x$ $\frac{d u}{d x}=\cos x-\operatorname{cotacosec} a$ $d_{x}=\frac{1}{\cos x-\operatorname{arta} \cos \operatorname{tax}} d u$

$\int \frac{\cos ^{3} x}{(1+\sin x \sin x} d x=\int \frac{\cos ^{3} x}{\left(1+\sin ^{2} x\right) \sin x} \times \frac{1}{\cos x-\cot x \cos 4 x} d x$ sumal to susec and usints
$=\int \frac{\cos ^{3} x}{\left(1+\sin ^{2} x\right) \sin a} \times \frac{1}{\cos x-\frac{\cos 2}{\sin 2} \times \frac{1}{\sin 2}} d u$

Created by T. Madas

Question 264 (*****)

$$
I=\int_{0}^{\frac{1}{2} \pi} x \cot x d x
$$

Use appropriate integration techniques to show that

$$
I=\frac{1}{2} \pi \ln 2
$$

\square

Question 265 (*****)
Use the substitution $x=\frac{1}{u}$ to find the value of

$$
\text { 2) } \int_{\frac{1}{2}}^{2} \frac{x^{4}-1}{x^{2} \sqrt{x^{4}+1}} d x
$$

Question 266 (*****)
Use a suitable substitution to find the value of $\int_{2}^{4} \frac{\sqrt{\ln (9-x)}}{\sqrt{\ln (9-x)}+\sqrt{\ln (3+x)}} d x$.

Created by T. Madas

Question 267 (******)
Use an appropriate substitution followed by integration by parts to find a simplified expression for

$$
\begin{array}{r}
\int \frac{\left[\ln \left(x^{2}+1\right)-2 \ln x\right] \sqrt{x^{2}+1}}{x^{4}} d x \\
\square \\
\square \frac{2}{9 x^{3}}\left(x^{2}+1\right)^{\frac{3}{2}}\left[1-3 \ln \left(\frac{x^{2}+1}{x^{2}}\right)\right]+C
\end{array}
$$

Question 268 (*****)
Use appropriate integration techniques to show that

$$
\int_{0}^{\frac{1}{2} \pi} \frac{\sin ^{2} x}{\sin x+\cos x} d x=\frac{1}{\sqrt{2}} \ln (1+\sqrt{2})
$$

Created by T. Madas

Question 269
Use appropriate integration techniques to show that

Created by T. Madas

Question 270
(******)
Use appropriate integration techniques to find an exact answer for the following definite integral.

\qquad

- Stine BY Drawing an expression for $\sin 3 x$ by iontithes $\sin 3 x=\sin (2 x+x)=\sin 2 x \cos x+\cos 2 x \sin x$ $=(2 \sin x \cos x) \cos x+\left(1-2 \sin ^{2} x\right) \sin x$
$=2 \sin x \cos ^{2} x+\sin x-2 \sin ^{3} x$
$=2 \sin a\left(1-2 x^{2} x+\sin x-2 \sin ^{2} x\right.$
$=3 \sin x-4 \sin ^{3} x$

Question 271 (*****)
a) Use the compound angle identity $\cos (A+B)$ to show that

$$
\cos \left(\frac{5 \pi}{12}\right)=\frac{\sqrt{6}-\sqrt{2}}{4}
$$

b) Use a suitable trigonometric substitution to find the exact value of

Question 272 (*****)
It is given that the functions of $x, u(x)$ and $v(x)$ satisfy

$$
\int u(x) v(x) d x=\left[\int u(x) d x\right] \times\left[\int v(x) d x\right], \text { for } x \in \mathbb{R}, x \neq 0, x \neq 1
$$

a) Show clearly that

$$
\frac{\int u(x) d x}{u(x)}+\frac{\int v(x) d x}{v(x)}=1
$$

b) Given further that

$$
\begin{aligned}
& \frac{\int u(x) d x}{u(x)}=\frac{1}{x}, \\
& u(x)=A x \mathrm{e}^{\frac{1}{2} x^{2}}, \text { where } A \text { is an arbitrary constant. }
\end{aligned}
$$

c) Determine a similar expression for $v(x)$.

Question 273 (*****)
Use the substitution $\tan x=\frac{1}{2}(-1+\sqrt{3} \tan \theta)$ to find the exact value of

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sqrt{3}}{2+\sin 2 x} d x
$$

Created by T. Madas

Question 274 (******)

$$
I=\int_{\arcsin \frac{3}{5}}^{\arccos \frac{3}{5}} \frac{1}{(\sin x+2 \cos x)(\sin x+3 \cos x)} d x
$$

Use appropriate integration techniques to show that

$$
I=\ln \left(\frac{a}{b}\right)
$$

where a and b are positive integers to be found.

\square

$$
I=\ln \left(\frac{150}{143}\right)
$$

Stnet minipuctitina dhe instgatind as kuows $\int_{\arcsin \frac{2}{5}}^{\arccos \frac{3}{3}} \frac{1}{(\sin x+\sin x)(\sin x+3 \cos x)} d x$ $=\int_{\arcsin \frac{3}{5}}^{\arccos \frac{3}{3}} \frac{1}{\sin ^{2} x+\operatorname{sen} \cos x+6 \cos ^{2} \frac{x}{2}} d x$
 $\int_{\operatorname{arcan} \frac{3}{5}}^{\operatorname{arcos} \frac{3}{5}} \frac{\frac{1}{\cos ^{3} x}}{\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\operatorname{son} x \cos x}{\cos x}+\frac{\cos 2 x}{\cos ^{2} x}} d x$ $=\int_{\arcsin \frac{3}{s}}^{\arccos \frac{2}{3}} \frac{\sec ^{2} x}{\operatorname{sun}^{2} x+5 \tan x+6} d x$ BY SuBStiution is $\tan x$ Diffretanates to $\operatorname{Scc}^{2} x$
 $\int_{3 / 4}^{4 / 3} \frac{\sec ^{2} 5}{u^{2}+5 u+6} \frac{d u}{5 x^{2} x}$

- By prertic fentetions
$\frac{1}{(u+2)(u+3)} \equiv \frac{A}{u+2}+\frac{B}{u+3}$
$1 \equiv A(u+3)+B(u+2)$
if $u=-2 \Rightarrow l=A$
if $u=-3 \Rightarrow 1=-B$
- RETVENNGG To the lintGratL $\cdots=\int_{\frac{3}{4}}^{\frac{4}{3}} \frac{1}{4+2}-\frac{1}{4+3} d x$
$=[\ln |u+2|-\ln |u+3|]_{\frac{3}{4}}^{\frac{4}{3}}$
$=\left(\ln \frac{10}{3}-\ln \frac{18}{3}\right)-\left(\ln \frac{11}{4}-\ln \frac{15}{4}\right)$
$=\left(\ln \frac{10}{3}+\ln \frac{3}{13}\right)-\left(\ln \frac{11}{4}+\ln \frac{4}{15}\right)$

$$
=\ln \frac{10}{13}-\ln \frac{11}{15}
$$

$$
=\ln \frac{10}{13}+\ln \frac{15}{11}
$$

$$
=\ln \frac{150}{143}
$$

Created by T. Madas

Question 275 (*****)
Use appropriate integration techniques to show that

$$
\int_{0}^{1} \frac{1}{x+\sqrt{1-x^{2}}} d x=\frac{\pi}{4}
$$

\square

$\int_{0}^{1} \frac{1}{x+\sqrt{1-x^{2}}} d x=\cdots=\int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta+\cos \theta} d \theta$
$=\frac{1}{2} \int \frac{2 \cos \theta}{\sin \theta+\cos \theta} d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta-\sin \theta+\sin \theta+\cos \theta}{\sin \theta+\cos \theta} d \theta$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta-\sin \theta}{\sin \theta+\cos \theta}+\frac{\sin \theta+\cos \theta}{\sin \theta+\cos \theta} d \theta$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta-\sin \theta}{\sin \theta+\cos \theta}+1 d \theta$

$=\frac{1}{2}[\ln |\sin \theta+\cos \theta|+\theta]_{0}^{\frac{\pi}{2}}$
$=\frac{1}{2}\left[\left(\ln t+\frac{\pi}{2}\right)-(\ln T+0)\right]$
$=\frac{\pi}{4} / A_{\text {A Bifeet }}$

Question 276 (*****)
Use polynomial division to find the exact value of $\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{x^{2}+1} d x$.
$\int \frac{1}{1+x^{2}} d x=\arctan x+$ constant.
\square

$$
\frac{22}{7}-\pi
$$

\square

Created by T. Madas

Question 277 (*****)
Use integration by parts to find a simplified exact value for

Question 278
(*****)
It is given that
a) Show clearly that ...

$$
x^{2}+x+2=(u-x)^{2} .
$$

i. $\ldots x=\frac{u^{2}-2}{2 u+1}$.
ii. $\ldots \frac{d x}{d u}=\frac{2\left(u^{2}+u+2\right)}{(2 u+1)^{2}}$.
b) Find a simplified expression for

$$
\int \frac{1}{x \sqrt{x^{2}+x+2}} d x
$$

\square
$\frac{1}{\sqrt{2}} \ln \left|\frac{x+\sqrt{x^{2}+x+2}-\sqrt{2}}{x+\sqrt{x^{2}+x+2}+\sqrt{2}}\right|+C$

Created by T. Madas

Created by T. Madas

Question 279
$(* * * * *)$
It is given that a and b are distinct real constants and λ is a real parameter.
a) Starting by the relationship between two functions of $x, f(x)$ and $g(x)$

$$
\begin{aligned}
& \text { show clearly that } \\
& \lambda^{2} \int_{a}^{b}[f(x)]^{2} d x+2 \lambda \int_{a}^{b} f(x) g(x) d x+\int_{a}^{b}[g(x)]^{2} d x \geq 0
\end{aligned}
$$

b) Deduce the Cauchy Schwarz inequality for integrals

$$
\left[\int_{a}^{b} f(x) g(x) d x\right]^{2} \leq\left[\int_{a}^{b}[f(x)]^{2} d x\right]\left[\int_{a}^{b}[g(x)]^{2} d x\right]
$$

[continued from overleaf]
c) By letting $f(x)=\sqrt{\sin x}$ and $g(x)=1$, show that

$$
\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} d x \leq \sqrt{\frac{\pi}{2}}
$$

d) By letting $f(x)=\sqrt{\sqrt{\sin x}}$ and $g(x)=\cos x$, show that

$$
\begin{aligned}
& 40 \\
& \int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} d x \geq \frac{64}{25 \pi} .
\end{aligned}
$$

Created by T. Madas

Question 280 (*****)
By using the substitution $\sqrt{x}=\tan \theta$, or otherwise, find

$$
\int \frac{(x+3) \sqrt{x}}{(x+1)^{2}} d x
$$

\square

$$
\frac{2 x^{\frac{3}{2}}}{x+1}+C
$$

Question 281 (*****)
By using the substitution $u=\sec x+\sqrt{\tan x}$, or otherwise, find

\square
, $\ln |\sec x+\sqrt{\tan x}|+C$

$\int \frac{\left[2 \sin ^{2} x \sec ^{2} x+1\right]\left[\cos ^{2} x\right]}{\left[\cos ^{2} \sin ^{4}+1\right]\left[2 \sin ^{2} x+\cos ^{2}\right]} d u$
$=\int \frac{2 \sin ^{3} x \cos x+\cos ^{3} x}{\left[\cos ^{3} x \sin ^{2} x+1\right]\left[2 \cos ^{2} x+\cos ^{2} x\right]} d x$

$=\int \frac{\cos ^{2} x}{\cos ^{2} 2 \sin ^{2} x+1} d u$

$=\int \frac{\sec \cos x}{\sec \cos ^{2} \sin ^{4} x+\sec x} d x$
$-\int \frac{1}{\frac{\sin ^{2} x}{\cos ^{2} x}+\sec x} d x$
$=\int \frac{1}{\sqrt{\tan x}+\sec x} d u$

$=\ln |4|+c$
$=\ln |\sqrt{\tan 2}+\sec |+c$

Created by T. Madas

Question 282
$(* * * * *)$
It is given that

$$
\int \frac{\cot x \operatorname{cosec} x+2 \cot x}{1+\operatorname{cosec} x} d x \equiv \ln |[1+f(x)] f(x)|+\text { constant }
$$

Using integration techniques, determine an expression for $f(x)$.
\square $f(x)=\sin x$

 $\begin{aligned} & =-\ln \|\operatorname{cosec} x+1\|+2 \ln \|1+\sin x\|+c \\ & =\ln \left\|(1+\sin x)^{2}\right\|-\ln \|\operatorname{losec} a+1\|+c \\ & =\ln (1+\sin x)^{2}-\ln \left\lvert\, \frac{1}{\sin +1}+1+c\right. \\ & =\ln (1+\sin x)^{2}-\ln \left\|\frac{1+\sin x}{\sin x}\right\|+c \\ & =\ln (1+\sin x)^{2}+\ln \left\|\frac{\sin x}{1+\sin x}\right\|+c \\ & =\ln \left\|(1+\operatorname{sis} x)^{2} \times \frac{\sin x}{1+\sin x}\right\|+c \end{aligned}$ $=h \mid(1+\sin x \sin x \mid+c$	

Created by T. Madas

Created by T. Madas

Question 283 (*****)

$$
I=\int_{\frac{1}{3} \pi}^{\frac{1}{2} \pi} \frac{6}{\sin x+\sin 2 x} d x
$$

Use appropriate integration techniques to show that

$$
I=A \ln N+B \ln M
$$

where A, B, N and M are integers to be found.

$$
I=8 \ln 2-3 \ln 3
$$

\square

Question 284 (*****)
Use the substitution $x=\tan \left(\frac{1}{2} \theta\right)$, to find a simplified expression for

$$
\int x \arccos \left[\frac{1-x^{2}}{1+x^{2}}\right] d x
$$

,$-x+\left(1+x^{2}\right) \arctan x+$ constant

osing tht suegsturion grutu Tonusformina tif intecrate we have $\begin{aligned} & \int x \arccos \left(\frac{1-x^{2}}{1+x^{2}}\right) d x=\int \tan \left(\frac{1}{2 \theta} \theta\right) \arccos (\cos \theta)\left[\left[\operatorname{sax}^{2}\left(\frac{2}{2} \theta\right) d \theta\right]\right. \\ = & \left.\int \frac{1}{2} \theta \operatorname{an} \frac{14}{2} \theta\right) \sec ^{2}\left(\frac{1}{2} \theta\right) d \theta \end{aligned}$ (W) itreatron by prets $\begin{aligned} \cdots & =\frac{1}{2} \theta \tan ^{2}\left(\frac{1}{2} \theta\right)-\int \frac{1}{2} \tan ^{2}\left(\frac{1}{2} \theta\right) d \theta \\ & =\frac{1}{2} \theta \tan ^{2}\left(\frac{1}{2} \theta\right)-\frac{1}{2} \int \sec ^{2} \theta-1 d \theta \end{aligned}$

$$
\begin{aligned}
& =\frac{1}{2} \theta \tan ^{2}\left(\frac{1}{2} \theta\right)-\frac{1}{2}\left[2 \tan \left(\frac{1}{2} \theta\right)-\theta\right]+C \\
& =\frac{1}{2} \theta \tan ^{2}\left(\frac{1}{2} \theta\right)-\tan \left(\frac{1}{2} \theta\right)+\frac{1}{2} \theta+C \\
& =\frac{1}{2} \theta\left(1+\tan ^{2}\left(\frac{1}{2} \theta\right)\right)-\tan \left(\frac{1}{2} \theta\right)+C \\
& \left\{\begin{array}{l}
x=\tan \frac{1}{2} \theta \\
\arctan x=\frac{1}{3} \theta
\end{array}\right\} \\
& =[\arctan x]\left[1+x^{2}\right]-x+c \\
& =-x+\left(1+x^{2}\right) \arctan x+C
\end{aligned}
$$

Question 285 (******)
By using a suitable trigonometric substitution, or otherwise, find

Sthet BY THE SORstrotion $\sqrt{x}=\tan \theta$
$\int \frac{\left(3 x^{2}+5 x\right) \sqrt{x}}{(x+1)^{2}} d x$
$\int \frac{\left(3 \tan ^{4} \theta+5 \tan ^{2} \theta\right) \cdot \tan \theta}{\left(\tan ^{2} \theta+1\right)^{2}}(2 \tan \theta \sec 2 \theta d \theta)$
$=\int \frac{2 \tan ^{2} \theta \sec ^{2} \theta\left(3 \tan ^{2} \theta+5 \tan ^{2} \theta\right)}{\sec ^{4} \theta} d \theta$
$=\int \frac{6 \tan ^{6} \theta \sec ^{2} \theta+10 \tan ^{4} \theta \sec ^{2} \theta}{\sec ^{4} \theta} d \theta$
$=\int \frac{6 \tan \theta}{\sec ^{2} \theta}+\frac{10 \tan ^{4} \theta}{\sec ^{2} \theta} d \theta=\int 6 \tan ^{4} \theta \cos ^{2} \theta+10 \tan ^{4} \theta \cos ^{2} \theta d \theta$
$=\int \frac{6 \sin ^{2} \theta}{\cos ^{5} \theta} \times \cos ^{2} \theta+\frac{10 \sin ^{4} \theta}{\cos ^{4} \theta} \times \cos ^{2} \theta d \theta$
$=\int \frac{\operatorname{css}^{4} \theta}{\cos ^{4} \theta}+\frac{\operatorname{los}^{4} \theta}{\cos ^{2} \theta} d \theta$
$=\int \frac{6\left(1-\cos ^{2} 8 t\right)^{3}}{\cos ^{4} \theta}+\frac{10\left(1-\cos ^{2} \theta\right)^{2}}{\cos ^{2} \theta} d \theta$
$=\int \frac{5\left(1-3 \cos ^{2} \theta+3 \cos ^{4} \theta-\cos ^{6} \theta\right)}{\cos ^{4} \theta}+\frac{10\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right)}{\cos ^{2} \theta} d \theta$
$=\int \frac{6}{\cos ^{4} \theta}-\frac{18}{\cos ^{2} \theta}+18-6 \cos ^{2} \theta+\frac{10}{\cos ^{2} \theta}-20+10 \cos ^{2} \theta d \theta$
$=\int 6 \sec ^{2} \theta-8 \sec ^{2} \theta+4 \cos ^{2} \theta-2 d \theta$

$=\int 6 \sec ^{2} \theta\left(1+\tan ^{2} \theta\right)-8 \sec ^{2} \theta+4\left(\frac{1}{2}+\frac{1}{2} \cos 2 \theta\right)-2 d \theta$
$=\int 6 \sec ^{2} \theta+6 \sec ^{2} \theta \sin ^{2} \theta-8 \sec ^{2} \theta+2+2 \cos 2 \theta-2 d \theta$
$=\int 6 \sec ^{2} \theta \tan \theta-2 \sec ^{2} \theta+2 \cos 2 \theta d \theta$
$=2 \tan ^{3} \theta-2 \tan \theta+\sin 2 \theta+C$
$=2 \tan ^{3} \theta-2 \tan \theta+2 \sin \theta \cos \theta+C$.
$=2 \tan ^{3} \theta-2 \tan \theta+\frac{2 \sin \theta \cos ^{2} \theta}{\cos \theta}+C$
$=2 \tan ^{3} \theta-2 \tan \theta+2 \tan \theta \cos ^{2} \theta+C$
$=2 \tan ^{3} \theta-2 \tan \theta+\frac{2 \tan \theta}{\sec ^{2} \theta}+C$
$=2 \tan ^{3} \theta-2 \tan \theta+\frac{2 \tan \theta}{1+\tan ^{2} \theta}+C$
$=2 x^{\frac{3}{2}}-2 x^{\frac{1}{2}}+\frac{2 x^{\frac{1}{2}}}{1+x}+C$ $=\frac{2 x^{\frac{3}{2}}+2 x^{\frac{3}{2}}-2 x^{\frac{1}{2}}-2 x^{\frac{3}{2}}+2 x^{2}}{1+x}+c$ $=\frac{\frac{2 x^{\frac{1}{2}}}{1+2}+c}{}$

Created by T. Madas

Question 286 (*****)
The function f is defined as

$$
f(x) \equiv 2^{\ln x}, \quad x \in[1, \infty)
$$

Show, with details workings, that

Question 287 (*****)
A function F is defined by the integral

$$
F(x) \equiv \int_{1}^{x} \frac{\mathrm{e}^{t}}{t} d t, x \geq 1
$$

Find a simplified expression, in terms of F, for

$$
\int_{1}^{x} \frac{\mathrm{e}^{t}}{t+a} d t
$$

where a is a positive constant.
$\square, \int_{1}^{x} \frac{\mathrm{e}^{t}}{t+a} d t=\mathrm{e}^{-a}[F(x+a)-F(a+1)]$

Question 288
(******)
It is given that
a) Show clearly that ...
i. $\quad \ldots x=\frac{u^{2}-1}{u^{2}+1}$.
ii. $\ldots 1-x^{2}=\frac{4 u^{2}}{\left(u^{2}+1\right)^{2}}$
iii. $\ldots \frac{d x}{d u}=\frac{4 u}{\left(u^{2}+1\right)^{2}}$.
b) Hence show further that
\square , proof

a) I) Temsposinci- is puows $\begin{aligned} & u^{2}=\frac{1-x^{2}}{(1-x)^{2}}=\frac{(1-x)(1+x)}{(1-x)^{2}}=\frac{1+x}{1-x} \\ \Rightarrow & u^{2}(1-x)=1+x \\ \Rightarrow & u^{2}-x u^{2}=1+x . \\ \Rightarrow & u^{2}-1=x u^{2}+x \\ \Rightarrow & u^{2}-1=x\left(u^{2}+1\right) \\ \Rightarrow & x=\frac{u^{2}-1}{u^{2}+1} \end{aligned}$ I) USING THf HoOUE RHNUT $\begin{aligned} 1-x^{2} & =1-\left(\frac{u^{2}-1}{u^{2}+1}\right)^{2}-1-\frac{u^{4}-2 u^{2}+1}{u^{2}+2 u^{2}+1} \\ & =\frac{u^{4}+2 u^{2}+1-\left(u^{4}-2 u^{2}+1\right)}{u^{4}+2 u^{2}+1} \\ & =\frac{u^{2}+2 u^{2}+u-u^{4}+2 u^{2}+1}{\left(u^{2}+1\right)^{2}} \\ & =\frac{4 u^{2}}{\left(u^{2}+1\right)^{2}} \end{aligned}$ $\begin{aligned} & x=\frac{u^{2}-1}{u^{2}+1}=\frac{\left(u^{2}+1\right)-2}{u^{2}+1}=1-\frac{2}{u^{2}+1}=1-2\left(u^{2}+1\right)^{-1} \\ & \frac{d x}{d u}=0+2\left(u^{2}+1\right)^{-2} \times(2 u) \\ & \frac{d x}{d u}=\frac{4 u}{\left.u^{2}+1\right)^{2}} \end{aligned}$

$=\int \frac{12 u}{\left(2 u^{2}+1\right) 2 u-12 u^{2}} d u=\int \frac{6}{\left(0 u^{2}+1\right)-6 u} d u$ $=\int \frac{6}{9 u^{2}-6 u+1} d u=\int \frac{6}{(3 u-1)^{2}} d u=\int 6(3 u-1)^{-2} d u$ $-2(34-1)^{-1}+C=\frac{-2}{3 u-1}+C=\frac{2}{1-34}+C$ $\frac{2}{1-3 \frac{\sqrt{1-x^{2}}}{1-x}}+c=\frac{2(1-x)}{1-x-3 \sqrt{1-x^{2}}}+c$ $\frac{2(1-x)}{(1-x)-3(1-x)^{\frac{t}{2}}(1+2)^{\frac{2}{2}}}+C=\frac{2 \sqrt{1-2}}{\frac{\sqrt{1-x}-3 \sqrt{1+x}}{}+C}$

Created by T. Madas

Question 289
$(* * * * *)$
By using the substitution $x=2 \tan ^{2} \theta$, or otherwise, find

Created by T. Madas

Question 290 (*****)
It is given that

$$
\sqrt{5-4 x-x^{2}}=(1-x) u, x \neq 1, x \neq-5 .
$$

a) Show clearly that ...
i. $\ldots x=\frac{u^{2}-5}{u^{2}+1}$.
ii. $\ldots d x=\frac{12 u}{\left(u^{2}+1\right)^{2}} d u$.
b) Hence show further that

$$
\int \frac{x}{\left(5-4 x-x^{2}\right)^{\frac{3}{2}}} d x=\int \frac{u^{2}-5}{18 u^{2}} d u
$$

c) Find a simplified expression for

Question 291 (******)
By using an appropriate trigonometric substitution, or otherwise, find an exact value for the following integral.

$$
\int_{7}^{9} \sqrt{\frac{x-7}{11-x}} d x
$$

\square ,$\pi-2$

$\left\{\int_{1}^{9} \sqrt{\frac{x-7}{1-x}} d x=\pi-2\right\}$ SANDGAD SuBsitutan is $a=a \cos ^{3} \theta+b \sin ^{2} \theta$	

ALTRANATVE Surstution	
$\int_{7}^{9} \sqrt{\frac{x-7}{11-x}} d x$	$\begin{aligned} & x=q^{\prime}-2 \sin \theta \\ & d x=-2 \cos \theta d \theta \end{aligned}$
$\ldots=\int_{\frac{\pi}{3}}^{0} \sqrt{\frac{q-2 \sin \theta-7}{11-(9-2 \sin \theta)}}(-2 \cos \theta d \theta)$	$\begin{aligned} & x=7 \\ & 7=9-2 \sin \theta \end{aligned}$
$=\int_{0}^{\frac{\pi}{2}} \sqrt{\frac{2-2 \sin \theta}{2+2 \sin \theta}}(2 \cos \theta) d \theta$	$\begin{aligned} & 2 \sin \theta=2 \\ & \sin \theta=1 \\ & \theta=\pi / 2 \end{aligned}$
$=\int_{0}^{\frac{\pi}{2}} \sqrt{\frac{1-\sin \theta}{1+\sin \theta}}(2 \cos \theta) d \theta$	$\begin{aligned} & \alpha=9 \\ & g=9-2 \sin \theta \\ & 2 \sin \theta=0 \end{aligned}$
$=\int_{0}^{\frac{\pi}{2}} \sqrt{\frac{(1-\sin \theta)(1 \sin \theta)}{(1 t \sin \theta)(1-\sin \theta)}}(2 \cos \theta) d \theta$	$\theta=0$
$\begin{aligned} & =\int_{0}^{\frac{1}{2}} \sqrt{\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}} 2 \cos \theta d \theta \\ & =\int_{0}^{\mp}\left(\frac{1-\sin \theta}{\cos \theta}\right)(2 \cos \theta) d \theta \end{aligned}$	
$=[2 \theta+2 \cos \theta]_{0}^{\frac{\pi}{2}}$	
$=(\pi+0)-(0+2)$	
$=\pi-2$	

Created by T. Madas

Question 292 (*****)

$$
I=\int_{0}^{\infty} \frac{1}{\left(x+\sqrt{x^{2}+1}\right)^{2}} d x
$$

a) Use the substitution $u=x+\sqrt{x^{2}+1}$ to find the value of I.
b) Verify the answer to part (a) by a trigonometric substitution.

Created by T. Madas

Question 293 (******)
Find an exact value for the following integral.

Question 294 (*****)
Determine, as an exact simplified fraction, the value of the following integral.

$$
\int_{\frac{3}{2}}^{\frac{5}{2}}\left(4 x^{2}-16 x+15\right)^{4} d x
$$

Gnfluy Tift ust instaration By Prets
$=-\frac{4}{35}\left\{\left[\frac{1}{16}(2 x)(2 x-5)^{8}\right]_{\frac{5}{2}}^{\frac{3}{2}}-\frac{1}{8} \cdot \int_{\frac{5}{2}}^{\frac{-3}{2}}\left[(x-5)^{8} d x\right\}\left\{\begin{array}{l}x \\ \frac{x-3}{2}\left|(2 x-5)^{8}\right|(2 x-5)^{7}\end{array}\right\}\right.$
$=\frac{1}{70} \int_{\frac{3}{2}}^{\frac{5}{2}}(2 x-5)^{8} d x$
$-\frac{1}{70}\left[\frac{1}{18}(3-5)^{9}\right]_{\frac{3}{2}}^{\frac{5}{2}}$
$=\frac{1}{1260}\left[(22-5)^{9}\right]_{\frac{3}{2}}^{\frac{5}{2}}$
$=\frac{1}{1260}\left[n-(-2)^{9}\right]$
$=\frac{512}{1260}$

Created by T. Madas

Question 295 (*****)
Find an exact value for

$$
\int_{0}^{\pi} \frac{x \sin x}{\sqrt{4-\cos ^{2} x}} d x
$$

You my assume without proof that

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+\text { constant } .
$$

Created by T. Madas

Question 296
(*****)
A family of functions, known as the Chebyshev polynomials of the first kind $T_{n}(x)$, is defined as

$$
T_{n}(x)=\cos (n \arccos x),-1 \leq x \leq 1, n \in \mathbb{N} .
$$

Evaluate the following integral
\square , 0

Created by T. Madas

Question 297 (*****)
The function $y=f(x)$ is defined in the largest possible real domain by

$$
f(x) \equiv \ln \left[x^{2}-2 x+2\right]
$$

Sketch the graph of $f(x)$ and determine an exact simplified value for the area of the finite region bounded by the graph of $f(x)$ and the coordinate axes.

$$
\begin{aligned}
& \text { Question } 298 \\
& I=\int_{1}^{3}(3-x)^{7}(x-1)^{7} d x .
\end{aligned}
$$

Created by T. Madas

Question 299 (******)
Use integration by parts to find a simplified expression for

Question 300 (*****)

Created by T. Madas

Question 301 (*****)
By using an appropriate substitution followed by trigonometric identities, show that

$$
\int_{0}^{\pi} \frac{x \tan x}{\tan x+\sec x} d x=\frac{1}{2} \pi(\pi-2)
$$

Created by T. Madas

Question 302 (*****)
Show that if n is an integer, then
\square
proof

Created by T. Madas

Question 303 (*****)

$$
\int_{0}^{\frac{1}{2} \pi} \frac{1}{1+\tan ^{n} x} d x \quad, n \in \mathbb{Q}
$$

Find the value of the above integral, for all values of n

Created by T. Madas

Question 304 (*****)
By suitably rewriting the numerator of the integrand, find a simplified expression for the following integral.

Created by T. Madas

Question 305 (*****)
Find an exact value for the following integral

Created by T. Madas

Question 306 (*****)

It is given that $I \approx 2$.

$$
I=\int_{-\infty}^{\infty}\left|x^{3}\left(2^{-x^{2}}\right)\right| d x
$$

Use this fact to estimate the value of $\ln 2$ correct to 1 significant figure.
\square , $\ln 2 \approx 0.7$

$$
\begin{aligned}
& =-\frac{1}{\ln 2}\left[\frac{2^{4}}{\ln 2}\right]_{0}^{-\infty} \\
& =-\frac{1}{\ln 2}\left[0-\frac{1}{\ln 2}\right] \\
& =\frac{1}{(\ln 2)^{2}} \\
& \text { Fintay we what } \\
& \quad \frac{1}{(\ln 2)^{2}} \approx 2(1 s f) \\
& \quad(\ln 2)^{2} \approx \frac{1}{2} \approx 0.49 \\
& \quad \ln 2 \approx 0.7 \\
&
\end{aligned}
$$

Question 307 (*****)
The definite integral I is defined in terms of the constant k, where $k \neq 0, k \neq \pm 1$.

$$
I=\int_{0}^{\frac{1}{2} \pi} \frac{1}{1+k^{2} \tan ^{2} x} d x
$$

Use appropriate integration techniques to show that

$$
I=\frac{\pi}{2(k+1)} \text {. }
$$

\square , proof

Created by T. Madas

Question 308
(*****)
By suitably rewriting the numerator of the integrand, find a simplified expression for the following integral.

Created by T. Madas

Question 309
(*****)
Find the value of the following definite integral.

Question 310 (*****)
Find in exact simplified form the value of

$$
\int_{0}^{1} \frac{\sqrt{1-x}}{1-\sqrt{x}} d x
$$

You may assume that the integral converges.

V \square , $\frac{1}{2}(\pi+4)$

\square
$=2+\int_{0}^{\frac{\pi}{2}} 1+\cos 2 \theta d \theta$
$=2+\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 2}$
$=2+\left[\left(\frac{\pi}{2}-\frac{1}{2} \sin \pi\right]-(0+0)\right]$
$=2+\frac{\pi}{2}$
$=\frac{1}{2}(\pi+4)$

Question 311 (*****)
Find an exact simplified value for

$$
\int_{\sqrt{\mathrm{e}}}^{\mathrm{e}} \ln (\ln x)+\frac{1}{(\ln x)^{2}} d x
$$

\square $\mathrm{e}^{\frac{1}{2}}(2+\ln 2)-\mathrm{e}$

$\left\{\begin{array}{c|c}\ln (\ln x) & \frac{1}{\ln x} \times \frac{1}{x} \\ \hline x & 1\end{array}\right.$
$\int_{\sqrt{e}}^{e} \ln (\ln x) d x=[x \ln (\ln x)]_{\sqrt{e}}^{e}-\int_{\sqrt{e}}^{e} \frac{1}{\ln x} d x$ $=0-\sqrt{e} \ln \left(\frac{1}{2}\right)-\int_{\sqrt{e}}^{e} \frac{1}{\ln x} d x$
$=e^{\frac{1}{2}} \ln 2-\int_{\sqrt{e}}^{e} \frac{1}{\ln x} d x$
\qquad

- Proceses with the nexr intarte Also by fners
$\left\{\begin{array}{c|c}(\ln x)^{-2} & -2(\ln x)^{-3} \times \frac{1}{x} \\ \hline x & 1\end{array}\right.$
$\int_{\sqrt{e}}^{e} \frac{1}{(\ln x)^{2}} d x=\left[\frac{x}{(\ln x)^{2}}\right]_{\sqrt{e}}^{e}+2 \int_{\sqrt{e}}^{e} \frac{1}{(\ln x)^{3}} d x$ We mar Atromer the notichation phy Phets by stuctina wTy A Powke "Hante"

$\mathrm{CN}^{+(3)}$

Question 312 (*****)
By using appropriate substitutions, or otherwise, show that

$$
\int_{0}^{\frac{1}{2}} \frac{\ln (1+2 x)}{1+4 x^{2}} d x=\frac{\pi \ln 2}{16}
$$

$\begin{aligned} 1+a x^{2} & =1+(2 x)^{2} \\ & =1+\tan ^{2} \theta=\operatorname{stc} 2 \theta\end{aligned}$

- $x=0 \mapsto \theta=0$

Temsformina The inneret
$\int_{0}^{\frac{1}{2}} \frac{\ln (1+2 x)}{1+4 x^{2}} d x-\int_{0}^{F} \frac{\ln (1+\tan \theta)}{\operatorname{sen}^{2} \theta}\left(\frac{1}{2} \sin ^{2} \theta d \theta\right)$
$I=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln (1+\tan \theta) d \theta$
AnJife Sisstrantion

- $\theta=\frac{\pi}{4}-\phi \Leftrightarrow \phi=\frac{\pi}{4}-\theta$

1 $\theta=0 \mapsto+=\frac{\pi}{1}$

- $\theta=\frac{-\frac{\pi}{4}}{1} \mapsto t=0$
Thes we now thent
$I=\frac{1}{2} \int_{\frac{\pi}{4}}^{0} \ln \left(1+\tan \left(\frac{\pi}{4}-\phi\right)\right)(-d \phi)=\frac{1}{2} \int_{-}^{\frac{\pi}{4}} \ln \left[1+\frac{\tan \frac{5}{1}-\tan b}{1+\tan \frac{1}{4}+\tan t}\right] d \phi$
$=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln \left[1+\frac{1-\tan]}{1+\tan t}\right] d t=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \ln \left[\frac{1+\tan \alpha+1-\tan \phi}{1+\tan \phi}\right] d \phi$

\square proof

Created by T. Madas

Question 313 (*****)
Use appropriate integration techniques to show that

Created by T. Madas

Question 314 (*****)

$$
I=\int_{0}^{\frac{1}{2}} \frac{\ln (1+2 x)}{1+4 x^{2}} d x
$$

a) Use an appropriate trigonometric substitution to show that

$$
I=\int_{0}^{\frac{\pi}{4}} \frac{1}{2} \ln \sqrt{2}+\frac{1}{2} \ln \left[\frac{\cos \left(\theta-\frac{1}{4} \pi\right)}{\cos \theta}\right] d \theta
$$

b) Show further that

$$
I=\frac{\pi \ln 2}{16}+\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{1}{2} \ln \left[\frac{\cos \left(\varphi-\frac{1}{8} \pi\right)}{\cos \left(\varphi+\frac{1}{8} \pi\right)}\right] d \varphi
$$

c) Deduce that

$$
I=\frac{\pi \ln 2}{16}
$$

V \square , proof

a) LOCLING $4 T$ THE DGNOCLINATOR $\begin{aligned} & \int_{0}^{\frac{1}{2}} \frac{\ln (1+2 a)}{1+4 x^{2}} d x=\int_{0}^{\frac{\pi}{4}} \frac{\ln (1+\tan \theta)}{1+\tan ^{2} \theta}\left(\frac{1}{2} \operatorname{sen}(\theta \theta d \theta)\right. \\ = & \int_{0}^{\frac{\pi}{4}} \frac{\ln (1+\tan \theta)}{\operatorname{sen}^{2} \theta}\left(\frac{1}{2} \sec ^{2} \theta d \theta\right)=\int_{0}^{\pi} \frac{\pi}{4} \ln (1+\tan \theta) d \theta \\ = & \int_{0}^{\frac{\pi}{4}} \frac{1}{2} \ln \left(1+\frac{\sin \theta}{\cos \theta}\right) d \theta=\int_{0}^{\frac{T}{2}} \frac{1}{2} \ln \left(\frac{\cos \theta+\sin \theta}{\cos \theta}\right) d \theta \\ = & \int_{0}^{\frac{\pi}{4}} \frac{1}{2} \ln (\cos \theta \theta+\sin \theta)-\frac{1}{2} \ln (\cos \theta) d \theta \end{aligned}$ MAntPuy fir to drenoulc Form ey inspectial	

$=\int^{\frac{\pi}{4}} \frac{1}{2} \ln \left[\sqrt{2}\left(\frac{1}{2}\left(\cos \theta+\frac{1}{2} \frac{\sin \theta}{2}\right)\right]-\frac{1}{2} h(\cos \theta) d \theta\right.$多

Question 315 (*****)
a) Show that

$$
I=\frac{4}{3}(x-1)^{\frac{3}{2}}+6(x-1)^{\frac{1}{2}}+\text { constant }
$$

You may not use any substitution or integration by parts.
b) Determine the value of a, given that

$$
\int_{2}^{a} \frac{2 x+1}{\sqrt{x-1}} d x=102
$$

\square , $a=17$

Created by T. Madas

Question 316 (*****)

Show that $J=1$

Question 317 (*****)
By using an appropriate substitution or substitutions, show that

Question 318
$(* * * * *)$

$$
f(x)=\left\{\begin{array}{cc}
x-[x] & x \in \mathbb{R},[x]=2 k+1, \quad k \in \mathbb{Z} \\
-x+[x]+1 & x \in \mathbb{R}[x]=2 k, \quad k \in \mathbb{Z}
\end{array}\right.
$$

where $[x]$ is defined as the greatest integer less or equal to x.

Find the value of

$$
\frac{\pi^{2}}{8} \int_{-8}^{8} f(x) \cos (\pi x) d x
$$

, 4

Created by T. Madas

Question 319 (*****)
By using symmetry arguments, find the exact value of the following integral

$$
\int_{0}^{\pi} \mathrm{e}^{\mid \cos x}[\sin (\cos x)+\cos (\cos x)] \sin x d x
$$

Created by T．Madas

Question 320
$(* * * * *)$

$$
I=\int_{0}^{1}\left[\prod_{r=1}^{10}(x+r)\right]\left[\sum_{r=1}^{10}\left(\frac{1}{x+r}\right)\right] d x
$$

Show by a detailed method that

$$
I=a \times b!
$$

where a and b are positive integers to be found．
\square ，$a=b=10$

Created by T. Madas

Question 321 (*****)

$$
I=\int \sqrt{\tan x} d x
$$

a) Use a suitable substitution to show that

$$
I=\int \frac{1+\frac{1}{u^{2}}}{\left(u-\frac{1}{u}\right)^{2}+2} d x+I=\int \frac{1-\frac{1}{u^{2}}}{\left(u+\frac{1}{u}\right)^{2}-2} d x
$$

b) By using a further substitution in each of the integrals of part (a) find a simplified expression for I, in terms of x.

You may assume without proof that

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \arctan \left[\frac{x}{a}\right]+\text { constant }
$$

$\frac{1}{\sqrt{2}} \arctan \left[\frac{\tan x-1}{\sqrt{2 \tan x}}\right]+\frac{1}{2 \sqrt{2}} \ln \left[\frac{\tan x-\sqrt{2 \tan x}+1}{\tan x+\sqrt{2 \tan x}+1}\right]+C$

	 	$2 \text { atataxt }$

Created by T. Madas

Question 322 (*****)
By using an appropriate substitution or substitutions, show that

Question 323 (*****)
It is given that

$$
I=\int_{\frac{1}{2} \pi}^{\pi} \frac{3+\cos x}{13+3 \cos x+2 \sin x} d x \quad \text { and } \quad J=\int_{\frac{1}{2} \pi}^{\pi} \frac{2+\sin x}{13+3 \cos x+2 \sin x} d x
$$

By considering two linear combinations in I and J, show that

$$
I=\frac{1}{26}\left[3 \pi-\ln \left(\frac{81}{16}\right)\right],
$$

and find a similar expression for J.
\square
$\square, I=\frac{1}{13}\left[\pi+\ln \left(\frac{27}{8}\right)\right]$

Created by T. Madas

Question 324 (*****)
By using an appropriate substitution or substitutions, show that

$$
\int_{0}^{1} \frac{\ln (x+1)}{1+x^{2}} d x=\frac{\pi \ln 2}{8}
$$

Created by T. Madas

Question 325 (*****)
It is given that

$$
I=\int_{0}^{\frac{1}{3}} \frac{32 x^{2}}{\left(x^{2}-1\right)(x+1)^{3}} d x
$$

Show that $I=\frac{7}{6}-2 \ln 2$.

Created by T. Madas

Question 326
(*****)

$$
I=\int_{0}^{\frac{1}{2} \pi} 4 \sin x \sqrt{\cos 2 x} d x
$$

By using an appropriate substitution or substitutions, show that

$$
I=2-\sqrt{2} \ln (1+\sqrt{2})
$$

\square , proof

Created by T. Madas

Created by T. Madas

Question 327 (******)
Find as an exact fraction the value of I,

Question 328 (*****)
The integral I is defined as

$$
I=\int_{0}^{\pi} \frac{\sin ^{2} x}{1+\cos ^{2} x} d x
$$

a) Show by a detailed method that

$$
I+\pi=\int_{0}^{\frac{1}{2} \pi} \frac{4}{1+\cos ^{2} x} d x
$$

b) Hence, find the value of I in exact simplified form.
c) Verify the answer obtained in part (b) by an alternative method by first writing the integrand of I as a function of $\cot ^{2} x$.
\square $I=\pi(\sqrt{2}-1)$

$\Rightarrow I+\pi=\int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} x}{2+\tan ^{2} x} d x$
 uSE 4 susstivion
$\Rightarrow I+\pi=\int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} x}{(\sqrt{2})^{2}+(\tan x)^{2}} d x$
$\Rightarrow I+\pi=\left[\frac{4}{\sqrt{2}} \arctan \left(\frac{\tan x}{\sqrt{2}}\right)\right]_{0}^{\frac{\pi}{2}}$
$\Rightarrow I+\pi=\frac{4 \sqrt{2}}{\sqrt{2} \sqrt{2}}\left[\arctan \left(\frac{\tan \pi / 2}{\sqrt{2}}\right)-\operatorname{anctan}\left(\frac{\tan 0}{\sqrt{2}}\right)\right]$ $\Rightarrow I+\pi=2 \sqrt{2}\left[\frac{\pi}{2}-0\right]$ $\Rightarrow I+\pi=\pi \sqrt{2}$
$\Rightarrow I=\pi \sqrt{2}-\pi$
$\Rightarrow I=\pi(\sqrt{2}-1)$ to erevien

Ceffing cetz Bx DCuIDNG ToP a Botion By $\sin ^{2} x$
$\int_{0}^{\pi} \frac{\sin ^{2} x}{1+\cos ^{2} x} d x=\int_{0}^{\pi} \frac{1}{\operatorname{cosec}^{2} x+\cot ^{2} 2} d x$ (NuTE Thet Theer 4 Ho isconimuly ar $\frac{\pi}{2}$)

Question 329 (*****)
By using an appropriate substitution or substitutions, followed by partial fractions show that

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x=\frac{\ln 3}{20}
$$

\square proof
$\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \cdot \sin 2 x} d x=8$ sibstronion ...

	$\begin{array}{ll} A \operatorname{Als} u^{2}=(\sin x-\cos x)^{2} \\ \Rightarrow & u^{2}=\cos 3+\sin x-2 \sin x \cos x \\ \Rightarrow u^{2}=1-\sin 2 x \\ \Rightarrow \sin 2 x=1-u^{2} \\ \Rightarrow 16 \sin 2 x=16-16 u^{2} \\ \Rightarrow 9+16 \sin 2 x=25-16 u^{2} \end{array}$

$\int_{-1}^{0} \frac{\sin x+\cos x}{2 s-16 u^{2}}\left(\frac{d u}{\cos x+5 m x}\right)=\int_{-1}^{0} \frac{1}{(s-4 u)(s+4 u)} d u$

- By phettac feactuons (cover Dp mathbo)
$=\int_{-1}^{0} \frac{\frac{1}{10}}{5+4 u}+\frac{\frac{1}{10}}{s-4 u} d u=\frac{1}{10} \int_{-1}^{0} \frac{1}{5+4 u}+\frac{1}{s-4 u} d u$
$=\frac{1}{10}\left[\frac{1}{4} \ln |s+44|-\frac{1}{4} \ln |s-4 a|\right]_{-1}^{0}=\frac{1}{40}[\ln |s+44|-\ln |s-44|]_{-1}^{0}$
$=\frac{1}{40}[(\ln 5-\ln 5)-(\ln 1-\ln 9)]=\frac{1}{40} \ln 9=\frac{1}{20} \ln 3$
ALTERNATVE MTTHOD
- $\operatorname{usin} c-\int_{a}^{b} f(x) d x \equiv \int_{a}^{b} f(a+b-x) d x$
$\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x=\int_{0}^{\frac{\pi}{4}} \frac{\sin (\pi-x)+\cos (7-x)}{y+16 \sin \left(\frac{\pi}{2}-2 x\right)} d x$

Created by T. Madas

Question 330
(*****)

$$
I=\int \frac{\sec ^{2} x}{\sqrt{\sec x+\tan x}} d x
$$

Without using a verification approach, show that

$$
I=(\sec x+\tan x)^{\frac{1}{2}}-\frac{1}{3}(\sec x+\tan x)^{-\frac{3}{2}}+\text { constant }
$$

You may consider the substitution $u=\sec x+\tan x$ useful at some stages in the manipulation of the integrand.

Created by T. Madas

Question 331 (*****)
Use an appropriate integration method to determine an antiderivative for the following indefinite integral.

Question 332 (*****)
Use partial fractions followed by integration by parts to show that

$$
\int_{0}^{\infty}\left[\frac{x^{2}+3 x+3}{(x+1)^{3}}\right] \mathrm{e}^{-x} \sin x d x=\frac{1}{2}
$$

\square

$$
\begin{aligned}
& \text { (1) } \int_{0}^{\infty} \frac{x^{2}+3 x+3}{(x+1)^{2}}\left[e^{-x} \sin x\right] d x=\left[-\frac{1}{2} \frac{e^{-x}}{x+1}(\sin x+\cos x x)\right]_{0}^{\infty}-\int_{0}^{\infty} \frac{e^{x}(\operatorname{csin} x+\cos x)}{2(x+1)^{2}} d x \\
& +\int_{0}^{\infty} \frac{e^{x} \sin x}{(x+1)^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}
\end{aligned}
$$

