vasinains.com Created by T. Madas

asmaths.com fadas INTEGRA . . STRUCTURED NTL TRUCL EXAM QUESTIONS PARTI **INTEGRATION** L. SXAL QUESTL PARTI TH I.Y.C.B. Madasmalls.com I.Y.C.B. Madase

21/25

Question 1 (**)

Evaluate each of the following integrals, giving the answers in exact form.

n.

Evaluate each of the following integrals, giving the answers in exact form:
a)
$$\int_{0}^{2} \frac{1}{\sqrt{4x+1}} dx$$
b)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cos 3x \, dx$$

$$\boxed{\left(\frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{4}$$

-

Question 3 (**)

F.G.B.

Show clearly that

.Y.C.B

$$\int_0^{\frac{1}{3}} x e^{3x} dx = \frac{1}{9}.$$

proof

1

12

Question 4 (**)

 $\frac{3x-5}{x-1} \equiv A + \frac{B}{x-1}.$

a) Determine the value of each of the constants A and B.

5

11a0ası,

b) Hence find

.Y.G.B

 $\int \frac{3x-5}{x-1} \, dx \, .$

A=3, B=-2, $3x-2\ln|x-1|+C$

(a) $\frac{3\alpha-5}{\alpha-1} \equiv 4 + \frac{8}{\alpha-1}$	ATW24ATU+ 3a-5 = 3(a-1)-2
$3a-s \equiv A(a-i)+B$	$\alpha - \alpha - $
• If a=1, -2 = 3 • If a=0, -5 = -4+8	$= \frac{S(2-i)}{2i-i} - \frac{2}{2i-i}$
# 12=01 -S = -4+8 A = B+5	$= 3 - \frac{2}{2-1}$
A=3	∴ A=3, B=-2
(b) $\int \frac{x^{-1}}{x^{-1}} dx = \int 3 - \frac{x^{-1}}{x^{-1}} dx$	x = 3x - 2h x-1 + C

Question 5 (**)

Evaluate each of the following integrals, giving the answers in exact form.

Question 6 (**)

$$\frac{5x+13}{(2x+1)(x+4)} \equiv \frac{A}{2x+1} + \frac{B}{x+4}.$$

- a) Determine the value of each of the constants A and B.
- **b**) Evaluate

$\int_0^4 \frac{5x+13}{(2x+1)(x+4)} \, dx \, ,$

giving the answer as a single simplified natural logarithm.

 $\begin{array}{ll} & \underbrace{\sum_{k=1}^{N} \frac{1}{2}}_{(2k+1)} \underbrace{\frac{1}{2} + \frac{1}{2}}_{(2k+1)} \underbrace{\frac{1}{2} + \frac{1}{2}}_{(2k+1)} \underbrace{\frac{1}{2}}_{(2k+1)} \underbrace{\frac{$

Question 7 (**)

5

By using the substitution $u^2 = 1 - x^2$, or otherwise, show that

 $\int_0^1 5x \left(1 - x^2\right)^{\frac{3}{2}} dx = 1.$

 $\int_{0}^{1} 5\chi (1-2^{2})^{\frac{d}{2}} dt = \int_{1}^{0} 5\chi (1)^{2} \frac{u}{x} du + \begin{cases} (u_{1} = u_{1}^{2})^{2} \frac{u}{x} - (u_{1}^{2})^{2} \frac{u}{x} - (u_{1}^{2})^$

Created by T. Madas Question 8 (**) Use integration by parts to find the value of $\int_0^{\frac{\pi}{4}} 4x \cos 4x \, dx.$ I.V.G.B. ŀ.G.p. $\frac{1}{2}$ Madas **Question 9** (**) By using the substitution $u = 1 - x^2$, or otherwise, find I.C.B. $\frac{12x}{\left(-x^2\right)^{\frac{3}{2}}}\,dx\,.$ 6 12 $\sqrt{1-x^2}$ 12× du I.C.P. I.C. ŀ.C.B.

Created by T. Madas

Maria

Question 10 (**)

Evaluate each of the following integrals, giving the answers in exact form.

Question 12 (**)

$$\frac{30}{(x+3)(9-2x)} \equiv \frac{A}{x+3} + \frac{B}{9-2x}$$

- Determine the value of each of the constants A and B. a)
- **b**) Evaluate

ŀG.B.

I.C.P.

 $\int_{1}^{4} \frac{30}{(x+3)(9-2x)}$ dx,

, A = 2

giving the answer as a single simplified natural logarithm.

(b) $\int_{1}^{4} \frac{30}{(24+3)(9-23)}$ ln/2+3 - 2/n/9-22 2hg4 - 2h7) = 4/47-2/44 4加压

 $4\ln\left(\frac{7}{2}\right)$

|B=4|,

23

 $= \ln\left(\frac{2401}{16}\right)$

ne,

COM

Y.C.B. Madası

:0M

madasn,

Question 13 (**)

Evaluate each of the following integrals, giving the answers in exact form.

Question 14 (**+)

I.C.B.

By using the substitution $u^2 = 16 - 7x^2$, or otherwise, show that

$$\int_{0}^{1} \frac{x}{\sqrt{16 - 7x^{2}}} dx = \frac{1}{7}.$$

$$\int_{0}^{1} \frac{x}{\sqrt{16 - 7x^{2}}} dx = \frac{1}{7}.$$

$$\int_{0}^{1} \frac{x}{\sqrt{16 - 7x^{2}}} dx = \int_{4}^{3} \frac{x}{\sqrt{16}} \left(-\frac{1}{7x}\right) dx$$

$$\int_{0}^{1} \frac{x}{\sqrt{16 - 7x^{2}}} dx = \int_{4}^{3} \frac{x}{\sqrt{16}} \left(-\frac{1}{7x}\right) dx$$

$$\int_{0}^{1} \frac{x}{\sqrt{16 - 7x^{2}}} dx = \int_{4}^{3} \frac{x}{\sqrt{16}} \left(-\frac{1}{7x}\right) dx$$

$$\int_{0}^{1} \frac{x}{\sqrt{16 - 7x^{2}}} dx = \int_{4}^{3} \frac{x}{\sqrt{16}} \left(-\frac{1}{7x}\right) dx$$

$$\int_{0}^{1} \frac{x}{\sqrt{16 - 7x^{2}}} dx = \int_{0}^{1} \frac{x}{\sqrt{16 - 7x^{2}}} dx$$

45 REPURSE

Question 15 (**+)

Determine the value of the positive constant k given further that

$$\int_{k}^{8} \frac{4}{2x-1} \, dx = 1.90038 \, .$$

Give the value of k to an appropriate degree of accuracy.

and and	
WHERE REST	
$\int_{L}^{B} \frac{4}{2\lambda-1} d\lambda = \left[\underbrace{44n[2\lambda-1] \times \frac{1}{2}}_{K} \right]_{K}^{B} = \left[\underbrace{24n(2\lambda-1)}_{K} \right]_{K}^{B}$	
$= 2h_{1}l_{5} - 2h_{1}(2k-1)$	
NOW SOLVE THE EPUMPINE	
$\implies \int_{k}^{k} \frac{4}{2\lambda - \epsilon} d\lambda = 1.40028$	
=> 2b15 - 21/2(2k-1)=1.90038	
(1-46)olG = 36001-1 21NIC C-	
⇒ ln(21-1) = 1.75786	
$= 0$ $2k - 1 = e^{1.75706}$	
=> ak -1 = 5.800013	
==5 K ≈ 3.400006	
∴ <u>k≈ 3.4</u>	

 $k \approx 3.4$

Question 16 (**+)

By using the substitution $u = 1 + 4 \ln x$, or otherwise, find

$$\frac{4}{\left(1+4\ln x\right)^2} \, dx \, .$$

$$\boxed{\qquad}, \frac{1}{1+4\ln x} + C$$

E	$\int \frac{4}{\alpha(1+44\alpha)^2} dx = \int \frac{4}{\alpha(1+44\alpha)^2} \frac{\alpha}{4} dy$	$\begin{cases} u = 1 + \frac{1}{4} \\ \frac{du}{ds} = \frac{4}{3} \end{cases}$
	$= \int \frac{1}{U^2} du = \int U^{-2} du = -U^{-1} + C$	E 4da = x du E
	$= -\frac{1}{4} + C = -\frac{1}{1+4h_{\text{RL}}} + C$	$da = \frac{2}{4} du$

Question 17 (**+)

 $\frac{8x}{4x-3} \equiv A + \frac{B}{4x-3}.$

- a) Determine the value of each of the constants A and B.
- **b**) Hence, or otherwise, evaluate

 $\int_1^3 \frac{8x}{4x-3} \, dx,$

giving the answer in terms of natural logarithms.

A=2,	B=6,	$4 + 3 \ln 3$
	ų	20

Madasn.

1

(a)	$\frac{B_{2x}}{4x-3} = A + \frac{B}{4x-3} \qquad \qquad$
	$8a \equiv 4(4a-3) + B$ $\left\langle \frac{Ba}{4x-3} = \frac{2(4x-3)+6}{4x-3} \right\rangle$
	$B_{\Delta} \equiv 4A_{\Delta} - 3A + B$ $= 2 + \frac{6}{4\lambda - 3}$
	·· 4A=8 -34+8=0 (
	A = 2 -6 + B = 0 B = 6 B = 6 B = 6
	1
(6)	$\int_{1}^{3} \frac{g_{\lambda}}{4\lambda - 3} d\lambda = \int_{1}^{3} 2 + \frac{\varepsilon}{4\lambda - 3} d\lambda = \left[2\lambda + \frac{3}{2} \ln \left[4\lambda - 3 \right] \right]_{1}^{3}$
	$= \left[6 + \frac{3}{2} \ln 9 \right] - \left[2 + \frac{3}{2} \ln 7 \right] = 4 + \frac{3}{2} \ln 9$
	$= 4 + \frac{3}{2} \ln 3^2 = 4 + 3 \ln 3$ (NOT- THAT THE SUBSTITUTION $u = 42 - 3$ WILL ASD WORKS)
	C when the monitoring of a true most that monorky

Question 18 (**+) Use an appropriate integration method to find

I.C.B.

 $\int (x+1) \mathrm{e}^{x+1} \, dx \, .$

$\int (x+1)e^{x+1} dx = \dots BY PARTS \dots$	E
$(x+i)e^{x+i} = \int e^{x+i} dx$	$\langle \ $
(241)e - e + C	
24 (5.1) 1) . (

 $f(x) = 4xe^{2x}.$

 $2xe^{2x}-e^{2x}+C$, $-3+8\ln 2$

(6) (4ae da

a) Use integration by parts to find $\int f(x) dx$.

b) Find an exact vale for $\int_0^{\ln 2} f(x) dx$.

Evaluate each of the following integrals, giving the answers in exact form.

Question 21 (**+)

By using the substitution $u = \ln x$, or otherwise, find an exact value for

Question 22 (**+)

$$f(x) \equiv \frac{x-5}{x^2+5x+4}.$$

- **a**) Express f(x) in partial fractions.
- **b**) Find the value of

 $\int_0^2 f(x) \ dx \ ,$

 $f(x) \equiv -$

3

giving the answer as a single simplified logarithm.

 $\infty \le \Xi A(\alpha + 4) + B(\alpha + 1)$ $\frac{2}{2k+1} d\alpha = \left[\frac{3}{2} h_{1} \left[\frac{1}{2k+4} \right] - \frac{2}{2} \left[h_{1} \left[\frac{1}{2k+1} \right] \right]_{0}^{2}$ 2lmT) = 3lm6 - 2lm3 - 3lm4 $lm\left(\frac{216}{9\times64}\right) = lm\left(\frac{3}{8}\right)$

 $-\frac{2}{x+1}$, $\int_{0}^{2} f(x) dx = \ln\left(\frac{3}{8}\right)$

Question 23 (**+)

By using the substitution $u^2 = 4\cos x - 1$, or otherwise, find

 $\int \frac{\sin x}{\sqrt{4\cos x - 1}} \, dx$

 $-\frac{1}{2}\sqrt{4\cos x - 1} + C$

$\int \frac{\sin \alpha}{\sqrt{4}\cos \alpha - 1} e^{-\frac{1}{2}}$	$dx = \int \frac{SWD}{\sqrt{4r}} \left(-\frac{4r}{2SWA} dy\right)$	$ \int u = \sqrt{4\cos \alpha - 1} $ $ (u^2 = 4\cos \alpha - 1) $
$\int -\frac{1}{2} du = -$	- 12u + C	(zu du = - 4sma)
- 12 J 41052-1 + ($\begin{cases} da = \frac{2u du}{-4sma} \end{cases}$
4		$dx = -\frac{u}{2sinx}dy$

Question 26 (**+)

Determine the value of the positive constant k given further that

$$\int_{k}^{\frac{1}{2}} \frac{6}{e^{2-3x}} dx = 0.1998.$$

adasm.

I.G.B.

2011

COM

Give the value of k to an appropriate degree of accuracy.

adasmaths.

Y.C.B. Madasm

COM

I.C.B.

, $k \approx 0.44$
2.
T2917 NAGRATION FIRST
$\int_{k}^{\frac{1}{k}} \frac{6}{e^{2-3\lambda_{k}}} d\lambda = \int_{k}^{\frac{1}{k}} 6 \times e^{(2-3k_{k})} d\lambda = \int_{k}^{\frac{1}{k}} 6 e^{3k-2} d\lambda$
$= \left[2e^{3k-2} \right]_{k}^{\frac{1}{2}} = 2e^{\frac{1}{2}} - 2e^{3k-2}$
SETTING OF AN EQUATION
$ = \int_{k}^{\frac{1}{2}} \frac{6}{e^{2-3\lambda_{\star}}} d\lambda = 0.1998 $
$=$) $\Im \left(e^{\frac{1}{k}} - e^{\frac{3k-2}{k}} \right) \approx 0.1998$
$= \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = 0.0000$
$\Rightarrow \frac{1}{\sqrt{e_1}} - 0.00\% = e^{3k-2}$
⇒ e ³ k-2 ≈ 0 5066306397

nadasmaths.com

COM

Ś

1+

nadasm.

I.V.G.B. Madasn

Created by T. Madas

madasmaths,

COM

Question 27 (***)

 $=\frac{3x}{2+x-x^2}$

a) Calculate the three missing values of y in the following table.

	0 0.25	0.5	0.75	1
y	0	2	2	1.5

b) Use the trapezium rule with all the values from the completed table of part (a) to find an estimate for

 $\int_0^1 \frac{3x}{2+x-x^2} \, dx.$

1

 $\ln 2$

THE INDIGRAL

 $= [2\ln |-2| + \ln [] - [2\ln |-1| + \ln 2]$

 $\int_{1}^{5} \frac{2}{x-2} + \frac{1}{x+1} d\alpha$ $= \left[2h|x-z| + h|x+1 \right]_{1}^{\circ}$

= 21n2 - hz

h2_ ~ 0.693

c) Use a suitable method to find the exact value of

 $\int_0^1 \frac{3x}{2+x-x^2} \, dx \, .$, 0.3429, 0.6667, 1.0286, y o 0.3429 0.6667 6) $\int \frac{3x}{2+x-x^2} dx \propto \frac{\text{TRIONNES}^4}{2} \left[\text{Rest+LAST} + 2x \text{ REST} \right]$ $\approx \frac{0.25}{2} \left[0 + 1.5 + 2 \left(0.3429 + 0.6667 + 1.0286 \right) \right]$ ~ 0.697 - 0.698 $\int_{0}^{1} \frac{3\alpha}{2+\chi-\chi^{2}} d\chi = \int_{0}^{0} \frac{3\alpha}{\chi^{2}-\chi-2} d\chi$ $= \int_{1}^{\infty} \frac{3x}{(x-2)(x+1)} dx$ PLUSEED BY PHOTAL FRACTIONS $\frac{3\alpha}{(\lambda-2)(2\alpha+1)} \cong \frac{A}{\lambda-2} + \frac{B}{2\alpha+1}$ 3x =

Created by T. Madas

Smaths.com i.v.

I.V.C.P

, I.V.G.B.

Use a suitable substitution to find

the com

I.V.C.

6

Created by T. Madas

I.F.G.p

Question 29 (***)

F.G.B.

I.C.P.

 $\frac{x^2 + 3}{x - 1} \equiv Ax + B + \frac{C}{x - 1}.$

- a) Determine the value of each of the constants A, B and C.
- **b**) Hence, or otherwise, evaluate

 $\int_{2}^{4} \frac{x^2 + 3}{x - 1} \, dx \,,$

giving the answer in terms of natural logarithms.

B=1, C=4, $8+4\ln 3$ A = 1

F.G.B.

Madası

6

282	-uasm	"SID	Alash .	asm. "
"Park	Ouestion 30 (***)	Created by T. Mada	is ath	Alle.
1	Question 30 (***) Use the substitution $u = 1+2$	$\cos x$ to find	m se	c_{0}
1.1.	II I.Y.	$\int_0^{\frac{\pi}{2}} \left(1 + 2\cos x\right)^3 \sin x \ dx$	(x.	
Č,	p CP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	Inadas,	nadasm.	$\int_{0}^{\infty} (1 + 2\omega c_{2})^{3} \operatorname{Sing} d_{2} \dots \operatorname{Br} \operatorname{He} \operatorname{ubstrated} ubstrated$	
	Question 31 (***)			, ^e ll Co.
3	By using the substitution $u =$	3x+1, or otherwise, find	0m	
1.1.	2. J. C.J.	$\int_0^5 x\sqrt{3x+1} dx .$	204	= 40.8
	nadasm.	nadasmar,	$\int_{0}^{5} 2 \sqrt{2\alpha t^{2}} dx = \int_{1}^{16} 2 \sqrt{2} \frac{dt}{3}$ $= \int_{1}^{16} 2 \sqrt{2} \frac{dt}{3}$ $= \int_{1}^{16} \frac{d}{3} 2 \sqrt{2} \frac{dt}{3}$ $= \int_{1}^{16} \frac{d}{3} 2 \sqrt{2} \frac{d}{3} \frac{d}{3} = \int_{1}^{16} \frac{d}{3} \sqrt{2} \frac{d}{3} \frac{d}{3$	
			$= \left[\frac{4}{6} u^{\frac{3}{4}} - \frac{3}{4} u^{\frac{3}{4}}\right]_{1}^{-1} - \left(\frac{3}{46} - \frac{3}{42}\right) \cdot \left(\frac{3}{4} - \frac{3}{23}\right)$	
Madas.	nadasm.	Created by T. Mada	is Madash	Inadasm.

Question 32 (***)

Use an appropriate integration method to find an exact value for

 $\frac{2\pi}{3}$

Question 33 (***)

P.C.P.

By using the substitution $u = \sec x$, or otherwise, find

 $\tan x \sec^4 x \, dx$.

J tay x sectix de = by substitution (se extreme offeni elle)	u=secz }
$=\int \frac{1}{2} \sqrt{\alpha} u^{4} \frac{du}{sea_{1} + \alpha} = \int u^{4} \times \frac{du}{u}$	da = du strateni
$= \int u^3 du = \frac{1}{4}u^4 + c = \frac{1}{4}sec_x^4 + c$	/

Question 34 (***)

$$\frac{3x^3 + 2x^2 - 3x + 8}{x + 2} \equiv Ax^2 + Bx + C + \frac{D}{x + 2}$$

a) Find the value of each of the constants A, B, C and D.

17202

b) Hence find

I.C.B.

I.C.B.

COM

. K.C. $\int \frac{3x^3 + 2x^2 - 3x + 8}{x + 2} \, dx \, .$

A=3, B=-4, C=5, D=-2, $x^3-2x^2+5x-2\ln|x+2|+C$

21/18.1

I.F.C.P.

Inadası

20

ths.com

11-10-

Question 35 (***)

$$f(x) \equiv \frac{5}{3x^2 - 5x}.$$

- a) Express f(x) in partial fractions.
- **b**) Find the value of

(G.p.

I.C.B.

 $\int_{3}^{5} f(x) dx ,$

giving the answer as a single simplified logarithm.

 $i = \frac{3}{3\lambda - 1}$ (b) (fa) de $-\frac{1}{x} dx = \left[\frac{1}{2} |3x-5| - |b| \lambda \right]_{3}^{5}$ (h10-h5)-(h4-h3) = h2-h3

 $ln\left(\frac{3}{2}\right)$

F.G.B.

12

3

 $\overline{3x-5}$

 $f(x) \equiv$

 $\left|\ln\left(\frac{3}{2}\right)\right|$

2

Question 36 (***)

I.V.G.B.

By using the substitution $u = e^x$, or otherwise, show clearly that

Madası

6

Question 37 (***)

I.F.G.B

Find an expression for the integral

I.C.

ŀ.G.p

 $\frac{3x-10}{x^2+5x-6}\,dx.$

 $4\ln|x+6| - \ln|x-1| + C$

F.G.B.

Madası

Question 38 (***)

I.V.G.B.

I.C.P.

I.C.B.

By using the substitution $u = 1 + x^2$, or otherwise, find

Madas

|--|

R.

2017

6

$\int \frac{\alpha^3}{\sqrt{1+\alpha^2}} dt = \int \frac{\alpha^3}{\sqrt{\alpha^1}} \cdot \frac{\alpha}{2\alpha} = \int \frac{\alpha^3}{2\alpha k} dt$	$\begin{cases} u = 1 + 2^2 \\ \frac{du}{dx} = 2\lambda \end{cases}$
$= \int \frac{u-1}{2u^{\frac{1}{2}}} du = \int \frac{u}{2u^{\frac{1}{2}}} - \frac{1}{2u^{\frac{1}{2}}} du$	$\begin{cases} dx = \frac{du}{2x} \\ a^2 = u - 1 \end{cases}$
$= \int \frac{1}{2} u^{\frac{1}{2}} - \frac{1}{2} u^{-\frac{1}{2}} du = \frac{1}{3} u^{\frac{3}{2}} - u^{\frac{1}{2}} + C$	and
$= \frac{1}{3}(1+x^2)^{\frac{3}{2}} - (1+x^2)^{\frac{1}{2}} + C_{-}$	

Question 39 (***)

Use integration by parts to find the value of

F.C.P.

i G.B.

M2(12)

1

- $\int \ln a \, da = by \text{ parts } q \text{ (gnoring limits)} \begin{cases} \ln a \\ a \end{cases}$
- $= \alpha |u|\alpha| \alpha + c$
- $2\pi |u| \Rightarrow 20\pi e_{miss}$ = $\left[x |u| x - x \right]_{e}^{e}$
- = (elue e) (lut 1)
- = (e e) +1

Question 40 (***)

Find the value of the constant k given that

$$\int_{0}^{1} k \left(e^{2x} + 4x \right) dx = e^{2} + 3$$

14	k	=	2

 $\begin{array}{c} \int_{a}^{1} k \left(e^{2x}_{a} + b_{a} \right) d g_{a} = e^{2x} + 3 \\ \Rightarrow \left[k \left(\frac{1}{2} e^{2x}_{a} + \frac{1}{2} \right) \right]_{a}^{1} = e^{2x} + 3 \\ \Rightarrow \left[k \left(\frac{1}{2} e^{2x}_{a} + \frac{1}{2} \right) \right]_{a}^{1} = e^{2x} + 3 \\ \Rightarrow \left[k \left(\frac{1}{2} e^{2x}_{a} + \frac{1}{2} \right) \right]_{a}^{1} = e^{2x} + 3 \\ \Rightarrow \left[k \left(\frac{1}{2} e^{2x}_{a} + \frac{1}{2} \right) \right]_{a}^{1} = e^{2x} + 3 \\ \end{array}$

Question 41 (***)

C.B.

Evaluate each of the following integrals, giving the answers in exact form.

a)
$$\int_0^{\ln 2} (e^x + 2e^{-x})^2 dx$$
.

4 $1-\sin 4x \, dx$. b)

 $3 + 4 \ln 2$, $\frac{1}{4}(\pi - 2)$

1+

$$\begin{split} \int_{0}^{b_{0}} \left(\tilde{e}^{2}_{+} 2 \tilde{e}^{2}_{+} \right)^{2} ds &= \int_{0}^{b_{0}} \left(\tilde{e}^{2}_{+}^{2} + 2 \tilde{e}^{2}_{+} (\tilde{e}^{2}_{+}^{2} + (\lambda \tilde{e}^{2})^{2} ds = \int_{0}^{b_{0}} \tilde{e}^{2}_{+} + U_{+} + U_{0}^{2} \tilde{e}^{2}_{+} \\ &= \left[\frac{1}{2} \tilde{e}^{2}_{+} + U_{L} - 2 \tilde{e}^{2}_{-} \right]_{0}^{b_{0}} = \left(2 + U_{1} h_{2} - \frac{1}{2} \right) - \left(\frac{1}{2} + 0 - 2 \right) \\ &= \frac{1}{2} + U_{M} h_{2} - \frac{1}{2} + 2 = 3 + U_{M} h_{2} \end{split}$$

 $(\mathbf{k}) = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix}_{\mathbf{k}} = \begin{bmatrix} \mathbf{k} \\ \mathbf$

Question 42 (***)

By using the substitution $u = \tan x$ and the trigonometric identity $1 + \tan^2 x = \sec^2 x$, show clearly that

 $\int_{0}^{\frac{\pi}{3}} \sec^4 x \ dx = 2\sqrt{3} \, .$

	1.1
$\int_{0}^{\frac{T}{2}} \sup_{x \in \Omega} \frac{dx}{dx} = \int_{0}^{\frac{T}{2}} \sup_{x \in \Omega} \frac{du}{dx} = \int_{0}^{\frac{T}{2}} \sup_{x \in \Omega} \frac{du}{dx} du$ $= \int_{0}^{\frac{T}{2}} (1 + \log n) du = \int_{0}^{\frac{T}{2}} 1 + u^{2} du$ $= \left[u + \frac{1}{2} u^{2} \right]_{0}^{\frac{T}{2}} = (u^{2} + u^{2}) - (0 + c) = 2u^{2}$	$\begin{array}{c} U = \operatorname{town} \mathcal{Q} \\ \frac{du}{du} = \operatorname{Sec}^{2} \\ \frac{du}{du} = \operatorname{Sec}^{$

proof

11+

(F

Question 43 (***)

$$\frac{8x-1}{(2x-1)^2} \equiv \frac{A}{2x-1} + \frac{B}{(2x-1)^2}$$

a) Determine the value of each of the constants A and B.

b) Hence find the exact value of

$$\int_{1}^{1.5} \frac{8x-1}{(2x-1)^2} \, dx$$

$$A = 4$$
, $B = 3$, $\frac{3}{4} + 2 \ln 2$

 $\begin{array}{l} \textbf{(a)} \quad \begin{array}{l} \frac{B_{2-1}}{(2x-1)^2} \equiv \frac{A}{2x+1} + \frac{S}{(2x-1)^2} & \begin{array}{l} (k 2x \pm \frac{1}{2} + \frac{1}{3} + \frac{1}{3}$

(***) Question 44

By using the substitution $u = x^{\frac{1}{2}}$, or otherwise, find

asiliatils.Col

1.4.6.0

naths.com

• •	4.4	(ste ste ste
Question	44	(***)

a) Use integration by parts to find

$$\int x \cos\left(\frac{1}{2}x\right) dx.$$

b) Hence determine

I.V.C.B. Madasmaths.com

Ismanis com trees

mana

I.F.G.B

	٩)	SETTING OP INTERATION & PIEC	Q		
1		$\int a 40 s \frac{1}{2} x dx = \dots$	x x z cos z x	2	
		$= 2x \tan \frac{1}{2}x + 4\cos \frac{1}{2}x + C$	×		X .
	6)	USING INTERATION BY PHETS & PHET	<u>()</u>		1
		$\int a^2 \sin \frac{1}{2}a da = \dots$	22 22 2005-24 SIN-22		
		-złaste - S-trioste de -2ilaste +4 Seloste de	• • • • 2 ^x		16
	1	-22°00822+d[22.4m22+400522]			1
	0	-22005Z2+B29MZ2+66005Z2+C			
		2	~	Zo .	
1	<	2.		20%	
		42		191	2
		- Sh		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.
			9-		19
e	5	14	Ch.		
į	0		18	2	
	₹	0	°C)	22	
		* 一入、		0	
		- 5 L	×		1.
					# k.

I.V.C.B. Madasn

SMarns.COL

N.G.

naths.com

I.V.G.B.

Created by T. Madas

I.C.P.

Question 45 (***)

By using the substitution $u = x^2 + 6x$, or otherwise find

Inadasn

hs.com

1.60

6

$\int \frac{2+3}{(a^2+c_2)\frac{1}{2}} dx = \dots bq \text{substitution set recention}$	(u= 22+62)
$= \int \frac{2x+3}{\alpha t^2} \frac{du}{2x+6} = \int \frac{2x+3}{\alpha t^2} \times \frac{1}{2(2x+3)} d\eta$	$da = \frac{du}{2x+6}$
$= \int \frac{1}{2} u^{-\frac{1}{3}} du = \frac{\frac{1}{3}}{\frac{3}{3}} u^{\frac{3}{3}} + C = \frac{3}{4} u^{\frac{3}{3}} + C$	mi
$=\frac{3}{4}(x^{2}+6x)^{3}+C$	

Question 46 (***)

1. C.B. 111.21/25

20

I.C.p

I.F.G.B.

I.F.G.B.

Use the substitution $u = 10\cos x - 1$ to find

I.C.p

 $\frac{1}{3}$ 15(10cos x-1)^{$\frac{1}{2}$} sin x dx.

19

ŀ.G.p.

madası

Created	by T.	Madas
---------	-------	-------

·C.B.

Question 47 (***)

 $\frac{2x^2 - x + 6}{x^2 (3 - 2x)} \equiv \frac{A}{x} + \frac{B}{x^2} + \frac{C}{3 - 2x}.$

- a) Determine the value of each of the constants A, B and C.
- **b**) Evaluate

ŀ.G.p.

I.C.P.

 $\int_{2}^{3} \frac{2x^2 - x + 6}{x^2 (3 - 2x)} \, dx \, ,$

giving the answer in the form $p - \ln q$, where p and q are constants.

143-2-243)-(142-1-241)

F.G.B.

20

<u>A=1</u>, <u>B=2</u>, <u>C=4</u>, $\frac{1}{3}$ -ln6

6

911		Ð
Question	n 48	(***.
- Op	x	

V.C.A

_						1	1
	x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$ \frac{5\pi}{12} $
	У	0	0.1309	0.4534	0.7854	1	0.6545

The table above shows tabulated values for the equation

 $y = x\sin 2x, \ 0 \le x \le \frac{5\pi}{12}.$

- a) Complete the missing value in the table.
- **b**) Use the trapezium rule with all the values from the table to find an approximate value for

c) Use integration by parts to find an exact value for $\int_0^{12} x \sin 2x \, dx$.

0.9069, 0.682, $\frac{5\pi\sqrt{3}}{48}$

14

$$\begin{split} & \int_{0}^{\frac{1}{2}} 2\log(2x,\frac{T}{2}) \leq \frac{T}{2} \times \sin \frac{T}{2} \simeq 0.3063 \\ & \int_{0}^{\frac{1}{2}} 2\log(2x,dx) \simeq \frac{T\log(2x,dx)}{12} \left[R(17 + LAR + 2x, 247T) \right] \\ & \simeq \frac{T(\frac{1}{2})}{2} \left[0 + 0 \cdot dS(\frac{1}{2} + 2 \left(0 \cdot \log \frac{1}{2} + 0 \cdot \log \frac{1}{2} + 0 \cdot \log \frac{1}{2} \right) \right] \\ & \simeq \frac{T(\frac{1}{2})}{2} \left[0 - 662 \right] \\ & = -\frac{1}{2} \log(2x,dx) = \int_{-\frac{1}{2}}^{-\frac{1}{2}} \log(2x,dx) \\ & = -\frac{1}{2} \log(2x,dx) = \int_{-\frac{1}{2}}^{-\frac{1}{2}} \log(2x,dx) \\ & = -\frac{1}{2} \log(2x,dx) = \int_{0}^{-\frac{1}{2}} \log(2x,dx) \\ & = -\frac{1}{2} \log(2x,dx) = \int_{0}^{-\frac{1}{2}} \log(2x,dx) \\ & = -\frac{1}{2} \log(2x,dx) = \int_{0}^{\frac{1}{2}} \log(2x,dx) \\ & = \int_{0}^{-\frac{1}{2}} \log(2x,dx) = \int_{0}^{\frac{1}{2}} \log(2x,dx) \\ & = \int_{0}^{\frac{1}{2}} \log(2x,dx) \\ & = \int_{0}^{\frac{1}{2}} \log(2x,dx) = \int_{0}^{\frac{1}{2}} \log(2x,dx) \\ & = \int_{0}^{$$

Question 49 (***+)

By using the substitution $u = e^{x} + 1$, or otherwise, find

Ke,

	/ -
<u>A</u>	0
$= \int \frac{e^{2x}}{u} \frac{\partial u}{\partial x^{2}} \frac{du}{\partial u^{2}} = \int \frac{e^{2x}}{u} du$	$\begin{aligned} u = e^{x} \\ dx = \frac{du}{e^{x}} \end{aligned}$
$-\int \frac{1}{u} du = \frac{1}{u} du = \frac{1}{u} du$	e ^x =u-l
$= \begin{pmatrix} e^{\mathbf{x}} \\ e^{\mathbf{y}} \\ + \end{pmatrix} - 3b_{\eta} \begin{pmatrix} e^{\mathbf{x}} \\ e^{\mathbf{y}} \\ + \end{pmatrix} + C = e^{\mathbf{x}} - 3b_{\eta} \begin{pmatrix} e^{\mathbf{y}} \\ e^{\mathbf{y}} \\ + \end{pmatrix} + C$ $= e^{\mathbf{x}} - 3b_{\eta} \begin{pmatrix} e^{\mathbf{y}} \\ e^{\mathbf{y}} \\ + \end{pmatrix} + C$	+C)

 $e^{x} - 3\ln(e^{x} + 1) + C$

Question 50 (***+)

F.G.B.

By using the substitution $u = 1 - \cos x$, or otherwise, find

$\cos x + \ln (1 - \cos x) + C$

F.G.B.

1+

 $\begin{array}{l} \displaystyle \sum_{\substack{\alpha \in \mathcal{A} \\ \alpha \in \mathcal{A}$

Question 51 (***+)

By using the substitution $u^2 = e^x - 1$, or otherwise, find

Question 52 (***+) Use trigonometric identities to find

I.C.P.

 $\int \sec^2 x \left(1 + \cot^2 x\right) dx \, .$

 $\tan x - \cot x + C$

 $\int Sec^{2} (1+cd^{2}_{\infty}) dx = \int sec^{2}_{\infty} + sc^{2}_{\infty} cd^{2}_{\infty} dd$ $= \int sec^{2}_{\infty} + \int sc^{2}_{\infty} cd^{2}_{\infty} dd^{2}_{\infty} dd$ $= \int sec^{2}_{\infty} + cosec^{2}_{\infty} dd \quad \frac{dd}{dc}(bux) = cud^{2}_{\infty}$ $= t_{2M,2} - cdz + c \quad \frac{dd}{dc}(bdz) = cud^{2}_{\infty}$

Question 53 (***+)

I.V.G.B

By using the substitution $u = e^{x} + 1$, or otherwise, find the exact value of

And a second sec	The second se
$\int_{0}^{1} \frac{e^{2x}}{e^{x}+1} dx = 0 \text{ are the constitution on and}$	Juse 1
$= \int_{2}^{e+l} \frac{e^{2x}}{u} \frac{du}{e^{x}} = \int_{2}^{e+l} \frac{e^{2x}}{u} du$	$\begin{cases} \frac{du}{dx} = e^{x} \\ \frac{dx}{dx} = e^{x} \end{cases}$
$= \int_{2}^{e+1} \frac{\alpha_{-1}}{\alpha} d\alpha = \int_{2}^{e+1} \frac{1}{\alpha} d\alpha$	a=o House
$= \left[(u - h) (u) \right]_{2}^{e+1} = \left[(e+1 - h(e+1)) - (2 - h(2)) \right]$	Let=u-1
$= e_{-1} + \ln 2 - \ln (e_{+1}) = e_{-1} + \ln \left(\frac{2}{e_{+1}}\right)$	//

 $e-1+\ln\left(\frac{2}{1+e}\right)$

Question 54 (***+)

I.C.B.

By using the substitution $u = \sin x$, or otherwise, find

ŀ.G.B.

 $\cos^3 x \, dx$.

1+

i G.B.

Question 55 (***+)

. V.G.B. 111303511

COM

I.C.B.

$$I = \int (x-1)(4-x)^{\frac{1}{2}} dx, \ x \in \mathbb{R}, \ x \le 4.$$

- **a**) Use the substitution $u = (4-x)^{\frac{1}{2}}$ to find an expression for *I*.
- b) Show that the answer of part (a) can be written as

 $I = -\frac{2}{5}(x+1)(4-x)^{\frac{3}{2}} + C.$

c) Use integration by parts to verify the answer of part (b).

Y.C.B. Mada

$ \begin{array}{l} (\underline{a}) & \int (x_{-})(4-x)^{k} dx & \circ \int (4-u_{k-1}^{k})u(-2u_{k} dx) \\ & = \int (\hat{a}-u_{k-1}^{k})(4-x)^{k} dx & \circ \int (4-u_{k-1}^{k})u(-2u_{k} dx) \\ & = \frac{2}{3}(4-x)^{k} + C & = \frac{2}{3}(4-x)^{k} + C \\ & = \frac{2}{3}(4-x)^{k} + C & = -\frac{2}{3}((2+x))(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}((2+x))(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)^{k} + C & = -\frac{2}{3}(2+x)(4-x)(4-x)^{k} + C \\ & = \frac{2}{3}(-1-x)(4-x)(4-x)(4-x)(4-x)(4-x)(4-x)(4-x)(4$	$ \begin{aligned} & u_{\pm}(4-\chi)^{\frac{1}{2}} \\ & u^{2} = 4-\chi \\ & \chi = 4-\chi^{2} \\ & \chi = 4-\chi^{2} \\ & dy = -2\lambda \\ & dx $
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\left\{ \begin{array}{c} 1\\ \hline 0\\ \hline 0\\ \hline \end{array} \right\}$

2011

aths com

], $I = \frac{2}{5} (4-x)^{\frac{5}{2}} - 2(4-x)^{\frac{3}{2}} + C$

2017

Madasm

4

6

Question 56 (***+)

.Y.C.B

Find the value of the constant k given that

(1.15.

 $\int_0^{\ln 4} (4k-1)e^{2.5x} + ke^{-0.5x} dx = 190.$

k = 4

proof

E.B.

6

Question 57 (***+)

I.F.G.B.

By using the substitution u = 2x - 1, or otherwise, show that

2

 $\int \frac{2x}{\sqrt{2x-1}} \, dx = \frac{2}{3} (x+1)\sqrt{2x-1} + C \, .$

$\int \frac{2x}{\sqrt{2z-1}} dz = \int \frac{2x}{\sqrt{u^2}} \frac{du}{2} \qquad \qquad \begin{cases} u = 2z-1 \\ du = 2 \end{cases}$
$= \int \frac{u+i}{u^{\frac{1}{2}}} \frac{du}{2} = \int \frac{u+i}{2u^{\frac{1}{2}}} \frac{du}{du} = \int \frac{u}{2u^{\frac{1}{2}}} + \frac{1}{2u^{\frac{1}{2}}} \frac{du}{du} = \frac{du}{2u = u+i}$
$= \int \frac{1}{2} u^{\frac{1}{2}} + \frac{1}{2} \tilde{u}^{\frac{1}{2}} du = \frac{1}{3} u^{\frac{3}{2}} + u^{\frac{1}{2}} + C$
$=\frac{1}{3}(2x-1)^{\frac{3}{2}}+(2x-1)^{\frac{1}{2}}+C =\frac{1}{3}(2x-1)^{\frac{1}{2}}\left[(2x-1)+3\right]+C$
$\frac{1}{3}(2x-1)^{\frac{1}{2}}(2x+2) + C = \frac{2}{3}(2x+1)\sqrt{2x-1} + \frac{1}{4}$

Question 58 (***+)

$$f(x) \equiv \frac{70}{x(x-2)(x+5)}.$$

- a) Express f(x) in partial fractions.
- **b)** Show that $\int_{3}^{2} f(x) dx$ can be written in the form $p \ln 3 + q \ln 2$, where p and q are integers to be found.

 $f(x) = \frac{2}{x+5} + \frac{5}{x-2} - \frac{7}{x}, \quad \int_{3}^{4} f(x) \, dx = 11 \ln 3 - 15 \ln 2$

 $\begin{array}{l} \begin{array}{c} (\mathbf{e}) & \frac{76}{2(\lambda-2)(\lambda+5)} \stackrel{=}{=} \frac{A}{2\lambda} + \frac{B}{2\lambda-2} + \frac{C}{2\lambda+5} \\ \hline & \left[\frac{15}{2} \stackrel{=}{=} \frac{A}{(\lambda-2)(\lambda+5)} + \frac{B}{2\lambda-2} + \frac{C}{2\lambda+5} + \frac{C}{2\lambda+5} \right] \\ & \cdot \left[\frac{16}{2} \stackrel{=}{=} \frac{A}{(\lambda-2)(\lambda+5)} + \frac{B}{2\lambda-2} + \frac{C}{2\lambda-5} \right] \\ & \cdot \left[\frac{16}{2} \stackrel{=}{=} \frac{A}{2\lambda-2} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \cdot \left[\frac{16}{2} \stackrel{=}{=} \frac{A}{2\lambda-2} - \frac{7}{2\lambda} + \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{(\lambda-2)} - \frac{7}{2\lambda-4} - \frac{2}{2\lambda+5} \right] \\ & \left[\frac{16}{2} \stackrel{=}{($

Question 59 (***+)

Use trigonometric identities to find

$$\int \frac{1}{\cos^2 x \tan^2 x} \, dx$$

 $-\cot x + C$

6034Tivel	3mmmmmm
(or tange	$dx = \int sec x (taux)^{-2} dx = \dots by remove dualy rolsince \frac{1}{dx} (taux)^{-2} = sie$
	Smar of (thing) = sec
	= - (taus) + c
	$= -\frac{1}{\tan x} + C = -\cot x + C$

Question 60 (***+)

$$f(x) = \frac{2x+2}{(1-x)(1-2x)}.$$

- **a**) Express f(x) in partial fractions.
- **b**) Show that $\int_{1.5} f(x) dx$ can be written in the form $p \ln 2 + q \ln 3$, where p and

q are integers to be found.

$$f(x) = \frac{6}{1-2x} - \frac{4}{1-x}, \quad \int_{1.5}^{2} f(x) \, dx = 7\ln 2 - 3\ln 3$$

Question 61 (***+) Use a suitable method to find

2

$\int h\left(\frac{x}{2}\right) dx = \dots b_{1} part = \dots \int 1 \times h(\frac{x}{2}) dx$	hit is
$= \alpha \ln \frac{\alpha}{2} - \int \alpha(\frac{1}{2}) dx$ $= \alpha \ln \frac{\alpha}{2} - \int 1 dx$	$\frac{d}{dt}\left(\ln\frac{x}{2}\right) = \frac{1}{\frac{2}{2}} \times \frac{1}{2}$
= 2/42 - 2 + C	$= \frac{2}{2} \star \frac{1}{2}$ $= \frac{1}{2}$
	$\frac{du}{dt} = \frac{1}{2} = \ln x - \ln 2$

Question 62 (***+)

$$f(x) = \frac{32 - 17x}{(x+1)(3x-4)^2}.$$

- **a**) Express f(x) in partial fractions.
- **b**) Show that

ŀ.G.B.

I.C.B.

 $\int_0^1 f(x) \, dx,$

can be evaluated in the form $p + \ln q$, where p and q are integers to be found.

 $f(x) \equiv \frac{1}{\left(3x - 4\right)^2}$ 4 3 $f(x) dx = 1 + \ln 8$ (3x - 4)(x+1)

20

F.G.B.

mada

I.C.B.

Question 63 (***+)

.Y.C.B.

I.C.B.

I.F.G.B.

Use a trigonometric identity to find the exact value of

F.G.B.

 $\begin{array}{l} \displaystyle \int_{0}^{\overline{T}} \sum_{\alpha,\beta} \sum_{\alpha,\beta}$

 $\frac{\pi}{8}$

Question 64 (***+)

Use integration by parts twice to find an exact value for

5

Mada

 $\int_0^{\frac{\pi}{2}} 4x^2 \cos x \, dx.$

C.B.

6

- 423ma + Bacasa J Busa di
- ···· PEINTRODUCE LIMITI...
- $= \left[4 \left[\frac{\pi^2}{4} \right] s_h \overline{I} + 8 \left[\frac{\pi^2}{4} \right] s_h \overline{I} + 8 \left[\frac{\pi^2}{4} \right] s_h \overline{I} 8 s_h \overline{I} 8 s_h \overline{I} \right] \left(0 + 0 8 s_h \overline{I} \right) \right]$
- = T²-8

Question 65 (***+)

$$\frac{2}{(u-2)(u+2)} \equiv \frac{A}{u-2} + \frac{B}{u+2}$$

- **a**) Find the value of A and B in the above identity.
- **b**) By using the substitution $u = \sqrt{x}$, or otherwise, find

$$\int \frac{1}{\sqrt{x}(x-4)} dx.$$

$$\boxed{A = \frac{1}{2}}, \ \boxed{B = -\frac{1}{2}}, \ \boxed{\frac{1}{2} \ln \left| \frac{\sqrt{x}-2}{\sqrt{x}-2} \right|} + C$$

Question 66 (***+)

F.C.B.

By using the substitution $u = \cos x$, or otherwise, find

$\int \frac{1+\omega_{SND}}{SND_{c}} d\lambda = \int \frac{1+\omega}{SND_{c}} \left(\frac{d\omega}{-SND_{c}} \right)$	$U = Costa_{-}$ $\frac{du}{dt} = -sint$
$=\int \frac{1+u}{-SW_{a}^2} du = \int \frac{1+u}{-(1-\cos^2)} du$	$dx = \frac{du}{-Style}$
$= \int \frac{(+u)}{\omega s^2 u - 1} du = \int \frac{(+u)}{u^2 - 1} du = \int \frac{(+u)}{(u - 1)^2 u} du$	an) dy
$= \sqrt{\frac{1}{b-1}} du = \ln u-1 + C = \ln u - 1$	1 [+ C

Question 67 (***+)

Use integration by parts to show that

1

 $\int \frac{4\ln x}{x^3} \, dx = -\frac{1+2\ln x}{x^2} + C \, .$

 $\int \frac{4h\alpha}{3t^2} dt = \int (\frac{4}{h\alpha}) x^2 dt = b + \frac{1}{2} \frac{1}{2} \frac{1}{4} dt$ $= -2x^2 \frac{1}{h\alpha} - \int -2x^2 \frac{1}{2} \frac{1}{4} dt$ $= -\frac{4i\alpha}{3t^2} + \int 2x^3 dt$ $= -\frac{2i\alpha}{3t^2} - x^2 + C$ $= -\frac{2h\alpha}{3t^2} - \frac{1}{3t^2} + C$ $= -\frac{1}{3t^2} [1+2h\alpha] + C$ b = b = b

Question 68 (***+)

1.0.

No.

By considering the differentiation of a product of two appropriate functions, find

 $e^x(\tan x + \sec^2 x) dx$.

Ĉ.Ŗ.

1+

 $\int e^{i\vec{A}} da_{\mu} a_{\mu} + sec^{i\vec{A}} da_{\mu} = \dots \quad h_{\mu} \text{ repetition size } \frac{d}{dt} (b_{\mu} a_{\mu}) = se^{i\vec{A}} \\ = \dots \quad \frac{d}{dt} (e^{i\vec{A}} t_{\mu} a_{\mu}) = e^{i\vec{A}} t_{\mu} a_{\mu} + e^{i\vec{A}} sec^{i\vec{A}} .$

· Jeftana +sea) da = etana + C

Question 69 (***+)

$$\frac{2x^2 - 3}{(x-1)^2} \equiv A + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

- a) Determine the value of each of the constants A, B and C.
- **b**) Evaluate

12

I.C.B.

 $\int_{2}^{3} \frac{2x^2 - 3}{(x - 1)^2} \, dx \, ,$

giving the answer in the form $p + \ln q$, where p and q are constants.

Ĉ.

02

+ln16

, A=2, B=4, C=-1

Question 70 (***+)

By using the substitution u = 2x - 1, or otherwise, find

$$\int \frac{16x^2}{2x-1} \, dx \, .$$

$$(2x-1)^{2} + 4(2x-1) + 2\ln|2x-1| + C = 4x^{2} + 4x + 2\ln|2x-1| + C$$

Question 71 (***+)

P.C.P.

Use integration by parts to show that

 $\int_{-\infty}^{\frac{\pi}{4}} 4x \sec^2 x \ dx = \pi - 2\ln 2.$

1+

cecc dr = 14 PARS 4 Knorra (Laury	A 147
= latora - J Atura	(tava siz)
= datama - 4/m/secal +C	
STRUDAR	D RESULT
= yuits	24) · · · ·
= (tating - Unistal] #	
= (T-4/1/2))- (0 - 4/1/)
$= \pi - 4 \ln a^{\frac{1}{2}}$	
= TT - 2142	
-15 REquired	

(***+) **Question 72**

2

$$\frac{18}{(3u-1)(3u+1)} \equiv \frac{A}{3u-1} + \frac{B}{3u+1}.$$

- a) Find the value of A and B in the above identity.
- **b**) By using the substitution $x = u^2$, or otherwise, find

I.F.G.B.

On I.V. G.B.

1. V. G.B. 11131/3

I.V.G.B

asmaths.

COM

I.V.C.B. Madash

3ln

A=9, B=-9,

2017

i C.P.

i.G.B.

COM

+C

4.6.0

1.5.

Created by T. Madas

madasma,

0

Question 73 (***+)

Use an appropriate integration method to find an exact value for each of the following integrals

b) $\int_{1}^{e} 4x \ln x \, dx$

 e^2 +1

 $\frac{1}{2}$

Question 74 (***+)

K.C.A

Use the substitution $u = x^2$, followed by integration by parts to find

 $\int x^3 e^{x^2} dx.$

Jzerda	$= \int g^2 e^{u} \frac{du}{2a} = \int \frac{1}{2} g^2 e^{u} \left\{ \begin{array}{c} \underbrace{\text{Substitute}}_{a=a^2} \\ u=a^2 \end{array} \right\}$
	$=\int_{2}^{1} u e^{u} du$ $\begin{cases} du = 2u \end{cases}$
	NOW BY PARTS
	$\left\{ \begin{array}{c} \frac{1}{2} \mathbf{u} \left(\frac{1}{2} \right) \\ \mathbf{e}^{\mathbf{u}} \left(\mathbf{e}^{\mathbf{u}} \right) \end{array} \right\}$
	$= \frac{1}{2}ue' - \int \frac{1}{2}e' du$
	$= \frac{1}{2}ue^{u} - \frac{1}{2}e^{u} + C$
	$= \frac{1}{2} e^{i \eta} (\eta - i) + C$
	$= \frac{1}{2}e^{a_1^2}(a_{-1}^2) + C$

Question 75 (***+)

KG

Use integration by parts to find the exact value of

GB

 $\int_{\sqrt{e}}^{e} 16x^3 \ln x \ dx \, .$

- Julia lina da = ... by ports of youring huits { lina ve
- = 42 hbf 5 423 da
- $= 4x^{q}\ln|a| x^{4} + C$
- $= \left[4\alpha^{4} \ln|\alpha| \alpha^{4} \right]_{\sqrt{e}}^{e} = \left(4e^{4} \ln e e^{4} \right) \left(4e^{2} \ln \sqrt{e} e^{2} \right)$
- $= \left(4e^{4}|he e^{4}\right) \left(2e^{2}|he e^{2}\right) = \left(4e^{4} e^{4}\right) \left(2e^{2} e^{2}\right)$

Question 76 (***+)

F.C.B.

By using the substitution $u = \sqrt{2x-3}$, or otherwise, find an expression for

 $\frac{1}{5}(2x-3)^{\frac{5}{2}} + \frac{2}{3}(2x-3)^{\frac{3}{2}} + C$

1+

$\int (2\lambda - i) \sqrt{2\lambda - 3}^{T} d\lambda = \dots$ By SUBSTRUTICAL	u= J22-3
$=\int (2x-1) u (u du) = \int (2x-1) u^2 du$	$u^2 = 2\lambda - 3$ $2u \frac{du}{du} = 2$
$= \int (u^2+2) u^2 du = \int u^4+2u^2 du$	dx=u du
$= \frac{1}{5}(u^{5} + \frac{2}{3}u^{3}) = \frac{1}{5}(2a-3)^{\frac{5}{2}} + \frac{2}{3}(2a-3)^{\frac{3}{2}} + C$	$2x - 3 = u^2$ $2x - 1 = u^2 + 2$

i.G.B.

Question 77 (***+)

$$\frac{3x^2 - 2x + 1}{2x(x-1)^2} \equiv \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}.$$

- a) Determine the value of each of the constants A, B and C.
- **b**) Evaluate

V.C.B. III,

I.F.G.B.

 $\int_{4}^{9} \frac{3x^2 - 2x + 1}{2x(x - 1)^2} dx,$

giving the answer in the form $p+q\ln 4$, where p and q are constants.

 $A = \frac{1}{2}$

Э,	. ''	
(9)	$\frac{3x^2-2x+1}{Q^2(x-1)^2} = \frac{A}{x} + \frac{3}{x-1} + \frac{c}{(2-1)^2}$	
	$\frac{1}{2}(3\alpha^2 - 2\alpha + 1) \equiv A(\alpha - 1)^2 + B\alpha(\alpha - 1) + C\alpha$	
	P Del → I = C	
	· If aco = t= A	
	· If a=2 => == ++28+2C ====++28+2 : ===================================	
	$\frac{3}{2B-2}$ $\frac{3}{B-1}$ $C \approx 1$	
(b)	$\int_{4}^{q} \frac{3\hat{c} - 2\kappa + 1}{2\kappa(2\kappa - 1)^{2}} d\lambda = \int_{4}^{q} \frac{d}{2\kappa} + \frac{1}{\kappa - 1} + (\kappa - 1)^{2} d\lambda$	
	$= \left[\frac{1}{2} h_{1} _{2} + h_{2} _{1} - Q - 1\right]^{\frac{1}{2}}$	
	$= \left(\frac{1}{2}h\eta^{2} + h\eta \mathcal{B} - \frac{1}{2}\right) - \left(\frac{1}{2}h\eta^{2} + h\eta \mathcal{B} - \frac{1}{3}\right)$	
	= 43+148-6-142-443+5	
	$= \ln 4 + \frac{5}{24}$	

200

, B=1, C=1,

nn

 $\frac{5}{24} + \ln 4$

he

I.C.p

nn

ma

100

è

Question 78 (***+)

It is given that

F.C.B.

I.C.P.

 $\sin 3x \equiv 3\sin x - 4\sin^3 x \,.$

 $\int_0^{\frac{\pi}{2}} \sin^3 x \ dx.$

- a) Prove the above trigonometric identity, by writing $\sin 3x$ as $\sin(2x+x)$.
- **b**) Hence, or otherwise, find the exact value of

(a) $l_{1}^{T} = 5m_{1}^{2}S_{1} = 5m_{1}^{2}(2n+3) = 5m_{1}^{2}S_{1}(2n+3) =$

21/15

F.C.B.

COM

Madasn

m

 $\frac{2}{3}$

è

(***+) Question 79

	Use integration by parts to fin	nd an exact value for	· · · Con	~°C0
· ·		$\int_{1}^{\frac{\pi}{3}} 2\sin x \ln(\sec x) dx .$	1.1.	Zr.
1. J.	Cp Cp	Gp	$1-\ln 2$	Ċ,
20/282	120	*(Jac. :	3 Zenz h(s(2) dz = by pade 4 gening his -(2002) h(sea) - ∫-2caa tang th (-2002) h(sea) + ∫ Zenz da -2caa h(sea) - 2caa + C Lunits	13Sm
112	is asingth		$\begin{bmatrix} -2\cos \lambda h(3xx) - 2\cos \lambda \end{bmatrix}_{0}^{\frac{1}{2}} = \begin{bmatrix} 2\cos \lambda h(3xx) + 2\cos \lambda \end{bmatrix}_{\frac{1}{2}}^{\circ}$ $\begin{bmatrix} 0 + 2 \end{bmatrix} - \begin{bmatrix} b(2 + 1) \end{bmatrix} = 1 - \lfloor h(2 + 1) \end{bmatrix}$	
				, /
	Gp Gb	·	·C.B	G
20/2sm	nada.	Madash .	nad na	1/20.
			asmarh.	120
				7
	Cp C	8	, Cp	1.
1200	nada.	Created by T. Madas	nada na	20/28m
		×12.	100	100

maths.com

SMATHS.CO

1.1	-9
Question 80	(**:
· Co	

P.C.A

	x	0	π	π	$\frac{\pi}{2}$	
			18	9	6	ð
<u>)</u>	У	0	0.1632		0.2500	
				1.		- 4

The table above shows tabulated values for the equation

$$y = \sin x \cos 2x, \ 0 \le x \le \frac{\pi}{6}.$$

- a) Complete the missing value in the table.
- b) Use the trapezium rule with all the values from the table to find an approximate value for

c) By using the substitution $u = \cos x$, or otherwise, find an exact value for

 $\int_0^{\frac{\pi}{6}} \sin x \cos 2x \, dx \, .$

, 0.2620, 0.096, $\frac{1}{12}$ punso di LS FILST + LAST + 2×RHAT 25+2(0.1632+0.2620) (3×30-5) + 415/

(1`

 $\overline{(3)}$

(6)

 $3\sqrt{3}-4$

Question 81 (***+)

$$\frac{12x^2 + x + 3}{(6x+1)(2x^2+1)} \equiv \frac{A}{6x+1} + \frac{Bx+C}{2x^2+1}$$

- a) Determine the value of each of the constants A, B and C.
- **b**) Evaluate

Ĝ.Ŗ.

I.F.G.B.

 $\int_{0}^{2} \frac{12x^{2} + x + 3}{(6x+1)(2x^{2}+1)} dx,$

giving the answer in the form $p \ln q$, where p and q are constants.

 $\frac{\sqrt{2a^2+a+3}}{(6a+1)(2a^2+1)} \cong \frac{A}{6a+1} + \frac{Ba+C}{2a^2+1}$ $[22^{2}+2+3 \equiv A(2a^{2}+1) + (Ga+1)(Ba+C)]$ $\int_{0}^{2} \frac{12x^{2}+3+3}{(G_{2}+1)(21^{2}+1)}$ da = $\frac{3}{G_{1}+1} + \frac{\alpha}{(2x^2+1)} dx$ $= \left(\frac{1}{2}\ln \beta + \frac{1}{4}\ln q\right) - \left(\frac{1}{2}\ln f + \frac{1}{4}\ln f\right)$ +1 + $\frac{1}{4}$ (h (22+1) $\int_{-\infty}^{\infty}$ $\pm \ln (3 + \pm \ln 3) = \pm (\ln (3 + \ln 3)) = \pm \ln (3 + \ln 3)$

i G.B.

6

A=3, B=1, C=0, $\frac{1}{2}\ln 39$

nadasn.

r è

(***+) Question 82

By using the trigonometric identity

$$\cos 2\theta \equiv 2\cos^2 \theta - 1$$

I.F.G.B. and the fact that $\frac{d}{dx}(\tan x) = \sec^2 x$, show clearly that

1.4.6.5

The Com

and	the fact that $\frac{dx}{dx}(\tan x)$	$= \sec^2 x$, show clearly that	4.2	0
(j)	×0,	$\int_0^{\frac{\pi}{3}} \frac{1}{1 + \cos x} dx = \frac{\sqrt{3}}{3}$	m d	no se
12.	nada.	J_0 1+cos x 3	AN.	roof
asmarh.	- asm	Siller.	- Marine	
- 1 _{8,0}			$\int_{0}^{\frac{\pi}{3}} \frac{1}{1+\cos 2} dx = \dots + ix_{0} \text{ intro} \dots + \underbrace{\left(\cos 2\theta = 2\omega d \frac{\pi}{3} \right)}_{\left(\omega \theta = \omega d \frac{\pi}{3} \right)^{\frac{\pi}{3}}} dx = \int_{0}^{\frac{\pi}{3}} \frac{1}{1+\cos 2\omega d \frac{\pi}{3}} dx = \int_{0}^{\frac{\pi}{3}} \frac{1}{1+\cos $	-13 -23 ** 24
5		Com	[m2], m6 - alo = 3 A tento	÷.
1.12	· V	No.	1.1-	· · j.
G		9 . K.C.		, °G
	Dr.	Man 20		no.
dasm.	12020 ···	"asm	1202	alasm.
12/10		2 ² 1/1	, "Mar	
		S.Co.	Com 20	Co
7 .	× 1. r.		Y In.	
· Ko		s it	r. C	$, \mathcal{O}$
	9		6 0	· / · · · ·
2.	Man	Created by T. Mada	as land	12d2
·4282	43Sm	100.	- asp	

1. V.C.B. 111.

Question 83 (***+)

The figure above shows the graph of the curve with equation

 $y=(x-a)(x-b)^4,$

where a and b are positive constants.

The shaded region R is bounded by the curve and the x axis.

By using integration by parts, or otherwise, show that the area of the shaded region is

 $\frac{1}{30}(a-b)$

1+

6

proof

(2-b)⁴

Question 84 (***+)

I.C.B.

By using the substitution $u = \sqrt{x}$, or otherwise, show that

I.C.B.

$$\int_{0}^{50} \frac{1}{\sqrt{x} \left(\sqrt{x}+2\right)} \, dx = \ln 16 \, .$$

madasn

proof

1+

		and the second
	$\int_{0}^{3c} \frac{dz}{\sqrt{x'(x^2+2)}} = \int_{0}^{3c} \frac{dz}{\sqrt{x'}} \times \frac{1}{x^2+2} dz = 0$	
	$= \left[2 \ln \left x^{\frac{1}{2}} + 2 \right \right]_{0}^{36} = 2$	In8-In2]
	$= 2(m4) = \ln lb$	
	op	
	BY SUBSTITUTION	
	1361 22 161	24= V2 }
	$\int_{0}^{\infty} \frac{1}{\sqrt{\lambda} \sqrt{\lambda + 2}} d\lambda = \int_{0}^{\infty} \frac{1}{\lambda + 2} \frac{1}{\lambda + 2} 2x' du$	$\begin{cases} u^2 = \alpha_{-} \end{cases}$
	16 2 1 Call 176	$2u \frac{dy}{dy} = 1$
	$= \int_{0}^{6} \frac{2}{u+2} dy = \left[2\ln[u+2] \right]_{0}^{6}$	{ zu du = du {
()	$= 2 \ln 8 - 2 \ln 2 = 2 (\ln 8 - \ln 2)$	2=0 +> u= 0 2=36 += 4=6
sta -	$= 2\ln 4 = \ln 16$	Linned
1.	AS BRORT	
F. 8 -		
O. n)	110
-12	0.	
		- U.
	110	
-		
	V	
	- T	

Question 85 (***+)

F.G.B.

11.202SM

By using the substitution u = 3x - 1, or otherwise, find

 $\int \frac{9x^2}{3x-1} \, dx \, .$

 $\frac{1}{6}(3x-1)^2 + \frac{2}{3}(3x-1) + \frac{1}{3}\ln|3x-1| + C$

$\int \frac{dx^2}{3x-1} dx = \int \frac{dx^2}{u} \frac{du}{3}$	$\begin{cases} u = 3a - 1 \\ du = 3 \end{cases}$
$= \int \frac{(u+1)^2}{3u} du = \int \frac{u^2 + 2u + 1}{3u} du$	$\begin{cases} dx = \frac{du}{3} \\ 3a = u+1 \end{cases}$
$=\int \frac{1}{3}u + \frac{2}{3} + \frac{1}{3u} + C$	$39\chi^{2} = (u+1)^{2}$
= = == == == == ======================	0
$=\frac{1}{6}(3\alpha-1)^2+\frac{2}{3}(3\alpha-1)+\frac{1}{3}h_1 3\alpha-1 +C$	
- Warni + helendur	

É.G.P.

mana,

Question 86 (***+)

By using the substitution u = 2x + 3, or otherwise, show clearly that

 $\int_{-1} 6\ln(2x+3) \, dx = 9\ln 3 - 6.$

proof

Question 87 (***+)

F.G.B.

By using the substitution $u = \tan x$, or otherwise, find

 $\sec^4 x \, dx$.

 $\tan x + \frac{1}{3}\tan^3 x + C$

i C.B.

1.4

] state de =] secte du =] secte du	Su= taya
BUT $\left\{1 + \tan^2 x = \operatorname{sec}^2 x\right\}$	$\begin{cases} \frac{du}{dx} = st dx \\ dx = \frac{du}{st^2 x} \end{cases}$
$= \int 1 + \frac{1}{2u^2} du = \int 1 + u^2 du$	are set
= u + zu3 + C = tax + ztana+	C /

(***+) Question 88

$$f(t) \equiv \frac{2}{(t-1)(t+1)} \equiv \frac{A}{(t-1)} + \frac{B}{(t+1)}$$

- a) Find the value of each of the constants A and B in the above identity.
- **b**) Use the substitution $x = t^2 2$, t > 0 to show that

I.C.p.

I.V.C.P.

Y.C.B. Madası

CO17

I.C.p

 $\int_{4}^{9} \frac{1}{(x+1)\sqrt{x+2}} \, dx = \ln\frac{3}{2}$

2017

The Com

A=2, B=2

Naths.Com

I.V.C.B. Madası

4.6.0

1+

Question 89 (***+)

_							
	x	0	$\frac{2\pi}{5}$	$\frac{4\pi}{5}$	$\frac{6\pi}{5}$	$\frac{8\pi}{5}$	2π
ч	у	0	0.2031	0.8602	ć	1	0

The table above shows some tabulated values for the equation

 $y = \sin^3\left(\frac{1}{2}x\right), \ 0 \le x \le 2\pi.$

- a) Complete the missing values in the table.
- **b**) Use the trapezium rule with all the values from the table to find an approximate value for

 $\int_0^{2\pi} \sin^3\left(\frac{1}{2}x\right) \, dx.$

c) By using the substitution $u = \cos(\frac{1}{2}x)$, or otherwise, find the value of the integral of part (b).

0.8602, 0.2031,	2.672,	8
	0.8602, 0.2031,	0.8602, 0.2031, 2.672,

(a) $y = \left(Sh_{1} \left(\frac{ST_{1}}{2} \right)^{2} = 0.8602$ $y = \left(Sh_{1} \left(\frac{ST_{1}}{2} \right)^{2} = 0.203 \right)$ (b) $\int_{0}^{2\pi} Sh_{1}^{2} \left(\frac{S}{2} \right) dy = \frac{TWASE}{2} \left[FWT + 0.0T + 2.884T \right]$ $= \frac{WSE}{2} \left[c + 0 + 2 \left(c 203t + 0.8602 + + 0.2083 \right) \right]$ $c = 2 \cdot C(22x_{1},, 2)$ $c = 2 \cdot C(22x_{2},, 2)$	$\begin{cases} c) \int_{u}^{2\pi} \sin^{2}(\frac{1}{2}x) dx \\ = \int_{1}^{1} \sin^{2}(\frac{1}{2}x) dy \\ = \int_{1}^{1} -2\sin^{2}(\frac{1}{2}x) dy \\ = \int_{1}^{1} -2\sin^{2}(\frac{1}{2}x) dy \\ = \int_{1}^{1} -2\sin^{2}(\frac{1}{2}x) dy \\ = \int_{1}^{1} 2\sin^{2}(\frac{1}{2}x) dy \\ = \int_{1}^{1} 2\sin^{2}(\frac{1}{2}x) dy \\ = \int_{1}^{1} 2(1-\cos^{2}\frac{1}{2}x) dy \\ = \int_{1}^{1} 2(1-\cos^{2}\frac{1}{2}x) dy \\ = \int_{1}^{1} 2(1-\cos^{2}\frac{1}{2}x) dy \\ = \int_{1}^{1} 2(1-y^{2}) dy $
	$\left(= \frac{4}{3} - \left(-\frac{4}{3} \right) = \frac{9}{3} \right)$

.Y.G.A

I.C.B.

I.F.G.B.

Use trigonometric identities to integrate

I.C.B.

$$\int \frac{\cos 2x}{1 - \cos^2 2x} \, dx \, .$$

 $\frac{1}{2}$ cosec 2x + C

 $\int \frac{\partial \alpha_{22}}{(-\omega_{1}^{2})_{2}} dt = \int \frac{\partial \alpha_{12}}{(\omega_{1}^{2})_{2}} dt = \int \frac{\partial \alpha_{22}}{(\omega_{1}^{2})_{2}} dt$ $\int d^{2}z \cos(z)_{1} dz = -\frac{1}{2}\cos(z)_{2} + C$

Question 91 (****)

By using the substitution $u = 2x^{\frac{5}{2}} + 1$, or otherwise, find an exact simplified value for

112025

 $, 2 - \ln 3$

i G.B.

11+

Question 92 (****)

 $\frac{2u^2}{u-1} \equiv Au + B + \frac{C}{u-1}.$

- a) Find the value of each of the constants A, B and C in the above identity.
- **b**) Use the substitution $u = \sqrt{x}$ to show

I.G.B.

I.V.C.

I.G.B.

I.F.G.B.

COM

 $\int_{4}^{9} \frac{\sqrt{x}}{\sqrt{x}-1} \, dx = 7 + 2\ln 2 \, .$

.C.p

m

A=2, B=2, C=2

A.C.D.

14

2028m

aths com

I.V.C.B. Madasn

Question 93 (****)

E.

$$\int_{1}^{9} \frac{1}{2x(1+\sqrt{x})} dx$$

a) Show that the substitution $u = \sqrt{x}$ transforms the above integral to

$$\int_{x_1}^{x_2} \frac{1}{u(u+1)} \, du \, ,$$

where x_1 and x_2 are constants to be found.

b) Hence find an exact value for the original integral.

 $\frac{u}{x(1+u)} du = \int_{1}^{3} \frac{u}{u^{2}(1+u)}$ 142) = 143_144/42

 $\ln\left(\frac{3}{2}\right)$

6

Question 94 (****)

$$f(x) \equiv \frac{x^3}{x^2 - 4}, \ x \neq \pm 2.$$

a) Use a suitable substitution to show that

$$\int_{\sqrt{6}}^{\sqrt{8}} f(x) dx = 1 + \ln 4$$

b) Express f(x) in the form

$$Ax + B + \frac{C}{x-2} + \frac{D}{x+2}$$

where A, B, C and D are constants to be found.

c) Use the result part (b) to verify the result of part (a).

A=1, B=0, C=2, D=2

at da = ... substitution first $\frac{a^2}{u} \frac{du}{2a} =$ $\frac{\lambda^2}{2u} du = \int_{-\infty}^{\infty} \frac{u+4}{2u} du$ the du x=10, u=4 1/2 + 2 my 7 $= (2 + 2 \ln 4) - (1 + 2 \ln 2) = 1 + 2 \ln 4 - 2 \ln 2$ 1+2[m4-m2] = 1+2h12 = 1+h44 (6) $\frac{\underline{x}^3}{\underline{x}^2-\underline{\psi}} = \frac{\underline{x}^3}{(\underline{x}-\underline{x})(\underline{x}+\underline{z})} \equiv A\underline{x} + \underline{B} + \frac{\underline{C}}{\underline{x}-\underline{z}} + \frac{\underline{D}}{\underline{x}+\underline{z}}$ $\left[\mathfrak{A}^{3} \equiv (A_{x+B})(x_{-2})(x_{+2}) + C(x_{+2}) + D(x_{-2})\right]$ (c) $\int_{10}^{16} \frac{x^3}{x^2 + y} dx = \int_{10}^{16} \frac{x}{x + \frac{2}{2x^2}} + \frac{2}{x+2} dx = \int_{10}^{12} \frac{1}{x^2} + 2\ln|x-x| + 2\ln|$ $\left[\frac{1}{2}x^{2} + 2\ln|(x-2)(x+2)|\right]_{R}^{48} = \left[\frac{1}{2}x^{2} + 2\ln|x^{2} + 4|\right]_{R}^{48}$ = (4 + 2m4) - (3 + 2m2) = 1 + 2m4 - 2m2= 1 + 616-144 = 1+ 144 +8 BASSA

Question 95 (****)

By using the cosine double angle identities and the fact that $\frac{d}{dx}(\tan x) = \sec^2 x$, show clearly that

 $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1 - \cos 2x}{1 + \cos 2x} \, dx = \frac{1}{6} \left(4\sqrt{3} - \pi \right).$

Question 96 (****)

.K.C.

Use the substitution $x = \sin \theta$ to find the exact value of

 $\begin{cases} \frac{\partial u}{\partial x} = \sum_{i=1}^{N} \left\{ \frac{\partial u}{\partial x} = \int_{0}^{\frac{1}{2}} \left(\frac{1}{2} + \frac{1}{2} +$

proof

 $\frac{\sqrt{3}}{3}$

 $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \operatorname{Sec}_{2x}^{2x} - | \quad d_{2x} = \left(\operatorname{trup}_{2x} - \infty \right)_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ $\operatorname{sum}_{\frac{\pi}{2}} - \frac{\pi}{2} = \left(\sqrt{3} - \frac{\pi}{3} \right) - \left(\sqrt{3} - \frac{\pi}{3} \right)$

Created by T. Madas

 $\int_{0}^{\frac{1}{2}} \frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}}$

Question 97 (****)

Y.C.B.

$$f(x) \equiv \frac{1}{x(x^2+1)}, \ x \neq 0.$$

a) Use the substitution $x = \tan \theta$ to find

f(x) dx.

b) Find the value of each of the constants A, B and C, so that

$$f(x) \equiv \frac{A}{x} + \frac{Bx + C}{x^2 + 1}$$

c) Use the result of part (b) to independently verify the answer of part (a).

Question 98 (****)

$$\frac{4x^3 - x^2 + 20x - 4}{x^2 + 4} \equiv Ax + B + \frac{Cx + D}{x^2 + 4}$$

- a) Determine the value of each of the constants A, B, C and D.
- **b**) Hence show that

 $\int_{0}^{2} \frac{4x^{3} - x^{2} + 20x - 4}{x^{2} + 4} dx = 6 + 2\ln 2,$

A REPORT

Question 99 (****)

N.C.

Use a cosine double identity and integration by parts to find

 $x^2 + x\sin 2x + \frac{1}{2}\cos 2x + C$

$= \int 2x + 2 \ln x 2 dx$ $= \int 2x + 2 \ln x 2 dx$ $= \int 2x dx + \int 2 \ln x 2 dx$ $= \int 2x dx + \left[2 \ln x 2 dx - \int 8 \ln 2 dx \right]$ $= \int 2x dx + \left[2 \ln 2 dx - \int 8 \ln 2 dx \right]$ $= \chi^{2} + 2 \sin 2 dx + \int 8 \ln 2 dx$ $= \chi^{2} + 2 \sin 2 dx + \int 8 \ln 2 dx$	$\int 4\pi \cos^2 da =$	$\int 4a(\pm\pm\pm)as2a) da$	
= Jarder + [asma - [sma de] [22 1 2]			
			Ry Room
$= a^2 + 3SM2i + \frac{1}{2}cos2i + c (\frac{1}{2}SM2i + \frac{1}{2}cos2i + c)$			
	1	2^2 + $2SIN_2 + \frac{1}{2}COS_2 + C$	(ZSMR) (US22)

Question 100 (****)

KCA

Le:

By using the substitution $u = 2x^2 - 8x + 3$, or otherwise, find the exact value

Madası,

19. 1	$\frac{\frac{1}{2}\ln 3}{2}$
$\int_{4}^{6} \frac{2 - 2}{2\lambda^{2} - 82 + 3} d\lambda = \int_{3}^{27} \frac{2 - 2}{u} \frac{du}{du, \theta}$ $= \int_{3}^{27} \frac{2 - 2}{u} \frac{du}{du, \theta} \frac{du}{du, \theta} = \int_{3}^{27} \frac{1}{du} du$	$\left\{ \begin{array}{c} \frac{du}{dx} = \frac{du}{4x-8} \\ \frac{du}{dx} = \frac{du}{4x-8} \end{array} \right\}$
$= \frac{1}{4} \ln 2 - \frac{1}{4} \ln 3 = \frac{1}{2} \ln 3$	$\begin{array}{c} 2 * 4 \mapsto u = 3 \\ 2 = 6 \mapsto u = 27 \end{array}$

11+

Question 101 (****)

P.C.B.

$$\frac{6u}{(u-2)(u+1)} \equiv \frac{A}{u-2} + \frac{B}{u+1}$$

ing,

a) Find the value of each of the constants A and B in the above identity.

b) By using the substitution $u = \sqrt{x}$, or otherwise, show that

$$\int_{0}^{1} \frac{3}{(\sqrt{x}-2)(\sqrt{x}+1)} \, dx = -\ln 4 \, dx$$

, B = 2

= 4

(****) Question 102

naths,

Y.C.B. Madas

13/115.COM

I.F.G.B.

 $\frac{4t^2}{t-1} \equiv At + B + \frac{C}{t-1}.$

ths.com

, |C = 4

 $dx = 4t^3 dt$

dasmaths.com

I.F.G.B.

Madasn

A=4, B=4

1

6

- a) Determine the value of each of the constants A, B and C.
- **b**) Use the substitution $t = x^{\frac{1}{4}}$ to show

I.C.

 $\int_{16}^{81} \frac{1}{x^2 - x^{\frac{1}{4}}} dx = 14 + 4\ln 2.$

and the second sec	
(1) BY UNARVATION $\frac{dt^2}{t-i} = \frac{dt(t-i) + 4(t-i) + 4t}{t-i} = 4t + k + \frac{4}{t-i}$ $\therefore A = B = C = 4t$ $\frac{ALTINNATURE BY ALGEBARIC DISINGLE t_{-1} = \frac{4t + 4t}{t+i} \therefore \frac{4t}{t-i} = 4t + k + \frac{4}{t-i} \frac{-4t^2 + 4t}{t+i} \therefore \frac{4t}{t-i} = 4t + k + \frac{4}{t-i}$	b) <u>USING THE SUBSTITUTION GIVEN</u> $\int_{a}^{b} \frac{1}{a^{2}-a^{2}} dx = \cdots$ $= \int_{a}^{a} \frac{1}{t^{2}-t} (4t^{3} dt) = \int_{a}^{a} \frac{4t^{3}}{t(t-1)} dt$ $= \int_{a}^{a} \frac{4t^{2}}{t-1} dt$ $\underline{C_{a}}^{a} = \frac{1}{t^{2}-t^{2}} dt$
ACTIONATIVE BY COMPARING	$= \int_{2}^{a} 4t + 4 + \frac{4}{t-i} dt$
$\Rightarrow \frac{4t^{2}}{t-1} = At + B + \frac{C}{t-1}$ $\Rightarrow \frac{At^{2}}{t-1} = \frac{At(t-1) + b(t-1) + C}{t-1}$ $\Rightarrow \frac{At^{2}}{t-1} = \frac{At^{2}(t-1) + b(t-1) + C}{t-1}$ $\Rightarrow \frac{At^{2}}{t-1} = \frac{At^{2}(-At) + b(t-B) + C}{t-1}$ $\Rightarrow \frac{At^{2}}{t-1} = \frac{At^{2}(-At) + b(t-B) + C}{t-1}$ $\Rightarrow \frac{At^{2}}{t-1} = \frac{B-A=0}{A=B} = C-B=0$ $B = 4 = C-B=0$ $B = 4 = C-B=0$	$= \left[2t^{2} + 4t + 4t_{0} \left[t_{-1} \right]_{2}^{4} \right]$ = $\left(18 + 12 + 4t_{0} \right) - \left(8 + 8 + 4t_{0} \right)$ = $\frac{14 + 4t_{0} 2}{45}$ kieveio

maths.com

Question 103 (****)

It is given that

anasmaths.

I.C.B.

$$\int_{k}^{2k} \frac{3x-5}{x(x-1)} \, dx = \ln 72,$$

k < 1.

ths.com

 $k = \frac{1}{4}$

nadasmaths.com

I.F.C.B.

adasma,

madasn,

18.CO)

E.

determine the value of k, 0 < k < 1.

Madasn

00

I.C.p

We would be	and the same same same
STATE BY PARTIAL FRACTIONS	$\Rightarrow 2\ln \left \frac{k-1}{2k-1} \right = \ln 72 - \ln 32$
$\frac{32-5}{\alpha(\alpha-i)} = \frac{4}{\alpha} + \frac{8}{\alpha-i}$	$\implies 2\ln\left \frac{k-1}{2k-1}\right = \ln\frac{q}{4}$
$3x-S \equiv A(x-1) + B_X$	$\implies 2\ln \left \frac{k-1}{2k-1} \right = \ln \left(\frac{3}{2} \right)^2$
$\begin{array}{ccc} 4^{\mu} \lambda x^{\mu} & \Longrightarrow & -2 = B \\ & \implies & B = -2 \end{array}$	$\implies \mathbb{A}_{h} \Big _{\frac{k-1}{2k-1}} = \mathbb{A}_{h} \frac{3}{2}$
$i^{\mu} 2=0 \implies -S = -A$ $\implies A = S$	$\implies \frac{k-1}{2k-1} = \frac{3}{2}$
HWICE THE INTEGRAL BECOMES	$\Rightarrow 6k-3 = 2k-2$
$\implies \int_{k}^{2k} \frac{3k-5}{x(k-1)} dk = \ln 7k$	$\Rightarrow 4k = 1$ $\Rightarrow k = \frac{1}{4}$
$\implies \int_{k}^{2k} \frac{s}{2} - \frac{2}{2-1} d\lambda = \ln 2$	<u> </u>
$\implies \left[\sum u _{x-1} - 2 u _{x-1} \right]_{E}^{2k} = u _{Z}$	
$\implies \left[S \ln 2k - 2h 2k-1 \right] - \left[S \ln k - 2h k-1 \right] = \ln 2$	
\implies $Sln(2k) - 2ln(2k-1) - Sln(k) + 2ln(k-1) = ln 2$	
$\approx 5 \ln \left \frac{2k}{k} \right + 2\ln \left \frac{k-1}{2k-1} \right \approx \ln 72$	
\implies Sln2 + 2ln $\left \frac{k-1}{2k-1}\right = \ln 2$	
$= 2 h \frac{ k }{2k-1} = h ^2 - 5 h ^2$	

dasmaths.com

Created by T. Madas

COM

Question 104 (****)

By using the substitution $u = 2x^{\frac{3}{2}} - 1$, or otherwise, find an expression for the integral

(****) **Question 105**

asmaths.com $\int \sqrt{1-x^3} \text{ to show that}$ $\int x^5 \sqrt{1-x^3} \, dx = -\frac{2}{45} (3x^3 + 2) (1-x^3)^{\frac{3}{2}} + C.$

Question 105 (****) Use the substitution $t = \sqrt{1}$ -	$-x^3$ to show that	S CON	"S.CO
$\int x^5 \sqrt{1-x^5} \sqrt{1-x^5}$	$\sqrt{1-x^3} dx = -\frac{2}{45} (3x^3+2) (1-x^3)$	$\left(-\frac{1}{2}\right)^{\frac{3}{2}}+C$	1.
I.C. C.	Gp	, proof	°C,
	Madasmari	$\frac{d\Delta W_{C} \text{ THE Gains SUBBITIONS}}{\int a^{2} \sqrt{1-2b^{2}} da} \qquad \qquad$	asmarh
		$z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{1}^{2} \right) + C \right)$ $z - \frac{2}{45} \left((-3t)_{2}^{2} \left[2 - 5((-5t_{1})) \right] + C \right)$ $z - \frac{2}{45} \left((-3t)_{2}^{2} \left[2 - 5((-5t_{1})) \right] + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$ $z - \frac{2}{45} \left(\frac{1}{4} \left(2 - 3t_{2}^{2} \right) \right) + C \right)$	I.V.
		n_{ada}	dasm.
	Created by T. Madas	11302	adash

asiliatils.com

Question 106 (****)

I.G.B.

I.C.B.

Use an appropriate substitution, followed by partial fractions, to show that

$$\frac{5}{2x\left[\left(\ln x\right)^2 + \ln x - 6\right]} dx = \ln\left(\frac{3}{2}\right)$$

You may assume that the integral converges.

e³

proof - 40/005-5 -> u= med = 3 $\int_{3} \frac{2}{2\chi(u^2+u-\epsilon)} \left(\chi_{d_{1}} \right)$ 32 [Chiz]2+ Inx - 6] 5 (u+3)(u-2) du 2(4+4-6) 4 + B 4-2 1= 58 1= -54 (:. A=-1 4 B= 1) $\frac{5}{2} \int_{3}^{3} \frac{-\frac{1}{5}}{u+3} + \frac{\frac{1}{5}}{u-2} du = \frac{1}{2} \int_{3}^{1} \frac{-1}{u+3} + \frac{1}{u-2} du$ $= \frac{1}{2} \left[\ln |u-z| - \ln |u+z| \right]_{3}^{2} = \frac{1}{2} \left[\ln 3 - \ln 8 \right] - \left[\ln 4 - \ln 6 \right]_{3}^{2}$ $= \frac{1}{2} \left[\ln 3 - \ln 8 + \ln 6 \right] = \frac{1}{2} \ln \frac{18}{8} = \frac{1}{2} \ln \frac{4}{4} = \frac{1}{2} \ln \left(\frac{3}{2} \right)^2$

23

I.F.G.B.

111.20g

2

3

Question 107 (****)

I.G.B.

I.F.G.B

$$\frac{2u^3}{u+1} \equiv Au^2 + Bu + C + \frac{D}{u+1}$$

- a) Find the value of each of the constants A, B and C in the above identity.
- **b**) Use the substitution $u = \sqrt{x}$ to show

I.C.

 $\int_0^1 \frac{x}{1+\sqrt{x}} \, dx = \frac{5}{3} - 2\ln 2 \, .$

1.4

The.

madası

I.F.C.P.

200

Question 109 (****)

 $\int \frac{\cos x}{1 - \cos x} \, dx \, .$

a) Show by multiplying the numerator and denominator of the integrand by $(1 + \cos x)$, that the above integral can eventually be written as

 $\cot x \operatorname{cosec} x + \cot^2 x \, dx \, .$

b) Hence show further that

I.C.P.

I.C.B.

 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 - \cos x} \, dx = \frac{1}{4} \left(4\sqrt{2} - \pi \right).$

 $d_{2} = \frac{1}{1-(2\alpha)} d_{2} = \frac{1}{(2\alpha)+1(2\alpha)} d_{2} = \frac{1}{(2\alpha)+1(2\alpha)-1} d_{2} = \frac{1}{(2\alpha)+1(2\alpha)-1}$ $= \int \frac{\cos x + \cos^2 x}{\sin^2 x} \, dx = \int \frac{\cos x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} \, dx = \int \frac{\cos x}{\sin^2 x} + \cot^2 x \, dx$ $\begin{bmatrix} \mu \\ \mu \end{bmatrix} \begin{pmatrix} \psi \\ \frac{\pi}{2} & \frac{\omega_{22}}{\omega_{22}} \\ \frac{\pi}{2} & \frac{\omega_{22}}{\omega_{22}} \\ \frac{\pi}{2} & \frac{\pi}{2} & \frac{\pi}{2} & \frac{\omega_{22}}{\omega_{22}} \\ \frac{\pi}{2} & \frac{\omega_{22}}{\omega_{22}} \\ \frac{\pi}{2} & \frac{\omega_{22}}{\omega_{22}} \\ \frac{\pi}{2} & \frac{\omega_{22}}{\omega_{22}} \\ \frac{\pi}{2} & \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} \\ \frac{\pi}{2}$ $= \begin{bmatrix} -\cos(\alpha x - \alpha) \end{bmatrix}_{\frac{1}{2}}^{\frac{1}{2}} = \begin{bmatrix} \alpha + \cos(\alpha x + \cos \alpha) \end{bmatrix}_{\frac{1}{2}}^{\frac{1}{2}}$

G

dasn.

proof

 $= \left(\frac{\underline{\mathbf{T}}}{4} + 4\underline{\mathbf{2}}^{T} + 1\right) - \left(\frac{\underline{\mathbf{T}}}{2} + 1 + 6\right) = -\frac{\underline{\mathbf{T}}}{4} + 4\underline{\mathbf{2}}^{T} = \frac{1}{4} \left(4\sqrt{2} - \frac{1}{4}\right)$

.C.p

Created by T. Madas

I.P.C.

Question 109 (****)

By using the substitution $x = 9\sin^2 \theta$, or otherwise, find the exact value of

$ \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{2\chi(2-\lambda)}} d\lambda = \dots \text{ by substitution} $ $ = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{2\chi(2-\lambda)}} \exp(2\lambda M) \frac{1}{2\chi(2-\lambda)} d\lambda $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
$\frac{\partial b}{\partial z_{23}\partial re^{20}} \frac{\overline{\mathcal{F}}}{\sqrt{\epsilon}} = \frac{\partial b}{(\sqrt{\epsilon}z_{23})\overline{\mathcal{F}}_{re}} \frac{\overline{\mathcal{F}}_{23}}{\sqrt{\epsilon}} = \frac{\partial z_{23}}{\partial r^{2}} \frac{\partial z_{23}}{\partial r^{2}} = \frac$	$\left\{\begin{array}{c} x=0, \theta=0\\ x=q, q=qsw^2\theta\\ \theta=T\end{array}\right.$
$= \int_{0}^{\frac{\pi}{2}} 2 d\theta = \left[2\theta \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{3}$	Z

 $\frac{\pi}{3}$

1+

Question 110 (****)

It is given that

P.C.P.

$$\cos^4\theta \equiv \frac{3}{8} + \frac{1}{2}\cos 2\theta + \frac{1}{8}\cos 4\theta$$

a) Prove the validity of the above trigonometric identity.

b) Use the substitution $u = \sin \theta$ to show

$$\int_{0}^{1} \sqrt{\left(1-x^{2}\right)^{3}} dx = \frac{3\pi}{16}$$

α)	$\theta S^{2} \omega \pm + \theta S \omega \pm + \pm \theta S \omega \pm \pm \pm \theta S \omega \pm \pm \pm \theta S \omega = \theta S^{2} \omega S \omega $
	$= \frac{1}{4} + \frac{1}{2}\cos 2\theta + \frac{1}{4}\left(\frac{1}{2} + \frac{1}{2}\cos 4\theta\right) = \frac{3}{8} + \frac{1}{2}\cos 2\theta + \frac{1}{8}\cos 4\theta$
6)	$\int_{0}^{1} \frac{1}{(1-x^2)^2} dx = \dots \text{ by substitution} \dots$
	(1-32) da = by substitution

proof

146- 201.61	Ob 6200 6200 _ = (Ib 620)	E da = co
$\partial_b \theta_{a0} \stackrel{\mathcal{F}}{\rightarrow} l =$	$\simeq \int_{0}^{\frac{\pi}{2}} \frac{3}{6} + \frac{1}{2} \tan 2\theta + \frac{1}{6} \tan 4\theta d\theta$	200,200
50	7. 0 5	1 4.0 ,

 $= \left[\frac{3}{6}\theta + \frac{1}{4}\sin 2\theta + \frac{1}{26}\sin 4\theta\right]_{0}^{-\frac{17}{2}} = \frac{3\pi}{16} - 0 = \frac{3\pi}{16}$

Question 111 (****)

20

ŀG.B.

I.C.p

madası

2011

$$y = \frac{x^2 + 2x - 2}{x^2 - 2x + 2}.$$

a) Find the value of each of the constants A, B and C, so that

200

17.202

2

$$y \equiv A + \frac{Bx + C}{x^2 - 2x + 2}.$$

b) Hence, or otherwise, show that

$$\int_{\frac{1}{2}}^{\frac{3}{2}} y \, dx = 1.$$

27

Smaths.com

I.C.B.

Madasn,

The Com

Ch.

è

nadasm.

Question 112 (****)

Ĉ.B.

I.C.P.

 $f(x) \equiv \frac{2}{x + \sqrt{2x - 1}}, \ x \ge \frac{1}{2}.$

a) Use the substitution $u = \sqrt{2x-1}$ transforms to show

$$\int_{1}^{5} f(x) dx \equiv \int_{u_{1}}^{u_{2}} \frac{4u}{(u+1)^{2}} du,$$

where u_1 and u_2 are constants to be found.

b) By using another suitable substitution, or otherwise, show that

 $\int_{1}^{5} f(x) \, dx = -1 + \ln 16.$

 $\int_{1}^{2} -f(\alpha) d\alpha = \int_{1}^{3} \frac{2}{\alpha + \alpha} (\alpha d\alpha)$ $= \int_{-\infty}^{\infty} \frac{2u}{2t+u} du = \int_{-\infty}^{\infty} \frac{4u}{2x+2u} du$ $\int_{1}^{3} \frac{4u}{u^{3}+2u+1} du$ $\frac{4u}{v^2}$ dv = 4(v-1) du $u = 1 \quad \downarrow \longrightarrow \quad v = 2$ $u = 3 \quad \downarrow \longrightarrow \quad v = 4$ $\frac{v-1}{v^2} dv = 4 \int_{0}^{1} \frac{v}{v^2} - \frac{1}{v^2} dv$ $- V^{-2} dv = -4 \left[|h_1|_V + V^{-1} \right]_2^4$ $= 4 \left[\left(\left| l_{H} \frac{L}{4} + \frac{1}{4} \right| \right) - \left(\left| l_{H} 2 + \frac{1}{2} \right| \right) \right]$ $\frac{1}{2} = 4 \left[\frac{1}{2} - \frac{1}{4} \right]$ 02 -1 + h16

i G.B.

2

21/201

proof

Question 113 (****)

1.Y.C.H

I.C.B.

I.C.B.

Use integration by parts find an exact value in terms of e, for the integral

Madas.

e-2

6

Question 114 (****)

Use the fact that $\frac{d}{dx}(\sec x) = \sec x \tan x$, to find

I.C.

I.G.B.

 $\sin x \left(1 + \sec^2 x\right) dx \, .$

 $\sec x - \cos x + C$

ŀ.G.p.

Question 115 (****)

$$\frac{1}{u(u+1)} \equiv \frac{A}{u} + \frac{B}{u+1}.$$

- **a**) Find the value of A and B in the above identity.
- **b**) By using the substitution $u = e^x$, or otherwise, show that

 $\int_0^{\ln 2} \frac{1}{1 + e^x} \, dx = \ln\left(\frac{4}{3}\right).$

A = 1

B = -1

Question 116 (****)

By completing the square in the expression $4x^2 + 4x$, or otherwise, show that

 $\int \frac{4x^2 + 4x}{\sqrt{2x+1}} \, dx = A(2x+1)^{\frac{5}{2}} + B(2x+1)^{\frac{1}{2}} + C,$

where A and B are constants to be found and C is the arbitrary constant of the integration.

 $\boxed{A = \frac{1}{5}}, \ \boxed{B = -1}$

 $\frac{\frac{1}{2\lambda^2} \frac{1}{4\lambda_{2k+1}} dk}{\sqrt{2k+1}} dk = bq \text{ substituting } u=2k+1 \text{ or } u=k\frac{1}{2k+1} \text{ or } u = \frac{1}{k} \frac{(2k+1)^2-1}{\sqrt{2k+1}} dk = \int \frac{(2k+1)^2-1}{(2k+1)^2} dk = \int \frac{(2k+1)^2}{(2k+1)^2} dk = \int \frac{(2k+1)^2}{\sqrt{2k+1}} dk$

Question 117 (****)

$$u^{3}+1 \equiv (u+1)(u^{2}+Au+1).$$

a) Determine the value of A in the above identity.

b) Use the substitution $u = e^x$ to show

 $\int_0^{\ln 2} \frac{e^{3x} + 1}{e^x + 1} \, dx = \frac{1}{2} + \ln 2.$

(1) (1	= 2 (1+4+1)
	= (A+2) = -1
b) 1 biz 32	Else2
$\int_{0}^{2} e^{x} + 1 \qquad \text{for } q = \int_{1}^{2} \frac{du(x)}{(u^{2} + 1)} \frac{du}{du} = \int_{1}^{2} \frac{du(x)}{(u^{2} + 1)} \frac{du}{du}$ $= \int_{1}^{2} \frac{u^{2} + 1}{(u^{2} + 1)} \frac{du}{du} = \int_{1}^{2} \frac{du(x)}{(u^{2} + 1)} \frac{du}{du}$	du = e
$= \int_{1}^{2} \frac{u^{2} - u + 1}{u} du = \int_{1}^{2} u - 1 + \frac{1}{u} du$	$\begin{cases} \frac{du}{dt} = u \\ \frac{du}{dt} = \frac{du}{q} \end{cases}$
$= \left(\frac{1}{2}d^{2}-dt + \ln u \right)^{2} = (2-2 + \ln 2) - (\frac{1}{2}-1 + \ln 1)$	(a=0 , u=1
= + + 142	(x=bi2, 4=2

Question 118 (****)

I.C.B.

Use the substitution $u = x^{\frac{1}{4}}$ to find

giving the final answer as an exact simplified natural logarithm.

	$\int_{0}^{b} \frac{2a^{\frac{1}{2}}+1}{(2a^{\frac{1}{2}}+b)} d\alpha = \cdots B\gamma \text{ submotion} \cdots = \int_{0}^{a} \frac{2(u+1)}{(4u^{\frac{1}{2}}+4a)} (4u^{\frac{1}{2}}du)$	$\left\{ \begin{array}{c} u=2^{\frac{1}{4}}\\ u^{4}=2 \end{array} \right\}$
=	$\int_{1}^{2} \frac{2u+1}{Att^{2}+u} du = \int_{1}^{2} \frac{2u+1}{u^{2}+u} du \qquad (f_{2}) du$	Au ³ du = l Au ² du = da
7	$[ln(u^2+u)]_1^2 = ln6 - ln3 = ln3$	art uni

ln 3

Question 119 (****)

$$\frac{x^3}{x^2 + 1} \equiv Ax + B + \frac{Cx + D}{x^2 + 1}.$$

- a) Determine the value of each of the constants A, B, C and D.
- **b**) Use integration by parts to show that
 - $\int x \ln(x^2 + 1) dx = \frac{1}{2} (x^2 + 1) \ln(x^2 + 1) \frac{1}{2} x^2 + C.$

A=1, B=0, C=-1, D=0

Question 120 (****)

By writing $\sec x$ as the fraction $\frac{\sec x}{1}$ and multiplying the numerator and the denominator by $(\sec x + \tan x)$, find

 $\sec x \, dx$.

 $\ln |\sec x + \tan x| + C$

sea dr = $\int \frac{sea}{1} da = \int \frac{sea(sea + bua)}{sea + bua} da$ = $\int \frac{sea}{a} \frac{sea + sea bua}{sea + bua} da$ $\frac{da'}{da'} \frac{db}{baa} = sea}{da'} \int ie or the Fig. Fig. <math>\frac{fig}{fig}$ = $\int \frac{fig}{da'} = sea bua.$

Question 121 (****)

$$\frac{4}{(1-u)^2(1+u)} = \frac{A}{(1-u)^2} + \frac{B}{1-u} + \frac{C}{1+u}$$

a) Find the value of A, B and C in the above identity.

I.C.B.

I.C.

I.C.B. M.

I.F.G.B.

0

b) Hence by using a suitable substitution find the exact value of

 $\int_0^{\frac{\pi}{6}} \frac{4}{\cos x (1-\sin x)} \, dx \, .$

 $\frac{2}{1-u} = \lfloor n \rfloor_{1-u} + \lfloor n \rfloor_{1+u} \lfloor n \rfloor_{1+u} \rfloor$

 $\overline{A=2}$, $\overline{B=1}$, $\overline{C=1}$

200

2017

 $, \, 2 + \ln 3$

20

I.V.C.B. Madash

4.6.0

6

Question 122 (****)

Ka,

Use the substitution $u = \ln x$, followed by integration by parts to find

11+

$\int \frac{1 - \ln \alpha}{x^2} d\alpha = \cosh x \text{ TH Substitution GAVA}$	$\begin{cases} u = h_{10x} \\ du = 1 \end{cases}$
$\int \frac{1-\alpha}{\alpha^{2}} - \infty d\alpha = \int \frac{1-\alpha}{2c} d\alpha = \int \frac{1-\alpha}{e^{\alpha}} d\alpha$	Edx=adu }
$\int (-u) e^{-u} du$	Ee"=2
BY PARTS	51-4 5-15
-(1-4) e" - J e" du	
$(u-i)e^{-u} + e^{-u} + C$	
ue - e + e + C	
$\frac{u}{e^{u}} + C = \frac{\ln x}{x} + C$	

Question 123 (****)

 $y = \arctan x, x \in \mathbb{R}$.

a) By writing the above equation as $x = \tan y$, show clearly that

 $\frac{dy}{dx} = \frac{1}{1+x^2}.$

b) Use integration by parts and the result of part (a) to find

 $2 \arctan x \, dx$.

2

I.C.B.

I.C.p

$$f(x) \equiv \frac{4x^2 - 23x + 21}{x^2 - 4x + 3}, \ x \neq 1, \ x \neq 3.$$

 $\int_{0}^{2.5} f(x) dx.$

 $f(x) \equiv 4$

х

200

a) Express f(x) in partial fractions.

Y.G.B.

I.C.

b) Hence find an exact value for

6

I.C.P.

m

 $2 - \ln\left(\frac{3}{128}\right)$

ne,

I.F.C.B. Madasa

100

6

Question 125 (****)

. K.G.

KR,

Y.C.P.

By using the substitution $u = (2x+1)^{\frac{1}{2}}$, or otherwise, show that

21

ĺ	proof
	proor

proof

1+

 $\begin{array}{l} \int_{0}^{1} e^{\left(2ur\right)} dx_{*} = \int_{1}^{1} e^{u}\left(u \, du\right) = \int_{1}^{1} u e^{u} \, du \dots, \quad \left\{ \begin{array}{c} u_{*}(u, u) \\ u_{*}(u, u)$

Question 126 (****)

Use the substitution $u = x^2 + 2$, followed by integration by parts to show that

 $\int 2x^3 \ln(x^2 + 2) \, dx = 1 + 2 \ln 2 \, .$

 $\begin{cases} \int_{0}^{2} 2\chi^{3} \left|h\right|(\chi^{2}t_{2}t_{2}) dx = \int_{2}^{4} 2\chi^{3} b_{10} \frac{du}{2\lambda} \\ \int_{2}^{4} a^{2} b_{10} du = \int_{2}^{4} (u-2)b_{10} \frac{du}{d\lambda} \\ \int_{2}^{4} a^{2} b_{10} du = \int_{2}^{4} (u-2)b_{10} \frac{du}{d\lambda} \\ \frac{du}{dx} = 2\lambda \\$

 $= \left[\left(\frac{1}{2} \cdot 4^{2} - 24_{4} \right) \ln |u| - \frac{1}{2} \cdot 4^{2} + 24_{4} \right]_{2}^{4}$ = $\left(\circ - 4 + \Theta \right) - \left(-2 \ln 2 - 1 + 4 \right) = 4 - \left(3 - 2 \ln 2 \right) = 1 + 2 \ln 2$

Question 127 (****)

By considering the trigonometric expansions of sin(5x+3x) and sin(5x-3x), show clearly that

 $\int_0^4 \cos 3x \sin 5x \, dx = \frac{1}{4}$

	1
$\int dt = \int dt = $	
SMB2+SM22 = 2SM/20052x	
$\left\{ SMSECOS3a = \frac{1}{2}SMBx + \frac{1}{2}SDP2a \right\}$	
$\int_{0}^{\frac{\pi}{4}} \cos 2\alpha \sin 5x dx = \int_{0}^{\frac{\pi}{4}} \pm \sin 8x + \pm \sin 2x dx$	
$\frac{1}{2} + \kappa \partial_{2} \partial_{3} \frac{1}{\delta_{1}} = \frac{1}{\delta_{1}} \sum_{\alpha} \partial_{\alpha} \frac{1}{\delta_{1}} - \kappa \partial_{\alpha} \partial_{\alpha} \frac{1}{\delta_{1}} - \frac{1}{\delta_{1}} = 0$	see a
$= \left[\frac{1}{16}\cos 0 + \frac{1}{4}\cos 0\right] - \left[\frac{1}{16}\cos 37 + \frac{1}{4}\cos 27\right]$.4
$=\left(\frac{1}{16}+\frac{1}{4}\right)-\left(\frac{1}{16}+6\right)=\frac{1}{4}$	

proof

Question 128 (****)

By using the substitution $x = 2 + (u - 1)^2$, or otherwise, find

 $\int \frac{1}{1+\sqrt{x-2}} \, dx \, .$

$2\sqrt{x-2} + 2\ln\left(1+\sqrt{x-2}\right) + C$

$\int \frac{1}{1+\sqrt{2-2^2}} d\lambda$	$\begin{cases} \overline{Q} = 2 + (u-1)^2 \\ \frac{du}{du} = 2(u-1) \end{cases}$
$= \int \frac{1}{1 + \sqrt{2 + (\mu_{-1})^2 - 2^{-1}}} 2(\mu_{-1}) d\mu_{-1}$	du = 2(u-1) du
$= \int \frac{2(u-1)}{1+\sqrt{(u-1)^{2^{1}}}} du$	$\begin{cases} \alpha_{-2} = (\underline{u}_{-1})^2 \\ \alpha_{-1} = \sqrt{\alpha_{-2}} \\ \alpha_{-1} = \sqrt{\alpha_{-2}} \end{cases}$
$= \int \frac{2(u-i)}{1+(u-i)} du = \int \frac{2(u-i)}{u} du$	(= 1 + J2-2)
$= \int \frac{2u-2}{4} dy = \int 2 - \frac{2}{4} dy =$	2u-2lu/u +C
$= 2(1+\sqrt{2-2^{1}}) - 2\ln(1+\sqrt{2-2^{1}}) + C$	
$= (2) + 2\sqrt{3-2} - 2h(1+\sqrt{3-2}) + C$	
= 2/2-2' - 2/m(1+/2-2') + C	

I.C.P.

I.C.B.

$$\frac{6t^3}{t+1} \equiv At^2 + Bt + C + \frac{D}{t+1}.$$

- a) Determine the value of each of the constants A, B, C and D.
- **b**) Use the substitution $t = x^{\frac{1}{6}}$ to show

 $\int_{1}^{64} \frac{1}{\sqrt{x} + \sqrt[3]{x}} dx = 11 + 6\ln\left(\frac{2}{3}\right).$

F.C.B.

12

Created by T. Madas

5

(****) Question 130

$$f(x) = 8x \ln(2x+1), \ x > -\frac{1}{2}.$$

a) Use the substitution u = 2x + 1 to show that

$$\int f(x) \, dx = \int (2u-2) \ln u \, du$$

alasmans.com **b**) Use integration by parts to show that

I.Y.C.B. Madasmaths.Com

11₂₀₂₈₁

I.F.G.B.

$$\int f(x) dx = \int (2u-2) \ln u \, du$$

integration by parts to show that

$$\int f(x) dx = (4x^2 - 1) \ln (2x+1) - 2x^2 + 2x + C.$$

$$\begin{cases}
4 \int 8zh(8xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 4zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = \int 8zh(9xu)dx = \dots by substationed a = 0 \\
-\int 8zh(9xu)dx = (x - 1)h(y - 1)h(y$$

adasmaths.com

naths.com

Smains.co

1.G.D.

6

7303SM31

$ \begin{array}{l} \text{(a)} & \int \left\{ b(x_{1}) \left(b(x_{2}) \right) \right\} = \sum_{k=1}^{n} b(x_{1}) \left(b(x_{2}) \right) \\ & = \int \left\{ b(x_{1}) \left(b(x_{2}) \right) \right\} = \sum_{k=1}^{n} b(x_{1}) \left(b(x_{2}) \right) \\ & = \int \left\{ b(x_{2}) \right\} \\ & = \int \left\{ b(x_{2}) $	$\begin{cases} 2\\ 2u = u - 1\\ u^2 - 2u \\ u^2$
Inadasm.	
	lis (

Created by T. Madas

F.C.P.

Question 131 (****)

 $y = \frac{\left(1 + \sin x\right)^2}{\cos^2 x}.$

a) Calculate the two missing values of the following table.

	$\frac{\pi}{6}$	9	$\frac{\pi}{\Lambda}$	$\frac{7\pi}{24}$	$\frac{\pi}{2}$
у	3		5.8284	8.6784	3 13.9282

b) Use the trapezium rule with all the values from the completed table of part (**a**) to find an estimate for

c) Use trigonometric identities to find the exact value of

	FIL IN					
	a	9	(1)20	Щ. 4	24	H
	3	3	4-1120	5-8264	8 6784	13:9282
	BY THE	TRAFE	IUM RULE			
	J [#] (icerazi	da ~ "T	KOKAQK <u>S</u>	[#1657 +	(NST + 2~ (64M OF 266T)
			~ -	24 31	13.4282.4	2 (4-1120 + 5-8284 + 8-6784)
			≈ 3	sils	/	
6)	PROCEED			HODATIC	2N)	
		1 + 51100 2020)	1² dz =	J. He	(10) (1)	tsur ² x 5. de
	$= \int_{T}^{\frac{1}{5}} \frac{1}{\omega^2}$	+ 24	<u>IIIX + AN</u>	à da	= J.	at and to the pulse of
		+ 24	<u>IIIX + AN</u>	à da	= J.	at and to the pulse of

4.112

 5π

 $x = \frac{3\pi}{24}$

1.

Question 132 (****)

 $y = \ln\left(\sec x + \tan x\right).$

- **a)** Express $\frac{dy}{dx}$ as a single trigonometric function.
- **b**) Hence find

 $x \sec x \tan x \, dx$.

11 h

.C.

2

(a)	y = In (sea + tona)
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{\mathrm{sec}x + \mathrm{tan}x} \times (\mathrm{sec}x \mathrm{tan}x + \mathrm{sec}x)$
	= Secaburx + seca = Seca(burgetsta) = sea
-)	Jasicatara = by part Exa 1
	= asea - fea da
	= aska - In/seartana/+C

Question 133 (****)

I.C.B.

Use the substitution $x = 2\sin\theta$ to find the exact value of

$\int_{0}^{1} \frac{12}{(4-2^2)^{\frac{3}{2}}} d\alpha = \dots \text{ USING THE SUBSTITUTION GIVEN}$	
$\int_{0}^{\infty} \frac{ t-x^{2} ^{\frac{1}{2}}}{(4-4s_{0}t_{0})^{\frac{1}{2}}} \left(2\cos\theta d\theta\right) = \int_{0}^{\frac{1}{2}} \frac{24\cos\theta}{(4(1-s_{0}t_{0})^{\frac{1}{2}})^{\frac{1}{2}}} d\theta$	$\frac{de}{d\theta} = 2\cos\theta$
$\int_{0}^{\infty} \frac{(1-1)^{2}}{(4\cos^{2}\theta)^{2}} = \frac{1}{2\theta} = \int_{0}^{\infty} \frac{3}{3(\cos^{2}\theta)} \frac{1}{2\theta} = \int_{0}^{\infty} \frac{3}{\cos^{2}\theta} \frac{1}{2\theta}$	$\left\{ \frac{d\alpha = 2\cos\theta d\theta}{\alpha = 0} \right\}$
$\int_{0}^{\pi} 3\sec^{2}\theta d\theta = \left[3\tan^{2}\theta\right]_{\pi}^{\pi} = 3\tan^{2}\pi - 3\tan^{2}\theta$	Sm0=0 0=0 0=1 0=1 0=0
$3 \times \frac{13}{3} = \sqrt{3}$	(. sm0=1 0-T
3	hin

 $\sqrt{3}$

(****) Question 134

I.C.B. Ma

I.C.B.

00

$$\frac{u^2}{u^2 - 9} \equiv A + \frac{B}{u - 3} + \frac{C}{u + 3}.$$

 $\frac{\sqrt{x^2+9}}{4x} dx.$

a) Find the value of A, B and C in the above identity.

b) By using the substitution $u = \sqrt{x^2 + 9}$, or otherwise, find

.com

Ŋ

fitution
$$u = \sqrt{x^2 + 9}$$
, or otherwise, find

$$\int \frac{\sqrt{x^2 + 9}}{x} dx.$$

$$[A=1], \ B = \frac{3}{2}, \ C = -\frac{3}{2}, \ \sqrt{x^2 + 9} + \frac{3}{2} \ln \left| \frac{\sqrt{x^2 + 9} - 3}{\sqrt{x^2 + 9} + 3} \right| + C$$

200

COM

+C

hs.com

KGB Madası

11.5.

Created by T. Madas

0

2

Question 135 (****)

I.C.B.

By using the substitution $u = 2^x$, or otherwise, find an exact value for

112dası

$ \int_{0}^{3} \frac{\underline{\alpha}^{2}}{\sqrt{2^{2}+1}} d\boldsymbol{u} = \dots = \int_{1}^{9} \frac{\underline{\alpha}}{(\underline{u}+1)^{\frac{1}{2}}} \frac{d\boldsymbol{u}}{d\boldsymbol{u} _{2}} $ $ = \int_{1}^{9} \frac{1}{ \boldsymbol{h} _{2}} \frac{(\boldsymbol{u}+1)^{\frac{1}{2}}}{ \boldsymbol{u} _{1} _{2}} \frac{d\boldsymbol{u}}{d\boldsymbol{u}} = \frac{1}{ \boldsymbol{u} _{2}} \frac{ \underline{k}}{ \underline{k}}(\underline{u}+1)^{\frac{1}{2}} _{1}^{\frac{1}{2}} $	$\begin{array}{c} u = 2^{2} \\ \frac{da}{c2} = 2^{2} _{n2} \end{array}$
$= \int_{1}^{1} \frac{1}{ h ^{2}} \left[\sqrt{u+1} \right]_{1}^{e} = \frac{2}{ h ^{2}} \left[\frac{1}{b} \sqrt{u+1} \right]_{1}^{e} = \frac{2}{ h ^{2}} \left[3 - \sqrt{2} \right]$	$dx = \frac{du}{3^{n} \ln 2}$ $dx = \frac{du}{u \ln 2}$
	2=0 1 4=1 2=3 1 4= 8

Question 136 (****)

Use the substitution $x = \tan \theta$ to show that

F.C.P.

 $\int_{1}^{\sqrt{3}} \frac{2}{x(x^2+1)} dx = \ln\left(\frac{m}{n}\right)$

where m and n are integers.

I.C.p

1.4

$\int_{-\frac{1}{2}}^{1} \frac{\mathcal{I}(\mathcal{I}_{r}+I)}{r} dr = \cdots \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{\mathcal{I}(\mathcal{I}_{r}+I)}{r} \partial(\mathcal{I}(\mathcal{I}_{r}^{\mathcal{I}}(I+I))) dr_{r}^{\mathcal{I}}(I) dr_{r}^{\mathcal{I}}(I)$	$\alpha = t_{000}$ $\frac{d\alpha}{d\theta} = s_{0}2_{0}$
$=\int_{\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{2\pi^{2}\theta}{4\pi^{2}\theta}d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}}2\pi^{2}\theta d\theta$	$\begin{cases} \frac{da}{a=1} & \text{sell} & \frac{d\theta}{a=1} \\ \frac{da}{a=1} & \frac{b}{b=0} \\ \theta = \frac{a}{b} \end{cases}$
$\begin{split} &= \left[2\ln\left \sin\theta\right \right]_{\overline{\Psi}}^{\overline{\Psi}} = 2\left(\ln\left \sin\Psi\right - \ln\left(\cos\Psi\right)\right) \\ &= 2\left(\ln\frac{\Omega}{2} - \ln\frac{\Omega}{2}\right) \\ &= 2\ln\left(\frac{\log^2}{2}\right) \\ \end{split}$	a=v3, tanto vi

 $= \mathcal{X} \ln \left(\frac{\sqrt{2}}{\sqrt{2}} \right) = \mathcal{X} \ln \left(\sqrt{\frac{2}{2}} \right) = \mathcal{X} \ln \left(\frac{\mathcal{E}}{2} \right)^{\frac{1}{2}} = \ln \frac{\mathcal{E}}{2}$

Question 137 (****)

Use trigonometric identities to find

 $32\sin^2 x \cos^2 x \, dx \, .$

 $4x - \sin 4x + C$

Question 138 (****)

By using the substitution $u^2 = 1 + \tan x$, or otherwise, find

 $\sec^2 x \tan x \sqrt{1 + \tan x} \, dx \, .$

 $\frac{2}{15}(3\tan x - 2)(1 + \tan x)^{\frac{3}{2}}$

$\int stature \sqrt{1+twr} dx = -statitation \left\{ \left(u = \sqrt{1+twr} \right) \right\}$	
$\int st dx law dx + law dx = -s s ds th s t_{tot}, \qquad \begin{cases} (u = \sqrt{1 + b \omega_0}) \\ s dx law dx + law dx \\ s dx law dx \\ s $	
$= \int 2u^{2}(u^{2}-1)du = \int 2u^{4}-2u^{2}du \qquad \left\{ \frac{2udu}{8u^{2}} = dx \right\}$	
$\frac{2}{5}u^{5} - \frac{2}{5}u^{3} = \frac{2}{5}(1+\tan^{2}_{1}+\tan^{2}_{1}+\frac{2}{5}(1+\tan^{2}_{1})+\cos^{2}_{1}+\cos^{2}_{1}+\cos^{2}_{1}+\cos^{2}_{1})$	
= which could be simplified to	
$= \frac{c}{15}(1+\tan^{2})^{\frac{1}{2}} - \frac{10}{15}(1+\tan^{2})^{\frac{1}{2}} + C = \frac{2}{15}(1+\tan^{2})^{\frac{1}{2}} [3(1+\tan^{2})-5] + C$	
= 25(1+tanz) ² (3tanz-2)+C	

Question 139 (****)

$$\frac{2u^2}{(u-1)(u+1)} \equiv A + \frac{B}{u+1} + \frac{C}{u-1}$$

- a) Find the value of A, B and C in the above identity.
- **b**) By using the substitution $u^2 = x+1$, or otherwise, find an exact value for

$$\int_{3}^{8} \frac{\sqrt{x+1}}{x} \, dx \, .$$

The table below shows some tabulated values for the equation $y = \frac{\sqrt{x+1}}{3}$, $3 \le x \le 8$.

ĺ	x	-3	4	5	6	7	8
5	у	0.6667	0.5590	0.4899	-01	0.4041	0.3750

c) Complete the missing value in the table.

[continues overleaf]

1+

19

[continued from overleaf]

d) Use the trapezium rule with all the values from the table to find an approximate value for

 $\sqrt{x+1}$

x

e) Calculate the difference between the exact value, found in part (b), and the trapezium rule estimate, found in part (d), and hence state whether the trapezium rule produces an overestimate or an underestimate.

A=2, B=-1, C=-1, $2+\ln(\frac{3}{2})$, 0.4410, 2.4148, 0.0093

dx

6) June de = ... log substitution $\equiv A + \frac{B}{\alpha + 1} + \frac{C}{\alpha - 1}$ $\frac{u}{2} 2u du = \int_{-\infty}^{\infty} \frac{2u^2}{2} du$ A(u+1)(u-1) + B(u-1) + C(u-1) + C(u-1 $\frac{2u^2}{u^2-1} du = \int_2^3 \frac{2u^2}{(u+1)(u-1)} du$ $= \begin{bmatrix} 3 & 2 & -\frac{1}{u+1} & +\frac{1}{u-1} & du & \frac{\text{REAN}}{\text{PART}} \end{bmatrix}$ $= \left[2u - b_1 | u_{+1} \rangle + b_1 | u_{-1} \right]_2^3 = \left(6 - b_1 4 + b_1 2 \right) - \left(4 - b_1 3 + b_1 7 \right)$ A=2, B=-1, C=1 = 2 + $\ln 2 - \ln 4 + \ln 3 = 2 + \ln \left(\frac{3 \times 2}{4}\right) = 2 + \ln \frac{3}{2}$ 4 7 2=6 1 +1 = = +17 = 0.4410 d) BY TRAPPERIUM PIXE $\int_{1}^{8} \frac{\sqrt{2\pi r}}{x} dx \simeq \frac{THRONGS}{2} \left[\frac{1}{2} B^{T} + AST + 2(BST) \right]$ = 2 0.46(+0.5%+2(0.55m) ~ 2.440 e) : Difference = $(2 + l_{M} \frac{3}{2}) - 2.4148 \approx -0.009$.

Question 142 (****)

 $y = \frac{e^{2x}}{e^x + 1}, \ x \in \mathbb{R}$

a) Calculate the missing values of x and y in the following table.

x	ln 2	<i>x</i> ₂	<i>x</i> ₃ <i>x</i> ₄	ln 8
у	1.333	<i>y</i> ₂	<i>y</i> ₃ <i>y</i> ₄	7.111

b) Use the trapezium rule with all the values from the completed table of part (**a**) to find an estimate for

c) Use the substitution $u = e^{x} + 1$ to find an exact simplified value for

• ln 8 dx. $J_{\ln 2}$

], $\frac{3}{2}\ln 2$, $2\ln 2$, $\frac{5}{2}\ln 2$, 2.090, 3.2, 4.807

 $\approx 4.96 \quad 6 - \ln 3$

Question 143 (****) It is given that the value of

 $\left(k\cos^2 x - \sec^2 x\right)\sin x \, dx$,

2113.SM

is 2, where k is a non zero constant.

Determine the value of k.

N.C.B. Madasm

COM

I.F.G.B.

2

1	do.
\$€	TREMINE IN EXPRESSION BY THE INHERAL IN TREAS OF K
	$\int_{0}^{\frac{\pi}{2}} (k \cos^{2} a - \sin^{2} a) \sin a \ da - \int_{0}^{\frac{\pi}{2}} k \sin^{2} a \sin^{2} a \ da \$
	∫ [™] kustusunz - secx× <u>l</u> axsmi da
n	J ¹¹ Kadranz - seccharz dz
BV	RECOGNITION WE DEPEN
=	$\left[-\frac{1}{3}\cos^2 - \sec x\right]_{\circ}^{\frac{\pi}{3}} = \left[\frac{1}{3}\cos^2 + \sec x\right]_{\frac{\pi}{3}}^{\circ}$
-	$\left(\frac{k}{3}+1\right)-\left(\frac{k}{24}+2\right)=\frac{k}{3}-\frac{k}{24}-1$
2	$\frac{1}{2t}\left(\frac{2k}{k}-\frac{k}{2}-2t\right) = \frac{1}{2t}\left(\frac{1}{k}-\frac{2t}{2t}\right)$
Finit	we the

lasmaths,

I.F.C.P.

Com

Inadasn.

2017

ths.com

k = 6

1+

Created by T. Madas

madasmaths,

Question 144 (****)

Created by T. Madas

$$f(x) = \frac{e^{\sqrt[4]{x}}}{\sqrt{x}}, \quad x \in \mathbb{R}, \quad x > 0.$$

$$\int_{0}^{1} f(x) \, dx,$$
exists.
$$\boxed{\qquad}, \boxed{4}$$

Find the value of

·	P CP	$\int_0^1 f(x) dx ,$	S. In.	Č,
202	given further that the integral exists.	1	20. 22	200
"Snar	, "Asp	aspan.	S1 , 4	Nath.
	S.C. Alls	Sells . C.	$\begin{array}{c} \overbrace{\left\{\left(a\right)=\begin{array}{c} \left(\sqrt{3a}\right) \\ \sqrt{3a} \\ 3a$	
7		7	$\begin{aligned} u^{\mu} &= \alpha \\ \frac{dt}{du} &= du^{3} \\ \frac{dt}{du} &= du^{3} \\ \frac{10 h_{2} x^{2} \sigma \mu_{1} h_{2}}{\sqrt{du}} &= \int_{0}^{1} \frac{e^{4}}{u^{4}} \left(4u^{3} \right) \\ &= \int_{0}^{1} 4ue^{4} du \end{aligned}$	7
1.1		1.1	$\int_{e^{-1}}^{e^{-1}} \frac{du}{dx} = \int_{e^{-1}}^{e^{-1}} \frac{u^{u}}{u^{u}} \left(\frac{u^{u}}{u^{u}}\right) = \int_{e^{-1}}^{e^{-1}} \frac{due}{du}$ $\frac{WHERETERE BY ADDE EDURUS (HANDED)E UNITE)}{\frac{du}{e^{u}}}$ $\frac{du}{e^{u}} = \int_{e^{-1}}^{e^{-1}} \frac{due}{du} = \frac{due^{u}}{u^{u}} - \frac{due}{du} + C$ $= \frac{due^{u}}{e^{u}} - \frac{due}{u} + C$	· Kr
2	B S	*Gp	$= 4e^{u}(u-1) + C$ $\frac{1}{\sqrt{e}} \frac{1}{4u^{u}} \frac{1}{2} \frac{1}{4u} \frac{1}{2} \frac{1}{2}$	
3020	nan "a	902.	nan ^{vi}	20/2
	the aspense	Mark	asm.	×\$1727
2	S. Con "Is. o.		on alls	
<i>\\\</i>		7		10
	O. Co	1.Ko	· · C ·	1.1
	S. S.	3		3
nad.	Crea	ated by T. Madas	Mada.	90282
-98x		1200	Sh.	~0,

Smains.co

F.G.D.

naths.com

(****) Question 145

Smaths.com

N.C.B. Madasn

COM

I.C.p

$$\frac{u^2}{u^2 - 1} \equiv A + \frac{B}{u - 1} + \frac{C}{u + 1}.$$

- a) Find the value of A, B and C in the above identity.
- **b**) Use the substitution $u = \sqrt{1 e^{2x}}$ to show

$$\int_{0}^{\ln\frac{1}{2}} \sqrt{1 - e^{2x}} \, dx = \frac{\sqrt{3}}{2} + \ln\left(2 - \sqrt{3}\right).$$

i G.B.

The Com

18.CU

140

1.4

	$ \begin{array}{c} (\textbf{g}) & \frac{u^{2}}{u^{2}_{1}} = -\frac{1}{4} + \frac{1}{8} + \frac{1}{4} + \frac{1}{4} \\ & (u^{2}_{1}) = -\frac{1}{4} + \frac{1}{4} +$
Con "	(b) $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1 - e^{2x}} dx = \dots + \frac{1}{2} + \frac$
	$ \begin{aligned} & \int_{0}^{\infty} v \left(-\frac{e}{4v} - \frac{1}{2v} \right) & = \int_{0}^{\infty} u \left(\frac{1}{4v} - \frac{1}{4u} \right) & = \int_{0}^{\infty} \frac{1}{v^{2} - 1} \frac{du}{v^{2} - 1} du & \begin{cases} u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \end{cases} \\ & \begin{cases} u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \end{cases} \\ & \begin{cases} u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \end{cases} \\ & \end{cases} \\ & \begin{cases} u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \end{cases} \\ & \end{cases} \\ & \begin{cases} u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \\ u \equiv \sqrt{1 - e^{2u}} \end{cases} \\ & \end{cases} \\ & \end{cases} \\ & \qquad \qquad$
· · ·	$= \underbrace{\begin{bmatrix} u_1 + \frac{1}{2}b_1 v_{-1} \end{bmatrix}_{-\frac{1}{2}b_1}^{\frac{D}{2}}}_{= \frac{1}{2}b_1 \frac{1}{2}b_1 \frac{1}{2}} \begin{bmatrix} \frac{1}{2}b_1 \\ -\frac{1}{2}b_1 \frac{D}{2}b_1 \end{bmatrix}_{-\frac{1}{2}b_1 \frac{D}{2}b_1 \frac{1}{2}} \begin{bmatrix} \frac{1}{2}b_1 \\ -\frac{1}{2}b_1 \frac{D}{2}b_1 \end{bmatrix}_{-\frac{D}{2}b_1 \frac{D}{2}}} \begin{bmatrix} \frac{1}{2}b_1 \\ -\frac{1}{2}b_1 \frac{D}{2}b_1 \end{bmatrix}_{-\frac{D}{2}b_1 \frac{D}{2}}}$
	$= \frac{1}{2} + \frac{1}{2} \ln \left(\frac{2-G}{2+G} \right) = \frac{1}{2} + \frac{1}{2} \ln \left(\frac{2-G}{2+G} \right) = \frac{1}{2} + \frac{1}{2} \ln \left(\frac{2-G}{2+G} \right)^{2} = \frac{1}{2} + \frac{1}{2} \ln \left(2-G \right)^{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \ln \left(2-G \right)^{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \ln \left(2-G \right)^{2} = \frac{1}{2} + \frac{1}{2$
12 0	b ()
40a.	Man V
no.	-4282
2 ^{° U} lo	1217
S.n. V.	Con Case

2011

Smaths.com

1. C.B. 1112/281

Created by T. Madas

COM

.C.A

(****) Question 146

By using the substitution $u = \sqrt{x^3 + 1}$, or otherwise, find an expression for

(****) Question 147

It is given that

- $\sin(A+B) \equiv \sin A \cos B + \cos A \sin B.$
- a) Use the above trigonometric identity to show that

 $\sin 3x \equiv 3\sin x - 4\sin^3 x.$

b) Hence find

ĈŖ.

F.C.B.

 $\cos x (6\sin x - 2\sin 3x)^{\frac{2}{3}} dx.$

Ĉ.Ŗ

Maria

è

7	1	COG2 (B2432)3 da	
	1	de (demà) de	

15	7	usi	(47	N
	ſ	Lines	su2	1

RV INSTRUCTION , OR WIND THE GUBSTITUTION , USING

4 sm2 + C

 $\int_{1}^{30} \frac{1}{\sqrt{x^{\frac{3}{2}} + 3x}} dx$

= dx.

Question 148 (****)

14

Y.C.A

Use the substitution $t = 3 + \sqrt{x}$ to find the value of the following integral

Question 149 (****)

I.C.B.

By using the substitution $u = \frac{1}{x}$, or otherwise, show that

$$\int_0^4 \left(\frac{1}{x^2} + \frac{1}{x^3}\right) e^{\frac{1}{x}} dx = -\frac{1}{x} e^{\frac{1}{x}} + C.$$

<u>h.</u>	. O. /
$\frac{1}{2} + \frac{1}{2} + \frac{1}$	$\begin{cases} u = \frac{1}{x} \\ \frac{du}{dx} = -\frac{1}{x^2} \\ da = $
$-\frac{1}{x}e^{u}du = \int (-u)e^{u}du = \dots b_{y} pould$	$\left\{ \begin{array}{c c} -l-u & -l \\ \hline e^u & e^u \end{array} \right\}$
-4)e - Le du = -(1+4)e + m + C	()

proof

Question 150 (****)

By using the substitution $u = \cos x$, or otherwise, show clearly that

 $\int_0^{\frac{\pi}{2}} 15\cos^5 x \, dx = 8 \, .$

1+

$\int_{0}^{\frac{\pi}{2}} S_{z} ^{s} dx dx = \int_{0}^{0} S_{z} ^{s} dx \left(-\frac{du}{smx}\right)$	U= COSX }
$= \int_0^1 15 \sin 2 du = \int_0^1 15 (5 u dx)^2 du$	$\begin{cases} \zeta n Z - \frac{\mu b}{\chi n D} \\ \zeta n Z - \frac{\mu b}{\chi n D} \\ \zeta n Z - \frac{\mu b}{\chi n D} \end{cases}$
$= \int_0^1 \left I_2 \left(1 - (\alpha \xi_{\mathcal{X}}^2)^2 d\mu \right) \right = \int_0^1 \left I_2 \left(1 - (\mu^2)^2 d\mu \right) \right d\mu$	(a=0, u=1) (====)
$= \int_{0}^{\rho} z - 3cu_{s} ^{2} + Su_{t}^{q} ^{2} dr = \int_{0}^{\rho} 2r - Cu_{s} ^{2} + 3r$	1 ⁵] ⁰
$= (l_{5} - l_{0} + 3) - 0 = 8$	

Question 151 (****)

Use the substitution $x = 2\cos\theta$ to show that

$$\int_{1}^{\sqrt{2}} \frac{4}{x^2 \sqrt{4 - x^2}} \, dx = \sqrt{m} - n$$

where m and n are integers.

P.C.P.

proof

Question 152 (****)

I.C.

 $y = \frac{4x+3}{3x+4}, x \neq -\frac{4}{3}.$

a) Calculate the five missing values of x and y in the following table.

x	0	1	50		32
у	$\frac{3}{4}$	$\frac{35}{29}$	$\frac{67}{52}$	<u>h</u>	

b) Use the trapezium rule with all the values from the completed table of part (**a**) to find an estimate for

6

c) Use the substitution u = 3x + 4 to find the exact value of

Question 153 (****)

20

I.C.B.

Determine, in terms of a, the value of the following integral.

 $\int_{\frac{2}{a}}^{\frac{17}{a}}$ $\frac{2ax}{\sqrt{ax-1}} \, dx \, , \, a \neq 0 \, .$

You may find the substitution $u^2 = ax - 1$ useful in this question.

12112SD

ma

0

PROCECO BY SUBSTITUTION (1 = 001
$\left[a = + (a \pi - i)^{\pm} \right]$	$a = \frac{2}{a} \rightarrow u = 1$
$2u \frac{du}{du} = a$ $2u \frac{du}{du} = a \frac{du}{du}$ $du = \frac{2u}{du} \frac{du}{du}$	Q= <u>17</u> → 4=4
PHASEMINO THE INTERAL	
$\int_{\frac{2}{\alpha}}^{\frac{17}{\alpha}} \frac{2\alpha x}{\sqrt{\alpha x - 1}} dx =$	$\int_{1}^{4} \frac{2x^{4}x}{x} \left(\frac{2x}{x} du\right)$
	∫ 42 du
	$\int_{1}^{4} \frac{4ax}{a} du$
=	$\frac{4}{a}\int_{1}^{1}ax du$
	$\frac{4}{a}\int_{1}^{4}u^{2}+1$ du
4	€ [3u ³ +4] ⁴
	$\frac{4}{\alpha}\left[\left(\frac{\omega}{4}+4\right)-\left(\frac{1}{3}+1\right)\right]$
=	₫ × 24-
	<u>%</u>

21/18

I.C.B.

COM

mada

2017

COM

96

1+

Question 154 (****)

I.Y.G.K

Use the substitution $x = \tan \theta$ to show that

51

 $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1-x^2}{1+x^2} dx = \frac{1}{3} \left(\pi - 2\sqrt{3} \right).$

proof

 $= \frac{T}{3} - \frac{1}{2}\sqrt{3}^{-1} = \frac{1}{4}((T - 2\sqrt{3})) \xrightarrow{\text{def}}_{T} \frac{22}{2} \frac{1}{2} \frac$

Question 155 (****)

I.C.B.

By using the substitution $u = \sqrt{x+2}$, or otherwise, find an expression for

 $\int \frac{1}{(x+1)\sqrt{x+2}} \, dx \, .$

G.B.

6

$\int \frac{1}{(x+1)\sqrt{x+2}} dx = \dots by \text{ substration}$	(u= V2+2]
$= \int \frac{1}{(u^{2} + 1)(u^{2})} x^{2} \operatorname{cled} u = \int \frac{2}{(u^{2} - 1)} du_{1} = \int \frac{2}{(u - 1)(u + 1)} du_{1}$	$\begin{pmatrix} u^2 = \infty + 2 \\ 2u \frac{du}{d\ell} = 1 \end{pmatrix}$
= IN PARTIAL FRACTIONS = $\int \frac{1}{u_{-1}} - \frac{1}{u_{+1}} du$	(da = zudu g
$= \left[\ln \left[\hat{u}_{-1} \right] - \ln \left[\hat{u}_{+1} \right] + C \right] = \left[\ln \left[\frac{ u_{-1} }{ u_{+1} } \right] + C \right] = \left[\ln \left[\frac{\sqrt{2\pi \delta^2} - 1}{\sqrt{2\pi \delta^2} + 1} \right] + C$	2=0-2)

ths.col

I.C.

Ths.com

(****) Question 156

Use appropriate integration techniques to show that

UISINALISCON I.Y.C.R. MARASINALISCON I.Y.C.R. MARASIN where N is a positive integer.

(****) Question 157

By using the substitution $x = \tan \theta$, or otherwise, find the value of

Question 158 (****)

 \hat{c}_{j}

 $y = (1 + \cot^2 x) \sec^2 x, \quad 0 < x < \frac{1}{2}\pi.$

a) Calculate the three missing values of x in the following table.

10 1					11.1
x	$\frac{1}{6}\pi$		67	5	$\frac{1}{3}\pi$
у	$\frac{16}{3}$	$32 - 16\sqrt{3}$	4	32-16\sqrt{3}	$\frac{16}{3}$

b) Use the trapezium rule with all the values from the completed table of part (a) to find an estimate for

$$\int_{\frac{1}{2}\pi}^{\frac{1}{3}\pi} (1+\cot^2 x) \sec^2 x \, dx.$$

c) Use an appropriate integration method to find an exact simplified value for

 $\int_{\frac{1}{6}\pi}^{\frac{1}{6}\pi} \left(1 + \cot^2 x\right) \sec^2 x \, dx \, .$

 $\frac{5\pi}{24}, \frac{\pi}{4},$

 $\frac{7\pi}{24}$

, 2.34, $\frac{4}{3}\sqrt{3}$

a) fu in the thrue	b) $\left(\frac{\pi}{3}\right)$ sea $\left(1+\omega^{2}x\right)$ dz	$= (42 - \frac{1}{4}6) - (\frac{1}{2}42 - 42)$
$ \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$	$\int_{\mathbb{T}} \frac{1}{\sqrt{2}} \int_{\mathbb{T}} \frac{1}{\sqrt{2}} \int_{\mathbb$	$\left\{\begin{array}{l} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left\{ \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dd}{dd} \left\{ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dd}{dd} \right\} dd = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dd}{dd} \left\{ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dd}{dd} \right\} dd$
$\begin{array}{l} b) & \underbrace{\mathbb{N}}_{1} & \underbrace{\mathbb{T}}_{1} \mathbb{$	$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x_{0}^{2}}{x_{0}^{2}} + coech dx$	$\int_{\overline{F}}^{\overline{F}} \frac{1}{(\cos 2\pi)^{2}} dt = \int_{\overline{F}}^{\overline{F}} \frac{1}{(\frac{1}{2}\cos 2x)^{2}} dt = \int_{\overline{F}}^{\overline{F}} \frac{1}{\frac{1}{2}\cos 2x} dt$ $= \int_{\overline{F}}^{\overline{F}} 4\cos^{2}x dt = \left[-2\cot^{2}x\right]_{\overline{F}}^{\overline{F}} \left\{\frac{d}{dt}(dx)\cos^{2}x\right\}$
$\begin{array}{c} \overset{\bullet}{=} \qquad \qquad$	$\frac{\partial}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] = \frac{\partial \omega}{\partial t} \left[\frac{\partial \omega}{\partial t} \right] $	$= \frac{3}{2}\eta_{2}^{2} - \left(-\frac{3}{2}\eta_{2}\right) = \frac{4}{2}\eta_{2}^{2}$

Question 159 (****+)

Use appropriate integration techniques to evaluate

 $\int_{\sqrt{5}}^{\sqrt{60}} \sqrt{1 + \frac{4}{x^2}} \, dx \, .$

Give the answer in the form $a+b\ln 3$, where a and b are positive integers.

 $\sqrt{1+\frac{4i}{\lambda^2}} d\lambda = \int_{-\infty}^{\sqrt{4i}} \sqrt{\frac{x^2+4i}{\lambda^2}} d\lambda = \int_{-\infty}^{\sqrt{4i}} \frac{\sqrt{x^2+4i}}{x} dx$ $\frac{\alpha}{2} \cdot \left(\frac{\alpha}{2} d u \right) = \int_{-3}^{8} \frac{\alpha^{2}}{2^{2}} d u = \int_{-3}^{8} \frac{\alpha^{2} - u}{\alpha^{2}} d u$ $\int_{0}^{B} 1 + \frac{4}{4^{2}} \frac{1}{4} d$ 4 + ly]u-2] - ly[u+2]] 8

 $5 + \ln 3$

Question 160 (****+)

Y.C.P.

Use a suitable substitution to show that

 $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 3\cos x + 2} \, dx = \ln\left(\frac{9}{8}\right)$

proof

Question 161 (****)

Use partial fractions to determine, in exact simplified form, the value of the following integral.

Cp Cp	$\int_{0}^{\frac{1}{2}} \frac{2x^{3} - 5x^{2} + 5}{(x^{2} - 3x + 2)(x^{2} - 2x + 1)}$	dx .
alls com	$ \begin{cases} \frac{1}{2} \frac{2\lambda^{3} - 5\lambda^{2} + 5}{(\lambda^{2} - 2\lambda^{4})} d_{\lambda} = \int_{0}^{1} \frac{2\lambda^{3} - \Delta^{4} + 5}{(\lambda^{2} - 3\lambda^{2} - 3\lambda^{2})} d_{\lambda} \\ = \int_{0}^{1} \frac{2\lambda^{4} - \Delta^{4} + 5}{(\lambda^{2} - 3)(\lambda^{2} - 1)^{2}} d_{\lambda} \\ = \int_{0}^{1} \frac{2\lambda^{4} - \Delta^{4} + 5}{(\lambda^{2} - 3)(\lambda^{2} - 1)^{2}} d_{\lambda} \\ \hline \frac{2\lambda^{3} - 2\lambda^{2} + 5}{(\lambda^{2} - 3)(\lambda^{2} - 1)^{2}} = \frac{\lambda}{2\lambda^{2}} + \frac{8}{(\lambda^{2} - 1)^{2}} + \frac{C}{\lambda^{2} - 1} + \frac{\lambda}{\lambda^{2}} \\ \hline \frac{2\lambda^{3} - 5\lambda^{3} + 5}{(\lambda^{2} - 3)(\lambda^{2} - 1)^{2}} = \frac{\lambda}{2\lambda^{2}} + \frac{8}{(\lambda^{2} - 1)^{2}} + \frac{C}{(\lambda^{2} - 1)^{2}} + \frac{\lambda}{\lambda^{2}} \\ \hline \frac{2\lambda^{3} - 5\lambda^{3} + 5}{(\lambda^{2} - 1)(\lambda^{2} - 1)^{2}} = \frac{\lambda}{2\lambda^{2}} + \frac{8}{(\lambda^{2} - 1)^{2}} + \frac{1}{2(\lambda^{2} - 2\lambda^{2})} \\ \hline \frac{8\pi^{2} - 5\lambda^{2} + 5}{(\lambda^{2} - 1)^{2}} = \frac{1}{\lambda^{2}} + \frac{8\pi^{2} - 2\lambda^{2}}{(\lambda^{2} - 1)^{2}} \\ \hline \frac{8\pi^{2} - 2\lambda^{2}}{(\lambda^{2} - 1)^{2}} = \frac{1}{\lambda^{2}} + \frac{1}{2(\lambda^{2} - 2\lambda^{2})} \\ \hline \frac{6\pi^{2} - 2\lambda^{2} - 2\lambda^{2}}{(\lambda^{2} - 1)^{2}} \\ \hline \frac{6\pi^{2} - 2\lambda^{2}}{(\lambda^{2} - 1)^{2}}} \\ \hline \frac{6\pi^{2} - 2\lambda^{2}}{(\lambda^{2} - 1)^{2}}} \\ \hline \frac{6\pi^{2} - 2\lambda^{2}}{(\lambda^{2} - 1)^{2}} \\ \hline \frac{6\pi^{2} - 2\lambda^{2}}{(\lambda^{2} - 1)^{2}}} \\ \hline 6$	• SELDENDED THE INSERTE WINH THE READOUS SPUT
K.C.B. K.C.B.	= 64 + 8 + 22 + 40 + 8 + 22 + 40 + 8 + 22 + 40 + 8 + 22 + 40 + 20 = 4 + 20	

2020

29

12.SM

24

Question 162 (****)

Use the substitution $u = \sin x$ to find an expression for

Question 163 (****+)

I.C.A.

Use the substitution $u = 1 + \sqrt{x}$ to evaluate

45-12ln 2

1

 $y = \frac{x^2}{2x+1}, \ x \neq -\frac{1}{2}$

a) Calculate the two missing values of y in the following table.

x	0	0.1	0.2	0.3	0.4	0.5	
у	0	$\frac{1}{120}$	$\frac{1}{35}$		22	$\frac{1}{8}$	

b) Use the trapezium rule with all the values from the completed table of part (**a**) to find an estimate, correct to 4 significant figures, for the following integral.

d) Use the substitution u = 2x + 1 to find an exact simplified value for

e) Hence deduce, by referring to parts (b) and (c), the approximate value of ln 2 correct to 2 significant figures.

282	-43	2
"ally	Question 165	(****+)
3	On	

20. 4282	asp alge asp a
Dars Dars	Created by T. Madas
Question 165 (****+)	
COM	$f(x) = -x^2 + 4x - 3, 1 \le x \le 3.$
a) Show clearly that	$f(2+\sin\theta)=\cos^2\theta.$
b) Hence find the exa	No Contra
Co S	
	$\int_{2}^{2} \sqrt{f(x)} dx .$
an 120	
Mary Sm	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(a) $z = 2 + 5M\theta$ , $  z - x^2 - 3  = 4(z + 5M\theta) - (2 + (M\theta)^2 - 3)$ = $8 + 45M\theta - (4 + 45M\theta + 5M\theta) - 3$ = $8 + 45M\theta - (4 + 45M\theta + 5M\theta) - 3$
	$= 1 - si^{2} \theta$ $= \cos^{2} \theta$ $= \cos^{2} \theta$ $\Rightarrow t = t + t + t + t + t + t + t + t + t +$
	$\begin{cases} \partial \omega = \frac{\partial \omega}{\partial \omega} + \frac{\partial \omega}{\partial \omega} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{\partial \omega} \right)^{2} \\ & \left( \frac{\partial \omega}{\partial \omega} - \frac{\partial \omega}{$
I.V. Y.C.	$=\left(\frac{\mathbb{T}}{4}+o\right)-\left(o\right)=\mathbb{T}_{4}^{2}$
Cip S	B CD CB C
1985 1905	1938 1900 19030
Mary Sh	Maria Asin Sing
45.00	he as ath a
Y L. L.	
Sec. Sec.	
63	
Mad Made	Created by T. Madas
Madash Madash	Created by T. Madas
	Var Var

Question 166 (****+)

C.b.

$$f(x) = \ln\left(\frac{1+x}{1-x}\right), \ |x| < 1.$$

- **a**) Show that f(x) is an odd function.
- **b**) Find an expression for f'(x) as a single simplified fraction, showing further that f'(x) is an even function.

c) Determine an expression for  $f^{-1}(x)$ .

[continues overleaf]

Ĉ.Ŗ

1+

Created by T. Madas

200

#### [continued from overleaf]

Y.C.

The figure below shows part of the graph of f(x).



**d**) Use the substitution  $u = e^{x} + 1$  to find the exact value of

 $\int_0^{\ln 3} f^{-1}(x) \ dx.$ 

e) Hence find an exact value for the area of the shaded region, bounded by f(x), the coordinate axes and the line  $x = \frac{1}{2}$ .

$$f'(x) = \frac{2}{1-x^2}, \quad f'(x) = \frac{e^x - 1}{e^x + 1}, \quad \ln\left(\frac{4}{3}\right), \quad \arctan = \frac{1}{2}\ln 3 - 2\ln 2 \approx 0.262$$



Created by T. Madas

æ

### Question 167 (****+)

By using the substitution  $u = \sqrt{x}$  find



adasm

giving the answer as an exact single natural logarithm.

$\int_{1}^{4} \frac{1}{2(2+\alpha_{1}^{2})} dt = \left\{ \begin{array}{c} \cos(\alpha_{1} + \alpha_{2} + \alpha_{2}) \\ (\alpha_{2} + \alpha_{2}^{2}) \end{array} \right\} \\ (\alpha_{2} + \alpha_{2}^{2}) = \alpha_{2}^{2} \\ (\alpha_{2} + \alpha_{2}^{2}) \end{array} \right\}$	$\begin{cases} x = u^2 \\ \frac{dx}{du} = 2u \end{cases}$
$= \int_{1}^{2} \frac{1}{u^{2}(2+u)} 2u  du = \int_{1}^{2} \frac{2}{u(u+2)}  du$ (BY PARTAL REASONS	$\begin{cases} dx = 2udu \\ \alpha = 1, u = 1 \\ \alpha = 4, u = 2 \end{cases}$
$\begin{cases} \frac{2}{u(u+z)} \stackrel{\text{d}}{=} \frac{A}{u} + \frac{B}{u+z} \\ 2 \stackrel{\text{d}}{=} \frac{A}{u(u+z)} + \frac{B}{u+z} \end{cases} \xrightarrow{2} \cdots = \int_{1}^{2} \frac{1}{u}$	- 1/42 the
V- 4=-2 2=-28 → 8=-1 (	-)h u+2]] r)-(1µY-143)
$= \ln 2 - \ln 1$ $= \ln \frac{3}{2}$	+ + h3

1+

Question 168 (****+)

The Con

I.C.B.

Use the substitution  $x = \sqrt{2} \sin \theta$  to show that

5

 $\int_{0}^{\sqrt{2}} \sqrt{2 - x^2} \, dx = \frac{\pi}{2}.$ 

proof

 $\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 

 $\begin{array}{c} \theta_{rad} = 0 \\ \theta_{rad} =$ 

(****+) Question 169

anasmarns,

$$\frac{1}{x(x^2+1)} \equiv \frac{A}{x} + \frac{Bx+C}{x^2+1} \,.$$

- a) Find the value of each of the constants A, B and C.
- **b**) Use the substitution  $x = \cos \theta$  to show

L.C.B.

COM I.V.C.B.

I.V.C.B. Madasn

Smaths,

I.F.G.B.

 $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{2\sin\theta}{\cos\theta + \cos^3\theta} \ d\theta = \ln\left(\frac{5}{3}\right)$ 



L.C.B.

(n)

1.6.0

11-10-



?*∩*Ŋ

P.C.P.

Smaths.com

Created by T. Madas

2017

#### Question 170 (****+)

By using the substitution  $u = 1 - \tan^2 x$ , or otherwise, find the exact value of



. Y.G.S.





**b**) Use trigonometric identities to find





Question 172 (****+)

P.C.A

Use the substitution  $x = \csc \theta$  to find the exact value of





 $-2\cot 2x + C$ 

 $\frac{2\hat{h}_{\mu\nu}}{\hat{h}_{\mu\nu}x_{\mu\nu}} + \frac{\hat{h}_{\mu\nu}}{x_{\mu\nu}x_{\mu\nu}} = x_{\mu}\frac{\hat{h}_{\mu\nu}}{\hat{h}_{\mu\nu}x_{\mu\nu}}$ 

assisting de

$\frac{1}{2} \int_{\frac{1}{2}}^{2} \frac{1}{2} dt = \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{$	as ware 3
	$\begin{cases} \frac{dx}{d\theta} = -\omega \omega \omega \omega \phi \phi \\ \frac{dx}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \omega \phi \phi \\ \frac{dy}{d\theta} = -\omega \omega \omega \phi \\ \frac{dy}{d\theta} = -\omega \omega \psi \\ \frac{dy}{d\theta} = -\omega \psi \\ dy$
$\frac{\pi}{2} \int_{-\frac{\pi}{2}} \frac{1}{\sqrt{\omega^{2}}} \int_{-\frac{\pi}{2}} \frac{1}{$	3.02 20603xB ±2 = StnB
$\left[-\alpha_{1}\beta_{0}-\beta_{0}\right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}=\left[\alpha_{1}\beta_{0}+\beta_{0}\right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}=\left(\sigma_{1}\beta_{0}+\beta_{0}\right)-\left(\alpha_{1}\beta_{0}+\beta_{0}\right)$	D=76 2=VE VE= Ward
13+正-1-年 = 13-1-正	していた - 100日 - 10日 - 100日 - 100日

#### Question 173 (****+)

a) Write down an expression for  $\frac{d}{dx} (e^{\cos x})$ .

I.C.p.

I.C.

I.C.B. M

I.F.G.B.

20

I.F.G.B b) By using integration by parts, or otherwise, show that

 $e^{\cos x} \cos x \sin x \, dx = e^{x} (1 - \cos x) + \text{constant}$ .

I.G.B.

2011



hs.com

4.6.0

1+

Madasm

he

I.V.C.B. Madash





0

By using trigonometric identities, show that



### Question 175 (****+)

By using the substitution  $u = \sin 2x$ , or otherwise, find an exact simplified value for the following trigonometric integral.



Question 176 (****+)

By using a suitable substitution, or otherwise, find the value of



$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \begin{array}{c} \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m \right) \\ \partial \left( m \right) & \partial \left( m \right) \\ \partial \left( m $
$\begin{array}{c c} 1 & 0 \\ \hline \theta m a & \theta m - \\ \theta m a & \theta m - \\ \theta m b & \theta m \\ \theta m a \\ \theta m b \\ \theta m a \\ \theta m a$	

1

#### (****+) Question 177

a) Use the substitution u = 2x - 1 to show that

I.C.P.

In I.F.C.J

I.V.G.B. III

I.C.B.

$$\int_{1}^{5} \frac{x+1}{(2x-1)^{\frac{3}{2}}} dx = 2.$$

b) By using integration by parts and the result of part (a), find the value of

 $\int_{1}^{5} \frac{(x+1)^2}{(2x-1)^{\frac{5}{2}}} dx.$ 

 $\frac{2k+1}{4^{3/2}}\left(\frac{du}{2}\right)$  $\frac{u+1+2}{2u^{\frac{3}{2}}} \frac{du}{Z} =$ 443 du  $= \frac{1}{4} \int_{1}^{9} \frac{u_{+3}}{u_{22}^{\frac{1}{2}}} du = \frac{1}{4} \int_{1}^{9} \frac{u}{u_{2}^{\frac{1}{2}}} + \frac{3}{u_{2}^{\frac{1}{2}}} du = \frac{1}{4} \int_{1}^{9} u_{1}^{-\frac{1}{2}} + 3u_{1}^{-\frac{1}{2}} du$  $= \frac{1}{4} \left[ 2u^{\frac{1}{2}} - u^{\frac{1}{2}} \right]_{1}^{9} = \frac{1}{4} \left[ \left( 6 - 2 \right) - \left( 2 - 6 \right) \right] = \frac{1}{4} \left[ \left( 6 - 2 - 2 + 6 \right) \right] = \frac{2}{2}$  $(b) \quad \int_{1}^{s} \frac{(2s+1)^{2}}{(2s-1)^{2}} d\alpha = \int_{1}^{s} (2s+1)^{2} (2s-1)^{2} dx = \dots b_{q} dx$ (22-1)²  $= \left[-\frac{1}{3}(2k-1)^{\frac{1}{2}}(2k+1)^{2}\right]_{1}^{2} - \int_{1}^{2} -\frac{2}{3}(2k+1)(2k-1)^{\frac{1}{2}}dk$  $= \left[ \frac{(2i+i)^2}{3(2i+i)^2} \right]_{q}^{r} + \frac{2}{3}$ 

0

nn

<u>20</u> 9

02

N.G.D.

1+

#### (****+) Question 178

20.	28	sp.	1282 Y	asp 19
Da.	Cr	eated by T. Madas	Dars	VI ATS
- 4	Question 178 (****+)	· Co	198	
~	Use the substitution $u = \ln x$ to sh	ow that	7 . 4	on a
>	$\int 3^{\ln x}$	$dx = \frac{x(3^{\ln x})}{1 + \ln 3} + \text{const}$	ant .	× .
In.	· J.	1+105	<u> </u>	
1.6	· · · · ·	60	$\nabla$ , $\nabla$ ,	proof
<u> </u>	B. A.		$\begin{array}{c} \underbrace{ \text{ Commeter 2 condet (w, interm 1962)} \\ \text{ commeter 2 condet (w, interm 1962)} \\ \text{ commeter 2 condet (w, interm 1962)} \\ \text{ where 2 condet (w, interm 1962)} \end{array}$	
05	Max Va	200	$\int 3^{bn} dt = \int 3^{u} e^{t} du < \int (3^{u})^{u} du = \int a^{u} du$	
"SID	- 49. C.	asp.	$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$	· 121
1	he Mars	1213	$\frac{\underline{M}_{TL}\underline{D}_{J}\underline{N}_{C}}{\int d^{N} du = \frac{1}{ \mathbf{n}_{R}} a^{N} + C = \frac{1}{ \mathbf{h}_{C} \mathbf{S}} (3e)^{N} + C$	
	·Co. 18	30	$= \frac{3^{k}c^{k}}{bc+mc} + C = \frac{3bc}{bc+c} \frac{bt}{bc} + C$ $= \frac{3^{k}c^{k}}{c+bc} + C = \frac{3(3^{k}c)}{c+bc} + C$	
6		3		
Ir.	· · ·	1	1.1	· · /
	C. 'GD	N.O.	·	, <u>`</u> G
у Х			0 ⁻	
	inadasmana hs.com			
"asm	a alan	asm.	Ala.	asp
Ľ,	the Dars	213	no.	. 421
2	Co. Us		$c_{n}$	
200		200		Con
× 7.	· · · ·	× /.	1.1	- ⁴ }.
	n. Co	1.0	. · · C	
	4B .Q.	A 4	e z	7, 10
Dr.	Cr	1201	Madasn	nadasm.
nadas,	Cr Cr	eated by T. Madas	* <i>q</i> () ₂ ,	ash.
	- S/D2	V2-	J. TOD	

Question 179 (****+)

 $J = \int_{-1}^{1} \frac{1}{1 + e^{-x}} \, dx \, .$ 

**a**) Show that the substitution  $u = 1 + e^{-x}$  transforms J into

Y.G.B.

I.V.C.

I.G.B.

I.F.G.B.



**b)** By expressing  $\frac{1}{u(1-u)}$  into partial fractions show clearly that J = 1.

 $\frac{1}{-\frac{1}{1-1}}\left(-\frac{1}{-\frac{1}{2-2}}\right)dt_{f}$  $= \int_{1+e}^{1+e^{-1}} \frac{1}{u(u-1)} du$  $\left| \frac{B}{1-U} \right| + Bu$   $\left| \frac{B}{U} \right| \left| \frac{B}{U} \right| = 0$   $\left| \frac{B}{U} \right| \left| \frac{B}{U} \right| = 0$   $\left| \frac{B}{U} \right| \left| \frac{B}{U} \right| = 0$   $\left| \frac{B}{U} \right| = 0$   $\frac{1}{1-q} dq = \left[ \left[ h_{1} \left[ q \right] - \left[ h_{1} \right] \right] \right]_{1+q}$  $\frac{1+e^{-1}}{1+e} = \left| \eta \left| \frac{1+e^{-1}}{1-(1+e^{-1})} \right| - \left| \eta \left| \frac{1+e}{1-(1+e)} \right| \right|$  $\frac{1+\underline{e}^{-1}}{-\underline{e}^{-1}} = \frac{|h|}{-\underline{h}} \left| \frac{1+\underline{e}}{-\underline{e}} \right| \approx \frac{|h|}{|h|} \left( \frac{1+\underline{e}^{-1}}{-\underline{e}^{-1}} \right) = \frac{|h|}{|h|} \left( \frac{1+\underline{e}}{-\underline{e}} \right)$ - h(1+e)

277

:0M

proof

me,

Inadası

I.F.G.B.

A.G.D.

6

### Question 180 (****+)

I.F.G.B.

F.G.B.

I.F.G.B

Use the substitution  $x = \tan \theta$  to find the exact value of

I.C.B.



Madası,

$\int_{0}^{1} \frac{8}{(1+\alpha^{2})^{2}} d\lambda = \dots  \text{ we the automation fraction}$	a= tano
$= \int_{0}^{\infty} \frac{\theta}{(1+t_{0}+\theta)^{2}} \operatorname{Sel(0)} d\theta = \int_{0}^{\infty} \frac{\theta}{(\operatorname{Sel(0)})^{2}} \operatorname{Sel(0)} d\theta$	$\left\{\begin{array}{l} \frac{d\lambda}{d\theta} = \operatorname{Stc}^2\theta\\ d\theta = \operatorname{Stc}^2\theta \ d\theta\end{array}\right\}$
$=\int_{0}^{\frac{\pi}{2}}\frac{\Theta_{2}}{\Theta_{2}} = \Theta_{2} \frac{\Phi_{2}}{\Theta_{2}} = \int_{0}^{\frac{\pi}{2}}\frac{\Phi_{2}}{\Theta_{2}} = \Theta_{2} \frac{\Theta_{2}}{\Theta_{2}} = \frac{\Phi_{2}}{\Theta_{2}} = \Theta_{2} \Theta_{2}$	a=0, tub=0
$= \int_{0}^{\overline{T}} \theta(\pm \pm \pm \cos \theta)  d\theta = \int_{0}^{\overline{T}} 4 \pm 4 \cos 2\theta  d\theta$	2=1, tmB=1 0=#
$= \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2} m^2 S + \frac{1}{2} \right]_{0} = \frac{\pi}{2} \left[ \frac{1}{2}$	= T+2

,  $\pi + 2$ 

proof

6

12

### Question 181 (****+)

20

Use the substitution  $u = 400 - 20\sqrt{x}$  to show that

1.Y.C.

 $\int_0^{100} \frac{1}{400 - 20\sqrt{x}} \, dx = -1 + 2\ln 2 \, .$ 

$\int_{0}^{100} \frac{1}{400 - 20\sqrt{x}} dx = 0.54 \text{ THE SUBSTITUTION}$	$\begin{cases} u = 400 - 20\sqrt{x}^{2} \\ 20\sqrt{x}^{2} = 400 - 0 \end{cases}$
$= \int_{400}^{200} \frac{1}{u} \left( -\frac{1}{10} \left( 2 - \frac{1}{20} \alpha \right) \right) d\alpha$	$\begin{cases} 20\sqrt{x} = 400 - 0 \\ \sqrt{x} = 20 - \frac{1}{20} 0 \\ 2 = (20 - \frac{1}{20} 0)^2 \end{cases}$
USE MINUS TO SWAP UNITS & PULLOT to	$\begin{cases} \frac{d\alpha}{du} = 2\left(2i - \frac{1}{2b}u\right) \left(\frac{1}{2b}\right) \end{cases}$
$= \frac{1}{10} \int_{200}^{400} \frac{1}{4\pi} \left( 2\alpha - \frac{1}{20} u \right) du$	$du = -\frac{1}{10} \left( 2 - \frac{1}{20} u \right) du$
$= \frac{1}{10} \int_{200}^{400} \frac{20}{4} - \frac{1}{20} du = \frac{1}{10} \left[ 20 \ln u  - \frac{1}{20} u \right]_{200}^{400}$	2= 100 +=> 11= 200
$= \frac{1}{10} \left[ \left( 20 \ln \frac{1}{100} - 20 \right) - \left( 20 \ln \frac{200}{100} - 10 \right) \right] = \frac{1}{10} \left[ 20 \ln \frac{1}{100} - 20 \right]$	1400-20 -2011/200 +10]
$=\frac{1}{10}\left[20\ln 2-10\right] = 21\pi 2-1$ As Reform	a
10 J.	

Created by T. Madas

?

## Question 182 (****+)

It is given that

Ĉ,

P.C.B.

$$\frac{\left(2x^2 - 10x + 7\right)\left(x^2 - 3x - 3\right)}{\left(x - 4\right)^2} \equiv Ax^2 + Bx + C + \frac{D}{x - 4} + \frac{E}{\left(x - 4\right)^2}$$

 $\int_0^3 f(x) \ dx.$ 

- a) Find the value of A, B, C, D and E in the above identity.
- **b**) Hence find the exact value of

# A=2, B=0, C=-1, D=1, E=-1, $\frac{57}{4} - \ln 4$



Ĉ.p.

201 1

Question 183 (****+)

20

Smaths,

COM

Smaths,

I.V.G.B

$$x = \frac{1}{2}(-1+4\tan\theta), -\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$$
  
identities to show that  
$$4x^2 + 4x + 17 = 16\sec^2\theta.$$
  
Act value of  
$$\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{1}{4x^2 + 4x + 17} dx.$$

a) Use trigonometric identities to show that

$$4x^2 + 4x + 17 = 16\sec^2\theta$$

**b**) Hence find the exact value of

Į.C.

1.1.6.6

 $\frac{1}{4x^2+4x+17}$ dx.

a) <u>su</u>	BSTITUTE, EXPAND	a TIDY
4x2	$+4b_{L}+17 = 4\left[\frac{1}{2}4\right]$	(-(+\$tan9)] +4 [\$(++\$tan9)]+17
	= 4x1(-	-(+4/au0)2 + 2 (-1+4/au0) + 17
	= 1-812	au 0+16tau 20-2+8tau 0+17
	.= 16 +	16 taun 20
	= 16(1 +	- tau 20)
	= 165821	
		45 8Equileo
b) BY	SUBSTITUTION FROM	pher (a)
<b></b>	$x = \frac{1}{2}(-1 + 4bu0)$	$= -\frac{1}{2} + 2 \tan \theta$
	<u>μ</u> = 28e ² θ	
-) d	$a = 2 \sec^2 \theta  d\theta$	
		• whin a:= *
<b>e</b> k	-1- = -1- + 2 ton 0	<u>3</u> =- <u>1</u> +2buθ
	0 = 2tan9 0 = 0	2 = 2 tau () tau () = (
⇒ ¢	shen $a = -\frac{1}{2}$	3==-1=+2600



0

The Com

 $\frac{\pi}{32}$ 

15.COM

I.V.C.B. Madasa

¥.G.D.

1.4

Created by T. Madas

COM

Question 184 (****+)

It is given that

 $\sin(A+B) \equiv \sin A \cos B + \cos A \sin B.$ 

Use the above trigonometric identity to show that

 $\sin 3x \equiv 3\sin x - 4\sin^3 x \, ,$ 

and hence find

F.G.B.

I.C.B.

 $\sqrt[3]{3\sin 2x - 2\sin 3x\cos x}\,dx\,.$ 



21/15

I.C.p

COM

Inadası

nadasm

21/2.5m

ths.com

- (3012 25NBLOOR) + db (SM22 = 3012 4013)
- ( . Esmucia Camura + Bevalusa + d
- = ] 2sin(ces)[‡] di
- $-\frac{1}{4}(\cos u)^{\frac{4}{5}} + C$

200

 $= -\frac{3}{2}\left(\omega_{\mathcal{R}}\right)^{\frac{1}{2}} + C = \left(-\frac{3}{2}\left(\omega_{\mathcal{R}}^{\frac{1}{2}} + C\right)\right)$ 

Created by T. Madas

5.

Smaths.co

Ĝ,

1.6

S

#### Question 185 (****+)

280

201

Use the substitution  $u = x + \frac{\pi}{4}$  to show that

Description of the substitution 
$$s = s + \frac{\pi}{4}$$
 is a substitution  $s = s + \frac{\pi}{4}$  is a substituti

#### (****+) Question 186

By using the substitution  $u = \sqrt[3]{x}$ , or otherwise, show that



Question 187 (****+)

$$= \int_{0}^{1} \frac{3}{\left(1+8x^{2}\right)^{\frac{3}{2}}} dx$$

**a**) Use the substitution  $x = \frac{1}{\sqrt{8}} \tan \theta$  to show that

 $I = \frac{3}{\sqrt{8}} \sin\left(\arctan\sqrt{8}\right).$ 

**b**) Show, presenting detailed calculations, that I = 1.

I.G.B.

NO.

I.V.C.B. M

I.F.G.B.

20



27

I.V.G.B.

2017

11.21/2.51

proof

20

Mada

I.C.B.

1.40

6



1+

I.G.B.

Madası

Created by T. Madas

5

I.V.C.B.

I.F.G.p

#### (****+) Question 189

Use integration by parts to find the value of





1+

mada

### Question 191 (****+)

It is given that for some constants A and B

 $6\sin x \equiv A(\cos x + \sin x) + B(\cos x - \sin x).$ 

- **a**) Find the value of A and the value of B.
- **b**) Hence find

 $\int \frac{6\sin x}{\cos x + \sin x} \, dx \, .$ 

A=3, B=-3,  $3x-3\ln|\cos x+\sin x|+C$ 

Vax
a) <u>expand 4 coupage</u>
$\Rightarrow 6902 = 4(102 + 5002) + B(102 - 5002)$ $\Rightarrow 6902 = (4+B)(052 + (A-B)5002)$
A+B=0 } ADDINC & SUBSTRUCTING GIVES
-1=3 <u>B=-3</u> 
$\int \frac{6.5m2}{6m2 + 5m2} dx = \int \frac{2(1052 + 5m2) - 3(1052 - 5m2)}{6m2 + 5m2} dx$
$= \int \frac{3(\cos x + \sin x)}{\cos x + \sin x} - \frac{3(\cos - \sin x)}{\cos x + \sin x} dx$
$db  \left(\frac{22\omega + 3Re^{-1}}{4Re^{-1}}\right) \mathcal{E} - \mathcal{E}  \int_{-\infty}^{\infty} = \frac{1}{2} \left(\frac{2}{2Re^{-1}}\right) \mathcal{E} $
This is or THE ROOM $\int \frac{f(\omega)}{f(\omega)} d\omega = \ln  f(\omega)  + C$
$= \frac{3\alpha - 3\ln \cos x + \sin \alpha  + C}{1 + C}$

**Question 192** (****+) Use the substitution  $x = 2\sin\theta$  to show that



proof

1

$\int_0^2 \sqrt{4 - \chi^{21}}  dx = \dots = \int_{\infty}^0 \sqrt{4 - 4 \cos^2 \Theta} \left( -2 \sin \Theta  d\varphi \right)$	X= 2460
$\int_{\frac{\pi}{2}}^{0} -2sm\theta \sqrt{4(1-c_{0}\overline{c}\theta)}^{2} d\theta = \int_{0}^{\frac{\pi}{2}} 2sm\theta \sqrt{4sm^{2}\theta} d\theta$	$d_{x} = -2s_{H}\theta$ $d_{x} = -2s_{H}\theta$
$\int_{0}^{\frac{\pi}{2}} 4sar^{2}\theta  d\theta = \operatorname{trig} \operatorname{id}_{0}\operatorname{trif} \dots = \int_{0}^{\frac{\pi}{2}} 4(\underline{1} - \underline{1}\operatorname{id}_{0}\partial_{\theta})  d\theta$	2=0, 0=2600
$\int_{0}^{\frac{\pi}{2}} 2 - 2\omega 2\theta  d\theta = \left[2\theta - sw2\theta\right]_{0}^{\frac{\pi}{2}}$	$\theta = \frac{\pi}{2}$ $\left\{ a = 2, 2 = 2 \log \theta \right\}$
$(\pi - SM(-0)) = (DM(-0)) - (DM(-0))$	ζ (αθ+1 θ=0

#### (****+) **Question 193**

Use the substitution  $u = 1 + x^2 e^{-3x}$  to find an expression for





naths.com

asillatilis.co.

1.1.6.

#### (****+) Question 194

Use the substitution  $u = \frac{1}{x} + xe^x$  to find an expression for



Question 195 (****+)

$$\int \frac{1}{\sqrt{x^2 + x^n}} \, dx \, , \ n \neq 2 \, , \ x \ge 0 \, .$$

a) Show that the substitution  $u^2 = 1 + x^{n-2}$  transforms above integral into

$$\frac{1}{n-2}\int \frac{2}{(u-1)(u+1)}\,du\,.$$

h.

b) Use partial fractions to find, in terms of x and n, an integrated expression for the original integral.

a)	NITZBUE SHIT JUILLY	TION GURN	u= (1+x4-2)	) [‡]
	$\Rightarrow u^2 = 1 + x^{N+2}$		$\mathfrak{I}_{a}^{N-2} = \mathfrak{U}_{a}^{2} - \mathfrak{I}_{a}$	
	$\Rightarrow 2u \frac{du}{d\lambda} = (h-2)\lambda^{2}$	-3		
	→ 2u du = (1-2)3	n-3 de		
	$\Rightarrow dz = \frac{2u}{(h-z)\underline{2}^{n-2}}$	du		
	TRANSFORMING THE	NHERAL		
	$\int \frac{1}{\sqrt{a^2 - a^{n^2}}}  da$	= <u></u>	1 <u>1-2*-2</u> δλ	(azo)
-	$\int \frac{1}{2 \times u^{2}} \frac{2u}{(u-2)\gamma^{4-2}}$	, du = . ) <del>(</del>	2. du	
s	$\int \frac{2}{(h-2)(u^2-1)}  du =$	<u>1</u> 1-2 J(u	2 -1)(4+1) du	AS EXPUSIC
b) P	COLEED BY PARTIAL F	eactions		
	$\frac{2}{(u-1)(u+1)} \equiv \frac{1}{u-1}$	$\frac{4}{-1} + \frac{B}{u+1}$		
	2 = 4	(u+1) + B(u	- l)	
	• (= ((∈ (	• IF (1=-	1	
	2 = 2A			
	<u>A = 2</u>	<u>B = - [</u>		
				1



 $= \frac{1}{n-2} \int \frac{1}{n-1} - \frac{1}{n+1} du$  $= \frac{1}{n-2} \left[ \ln |u_{-1}| - |u_{1}| u_{+1}| \right] + C$ 

 $= \frac{1}{n-2} \ln \left| \frac{u-1}{u+1} \right| + C$  $= \frac{1}{n-2} \ln \left| \frac{\sqrt{1+2^{n-2}}-1}{\sqrt{1+2^{n-2}+1}} \right| + C$ 

Question 196 (****+)

$$f(x) \equiv 2 - \sqrt{x-1} , x \ge 1.$$

**a**) Find a simplified expression for g(x) so that f(x)g(x) = 1.

b) Hence, or otherwise, find

I.G.B.

I.Y.C.B.

17.202

I.Y.C.B. Mad

I.C.B.

20



27



ne,

I.V.C.B. Mada

nn

1+

#### Question 197 (****+)

By using the substitution  $u = 1 + \sin^2 x$ , or otherwise, show clearly that



Question 198 (****+)

$$\sec x \equiv \frac{\cos x}{1 - \sin^2 x}.$$

- a) Prove the validity of the above trigonometric identity.
- **b**) Use the substitution  $u = \sin x$  to show that

$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \sec x \ dx = \frac{1}{2} \ln\left(\frac{7+4\sqrt{3}}{3}\right).$$

c) Show clearly that

R,

E.B.

$$\frac{1}{2}\ln\left(\frac{7+4\sqrt{3}}{3}\right) = \ln\left(1+\frac{2}{3}\sqrt{3}\right)$$



è

21/201



to REQUIEND

#### (****+) Question 199

Use the substitution  $x = 2 \sec \theta$ , to find the exact value of



#### Question 200 (****+)

Use the substitution  $u = 1 + xe^{\sin x}$  to find an exact simplified value for the following definite integral.



Question 201 (****+)

20

nams,

K.C.B. Madasm

COM

I.C.p

$$I = \int \frac{1}{x^2 \sqrt{4 - x^2}} \, dx \, .$$

**a**) Use the substitution  $x = 2\sin\theta$  to show clearly that

$$I = -\frac{\sqrt{4-x^2}}{4x} + C \,.$$

**b**) Verify the answer to part (a) by using the substitution u = -

(a) $\int \frac{1}{2^2\sqrt{4-x^2}} dx = \dots \text{ by substitution}$ $= \int \frac{1}{4s_0k_0\sqrt{4-4s_0k_0^2}} (2s_0k_0k_0)$	$\begin{cases} u = 2sn\theta \\ dh = 2us\theta \\ d\theta \\ dx = 2us\theta d\theta \end{cases}$
$= \int \frac{2\omega s \theta}{4sul \theta \sqrt{4(1-sul \theta)}} d\theta = \int \frac{2\omega s \theta}{4sul \theta \sqrt{4\omega s^2 \theta}} d\theta$	
$=\int \frac{\partial \cos \theta}{(4\omega/\theta)(2\omega s \theta)} d\theta = \int \frac{1}{4} - \cos^2 \theta d\theta =$	
$ \left\{ \begin{array}{c} \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \hline \lambda_{1} & \lambda_{3} & \lambda_{3} \\ \hline \lambda_{2} & \lambda_{3} & \lambda_{3} \\ \hline \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{1} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2} \\ \hline \lambda_{2} & \lambda_{2}$	$-\frac{1}{4}\frac{\sqrt{4-2t^2}}{2}+($
$\frac{1}{\pi^2 \sqrt{4-x^2}} dx = \dots = \frac{1}{\sqrt{x^2 \sqrt{4-x^2}}} dx$	$u = \frac{2}{\alpha} \rightarrow x = \frac{2}{u}$
$= \int \frac{1}{\frac{4}{q^{k}}\sqrt{4-\frac{4}{q^{k}}}} \left(-\frac{2}{q^{k}}dq\right) = \int_{\frac{2}{q^{k}}\sqrt{\frac{4q^{k}-q^{k}}{q^{k}}}} \left(-\frac{2}{q^{k}}dq\right)$	$\frac{dx}{du} = -\frac{2}{u^2}du$
$= \int \frac{1}{2\sqrt{4(u^2-1)^2}} du = \int -\frac{u}{4\sqrt{u^2-1}} du$	
BY RECOGNITION OR HUTHER SUBSTITUTION	
$= \int -\frac{1}{4} u \left( u^{2} - v \right)^{-\frac{1}{2}} du = -\frac{1}{4} \left( u^{2} - v \right)^{\frac{1}{2}} + C$	
$= -\frac{1}{4}\sqrt{\frac{4}{3^2}} - 1 + C = -\frac{1}{4}\sqrt{\frac{4-3^2}{3^2}} + C$	
$= -\frac{1}{4} \frac{\sqrt{4} - \chi^2}{\chi} + c = -\frac{\sqrt{4} - \chi^2}{4\chi} + c$	- (g=04

2017

The COM

madas,

proof

hs.com

Madasn.

I.C.B.

14

Created by T. Madas

2017

#### Question 202 (****+)

By using the substitution  $x = -\frac{1}{2} + \frac{1}{2}\sin\theta$ , or otherwise, find the exact value of

 $\int_{-\frac{1}{4}}^{0} \frac{3}{\sqrt{-x(x+1)}}$ dx.

1.1	$\int_{-\frac{1}{4}}^{0} $	$\frac{3}{\sqrt{-x(x+1)}} dx$
С. Г	6006 (ADETTIZER 3HT 20120 •	
	z=-±+±smθ dx= ±cosθ dθ	
20.	271000 347 2000 347 2000 240 0 0002 + 2 - 20 0 = 0 = 2 • 1 = 8002 1 = 8002 1 = 8002 1 = 8002 1 = 8002 1 = 902 1 = 900 1 = 902 1 = 90	$\begin{array}{rcl} & & & & & & \\ & & & & & & \\ & & & & & $
· 112	$ \begin{array}{l} & \end{array} } \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} } \end{array} \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \end{array} \end{array} \end{array} = \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} } \end{array} \end{array} } \\ & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array} } \end{array} \end{array} } \end{array} \end{array} } } \end{array} } \end{array} } \\ \end{array} \\ \end{array}$	(- ¹ / ₂ + ¹ / ₂ ² ² / ₂ ² / ₂ ),
Ę	$= \sqrt{\frac{1}{4(1-sh^2)}} = \sqrt{\frac{1}{4(1-sh^2)}} = \frac{1}{\frac{1}{2}(sh^2)}$	

I.V.C.S	$\int_{-\frac{1}{4}}^{0} \frac{3}{\sqrt{-x(x+1)}}  dx.$	. π	1.1.
	$\begin{aligned} z_{\pm} - \frac{1}{2} \pm \frac{1}{2} \sin \theta & \qquad \qquad$	THE NITERAL NOW PECANE $\frac{3}{\sqrt{-2(2\pi i)}} d\lambda = \int_{\overline{\Sigma}}^{\overline{\Sigma}} \frac{x}{\frac{1}{2} \sqrt{2}} \left( \frac{1}{2} \sqrt{2} \sqrt{2} \frac{1}{2} \sqrt{2} \sqrt{2} \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $	13511311 3511311
	$= \sqrt{\frac{1}{2} + \frac{1}{2} \frac{1}{2$	1.1.	1.1.6
madash madash	Created by T. Madas	113135 D	

ths.col

#### Question 203 (****+)

By using multiplying the numerator and denominator of the integrand by  $(\sec x+1)$ , and manipulating it further by various trigonometric identities, show clearly that



#### Question 204 (****+)

By changing the base of the logarithmic integrand into base e and further using integration by parts, show that

 $\int_{1}^{c} \log_{10} x \, dx = \frac{1}{\ln 10}.$ 

CONSTRUCTION BASE Q  $\int_{1}^{C} (\log_{0} 2 \, dx = \int_{1}^{C} \frac{\log_{0} 2}{\log_{0} 0} \, dx$   $= \int_{1}^{C} \frac{\log_{0} 2}{\log_{0} 0} \, dx$ 

Question 205 (****+) Use trigonometric identities to find

 $\int \frac{1}{\csc 2x - \cot 2x} \, dx \, ,$ 

giving the answer in the form  $\ln |f(x)|$ 

 $\ln |\sin x| +$ 

$$\begin{split} & \int \frac{1}{4\pi c_0 - c_0 t_0} dt = \int \frac{1}{\frac{1}{4\pi c_0 - c_0 t_0}} dt = \dots \underbrace{ \begin{array}{c} \frac{1}{4\pi c_0 - c_0 t_0} dt = \frac{1}{4\pi c_0 - c_0 t_0} \\ \frac{3\pi c_0 t_0}{1 - 6\pi c_0 t_0} dt = \int \frac{2\pi c_0 t_0 c_0 t_0}{1 - (1 - (1 - t_0) - t_0)} dt = \int \frac{2\pi c_0 t_0 c_0 t_0}{2\pi c_0 t_0} dt \\ = \int \frac{4\pi c_0 t_0}{3\pi c_0 t_0} dt = \dots \quad dt \quad the the for \int \frac{1}{4\pi c_0} dt \dots = \int \frac{1}{4\pi c_0 t_0} \int \frac{1}{4\pi c_0 t_0} dt + C \end{split}$$

1.C.S.

#### (****+) **Question 206**

By using the substitution  $u = \tan x$ , or otherwise, find the exact value of



#### (****+) Question 207

I.V.G.B

Smaths,

I.F.G.B.

Com I.Y.C.B.

6

Use trigonometric identities and integration by parts to find an exact value for

 $\int_0^{\frac{\pi}{2}} 9x\sin x \sin 2x \ dx.$ 

(²9asinasina di ( Brsmacosa de (62) (35122022) de  $\left[6x-9n^3\alpha\right]^{\mathbb{Z}} - \int_{0}^{\infty} 6sn^3a dz$ _ (Fesusz di ²6sina.suiza da Ésinz (1-cosz) di

Ç.J.

dasmaths.com

3TT- [-66052 + 26052] + [blosz - 2003z].# Зл + [(0 - 0) - (6-2)] = 317-4

nadasn.

 $, 3\pi - 4$ 

1.1.1

6

nadasm

aths com

I.V.C.B. Madasn

Created by T. Madas

0

Question 208 (****+)

$$I \equiv \int \frac{1}{1 + \sin 2x} \, dx \, .$$

- a) Integrate I by multiplying the numerator and denominator of the integrand by  $(1-\sin 2x)$ .
- **b**) Hence evaluate

$$\int_0^{\frac{\pi}{8}} \frac{1}{1+\sin 2x} \, dx$$

- c) Use the substitution  $t = \tan x$  to integrate I
- d) Hence evaluate



 $\frac{1}{2}\tan 2x - \frac{1}{2}\sec 2x + C$ ,  $\frac{1}{2}(2 - \sqrt{2})$ ,  $-\frac{1}{1 + \tan x} + \frac{1}{2}(x - \sqrt{2})$ 

 $\begin{array}{l} \textbf{(a)} \ \mathbf{1}^{-1} \int_{1+\frac{1}{2}\log \Delta} dx &= \int_{1+\frac{1}{2}\log \Delta} \frac{1-\frac{1+\log \Delta}{\log 1+\log 2}}{(1+\log \Delta)(1+\log 2)} dx &= \int_{1+\frac{1}{2}\log \Delta} \frac{1}{\log \Delta} dx \\ &= \int_{1+\frac{1}{2}\log \Delta} \frac{1}{\log \Delta} \frac{1}{\log \Delta} dx \\ &= \int_{1+\frac{1}{2}\log \Delta} \frac{1}{\log \Delta} \frac{1}{\log \Delta} dx \\ &= \int_{1+\frac{1}{2}\log \Delta} \frac{1}{\log \Delta} \frac{1}{\log \Delta} dx \\ &= \int_{1+\frac{1}{2}\log \Delta} \frac{1}{\log \Delta} \frac{1}{\log \Delta} dx \\ &= \int_{1+\frac{1}{2}\log \Delta} \frac{1}{\log \Delta} \frac{1}{\log \Delta} \frac{1}{\log \Delta} dx \\ &= \int_{1+\frac{1}{2}\log \Delta} \frac{1}{\log \Delta} \frac{1}{\log$ 

1

 $\frac{1}{2}$ 



madasmaths.com

Show clearly that

2

I.V.G.B.

asmaths.com

I.V.C.B. Madasm

Ismails.com

112/125

I.V.G.B.

 $\int_0^1 \sqrt{x^2 - x^4} \, dx$ 3



The Com

proof

Ths.COL

F.G.D.

6

nadasman

Created by T. Madas

I.V.G.P.

#### (****+) **Question 210**

Use the substitution  $u = 1 + x^2 \operatorname{cosec} x$  to find an expression for



#### Question 211 (****+)

Use a suitable trigonometric substitution to find an exact simplified value for

nana.

I.G.B.

I.Y.C.

I.F.G.B.

COM 1



where a is a positive constant.



 $\frac{1}{24}q^2\left[\left(\frac{\pi}{2}-0\right)-\left(0-0\right)\right] = \frac{\pi q}{8}$ 

nadasn

2017

5

I.G.B.

Madasm,

 $\frac{1}{8}\pi a^2$ 

4.6.0

1+

nadasn.

aths com

(****+) Question 212

$$f(u) \equiv \frac{1}{u^2 + 5u + 6}.$$

a) Express f(u) into partial fractions.

$$J(u) = \frac{1}{u^2 + 5u + 6}$$
  
) into partial fractions.  
$$I = \int_{\arcsin\frac{3}{5}}^{\arccos\frac{3}{5}} \frac{1}{(\sin x + 2\cos x)(\sin x + 3\cos x)} dx$$

6

madas,

**b**) Express *I* in the form

$$I = \int_{\arcsin\frac{3}{5}}^{\arccos\frac{3}{5}} \frac{\sec^2 x}{g(\tan x)} dx$$

 $I = \ln\left(\frac{a}{b}\right),$ 

15.Cn

 $\frac{1}{2}\left|\eta+z\left(-\eta\right)\left|\eta+z\right|\right]\frac{1}{2} = \left(\eta\frac{1}{2}-\eta\frac{1}{2}\right)-\left(\eta\frac{1}{2}-\eta\frac{1}{2}\right)$ 

- where g is a function to be found.
- c) Hence show that

I.C.B.

where a and b are positive integers to be found.

 $I = \ln\left(\frac{150}{143}\right)$ 1  $g(\tan x) \equiv (2 + \tan x)(3 + \tan x),$  $f(u) \equiv$ u+3u + 2 $\frac{A}{4+2} + \frac{B}{4+3}$ = (u+2)(u+3) +(4+3) + B(4+2)  $\frac{d}{(4\omega_{2}+2)(\tan_{2}+3)}dx = \int_{\frac{3}{24}}^{\frac{3}{2}} \frac{\sec^{2}x}{(u+2)(u+3)} \frac{du}{4^{2}}$  $\int_{-\infty}^{\frac{1}{2}} \frac{1}{(u+2)(u+3)} du = \dots \text{ part } (k) \dots = \int_{\frac{3}{2}}^{\frac{3}{2}} \frac{1}{u+2} - \frac{1}{u+3} du$ 

$$\frac{1}{1 (r + c_{1} + c_{2})} = \frac{1}{1 + 2} - \frac{1}{1 + 3}$$
  
b) 
$$\int \frac{\sigma \cos \frac{1}{2}}{\sigma \cos \frac{1}{2}} \frac{1}{(\sin 2 + 2\cos 2)(\sin 2 + 3\cos 2)} dx$$
  
Think for A series ¹ or the integrand by  $\cos \frac{1}{2}$ 
  

$$= \int \frac{\sigma \cos \frac{1}{2}}{\sigma \cos \frac{1}{2}} \frac{\cos \frac{1}{2}}{\cos \frac{1}{2}} \frac{(\sin 2 + 2\cos 2)}{\cos \frac{1}{2}} dx$$
  

$$= \int \frac{\sigma \cos \frac{1}{2}}{\sigma \cos \frac{1}{2}} \frac{\sin \frac{1}{2}}{(\sin 2 + 2\cos 2)} \frac{(\sin 2 + 3\cos 2)}{\cos \frac{1}{2}} dx$$
  

$$= \int \frac{\sigma \cos \frac{1}{2}}{\sigma \cos \frac{1}{2}} \frac{\sin \frac{1}{2}}{(\sin 2 + 2\cos 2)} \frac{(\sin 2 + 3\cos 2)}{(\sin 2 + 2\cos 2)} dx$$
  

$$= \int \frac{\sigma \cos \frac{1}{2}}{\sigma \cos \frac{1}{2}} \frac{\sin \frac{1}{2}}{(\sin 2 + 2\cos 2)} \frac{1}{(\sin 2 + 2\cos 2)$$



#### (****+) Question 214

I.F.G.B.

asmaths.com

2

N.G.B. Madasm

Smarnscom I.V.C.P.

I.F.G.B

Use the substitution  $u = \sin x + x \tan x$  to find an expression for

madasmaths.com





the com

1.C.D.

6

112/2SI112/

Created by T. Madas

I.F.C.P.

COM



#### (*****) Question 216

ISMAILS COM INC.

D

I.F.G.B.

alasmaths.com

By using the substitution  $u = 1 + \cos^4 x$ , or otherwise, find the exact value of

π I.Y.C.B. 11121/2 2  $4\cot^3 x$ dx.  $\overline{1+2\cot^2 x+2\cot^4 x}$ π THE SUBSTITUTION GUN 9mbr + 2002000x + 2005 1+05  $(1 - (\alpha \beta x)^2 + 2(\alpha \beta x)(1))$ 1-2105x+ 105x + 200 - 2108x +2108 x 46132 (-du 1+20032+20042 (-duadasuna) [In[4]]⁵ In 5 h= I.V.C.B. Madasm

1.G.D.

6

1.

madasm.

 $\ln\left(\frac{5}{4}\right)$ 

Madasmaths Com

I.V.C.B. Madash

Created by T. Madas

2011

madasmaths.com

P.C.P.

Question 217 (*****)

I.G.B.

I.C.B.

$$\frac{2}{u(u-2)} \equiv \frac{A}{u-2} + \frac{B}{u}.$$

- **a**) Find the value of each of the constants A and B.
- **b**) By using the substitution  $u = 1 + \cos^2 x$ , or otherwise, show clearly that

 $\int \frac{4\cot x}{1+\cos^2 x} dx = -\ln\left(\csc^2 x + \cot^2 x\right) + C.$ 

A=1, B=1 $\frac{2}{u(u+2)} \equiv \frac{4}{u-2}$  $2 \equiv Au + B(u-2)$ @ IF (1=2 2= 2+ =) A=1 4ctr da = which T (b) duta x du 26052.51  $\frac{2(\frac{losa}{smp.})}{u} \times \frac{1}{\frac{l}{cosa}} du$  $-\frac{2}{u}\frac{\cos x}{\sin x} \times \frac{1}{\cos \sin x}du = \int -\frac{2}{u} \times \frac{1}{\sin^2 x}du$  $-\frac{2}{u} - \frac{1}{1-\log} du = \int -\frac{2}{u} \times \frac{1}{1-(u-1)} du$  $\frac{-2}{U(2-q)} dq = \int \frac{2}{U(u-2)} du = \dots p_{u} \frac{1}{1-q}$  $\int \frac{1}{u-2} - \frac{1}{u} du = \lfloor h \lfloor u-2 \rfloor - \lfloor h \rfloor \rfloor = \lfloor h \lfloor \frac{u-2}{u} \rfloor + C$  $= \left| h \left| \frac{1+\log_2 - 2}{1+\log_2} \right| + C = \left| h \left| \frac{\log_2 - 1}{1+\log_2} \right| + C = \left| h \left( \frac{1-\log_2 2}{1+\log_2} \right) + C \right| \right|$  $= \ln \left( \frac{\sin^2 x}{1 + \cos^2 a} \right) + C = -\ln \left( \frac{1 + \cos^2 x}{\sin^2 x} \right) + C$ AS REPOREDO

23

I.F.G.B.

Mada

1+

#### Question 218 (*****)

F.G.B.

Y.G.B. Ma

I.V.C.B.

I.V.G.B.

anasmaths.

I.V.G.B. May

I.C.P

20

By using the substitution  $\tan \theta = \sqrt{x^3 - 1}$ , or otherwise, find an exact value for the following integral.

 $\sqrt{x^3-1}$ 

(inter

 $4-\pi$ 

 $\frac{1}{4\alpha_1\theta} = \sqrt{2^3 - 1}$  $\frac{1}{4\alpha_1^2\theta} = \alpha_1^3 - 1$ 

 $x_{1}^{3} = 1 + bu_{1}^{2}\theta$ 

α=12 H+ Θ=‡

nadasm.

I.V.C.B. Madası

a⁸ = 562<del>0</del> 312<u>da</u> = 25620 ban0 dal = <u>25620 ban0</u> d6

tomb ZSECTO fant do

<u>23550 kui²0</u> d0

4580°0 tan'o do 1 + by20 do

-1) 98

-0)]

4 (tom Q

27

.C.P.

I.G.B.

• ∛2

Madas

Ś

1+

#### (****) Question 219

2

Use appropriate integration methods to find an exact simplified value for



#### Question 220 (*****)

I.F.C.B.

By using the substitution  $e^x = \frac{1}{u}$ , or otherwise, show clearly that

 $\int \frac{9}{e^x \sqrt{e^{2x} - 9}} \, dx = \frac{\sqrt{e^{2x} - 9}}{e^x} + C$ 

nadasm.

21%	$=\int \frac{-q}{\sqrt{1-\frac{q}{\sqrt{2}}}} du$ $=\int \frac{-q}{\sqrt{1-\frac{q}{\sqrt{2}}}} du$	$ \begin{array}{l} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n$	$\begin{cases} \vec{e}_{n-1}^{-1} & u \leq \vec{e}_{n-1}^{-1} \\ \vec{e}_{n-1}^{-1} & u \leq \vec{e}_{n-1}^{-1} \\ \vec{e}_{n-1}^{-1} & $
YU'		$= \frac{ex}{VC-3} + C$	s RHAVIER)
10	20		0

proof

 $\frac{1}{8}$ 

Question 221 (*****)

I.F.G.B.

I.C.

By using a reciprocal substitution, or otherwise, find the value of the following integral.

 $\int_{1}^{2} \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} \, dx \, .$ 

$\int_{1}^{2} \frac{x^{2} - 1}{x^{3} \sqrt{2x^{4} - 2x^{2} + 1}} dx \dots \text{substitution}$	$a = \frac{l}{u}$	24WETE -45
$= \int_{1}^{\frac{1}{2}} \frac{\frac{1}{4u^{2}} - 1}{\frac{1}{1/2} \sqrt{\frac{2}{4u^{2}} - \frac{2}{3u^{2}} + 1}} \left( -\frac{1}{4u^{2}} du \right)$	$u = \frac{L}{2c}$ $dx = -\frac{L}{4c}du$	$= \int_{\frac{1}{2}}^{1} (\tilde{u} - u^{5}) (\tilde{u}^{4} - 2u^{5} + 2)^{\frac{1}{2}} du$
$=\int_{\frac{1}{2}}^{1} \frac{\frac{1}{u^{4}} - \frac{1}{u^{2}}}{\sqrt{\frac{2}{2} - \frac{2u^{2} + u^{4}}{u^{4}}}} du$	$\mathfrak{A}_{=1} \leftrightarrow \mathfrak{u}_{=1}$ $\mathfrak{A}_{=2} \rightarrow \mathfrak{L}_{=2}$	$= -\frac{1}{4} \int_{\frac{1}{2}}^{1} -\frac{1}{4} (u - u^{2}) (u^{4} - 2u^{2} + 2)^{\frac{1}{2}} du$
$= \int_{\pm}^{1} \frac{\frac{1}{\omega_{\pi}} - \frac{1}{\omega_{\pi}^{2}}}{\frac{1}{\omega_{\pi}} - \frac{1}{\omega_{\pi}^{2}}} du$		BY Etcontrol = $-\frac{1}{4} \left( 2 \left( u^4 - 2u^2 + 2 \right)^{\frac{1}{2}} \right)_{\perp}^{1}$
$\int_{\frac{1}{2}} \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{4} - 2\sqrt{4} + 2}$ MUUTIPU TOP & BOTTON OF THE INTHERMOD BY $\sqrt{2}$		$-\frac{1}{2}\left[\sqrt{u^4-2u^2+2}\right] \int_{t}^{\frac{1}{2}}$
$= \int_{\frac{1}{2}}^{1} \frac{u - u^{3}}{\sqrt{u^{4} - 2u^{2} + 2}} du$		$= \frac{1}{2} \sqrt{\frac{1}{16} - \frac{1}{2} + 2^2} - \frac{1}{2} \sqrt{\frac{1}{16}}$ $= \frac{1}{2} \sqrt{\frac{26}{16}} - \frac{1}{2}$
MOLLI NOTICE THAT	ж. К	$\frac{1}{2} - \frac{1}{8} = \frac{1}{2}$
$\frac{d}{dq}\left(\left(u^{l}_{-2}u^{2}_{-2}+2\right)=\left(l_{0}u^{3}_{-}+l_{0}u_{-}-2\right)\left(u-u^{5}\right)$		= 1



Show clearly that

 $\int_{0}^{\frac{\pi}{2} - \arctan\frac{12}{5}} 5\cos x - 12\sin x \, dx = 1.$ 



1+



Question 223 (*****)

12

Use trigonometric identities to find

 $\int \frac{1}{\cos x \sin^2 x} \, dx \, .$ 

 $\left| \ln \left| \sec x + \tan x \right| - \csc x + C \right|$ 

 $\int \frac{1}{\cos 15\pi^2} dx = \int \frac{\cos 2\pi}{\cos x} dx = \int \frac{1 + \frac{\cos 2\pi}{\cos x}}{\cos x} dx$   $= \int \frac{1}{\cos 2\pi} + \frac{\cos 2\pi}{\cos 2\pi} dx = \int \frac{1 + \frac{\cos 2\pi}{\cos 2\pi}}{\cos 2\pi} dx$   $= \int \frac{1}{\cos 2\pi} + \frac{\cos 2\pi}{\cos 2\pi} dx = \int \frac{1}{3} \frac{1}{\cos 2\pi} + \frac{1}{3} \frac{$ 

Question 224 (*****)

$$I = \int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \frac{\cot^3 x}{\csc x} \, dx \, .$$

Use appropriate integration techniques to show that

$$I = \frac{1}{6} \left[ a + b\sqrt{3} \right],$$

where a and b are integers to be found.

Y.G.B.

10

11202

D

I.C.B. Ma

I.C.P.

100



I.F.G.B.

2017

4.60

è



277

hs.com

Mada

I.C.B.

Question 225 (*****)

$$I = \int_{1}^{a} \frac{1}{\left(x^{\frac{4}{3}} + 7x\right)^{\frac{2}{3}}} dx.$$

Given that I = 9, determine the value a.

a = 8000

# $$\begin{split} \frac{(\zeta_{1}(\zeta_{1}(\lambda_{1}))}{(\zeta_{1}(\lambda_{1}+\gamma_{1}))^{\frac{1}{2}}} d\lambda &= \int \frac{1}{(\zeta_{1}(\zeta_{1}(\lambda_{1}+\gamma_{1}))^{\frac{1}{2}}} d\lambda \\ &= \int \frac{1}{(\zeta_{1}(\lambda_{1}+\gamma_{1}))^{\frac{1}{2}}} d\lambda &= \int \frac{1}{(\zeta_{1}(\zeta_{1}(\lambda_{1}+\gamma_{1}))^{\frac{1}{2}}} d\lambda \\ &= \int \frac{1}{2\lambda^{\frac{1}{2}}(\zeta_{1}(\lambda_{1}+\gamma_{1}))^{\frac{1}{2}}} d\lambda &= \int \frac{1}{\lambda^{\frac{1}{2}}} \frac{1}{(\lambda^{\frac{1}{2}}+\gamma_{1})^{\frac{1}{2}}} d\lambda \\ &= \frac{1}{2\lambda^{\frac{1}{2}}(\zeta_{1}(\lambda_{1}+\gamma_{1}))^{\frac{1}{2}}} = \frac{1}{2\lambda^{\frac{1}{2}}(\lambda^{\frac{1}{2}}+\gamma_{1})^{\frac{1}{2}}} \frac{1}{(\lambda^{\frac{1}{2}}+\gamma_{1})^{\frac{1}{2}}} \frac{1}{(\lambda^{\frac{1}{2}}+\gamma_{1})^{\frac{1}{2}}} d\lambda \\ &= \frac{1}{2\lambda^{\frac{1}{2}}(\zeta_{1}(\lambda_{1}+\gamma_{1}))^{\frac{1}{2}}} = \frac{1}{2\lambda^{\frac{1}{2}}(\lambda^{\frac{1}{2}}+\gamma_{1})^{\frac{1}{2}}} \frac{1}{(\lambda^{\frac{1}{2}}+\gamma_{1})^{\frac{1}{2}}} \frac{1}{(\lambda^{\frac{1}{2}}+\gamma_{1})^{$$

- $= \int_{a_1+1}^{a_1+1} \sqrt{a_1^2+1} = 3$   $= \int_{a_1+1}^{a_1+1} \sqrt{a_1^2+1} = 3$
- $\Rightarrow a^{\frac{1}{2}} + 7 = 27$   $\Rightarrow a^{\frac{1}{2}} = 20$   $\therefore a = 2b^{\frac{1}{2}} 8000$

**Question 226** (*****)

I.C.B.

By using a suitable trigonometric substitution, show clearly that



proof

) 9=平

- $\int_{0}^{\infty} \sqrt{\frac{16\alpha}{1-\alpha}} \, d\alpha = by \text{ substitution}$
- =  $\int_{0}^{\frac{1}{2}} \sqrt{\frac{16 \operatorname{supp}}{1 \operatorname{supp}}} (2 \operatorname{supp} \operatorname{cup} de)$ 
  - $\sqrt{\frac{16 20 \sqrt{20}}{\cos^2 \theta_{\rm c}}} \left( 2 \sin \theta \cos \theta \, d\theta \right)$
  - $\begin{array}{l} \displaystyle \frac{F}{2} & \displaystyle \frac{d_{2}h}{d_{2}} \left( \cos\theta_{1} \sin\theta_{2} d\theta_{2} \right)_{*} = \int_{0}^{\infty} E \sin^{2}\theta \ d\theta_{2} = \int_{0}^{\infty} E \left( \frac{1}{2} \frac{1}{2} \tan^{2}\theta_{2} \right) \ d\theta_{2} \\ \displaystyle \frac{1}{2} & \displaystyle \frac{1}{2} \left( \cos\theta_{2} \frac{1}{2} \sin^{2}\theta_{2} \right)_{*} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} \sin^{2}\theta_{2} \right) \ d\theta_{2} = \int_{0}^{\infty} \left( \frac{1}{2} \frac{1}{2} -$



## Question 228 (*****)

2

ŀ.G.p.

I.C.B.

Evaluate the following definite integral.



12

2

Give the answer in exact simplified form.



COM

proof

S.

15

202.50

madasn.

ŀ.C.p.

#### (****) Question 229

nadası

Smarns com trees

I.F.G.B.

I.C.B.

I.V.G.B.

alasmaths.com

Use a suitable trigonometric substitution to find the exact value of

V.C.B. Madas  $\int_{-1}^5 \sqrt{(1+x)(5-x)} \, dx \, .$ 

 $\int_{-1}^{2} \sqrt{(l+\lambda)(l-\lambda)^{2}} dx = \int_{-1}^{2} \sqrt{(l-\lambda)(l-\lambda)^{2}} dx = \int_{-1}^{2} \sqrt{(l+\lambda)(l-\lambda)^{2}} dx$  $\sqrt{-\left[x^2-4x-5\right]} dx = \int_{-1}^{3} \sqrt{-\left[\left(x-2\right)^2-9\right]} dx = \int_{-1}^{3} \sqrt{-\left(x-2\right)^2} dx$ 12 12 9(1-sun20) (sws0 do)  $\Theta = \left( \Theta_{200} \right) \left( \Theta_{200} \right) = \int_{-\pi/2}^{\sqrt{2}} \left( \Theta_{200} \right) \left( \Theta_{$  $Gb\left(\frac{\pi}{2\omega_{\pm}\pm\pm\omega_{\pm}}\right) = \frac{\pi}{2\omega_{\pm}} = \frac{\pi}{2$ = 06 0520 + 09 ] = 06 05200 9 + 9 5  $= \left( \underbrace{\mathfrak{M}}_{2} + 0 \right) - \left( 0 + 0 \right) =$ 

nadasmaths.com

I.V.C.B. Madasn

1.G.D.

1.6

nadasm.

9π 2

Created by T. Madas

2011

nadasmaths.com

I.Y.G.B.

Question	230	(****

By using trigonometric identities, show that

 $\frac{\pi}{4}$  $\frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} dx = \frac{1}{8} (16 - 3\pi).$ 

· · · · · · · · · · · · · · · · · · ·		· Gp	, proof	1
		PROCESS BY SAUTING THE FRATION $\int_{T_{6}}^{T_{6}} \frac{a_{1}b_{2} + a_{2}b_{2}}{a_{1}b_{2} + a_{2}b_{2}} dx = \int_{T_{6}}^{T_{6}} \frac{a_{1}b_{2}}{a_{1}b_{2}a_{2}b_{2}} dx = dx$ $= \int_{T_{6}}^{T_{6}} \frac{a_{1}b_{2}}{a_{1}b_{2}} + \frac{a_{2}b_{2}}{a_{2}b_{2}} dx = \int_{T_{6}}^{T_{6}} \frac{(-a_{1}b_{2}b_{1}^{2} + (-a_{2}b_{2}^{2}) + (-a_{2}b_{$	$THOY EXCRE - GALLATTING = \begin{bmatrix} 4u_{12} - \frac{1}{bu_{13}} & -3u \end{bmatrix}_{\frac{1}{b}}^{\frac{m}{b}}= \begin{bmatrix} \frac{1}{bu_{12}} & -1 & -3u \end{bmatrix}_{\frac{m}{b}}^{\frac{m}{b}}= \begin{bmatrix} 3u_{1} + \frac{1 - bu_{12}}{bu_{12}} \end{bmatrix}_{\frac{m}{b}}^{\frac{m}{b}}= \begin{bmatrix} 3u_{1} + 2\left(\frac{1 - bu_{12}}{2bu_{12}}\right) \end{bmatrix}_{\frac{m}{b}}^{\frac{m}{b}}= \begin{bmatrix} 3u_{1} + 2\left(\frac{1 - bu_{12}}{2bu_{12}}\right) \end{bmatrix}_{\frac{m}{b}}^{\frac{m}{b}}$	² SM2//
		$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin 2 - 2 + \sin 2 + \cos 2 + \sin 2 - 2 + \sin 2 - \sin 2 + \sin 2 - 2 + \sin 2 - \sin 2 - 2 + \sin 2 + \sin 2 + \sin 2 + \sin 2 - 2 + \sin 2 + $	$= \left[ \frac{3x}{7} + \frac{2}{7} \frac{7}{7} \frac{\overline{\delta}}{7} \right]_{\frac{1}{7}}$ $= \left( \frac{3\pi}{\delta} + \frac{2}{9m_{\frac{1}{7}}} \right) - \left( 3\frac{\pi}{2} + \frac{2}{3m_{\frac{1}{7}}} \right)$ $= -\frac{3\pi}{\delta} + 2$ $= \frac{1}{\delta} \left( (4 - 3\pi) \right)$	71.1
	nan.	11202		120.
		Sinaths.		
1. j. . j.			. I. I. C. B.	
nadas,	nadasm.	Created by T. Madas	Madasn.	nadasm.



1.4.6

naths.com



#### (*****) Question 231

Find, in exact simplified form, the value of the following integral. IA.

$\begin{aligned} & \int_{-\infty}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1}e^{-2})}  de = \int_{0}^{\infty} \sqrt{(2(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1})}  de = \int_{0}^{\infty} \sqrt{(2(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1})}  de = \int_{0}^{\infty} \sqrt{(2(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1})}  de = \int_{0}^{\infty} \sqrt{(2(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1})}  de = \int_{0}^{\infty} \sqrt{(2(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1})}  de = \int_{0}^{\infty} \sqrt{(2(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1})}  de = \int_{0}^{\infty} \sqrt{(2(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1})}  de = \int_{0}^{\infty} \sqrt{(2(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1})}  de = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-4}(\cos 2e^{-1}))^{-1}}  de \\ & = \int_{0}^{\infty} \sqrt{1+4(e^{2}2e^{-1})}  de = \int_{0}^{\infty} 1$	tion 231	(****)	0.0	1.0
$\int_{0}^{\sqrt{1+4\cos^{2}2x-4\cos^{2}x}} dx.$ $\int_{0}^{\sqrt{1+4\cos^{2}2x-4\cos^{2}x}} dx.$ $\int_{0}^{\sqrt{1+4\cos^{2}2x-4\cos^{2}2x}} dx.$ $\int_{0}^{\sqrt{1+4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x}} dx.$ $\int_{0}^{\sqrt{1+4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x}} dx.$ $\int_{0}^{\sqrt{1+4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}2x-4\cos^{2}$	in exact si	mplified form.	, the value of the following	g integral.
$\begin{split} \overline{\frac{1}{2}} \sqrt{\frac{1}{1} + 4\omega^{2}z^{-4}\omega_{2}z^{-1}} dz &= \int_{0}^{T} \sqrt{(2\omega_{2}z^{-1})^{2}} dz \\ &= \int_{0}^{T} \frac{1}{2}\omega_{2}z^{-1} dz \\ \\ \frac{1}{2} \int_{0}^{T} \frac{1}{2}\omega_{2}z^{-1} dz \\ \frac{1}{2} \int_{0}^{T} \frac{1}{2} \frac{1}$		-0		
$2022 - \lambda < 0  \overline{\xi} < \chi < \overline{\xi}$ $\frac{4000^{11}M_{2} - 10}{10} \text{ The instead}$ $\dots = \int_{0}^{\frac{1}{2}} 2022 - 1 \text{ dx} + \int_{\frac{1}{2}}^{\frac{1}{2}} 1 - 2622 \text{ dx} \text{ dx}$ $= [SW22 - 2\pi]_{0}^{\frac{1}{2}} + (\chi - SW22]_{W_{0}}^{\frac{1}{2}}$ $= (\frac{\sqrt{2}}{2} - \frac{\pi}{2}) - (0) + (\overline{\xi} - 0) - (\overline{\xi} - \frac{9}{2})$	1202	102.	nadasmark	$\int_{0}^{\frac{\pi}{2}} \sqrt{1+4\omega^{2}z_{2}-4\omega z_{2}} dz = \int_{0}^{\frac{\pi}{2}} \sqrt{(2\omega z_{1}-1)^{2}} dz$ $= \int_{0}^{\frac{\pi}{2}} \left[ 2\omega z_{2}-1 \right] dz$ $\frac{N(z_{2})}{2\omega z_{2}-1} = 0$ $2\omega z_{2}-1 = 0$
		V.		$\frac{26022-1 < 0  \mathbb{F} < 2 < \mathbb{F}}{\int_{0}^{\mathbb{F}} 2602 - 1  dx + \int_{\mathbb{F}}^{\mathbb{F}} 1 - 26022  dx}$ $= \left[ \frac{50022 - 2}{50} \right]_{0}^{\mathbb{F}} + \left( 2 - 5002 \right]_{0}^{\frac{10}{10}}$

**Question 232** (*****)

By using a suitable cosine double angle trigonometric identity find





 $\int \frac{6}{(1+\alpha_0 h)^2} \, \mathrm{d}x = \int \frac{6}{(1+\alpha_0 h)^2} \, \mathrm{d}x = \int \frac{6}{4\alpha_0 \frac{3}{2}} \, \mathrm{d}y \quad \text{for all } y = \partial_0 \alpha_0^2 h$ 

- $\int \frac{3}{2} \sec^{\frac{d}{2}} \frac{1}{2} d\chi = \int \frac{3}{2} \operatorname{St}_{2}^{\frac{d}{2}} \operatorname{St}_{2}^{\frac{d}{2}} \frac{1}{2} \operatorname{St}_{2} \frac{1}{2} \operatorname{S$  $\frac{3}{2}$ st $c^{2}\frac{1}{2}$  +  $\frac{3}{2}$ st $c^{2}\frac{1}{2}$ tan² $\frac{1}{2}$ da =
- ma + tan3 + (

#### Question 233 (*****)

By expressing the integrand in the form  $\sec^2 x f(\tan x)$ , or otherwise, find a simplified expression for the following integral.



Question 234 (*****)

I.V.G.B. Ma

I.F.G.B.

 $\sec x \equiv \frac{1 + \tan^2\left(\frac{x}{2}\right)}{1 - \tan^2\left(\frac{x}{2}\right)}.$ 

- a) Prove the validity of the above trigonometric identity.
- **b**) Express  $\frac{2}{1-t^2}$  into partial fractions.

I.C.

c) Hence use the substitution  $t = tan\left(\frac{x}{2}\right)$  to show that

 $\int \sec x \, dx = \ln \left| \tan \left( \frac{x}{2} + \frac{\pi}{4} \right) \right| + C \, .$ 

Thes  $\frac{2}{1-t^2} = \frac{1}{1+t} + \frac{1}{1-t^2}$ ( Seca da = .. 1+tay2 da.  $= \left( \frac{1+t^2}{1-t^2} \left( \frac{2}{1+t^2} dt \right) = \int \frac{2}{1-t^2} dt \right)$ 2  $\frac{1}{1+t} + \frac{1}{1-t} dt = \ln|1+t| - \ln|1-t| + C$ 1+6433 d  $\ln \left| \frac{1+t}{1-t} \right| + C = \ln \left| \frac{1+t}{1-t} \right| + C$ to tay == 1 tang + tang  $= \left| M \right| \left| \frac{1}{2} \left( \frac{3}{2} + \frac{3}{4} \right) \right| +$ 

 $\frac{2}{1-t^2} =$ 

1+*t* 

F.G.B.

Mada

2017

Madasn,

#### Question 235 (****)

I.C.

1. V. G.B. 111303511

maths.c.

I.F.G.B.

By using the substitution  $e^x = \frac{1}{t}$ , or otherwise, show clearly that

The Co

 $\int \frac{4}{e^x \sqrt{e^{2x} + 4}} \, dx = -\frac{\sqrt{e^{2x} + 4}}{e^x}$ Madasm

$\int \frac{4}{e^{\lambda}\sqrt{e^{2}+4}} d\lambda  \text{sy subarration}$	
$=\int \frac{4}{\pm \sqrt{\pm e^{+\phi^{+}}}} \left(-\frac{de}{\pm}\right) = \int \frac{4\pm \sqrt{e^{-\phi^{+}}}}{\sqrt{\pm e^{+\phi^{+}}}} \left(-\frac{de}{\pm}\right)$	$\begin{pmatrix} x_{1} \\ e \frac{dx}{dt} = -\frac{1}{t^{2}} \\ \frac{1}{t} \frac{dy}{dt} = -\frac{1}{t^{2}} \end{pmatrix}$
$= \int \frac{1+4t^2}{\sqrt{1+4t^2}} dt = \int \frac{-t}{\sqrt{1+4t^2}} dt$	$\int \frac{d\alpha}{dt} = -\frac{1}{t}$
$= \int \frac{-4k}{N^{1} + 4t^{2}} dt = \int -4k \left(1 + 4t^{2}\right)^{\frac{1}{2}} dt$ By Energy (thin) Exce or this ky substitution)	$\begin{cases} dx = -\frac{dt}{t} \\ t = -\frac{dt}{ex} \end{cases}$
$= -(1+4t^{2})^{\frac{1}{2}} + C = -(1+\frac{4}{e^{2\alpha}})^{\frac{1}{2}} + C$	and
$= -(e^{24}+4)^{\frac{1}{2}}$	el-puilhD

hs.com

proof

14.40

1+

(*****) Question 236

Madasm,

Use the fact that  $\sin A \equiv \cos\left(\frac{\pi}{2} - A\right)$  and other trigonometric identities to show that

$$\int_{-\frac{5\pi}{12}}^{-\frac{4}{5\pi}} \frac{4}{\sqrt{1-\sin 2x}} \, dx = 2\ln 3.$$

proof



#### Question 237 (*****)

I.F.G.p

20

Use the substitution  $x = \frac{1}{u}$  to find the value of

I.C.B.

$$\int_{\frac{1}{2}}^{2} \frac{\ln x}{1+x^2} dx$$

11adası,



K.C.B.

ths.com

0

4.6.0

6

12.00

Question 238 (*****)

00

I.F.G.B.

nadası

Use the substitution  $x = \frac{1}{u^2 + 1}$  to show that

I.Y.G.B.

$$\int_{0.2}^{0.5} \frac{\sqrt{x-x^2}}{x^4} \, dx = \frac{256}{15}.$$

proof

$\int_{0:2}^{0.5} \frac{\sqrt{\lambda - \chi^2}}{2\iota^4} d\lambda = \int_{2}^{1} \frac{\sqrt{\iota}(\iota) - \frac{1}{(\iota^4 \iota))^4}}{(\iota^4 \iota)^4} \left( -\frac{2\iota}{(\iota^4 \iota))^4} d\mu \right)$	$\exists_{z} = \frac{1}{\hat{u}^{2} + 1}$ $\exists_{z} = (\underline{u}^{2} + 1)^{-1}$
$\sum_{l=1}^{2} \frac{\sqrt{\underline{(u^{L}_{+1})}^{-1}}}{\underbrace{\frac{1}{(u^{L}_{+1})^{k}}}{(u^{L}_{+1})^{k}}} \left( \frac{2u}{(k^{2}_{+1})^{2}} d\mu \right) = \int_{1}^{2} \underbrace{\frac{u^{L}}{(u^{L}_{+1})^{k}}}_{(k^{L}_{+1})^{k}} \chi_{(k^{L}_{+1})}^{2u} d\mu \\ \leq \sum_{l=1}^{2} \underbrace{\frac{1}{(u^{L}_{+1})^{k}}}_{(u^{L}_{+1})^{k}} \chi_{(k^{L}_{+1})^{k}}^{2u} d\mu \\ \leq \sum_{l=1}^{2} \underbrace{\frac{1}{(u^{L}_{+1})^{k}}}_{(u^{L}_{+1})^{k}}} \chi_{(u^{L}_{+1})^{k}}^{2u} d\mu \\ \leq \sum_{l=1}^{2} \underbrace{\frac{1}{(u^{L}_{+1})^{k}}}_{(u^{L}_{+1})^{k}} \chi_{(u^{L}_{+1})^{k}}^{2u} d\mu \\ \leq \sum_{l=1}^{2} \underbrace{\frac{1}{(u^{L}_{+1})^{k}}}_{(u^{L}_{+1})^{k}}} \chi_{(u^{L}_{+1})^{k}}^{2u} d\mu \\ \leq \sum_{l=1}^{2} \underbrace{\frac{1}{(u^{L}_{+1})^{k}}}_{(u^{L}_{+1})^{k}}} \chi_{(u^{L}_{+1})^{k}}}^{2u} d\mu \\ \leq \sum_{l=1}^{2} \underbrace{\frac{1}{(u^{L}_{+1})^{$	$dx = -\frac{2u}{(k_{z}+k_{z})^{-2}}$
$\left  \begin{array}{c} \frac{2}{\left(\frac{u^2+1}{(u^2+1)^{\frac{1}{2}}}\times \frac{2u}{(u^2+1)^{\frac{1}{2}}} \times \frac{2u}{(u^2+1)^{\frac{1}{2}}} \\ \frac{(u^2+1)^{\frac{1}{2}}}{(u^2+1)^{\frac{1}{2}}} \times \frac{2u}{(u^2+1)^{\frac{1}{2}}} \end{array} \right  $	$u^2 + 1 = \frac{1}{2}$ $u^2 = \frac{1}{2} - 1$
$\begin{cases} 2 \Im_{i}^{2} (u^{2}+i) d_{ij} = \int_{-1}^{2} \Im_{i}^{ij} + 2u^{2} d_{ij} \\ \int_{-1}^{2} \Im_{i}^{ij} + \frac{2}{3} (u^{2}) \Big _{-1}^{2} = \left( \frac{\omega_{ij}}{2} + \frac{1/6}{3} - \left( \frac{2}{3} + \frac{2}{3} \right) \right) \end{cases}$	$u = \pm \sqrt{\frac{1}{2}} - i$ x = 0.2, $u = 2$ , x = 0.5, $u = 1$
$\frac{12}{32C}$ $\frac{12}{3}$	~~~~

N.C.

Created by T. Madas





The figure above shows the graph of the curve with equation

$$w=(x-q)(x-p)^2,$$

where p and q are positive constants.

The curve meets the x axis at the points A and B. The region R, shown shaded in the figure, is bounded by the curve and the x axis.

a) Show that the area of the shaded region is

 $\frac{1}{12}(p-q)^4.$ 

The point C is the local maximum of the curve. The rectangle AMCNB is such so that MCN is parallel to the x axis and both AM and BN are parallel to the y axis.

**b**) Show that the area of the rectangle *AMCNB* is  $\frac{16}{9}$  times as large as the area of *R*, regardless of the values of *p* and *q*.

	3/ PHOTS 7
0)	$R = \int_{q}^{p} (2-q)(2-p)^{2} d\lambda \qquad \left\{ \begin{array}{c} P = \text{Transfur + rout} \\ q = (225N_{0}, p_{0}q_{1}) \\ \frac{1}{2}(2-p)^{2} \end{array} \right\} \qquad \left\{ \begin{array}{c} 2-q \\ \frac{1}{2}(2-p)^{2} \end{array} \right\}$
	BECAUSE OF THE CONSTANTS I T IS BUTCH OF SHARE BY PARE INSTAND OF EXPANDING.
	$ \mathbb{D}^{2} \left[ \left\{ \widehat{\boldsymbol{\gamma}}^{(d)} - d \right\}_{k}^{(d)} - \int_{k}^{d} \widehat{\boldsymbol{\gamma}}^{(d)} \cdot b_{k}^{(d)} \right]_{k}^{d} = \left[ \left\{ \widehat{\boldsymbol{\gamma}}^{(d)} - d \right\}_{k}^{(d)} - \left[ \widehat{\boldsymbol{\gamma}}^{(d)} - b \right]_{k}^{(d)} \right]_{k}^{d} $
	$= (0 - 0) - (0 - \frac{1}{12}(q - p)^{4}) = \frac{1}{12}(q - p)^{4} = \frac{1}{12}(p - q)^{4}$
	$\left( \begin{array}{c} \left( \alpha - \alpha \right) \right)^{\mu} = \left( \left( \alpha - \alpha \right)^{\mu} \right)^{\mu} \left( \alpha - \alpha \right)^{\mu} \left( \alpha - \alpha \right)^{\mu} \right)^{\mu} \left( \alpha - \alpha \right)^{\mu} \right)^{\mu} \left( \alpha - \alpha \right)^{\mu} \left( \alpha - $

$= (x-q)(x-p)^2$	$\frac{4}{1006} Q = \left(\frac{p+2q}{h} - q\right)\left(\frac{p+2q}{h} - p\right)^2$
$\frac{a}{2} = 1(x-p)^2 + 2(x-q)(x-p)$	$y = \frac{1}{27} (P+2q-3q)(P+2q-3q)^2$
a = (a-p)((a-p)+2(a-q))	$\hat{H} = \frac{2}{24} (b-d)_3$ $\hat{H} = \frac{2}{24} (b-d)_3$
<u>q</u> = (2-p) (3x-p-2q)	
SOWE FOR REMO GUIS	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$
X = K = Poner B <u>P+2q</u> 3	$50  \frac{4}{12} \frac{(2-7)^2}{(2-7)^2} = \frac{1}{27} = \frac{48}{27} = \frac{16}{9} \frac{1}{12}$

proof

(****) **Question 240** 

 $\sin 3x$  $f(x) = \frac{\sin 5x}{(\cos 7x + \cos x)^2 + (\sin 7x + \sin x)^2}, \ x \in \mathbb{R}.$ 

Use trigonometric identities to find the exact value of Madasmaths



#### Question 241 (*****)

Use a suitable trigonometric manipulation to find an exact simplified answer for the following integral.

1+



Question 242 (*****)

- $f(x) = 3\sin x \cos x + 3, \ x \in \mathbb{R}.$
- $g(x) = \sin x + \cos x, \ x \in \mathbb{R}.$
- a) Express f(x) in the form

 $A \times g(x) + B \times g'(x) + 3,$ 

- where A and B are constants.
- **b**) Express g(x) in the form

# $R\cos(x-\varphi)$

where R and  $\varphi$  are positive constants.

c) Hence find a simplified expression for

 $\frac{f(x)}{g(x)}$ dx.

 $[A=1], [B=-2], [R=\sqrt{2}], [\varphi=\frac{1}{4}\pi]$  $|x-2\ln|\sin x + \cos x| + \frac{3}{2}\sqrt{2}\ln|\sec(x-\frac{1}{4}\pi) + \tan(x-\frac{1}{4}\pi)| + C$ 



 $\int \frac{-f(x)}{\vartheta(x)} dx = \int \frac{-\vartheta(x) - 2\vartheta(x) + 3}{\vartheta(x)} dx$  $= \int 1 + \frac{2g(\alpha)}{g(\alpha)} + \frac{3}{g(\alpha)} d\alpha$  $= \int \left[ d\mu + 2 \int \frac{\partial (\mu)}{\partial (\mu)} d\mu + \int \frac{3}{\partial (\mu)} d\mu \right]$  $= \alpha + 2h_{\alpha}[g(\alpha)] + \int \frac{3}{\sqrt{2} \cos(\alpha - \frac{1}{4})} d\alpha$ =  $\alpha + 2\ln \left(g\omega\right) + \frac{3}{\sqrt{2}}\int sec(\alpha - \overline{x}) d\lambda$ NOTING THAT I stea de = h|sea+bure|+C  $\int \frac{f(x)}{a(x)} dx = x + 2h |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sec(x \mp) + \frac{1}{2} \sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \sqrt{2} \ln |\sin x + \log x| + \frac{3}{2} \ln |\sin x| + \frac{3}{2} \ln |\sin x| + \frac{3}{2$ 

1+

#### (*****) **Question 243**

Use the substitution  $x = 2 \sec \theta$ , to find a simplified expression for





Question 246 (*****)

$$I = \int_{1.5}^{2} \frac{(x-2)(2x^2-5x-1)}{(x-1)(x-3)} dx.$$

Use appropriate integrations techniques to show that

$$I = \frac{5}{4} - \ln k ,$$

where k is a positive integer.

I.C.B.

I.C.P.

$\int_{1+5}^{2} \frac{(a-2)(2t^{2}-5)}{(a-1)(a-5)}$	$\frac{(2-1)}{s} dx = \frac{s}{4} - \ln k$
💿 तिर्ह्याण मस्ट 1107,622,600 17 वज	12 IN PROPER OF THE OCH TO DEVEL AS OCH AND THE INFORMATION IS
(32)(22 ² -Ω-	$\frac{1}{2x^{3} - x^{2} - x} - 4x^{2} + 10x + 2}{2x^{3} - 9x^{2} + 9x + 2}$
$(\chi_{-1})(\chi_{-3}) = \chi^2$	
$\mathfrak{J}^2 - \mathfrak{L} + \mathfrak{Z}$	$\frac{1-\frac{2z}{2z}-1}{2z^{2}+4zz^{2}-2z}$ $\frac{1-\frac{2z}{2z^{2}+4zz^{2}}-\frac{1}{2z^{2}-2z}}{-z^{2}+2z}$ $\frac{-z^{2}-2z}{-2z^{2}-2z}$ $-z+5$
HANGE WE HAVE SO F	ñ2
$\frac{(2-2)(2x^2-5x-}{(2x-1)(x-3)}$	$\frac{-1}{2} = 2x - 1 + \frac{z - z}{(x - 1)(x - 3)}$ $= 2x - 1 + \frac{\frac{z}{2}}{-x} + \frac{1 - xz}{-x}$
	$= 2\alpha - 1 - \frac{2}{\alpha - 1} + \frac{1}{\alpha - 3}$



k = 6

20

F.G.B.

madasn

I.C.B.

1.4

- $\begin{bmatrix} x^2-z & -2\ln|x-1| + \ln|x-s| \end{bmatrix}_{\mathcal{H}}^2$   $\begin{bmatrix} 4-2 & -2\ln|x-1| + \ln|x-s| \end{bmatrix} \begin{bmatrix} 2\\ -\frac{2}{2} \frac{3}{2} & -2\ln\frac{1}{2} + \ln|x-s| \end{bmatrix}$
- $2 \frac{q}{4} + \frac{3}{2} + 2 \ln \frac{1}{2} \ln \frac{3}{2}$
- $= \frac{8 9 + 6}{4} + \ln \frac{1}{4} \ln \frac{3}{2}$
- $= \frac{5}{4} + \ln \frac{1}{6}$
- $=\frac{5}{4}-hc$





asmaths.com

I.V.C.B. Madasm

Smaths Com I. K. C. B.

I.F.G.B.

$$I = \int_0^1 \left(x^{\frac{7}{6}} + 4x^{\frac{2}{3}}\right)^{-\frac{3}{4}} dx \, .$$

Use appropriate integration techniques to show that

Madasmaths.com

$$I = 8 \begin{bmatrix} \frac{4}{5} - \sqrt{2} \end{bmatrix}$$



nadasmaths.com

I.V.C.B. Madasm

mains.co

4.60

1+

nadasman

the com

Created by T. Madas

i C.P.

COM

Question 248 (*****)

asmaths.com

I.V.C.B. Madasm

Smarns com i vege

I.Y.G.B.

 $I = \int_0^{\frac{1}{4}\pi} \frac{1}{9\cos^2 x - \sin^2 x}$ dx.

By using a tangent substitution, or otherwise, show that

madasmaths.com

 $I = \frac{1}{6} \ln 2.$ 



nadasmaths.com

I.V.C.B. Madasn

The Com

ths.col

1.60

11.5

120351131

Created by T. Madas

I.V.G.B.

#### Question 249 (*****)

F.G.B.

I.C.B.

Find an exact simplified value for the following definite integral.

 $\frac{e^{8x} - e^{2x}}{(e^{8x} + 3)(e^{2x} + 3)}$ dx.

You may assume without proof that the integral converges.

 $\overline{\left(e^{\beta t}+3\right)\left(e^{2t}+3\right)}$ e2+3 THUS WE THANK  $\int_{0}^{0} \frac{e^{\beta L} - e^{2\lambda}}{e^{\beta L} - e^{2\lambda}} d\lambda = \int_{0}^{0} \frac{e^{\lambda + 2\lambda}}{e^{\lambda + 2\lambda}} d\lambda$  $= \int_0^\infty \frac{1}{e^{2t}+3} dx - \int_0^\infty \frac{1}{e^{4t}+3} dt$ THE TWO, AS THEY HAS IDANTICAL IN STRUCTURE  $\int_{0}^{\infty} \frac{1}{e^{2\lambda} + 3} d\lambda = \int_{0}^{\infty} \frac{e^{2\lambda}}{1 + 3e^{2\lambda}} d\lambda = -\frac{1}{e} \int_{0}^{\infty} \frac{-5e^{2\lambda}}{1 + 3e^{2\lambda}} d\lambda$  $=\left[\frac{1}{2}\ln(1+3e^{2k})\right]_{\infty}^{\infty}=-\frac{1}{2}\ln(1+\frac{1}{2}\ln k)=-\frac{1}{2}\ln k$  $\frac{\overline{e}^{B_1}}{1+3\overline{e}^{Q_1}} d_1 =$  $-\frac{1}{24}\int \frac{24e^{\theta x}}{1+3e^{\theta x}} dt = \left[\frac{1}{24}\ln\left(1+3e^{\theta x}\right)\right]^{\theta}$ 는lu4 - hu4 = hu4 - hu4

27

I.C.p

17₂02

V

 $\frac{1}{4} \ln 2$ 

Ś

è

Question 250 (*****)

I.G.B.

I.C.B.

Om

$$f = \int_{-\frac{5}{2}}^{\frac{7}{2}} \frac{4x+1}{\sqrt{35+4x-4x^2}} \, dx$$

By writing  $35+4x-4x^2$  in completed the square form, followed by a suitable trigonometric substitution, show that

 $I = \frac{3}{2}\pi.$ 



m

aths com

madası

I.C.P.

Created by T. Madas

0

2

Question 251 (*****)

asmaths.com

1. C.B. 111.21/25

Smaths.com

I.V.G.p

 $I = \int_{-1}^{1} (x+3)\sqrt{7-6x-x^2} \, dx$ 

- **a**) Use a suitable trigonometric substitution to show that  $I = 8\sqrt{3}$ .
- b) Verify the answer of part (a) by an alternative method.

 $(2+3)\sqrt{7-6x-x^2} dx = \int (x+3)\sqrt{-[x+6x-7]} dx$  $(3+3)\sqrt{-[(3+3)^2-9-7]}dx = \int_{-1}^{1} (3+3)\sqrt{[(2-f_{3+3})^2]}dx$  $\left(\frac{2+3}{4}\right)^2$ 3+3 = 4cm€ X=-1 ++ 0=7 ર=ા ⊢• 9=% die 4 last de 45m0 J 16 - 165m30 (4100 db) 4sino VIG(1-SINTO) 4LOSO Ozall × Oxal × Omzl 64 smQ coZO dQ  $\begin{bmatrix} -\frac{64}{3}\cos^2\theta \end{bmatrix}_{W_{1}}^{W_{2}} = \frac{64}{3} \begin{bmatrix} \cos^2\theta \end{bmatrix}_{W_{2}}^{W_{2}}$  $\frac{64}{3}\left[\left(\frac{15}{2}\right)^2 - 0^3\right] = \frac{64}{3} \times \frac{3\sqrt{3}}{8}$ 

BY AN ALGEBRAIC SUBSTITUTION u= N7-62-2  $u^2 = 7 - 6x - x$ (2+3) J7-62-22 d2 =. 24 du = -6-20  $(2+3)^{(u)}\left(\frac{-u}{2+3} d_{4}\right)$ u du = -3-2 - u² du a=1 u=0  $\Im v = -1$   $U = \sqrt{12}^{12}$  $\left[\frac{1}{2}u^{x}\right]_{0}^{1/2}$  $\frac{1}{3} \left( \sqrt{12} \right)^3 = \frac{1}{3} \times 12 \times \sqrt{12} = 4 \sqrt{12} \times 8 \sqrt{3}$ -6-2x = -2(3+x)(2+3) (7- 4 -2)2 dr  $\left[\left.\left(\overline{\gamma}-\zeta_{2}-\chi^{2}\right)^{\frac{2}{2}}\times\left(^{-\frac{1}{2}}\right)\right]_{-1}^{-1}=-\frac{1}{4}\left[\left(\overline{\gamma}-\zeta_{2}-\chi^{2}\right)^{\frac{2}{2}}\right]^{-1}$ 

lasmaths.com

The Com

proof

4.6.0

6

Created by T. Madas

1.1.6.6

Ismaths.com

5

#### (*****) Question 252

11₂₀₂51

I.V.G.B. Madası

00

I.F.G.B

I.F.G.B.

alasmans.com

Use trigonometric identities to find the value of

 $\frac{\pi}{3}$  $32\sin x \sin 2x \sin 3x \, dx$ . EB Madası

200

2017

I.G.B.

I.F.G.B

madasmaths,

I.C.B.

1.1.0.0



17.20/2ST

2011

The Com

9

4.60

6

nadasm.

haths.com

I.V.C.B. Madasn

#### (****) **Question 253**

Use suitable integration techniques to show that





#### Question 255 (*****)

I.C.B. M.

I.C.P.

Use suitable integration techniques to show that

 $\frac{1 + \cos x + \sin x - \tan x}{1 + \tan x} dx =$ 

You may assume that the above integral converges.



1.

27

I.V.C.B. Mada

nn,

#### Question 256 (*****)

I.Y.C.F

F.G.B.

Use a suitable trigonometric substitution to find a simplified expression for







- $= \frac{9}{2}\Theta + \frac{9}{2} + \frac{9}{2} + C$
- $= \frac{q}{2} \operatorname{argm}\left(\frac{3-2}{3}\right) + \frac{q}{2}\left(\frac{3-2}{3}\right)\left(\frac{\sqrt{q}-(3-2)^{2}}{3}\right) + C$

F.C.B.

Maria

2

 $= \frac{7}{6} \operatorname{olczin}\left(\frac{\overline{x}}{x-\overline{x}}\right) + \frac{7}{7}(\overline{x}-\overline{x})\sqrt{(1+\overline{x})(2-\overline{x})}_{1} + C$ 

Question 257 (*****)



The figure above shows a cubic curve that crosses the x axis at A(a,0) and touches the x axis at B(b,0), where a and b are positive constants. The point C is a local maximum of the curve.

a) Find the x coordinate of C, in terms of a and b.

The point D lies on the x axis so that CD is parallel to the y axis.

**b**) Show that |AB| = 3|AD|.

The region R is bounded by the curve, the line segment CD and the x axis.

c) Use integration by parts to show that the area of R is  $\frac{4}{81}(b-a)^4$ .

 $x = \frac{1}{3}(2a+b)$ 

) ARI- h  $= \left(\frac{1}{3}(x-q)(x-b)^{3}\right) - \frac{1}{3}(x-b)^{3} dx$  $a)(x-b)^3 - \frac{1}{12}(x-b)^4$  $(x-b)^3 \left[ 4(x-a) - (x-b) \right]$ -b)³(3x-4a+b)]  $\left|\left(\frac{2a+b}{3}-b\right)^3\left(2\pi\frac{2a+b}{2}-b\right)\right|$ +b-3b]3 [ 3b - 70  $\frac{2n-2l_0}{2} \sqrt{2} (h-a)$ 4 (b-a)

#### Question 258 (*****)

By considering the derivatives of  $e^x \sin x$  and  $e^x \cos x$ , find

 $e^x(2\cos x-3\sin x)\,dx\,.$ 

С

$\frac{d}{dt} \left( \vec{e}_{\text{cont}} \right) = \vec{e}_{\text{cont}} + \vec{e}_{\text{cont}} \right) + dd  q  \text{subtract gives}$
$ \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d} t} \left( \tilde{\mathrm{c}} \tilde{\mathrm{s}} \mathrm{i} \mathrm{x}_{*} + \tilde{\mathrm{c}} \mathrm{i} \mathrm{s} \mathrm{x}_{*} \right) = \lambda \tilde{\mathrm{c}} \tilde{\mathrm{s}} \mathrm{s} \mathrm{x}_{*} \\ \frac{\mathrm{d}}{\mathrm{d} t} \left( \tilde{\mathrm{c}} \tilde{\mathrm{s}} \mathrm{i} \mathrm{x}_{*} - \tilde{\mathrm{c}} \mathrm{i} \mathrm{s} \mathrm{x}_{*} \right) = 2 \tilde{\mathrm{c}} \tilde{\mathrm{s}} \mathrm{s} \mathrm{x}_{*} \\ \frac{\mathrm{d}}{\mathrm{d} t} \left( \frac{\mathrm{d}}{\mathrm{c}} \tilde{\mathrm{s}} \mathrm{i} \mathrm{s} \mathrm{s} \mathrm{s} \mathrm{s} \mathrm{s} \mathrm{s} \mathrm{s} s$
$\begin{array}{l} 46\pi\epsilon & 2e^{2}\omega\alpha - 3e^{2}m\alpha = 2\frac{d}{2\omega}\left(\pm^{2}(\alpha_{1}+\omega_{2})-3\frac{d}{2\omega}\left(\pm^{2}(\omega_{1}-\omega_{2})\right)\right)\\ 2e^{2}\omega\alpha - 3e^{2}m\alpha = \frac{d}{2\omega}\left[-e^{2}(m+\omega_{2})-\frac{3}{2}e^{2}(m-\omega_{2})\right]\\ 2e^{2}\omega\alpha - 3e^{2}m\alpha = \frac{d}{2\omega}\left[\pm^{\frac{1}{2}}e^{2}\left[3\omega\alpha + 3\omega\alpha\right]\right]\\ 2e^{2}\omega\alpha - 3e^{2}m\alpha = \frac{d}{2\omega}\left[\pm^{\frac{1}{2}}\left(3\omega\alpha + 3\omega\alpha\right)\right]\\ 2e^{2}\omega\alpha - 3e^{2}m\alpha = \frac{d}{2\omega}\left[\pm^{\frac{1}{2}}e^{2}\left[3\omega\alpha + 3\omega\alpha\right]\right]\\ 2e^{2}\omega\alpha - 3e^{2}m\alpha = \frac{d}{2\omega}\left[\pm^{\frac{1}{2}}e^{2}\left[3\omega\alpha + 3\omega\alpha\right]\right]\end{array}$
$\int e^{2}(2t\alpha s_{n}-3s_{n})s_{n}ds = \frac{1}{2}e^{2}(5t\alpha s_{n}-5t)s_{n}+C$

#### Question 259 (*****)

Use integration by parts and suitable trigonometric identities to find

 $\sec^3 x \, dx$ .

# $\left|\frac{1}{2}\sec x \tan x + \frac{1}{2}\ln\left|\sec x + \tan x\right| + C\right|$

 $\int \sec^2 a \, da = \int \sec^2 a \sec a \, da \dots$ 

- ···= secatura S seca tanza da
- = sectory Jsec (sect-1) de
- = stantanz J sect sta de
- = Secutaria Secia da + Secu da = secutaria - Secia da + 14 [secut bura]
- 2 SUCLYAND J WL I ON +
- Jetit de = secritarya Jeeta de + Infeca + tour
- 2 [Stein de = steabure + In[stea + ture] + C
- $\int sec^{2}x \, dx = \frac{1}{2} sec^{2}x \, dmx + \frac{1}{2} \ln \left| sec^{2}x + tonx \right| + C$

#### Question 260 (*****)

By using the substitution  $\sqrt{x} = \tan \theta$ , or otherwise, find a simplified expression for the following integral.



 $\int_{\frac{1}{2}}^{2} \frac{1}{x+x^4} \, dx \; .$ 

# Question 261 (*****)

Com

I.F.G.B.

Com I.Y.C.B.

0

Find the value of the following definite integral.

Give the answer in the form  $\ln k$ , where k is a positive integer.

nadası,

200

100

I.F.G.B.

 $\frac{1}{x_{+}x_{t}}dt = \int_{t_{t}}^{2} \frac{1}{x^{4}(x^{3}+1)}dt = \int_{t_{t}}^{2} \frac{x^{4}}{x^{3}+1}dt$  $\int_{\frac{1}{2}}^{2} \frac{x^{4}}{x^{5}+1} d\lambda = -\frac{1}{3} \int_{\frac{1}{2}}^{2} \frac{-3x^{4}}{x^{5}+1} dx = \left[-\frac{1}{3} \ln \left[x^{3}+1\right]\right]_{\frac{1}{2}}^{2}$  $= \frac{1}{3} \left[ \ln \left( \frac{x^2}{x^2} + 1 \right) \right]_{2}^{\frac{1}{2}} = \frac{1}{3} \left[ \ln \left( 1 + \frac{1}{x^2} \right) \right]_{2}^{\frac{1}{2}}$  $\frac{1}{2} \left[ \ln \left( 1+\beta \right) - \ln \left( 1+\frac{1}{2} \right) \right]_{2}^{2} = \frac{1}{2} \left[ \ln \left( 1-\ln \frac{1}{2} \right) \right]_{2}^{2}$  $\frac{1}{2} \left[ \ln q + \ln \frac{q}{2} \right] = \frac{1}{2} \ln \left( q \times \frac{q}{2} \right) = \frac{1}{2} \ln 8$ 

11202SD

00

CR

The Com

k = 2

4.60

6

nadasm

harns.com

Question 262 (*****)

Madasmaths.com

I.V.C.B. Madasmaths.Com

Madas,

alasmaths.com i.v.

I.V.G.B

asmaths.com

Created by T. Madas  

$$I = \int_{-2}^{2} \frac{1}{\sqrt{1 - ax + a^2}} dx, a > 0, a \neq 0.$$

Find the two possible values of I, giving the answer in terms of a where appropriate.

$$\left[ \begin{array}{c} \left[ \begin{array}{c} 1 \\ \frac{1}{2} \\ \frac{1}{2} \end{array} \right] \right]$$

Smarns.col

(*****) Question 263

nana

Smarns.com i.v.

I.F.G.B.

alasmaths.com

2

 $\frac{\cos^3 x}{\left(1+\sin^2 x\right)\sin x}$ dx

1.1.6.8 By using the substitution  $u = \sin x + \csc x$ , or otherwise, show that

 $I = \ln \left| \frac{\sin x}{1 + \sin^2 x} \right|$ + constant proof Gasecz + SINZ du du = casa - atao (ns) - at cours du In SMA + GOSECA + C  $= \int \frac{1}{\sqrt{2k^2 + 2k^2}} \times \frac{1}{\sqrt{k^2 + 2k^2}} du$ 14 June + The June / + C J cost × cost 1+C  $\frac{f_{20}}{con} \times \frac{f_{20}}{cue(c_{u2+1})}$ In SIN2 + (  $\times \frac{x_{20}}{\alpha v e(d v e^{+1})}$ 

Ismaths.com

P.C.P.

ths.com

4.60

6

-

212.SM

lasmaths.com

Created by T. Madas

COM



#### Question 265 (*****)

I.F.C.p

Use the substitution  $x = \frac{1}{u}$  to find the value of

I.C.B.

$$\int_{\frac{1}{2}}^{2} \frac{x^4 - 1}{x^2 \sqrt{x^4 + 1}} \, dx$$

Madas,



G.B.

0

, []

11:00

6

2817

Question 266 (*****)

Use a suitable substitution to find the value of

I.C.

I.F.G.p.

 $\int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)} + \sqrt{\ln(3+x)}} \, dx \, .$ 

- $\begin{array}{l} \left( \xi T \int_{-\pi}^{\pi} \frac{\sqrt{|b|(q,z)|}}{\sqrt{|b|(q,z)| + \sqrt{|b|(p,z)|}}} dz \right) \\ \bullet & Louise The surprised Status \\ \left( \int_{0}^{\pi} \int_{0}^{\pi} b(z) dz \sum_{-\pi} \int_{0}^{\pi} \frac{f(a+b-x)}{f(a+b-x)} dz \right) \\ J & \int_{-\pi}^{\pi} \frac{\sqrt{|b|(a+b-x)|^{2}}}{\sqrt{|b|(a+b-x)|^{2}}} dz \end{array}$
- $\Rightarrow I = \int_{2}^{4} \frac{\sqrt{\ln(\alpha+3)^{2}}}{\sqrt{\ln(\alpha+3)^{2}} + \sqrt{\ln(q-\alpha)^{2}}} d\alpha$
- $= \Im L = \int_{2}^{4} \frac{\sqrt{\ln(q\cdot x)^{2}}}{\sqrt{\ln(q\cdot x)^{2}} + \sqrt{\ln(x\cdot x)^{2}}} dx + \int_{2}^{d} \frac{\sqrt{\ln(q\cdot x)^{2}}}{\sqrt{\ln(q\cdot x)^{2}} + \sqrt{\ln(q\cdot x)^{2}}} dx$
- $\implies \partial \overline{L} = \int_{2}^{4} \frac{\sqrt{\ln(q_{-X})} + \sqrt{\ln(\chi_{1,Y})}}{\sqrt{\ln(q_{-X})^{2}} + \sqrt{\ln(\chi_{1,Y})^{2}}} dx.$
- $\Rightarrow 2I = \int$  $\Rightarrow 2T = f$

#### Question 267 (*****)

Use an appropriate substitution followed by integration by parts to find a simplified expression for



#### Question 268 (*****)

201

Use appropriate integration techniques to show that

 $\int \frac{1}{2}\pi$  $\frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \ln\left(1 + \sqrt{2}\right).$ 

1. Y.C.	J _o si	.n .	<i>x</i> + co
. 0	• Let $I = \int_{0}^{\infty} \frac{2n^{2}}{\sin \alpha + \log 2}$ Substitution		-) 21 -) 21
20.	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$		une ⊙ ; = I (=
na12	$\begin{array}{l} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{i=1}^{T} \sum_{j=1}^{T} \sum_{j=1}^{T}$		₽ I = ; • •] I = ;
~~~S.	$\int_{\Omega} \frac{z_{DD}}{z_{DD} + z_{DL}} + \frac{z_{MLZ}}{z_{DL} + z_{DL} + z_{DL}} = 1 + I \ll$ $\int_{\Omega} \frac{z_{DD}}{z_{DL} + z_{DL} + z_{DL}} + \frac{z_{MLZ}}{z_{DL}} = 1 + I \ll$ $\int_{\Omega} \frac{z_{DL}}{z_{DL} + z_{DL}} + \frac{z_{MLZ}}{z_{DL}} = 1 \sqcup \ll$		
	$\Rightarrow 2I = \int_{0}^{\infty} \frac{\sin x + \cot x}{\sqrt{2} \left[\frac{1}{\sqrt{2} \sin x} + \frac{1}{\sqrt{2} \cos x} \right]} dx$ $\Rightarrow 2I = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{2} \left[\frac{1}{\sqrt{2} \sin x} + \frac{1}{\sqrt{2} \cos x} \right]} dx$		
1. Y.C.	J. 12 [(attacht + subscrift]] at		
	In.		2

.K.C.

I.C.B.

AR EAQUIRGO

THENATIUE FROM THE F

 $\frac{1}{2}\int_{0}^{\frac{1}{2}} \frac{1}{\cos x + \sin x} dx$

BY LITTLE & IDANTHE

 $\begin{aligned} \text{let} \quad t = \tan \frac{\alpha}{2} \\ \frac{dt}{d\alpha} = \sin^2 \frac{\alpha}{2} \times \frac{1}{2} \end{aligned}$

 $\frac{dt}{dt} = \frac{1}{2} \Big(1 + \frac{1}{2} \frac{3}{2} \Big)$

proof

· toma =+

3/2

 $= \int_{1}^{0} \frac{\frac{1}{1+42^{2}-1+42^{2}}}{(t-1-42^{2})} + \frac{\frac{1}{1-42^{2}-1-42^{2}}}{t-1+42^{2}} dt$ $= \int_{0}^{\infty} \frac{\frac{1}{2\sqrt{2}}}{t_{-1-\sqrt{2}}} - \frac{\frac{1}{2\sqrt{2}}}{t_{-1+\sqrt{2}}} dt$ $= \frac{1}{2\sqrt{2}} \int_{0}^{0} \frac{1}{t^{-1-\sqrt{2}}} - \frac{1}{t^{-1+\sqrt{2}}} dt$

i G.B.

11₂12

- $$\begin{split} &= \frac{1}{2\sqrt{2}} \left[\left| h_{1} \left| \frac{t_{1} l_{2}\sqrt{2}}{t_{-1} + \sqrt{2}} \right| \right]_{1}^{0} \right] \\ &= \frac{1}{2\sqrt{2}} \left[\left| h_{1} \left| \frac{-l_{-}\sqrt{2}}{\tau_{-} + \sqrt{2}} \right| \left| h_{2} \right| \frac{\sqrt{2}}{\sqrt{2}} \right| \right] \end{split}$$
- $= \frac{1}{2\sqrt{2}} \left[\ln \left[\frac{-l \sqrt{2}}{-l + \sqrt{2}} \times -l \right] \right]$
- $= \frac{L}{2\sqrt{2}} \ln \left[\frac{\sqrt{2} + 1}{\sqrt{2} 1} \right]$
- $= \frac{1}{2\sqrt{2}} \ln \left[\frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} \right]$
- $= \frac{1}{2\sqrt{2}} \left(h \frac{\left(\sqrt{2}+1\right)^2}{2-1} \right)$ $= \frac{1}{2\sqrt{2}} \left(h \left(\sqrt{2}+1\right)^2 \right)$
- $= \frac{1}{\sqrt{2}} \ln \left(\sqrt{2} + 1 \right)$

(*****) Question 269

Use appropriate integration techniques to show that

$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \frac{1}{1+\sqrt{\cot x}} \, dx = \frac{\pi}{12}$$

mains.co

1.4.6

The Com

Question 270 (*****)

Use appropriate integration techniques to find an exact answer for the following definite integral.

Question 271 (*****)

a) Use the compound angle identity $\cos(A+B)$ to show that

b) Use a suitable trigonometric substitution to find the exact value of

I.F.G.B.

I.V.C.

na

I.G.B. Ma

I.F.G.B.

20

 $\int_{\sqrt{2}}^{\sqrt{\sqrt{6}+\sqrt{2}}} \frac{2}{x\sqrt{x^4-1}}$

dx.

2017

COM

 $\frac{\pi}{24}$

A.C.I.

Question 272 (*****)

It is given that the functions of x, u(x) and v(x) satisfy

 $\int u(x)v(x)dx = \left[\int u(x)dx\right] \times \left[\int v(x)dx\right], \text{ for } x \in \mathbb{R}, x \neq 0, x \neq 1.$

a) Show clearly that

$$\frac{\int u(x) \, dx}{u(x)} + \frac{\int v(x) \, dx}{v(x)} = 1$$

b) Given further that

$$\frac{\int u(x) \, dx}{u(x)} = \frac{1}{x},$$

show that

$$u(x) = Axe^{\frac{1}{2}x^2}$$
, where A is an arbitrary constant.

c) Determine a similar expression for v(x).

 $v(x) = Bxe^x$

hs.com

20/2.51

(a)	Juv da = Ju da × Jv da	
	DAF W.S.T. J. ROLLOWING THE PREDUT ZULE	ŝ.
	uv = u Jvdx + Judx × v	
	DUNCE BY IN	
	Divide by $uv \int v da + \int u da$ $l = \int v da + \int u da$	
	V t u	
	V 4 to Exported	
(Ы	$\frac{ u dx}{u} = \frac{1}{x} \qquad \qquad$	
\rightarrow	$\int u dx = \frac{u}{x}$ $\int \frac{\sqrt{u}}{\sqrt{u}} = 1 - \frac{1}{x}$	
	DIFF W. P.T 2. $\left(\Longrightarrow \int V dx = V - \frac{V}{2} \right)$	
	$u = \frac{d}{du} \left(\frac{u}{x} \right)$	
->		
	$x_{u}^{2} = x_{u}^{2} - u$ $\rightarrow \chi_{u}^{2} = x_{u}^{2} - x_{u}^{2} + V$	
	$\dot{z}_{u+u=zdu}$ $\rightarrow vz^{z}-v = (z^{2}-z)dv$	
		$\mathcal{M}_{\mathcal{M}}$
	$\alpha(\alpha + 1) = \alpha \frac{\alpha \alpha}{\alpha}$	
9		2/1
\Rightarrow	$\left x + \frac{1}{2} dx = \int \frac{1}{2} du \right \xrightarrow{\Rightarrow} \frac{x + 1}{2} dx = \int dv$	
	$) \approx \pm dv = 1 \pm du$	
\Rightarrow	$\frac{1}{2}x^2 + \ln b + c = \ln b \qquad $	
=)	$u = e^{\frac{1}{2}\lambda_{1}^{2}} w _{1} + C \qquad \qquad$	
-)	u= etx e halver V= e x e halver	
=)	u= Azetz) = v= Bzez	
	are the	

(*****) Question 273

Use the substitution $\tan x = \frac{1}{2} \left(-1 + \sqrt{3} \tan \theta \right)$ to find the exact value of

Question 274 (*****)

I.C.B.

alls

I.C.B.

COM

$$I = \int_{\arcsin\frac{3}{5}}^{\arccos\frac{3}{5}} \frac{1}{(\sin x + 2\cos x)(\sin x + 3\cos x)} \, dx \, .$$

Use appropriate integration techniques to show that

 $I = \ln\left(\frac{a}{b}\right),$

where a and b are positive integers to be found.

COM

1.4

Catcar 3	
) (s	00x+21001)(241x+31092)
(arccost	
J arcan 3	Subar + Sanacosa + 6 losta
DIVUDE "TOP	& BUTTOM" BY KOSA TO CREATE THADBUTS
Caucous 3	
arcan z	$dz = \frac{1}{2\omega z}$
Cancost	84 ²
Jancanz .	- seça da tayla + Skan2+6
BY SUBSTIT	UTION 45 tays DIFFRED TIATES TO SEE 2
• y = tar	
du = Sec	
de = s	$\frac{1}{2} \qquad 3 \qquad 0 \qquad 7 \qquad 0 = 0 \text{RSM}_{2}^{2} = 0 $
	 arcos = arcby = i > u=
	arcan = = arctan = i i u =

$\dots = \int_{\frac{3}{2}}^{\frac{4}{3}} \frac{1}{v^{2} + s_{4} + s} du = \int_{\frac{3}{2}}^{\frac{4}{3}} \frac{1}{(u + 2)(u + 3)} du$
BY PARTIAL FORETIONS
$\frac{1}{\left(\frac{1}{(u+2)}\left(u+3\right)} \equiv \frac{A}{(u+2)} + \frac{B}{(u+3)}$
$1 \equiv A(un3) + B(un2)$
$ \begin{cases} (u_{-2} \implies u_{-2} \implies u_{-2} \end{cases} \\ l \in u_{-3} \implies u_{-2} \end{cases} $
· RETURNING TO THE INTERAL
$\cdots = \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{u_{1+2}} - \frac{1}{u+3} du$
$= \left[b_{h} u+2 - b_{h} u+3 \right]_{\frac{4}{2}}^{\frac{4}{3}}$
$= \left(l_{0} \frac{\delta}{2} - l_{0} \frac{\delta}{2} \right) - \left(l_{0} \frac{\eta}{4} - l_{0} \frac{\delta}{4} \right)$
$\ldots = \left(h_{\eta} \frac{I_{\Omega}}{3} + h_{\eta} \frac{3}{3} \right) - \left(h_{\eta} \frac{H}{4} + h_{\eta} \frac{4}{45} \right)$
$= \ln \frac{lo}{ls} - \ln \frac{ll}{ls}$
$= \int u \frac{1}{12} u + \frac{1}{12} \frac{1}{12} u = 0$
$= l_{H} \frac{l_{H3}}{l_{20}}$

27

hs.com

madasn.

I.C.p

Question 275 (*****)

I.V.C.P

anasmarns,

COM

I.C.P.

I.Y.G.B.

Use appropriate integration techniques to show that

 $dx = \frac{\pi}{4}$ $x + \sqrt{1 - 1}$

USING 4 TELEDIN da = costi de $\mathfrak{A}=\mathfrak{o} \longmapsto \mathfrak{h}=\mathfrak{o}$ $\mathfrak{a}=\mathfrak{o} \longmapsto \mathfrak{h}=\frac{\pi}{2}$ TRANSPORTING THE INTEGRA $\int_{0}^{1} \frac{1}{\alpha + \sqrt{1-2^{k'}}} dx =$ $\int_{0}^{\infty} \frac{1}{\theta^{2} M^{2} - 1 \sqrt{1 + \theta M^{2}}} \left(\cos \theta \ d\theta \right)$ θ200 + " LET $I = \int_{0}^{\frac{T}{2}} \frac{1}{Sin\theta}$ canse $\int_{a}^{b} f(\alpha) d\alpha \equiv \int_{a}^{a} f(\alpha + b - \alpha) d\alpha$ $\Rightarrow 1 = \int_{\frac{\pi}{2}}^{0} \frac{v h(\underline{x} - \theta) + v u(\underline{x} - \theta)}{(\underline{x} - \theta)}$ Quiz = + Qb = + Once + Gacoo Other + Alacoo F.G.B.

0] = Ŧ $\int_{0}^{\infty} \frac{1}{x + \sqrt{1 - x^{2}}} dx =$ $\int \frac{1}{x+\sqrt{1-x^{2}}}$ $\frac{\cos \theta}{\sin \theta + \cos \theta} d\theta$ $\pm \int_{0}^{\frac{\infty}{2}} \frac{\cos\theta - \sin\theta + \sin\theta + \cos\theta}{\sin\theta + \cos\theta} d\theta$ $\theta l_{2} = \frac{\theta_{2,02} C}{\theta_{2,02} + \theta_{M2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} =$ Bure - Brow + 1 d9 The is on the Riem $\int \frac{f\omega}{f\omega} dx = \ln[f\omega] + C$ $\frac{1}{2}\left[-\frac{1}{2} \left[-\frac{1}{2} - \frac{1}{2} + \frac$ $\frac{1}{2}\left[\left(laT + \frac{T}{2}\right) - \left(laT + 0 \right) \right]$

nadasn.

2017

proof

4.60

11+

nadasm

The

Created by T. Madas

0

(*****) Question 276

Use polynomial division to find the exact value of

$$\int_0^1 \frac{x^4 (1-x)^4}{x^2 + 1} \, dx \, .$$

You may assume that

I.C.B.

I.C.P.

SAME BY FULLY EXPANDING. THE NUMBRATOR OF THE INTEGRALD
$\int_{0}^{1} \frac{\alpha^{y}(\tau, \alpha)^{\psi}}{\alpha^{2} + \tau} d\tau = \int_{0}^{1} \frac{\alpha^{y} \left(1 - \frac{4}{3}\alpha + \frac{6}{3}\alpha^{2} - \frac{4}{3}\lambda^{3} + \frac{4}{3}\alpha^{\psi}\right)}{\alpha^{2} + 1}$
$= \int_{0}^{1} \frac{2^{\frac{1}{2}} - \frac{1}{2^{\frac{1}{2}}} \int_{0}^{1} \frac{1}{2^{\frac{1}{2}} - \frac{1}{2^{\frac{1}{2}}}}{2^{\frac{1}{2} + 1}} dx$
😑 BY LONG LUZUON NEXT.
$\mathcal{X}^{2} + \left(\begin{array}{c} \frac{\alpha \zeta - u\chi^{2}}{\chi^{6} - u\chi^{2} + 5\chi^{4} - 4\chi^{2} + 4} \\ -\chi^{8} & -\chi^{6} \end{array} \right)$
$-\eta_X^7 + S_X^c - \eta_X^c + S_X^d$ $4\Omega^7 + 4\chi^c$
$\frac{4\chi^7 + 4\chi^5}{5\chi_2^6 + \chi^4}$
$\frac{-5\chi^2}{-5\chi^4}$
$-4x^2$ $d\chi^2 + 4\chi^2$
$4x^{2}$ $-4x^{2} - 4$
-4
$\therefore \frac{\chi_{k}^{0} - \chi_{\lambda}^{1} + \chi_{\lambda}^{0} - \chi_{\lambda}^{2} + \chi_{\lambda}^{0}}{\chi^{2} + 1} = \chi_{k}^{0} - \chi_{\lambda}^{2} + \zeta_{\lambda}^{0} - \chi_{\lambda}^{2} + \zeta_{\lambda}^{0} - \frac{\zeta_{k}}{\chi^{2} + 1}$

	۰	RETURNING TO THE INHERAL
		$\cdots = \int_0^1 z_0^{d_1} - 4z^2 + \Omega z^4 - 4z^2 + 4 - \frac{4}{1+z^2} dz$
		$= \left[\frac{1}{7}\overline{x}^{2} - \frac{2}{3}x^{6} + \overline{x}^{6} - \frac{4}{3}\overline{x}^{2} + 4x - 4anbwx\right]_{D}^{1}$
1		$= \left(\frac{1}{7} - \frac{2}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} +$
		$=\frac{1}{7}-\frac{2}{3}-\frac{4}{3}+5=4\times\frac{11}{4}$
	-	$= \frac{1}{7} - \frac{6}{5} + 5 - \pi$
		$= \frac{1}{7} - 2 + S - \pi$
		= 3 + 4 - 4
		$=\frac{22}{7}-\overline{1}$

23

.F.G.B.

nn

 $\frac{22}{7}$

π

hs.com

Madasn

I.C.p

6

Created by T. Madas

I.C.

Question	277	(****
		· · · · · · · · · · · · · · · · · · ·

Use integration by parts to find a simplified exact value for

 $(\cos 2x + \sin 2x)(\ln \cos x + \ln \sin x) dx$.

You may assume that

0

- GA 3/8	· · · · · ·	1 h	
l c	$\operatorname{osec} x dx = \ln \left \tan \left(\frac{1}{2} x \right) \right + \operatorname{constan}$	n. 120	
la la	4200		Pro-
43m 420	-dsm	\Box , $\frac{1}{2}\ln 2$	231
the nor	(⁷ / ₂ (co2+5w2) ⁷ / ₂)	$\mu_{2}(dt) = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (e^{2\lambda + 2\mu/2\lambda}) \ln(\frac{1}{2}e^{2\mu/2\lambda}) d\lambda$	-9
···· Co. *(1)	$\begin{aligned} \sum_{\substack{q \in Q \\ p \neq q}} \left[-\frac{3}{2} \left[\sum_{\substack{q \in Q \\ p \neq q}} \left[\sum_{\substack{q \in Q \\ p \neq q} \left[\sum_{\substack{q \in Q \\ p \neq q}} \left[\sum_{q \in Q \\ p $	$\begin{array}{c} u_{n}(x,y) = \int_{\mathbb{R}^{n}} \left(u_{n}(x,y) + u_{n}(x,y) \right) \left(\frac{1}{2} \left(u_{n}(x,y) + u_{n}(x,y) \right) \right) \left(\frac{1}{2} \left(u_{n}(x,y) + u_{n}(x,y) \right) \right) \left(\frac{1}{2} \left(u_{n}(x,y) + u_{n}(x,y) \right) \left(\frac{1}{2} \left(u_{n}(x,y) + u_{n}(x,y) \right) \left(\frac{1}{2} \left(u_{n}(x,y) + u_{n}(x,y) \right) \right) \left(\frac{1}{2} \left(u_{n$	
	$\int_{\mathcal{M}_{1}}^{\mathcal{M}_{1}} \int_{\mathcal{M}_{1}}^{\mathcal{M}_{1}} (\mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{M}_{1}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{M}_{1}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{M}_{1}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{M}_{1}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{M}_{1}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x})) \left(\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) + \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) + \mathcal{L}(\mathbf{x}) \right) = \int_{\mathcal{M}_{1}}^{\mathcal{L}} (\mathcal{L}(\mathbf{x}) - \mathcal{L}(\mathbf{x}) + L$	$s_{w/2k} = \frac{1 - s_{w/2k}^{2}}{s_{w/2k}} dk$ $s_{w/2k} = s_{w/2k} - (s_{w/2k}) dk$ $s_{w/2k} = s_{w/2k} - (s_{w/2k}) dk$ $s_{w/2k} = s_{w/2k} - (s_{w/2k}) dk$	
The second se	$\begin{bmatrix} \overline{\tau}(\infty) - \overline{\omega} \\ \overline{\tau}(\omega) - \overline{\tau} \\ \overline{\tau}(\omega) \\ \overline{\tau}(\omega$	$\frac{1}{2} \cos 2z + \frac{1}{2} \ln \left(\cos 2z \right) = \frac{1}{2} \ln \left(\frac{1}{2} \cos 2z \right) + \frac{1}{2} \ln \left(1$	Ir.
1. V. K.O.	$\frac{1}{2} \ln \left(\frac{1}{\sqrt{2}} + 1$		1.1
62 40	2	519	<u> </u>
	In S.	. 'm	
102 · 122	All I	12. 421	1
Sharp Rasing	a smathe	4020.	1381721 381721
	a the	asnar	121
Co. Co.	8		
m an	Con 1	to "Con	
		· / . · · · · · · · · · · · · · · · · ·	2
S.F. S.C.	· · ·	·	1.2
· ()	8 °GD	S S	1
	no s	» · · /).	
Van Van	Created by T. Madas	an a	12
~ 420 · 4282	SD.	-4282	Sp.
- U.A	Second	×77.05	

Whs.com

F.G.B.

ths.col

1.60

Question 278 (*****)

It is given that

I.C.B.

2011

I.C.p

$$x^{2} + x + 2 = (u - x)^{2}$$
.

F.G.B.

a) Show clearly that ...

i. ...
$$x = \frac{u^2 - 2}{2u + 1}$$
.

ii. ...
$$\frac{dx}{du} = \frac{2(u^2 + u + 2)}{(2u+1)^2}$$
.

b) Find a simplified expression for

$$\int \frac{1}{x\sqrt{x^2 + x + 2}} \, dx$$

x.

$$\frac{1}{\sqrt{2}} \ln \left| \frac{x + \sqrt{x^2 + x + 2} - \sqrt{2}}{x + \sqrt{x^2 + x + 2} + \sqrt{2}} \right| + C$$

hs.com

madasm.

1.4

Madasn.

I.C.P.

$\begin{array}{c} \widehat{\mathbf{Q}}(\underline{x}) & \underline{x}^{2} + \underline{x} + 2 = (\underline{u} - \underline{x})^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{u}^{2} - \underline{2}\underline{u}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{u}^{2} - \underline{2}\underline{u}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} & \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + 2 = \underline{x}^{2} - \underline{x}\underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + \underline{x}^{2} + \underline{x} + \underline{x}^{2} + \underline{x} + \underline{x} + \underline{x}^{2} \\ & \underline{x}^{2} + \underline{x} + \underline{x} + \underline{x}^{2} + \underline{x} + \underline{x}^{2} + \underline{x} + \underline{x}^{2} + \underline{x} + \underline{x}^{2} + \underline{x} + \underline{x} + \underline{x}^{2} + \underline{x} + \underline{x} + \underline{x}^{2} + \underline{x} + $
$\begin{array}{c} \chi + 2 = u^{2} - 2u\chi \\ 2u\chi + \chi = q^{2} - 2 \\ \chi (2u_{1}) = u^{2} -$
$\frac{2u+1}{4s} + \frac{2(u^2 + u + 2)}{4s}$
(b) $\int \frac{1}{2\sqrt{2^4 + x + 2^2}} dx = \int \frac{1}{\alpha (u - \alpha)} \times \frac{2(u^2 + u + 2)}{(2u + 1)^2} du$
$= \int \frac{1}{\frac{(l+2)}{2u+1}\sqrt{\left(u-\frac{u+2}{2u+1}\right)}} \times \frac{2(l+u+2)}{(2u+1)^{2u}} du$
$= \int \frac{1}{\frac{ t_{1}^{2} \sum_{i} u_{i}^{1} \times \frac{2u^{1} t_{i} u_{i} u_{i}^{2} + 2u^{2}}{2}}{2(u^{2} + u^{2} + 2)}} \frac{2(u^{2} + u + 2)}{(2u + 1)^{2}} du$
$=\int \frac{1}{\frac{(\lambda+2)}{2(\lambda+1)} \times \frac{(\lambda+1)+2}{2(\lambda+1)}} \times \frac{2(\lambda^2+(\lambda+2))}{(2\lambda+1)^2} d\mu = \int \frac{(\lambda+1)^{2}}{(\lambda^2+2)(\lambda^2+1)^2} \times \frac{2(\lambda^2+1)^{2}}{(2\lambda+1)^2} d\mu$
$=\int \frac{2}{u^2-\lambda} du$
WWW BY PRITTY PRATING TO WING THE DEPOSIT STATEMENT TO BUTCHER VE WAR
$ = \dots = \frac{2}{262} \left[h_{1} \left[\frac{h_{1} - h_{2}^{2}}{u_{1} + q_{2}^{2}} \right] + C \right] $ $ = \frac{1}{2} \left[h_{1} \left[\frac{h_{1} - h_{2}^{2}}{u_{1} + q_{2}^{2}} \right] + C \right] $ $ = \frac{1}{2} \left[h_{1} \left[\frac{h_{1} - h_{2}^{2}}{u_{1} + q_{2}^{2}} \right] + C \right] $ $ = \frac{1}{2} \left[h_{1} \left[\frac{h_{1} - h_{2}^{2}}{u_{1} + q_{2}^{2}} \right] + C \right] $
$= \frac{1}{\sqrt{2^{1}}} \left h_{1} \right \left \frac{2 + \sqrt{2^{2} + 2^{2}} - \sqrt{2^{1}}}{2 + \sqrt{2^{2} + 2^{2}} + \sqrt{2^{1}}} \right + C$

Created by T. Madas

00

Question 279 (*****)

It is given that a and b are distinct real constants and λ is a real parameter.

a) Starting by the relationship between two functions of x, f(x) and g(x)

$\left[\lambda f(x) + g(x)\right]^2 \ge 0,$

show clearly that

ŀG.B.

I.C.B.

 $\lambda^{2} \int_{a}^{b} \left[f(x) \right]^{2} dx + 2\lambda \int_{a}^{b} f(x) g(x) dx + \int_{a}^{b} \left[g(x) \right]^{2} dx \ge 0.$

b) Deduce the Cauchy Schwarz inequality for integrals

$$\left[\int_{a}^{b} f(x)g(x) dx\right]^{2} \leq \left[\int_{a}^{b} \left[f(x)\right]^{2} dx\right] \left[\int_{a}^{b} \left[g(x)\right]^{2} dx\right]$$

Y.G.B.

n

[continues overleaf]

I.C.p.

nj

28,

K.C.A

I.C.B.

c) By letting $f(x) = \sqrt{\sin x}$ and g(x) = 1, show that

 $\int_0^{\frac{\pi}{2}} \sqrt{\sin x} \ dx \le \sqrt{\frac{\pi}{2}} \ .$

d) By letting $f(x) = \sqrt{\sqrt{\sin x}}$ and $g(x) = \cos x$, show that

 $\int_0^{\frac{\pi}{2}} \sqrt{\sin x} \, dx \ge \frac{64}{25\pi}.$

 $\left[\lambda f \alpha + g \alpha z\right]^2 \ge 0$ $\lambda^2 \widehat{\left(\varphi(x) \right)^2} + 2 \lambda^2 \widehat{\left(\varphi(x) - \varphi(x) \right)^2} \ge 0$ $\int_{a}^{b} \chi_{2}^{2}(\frac{1}{2}(\alpha))^{2} d\alpha + \int_{a}^{b} 2\lambda \frac{1}{2}(\alpha) \frac{1}{2}(\alpha) d\alpha + \int_{a}^{b} (\frac{1}{2}(\alpha))^{2} d\alpha \geqslant \left(\mathbb{C}\right)^{b}.$ $\begin{array}{l} \lambda^{2} \int_{a}^{b} \left(f(0)^{2} dx + 2\lambda \int_{a}^{b} \frac{f(0)g(0)}{g(0)} dx + \int_{a}^{b} \frac{g(0)g(0)}{g(0)} dx + \int_{a}^{b} \frac{g(0)g(0)}{g(0)} dx \\ \lambda^{2} \int_{a}^{b} \left(\frac{f(0)}{g(0)}^{2} + 2\lambda \int_{a}^{b} \frac{f(0)g(0)}{g(0)} dx + \int_{a}^{b} \frac{g(0)g(0)}{g(0)} dx \right) \\ \end{array}$ $\overline{\left\{ \int_{a}^{b} f(\mathfrak{H}) d\mathfrak{h} \right\}^{2}} - 4 \int_{a}^{b} (f(\mathfrak{h}))^{2} d\mathfrak{h} \int_{a}^{b} (f(\mathfrak{h}))^{2} d\mathfrak{h} \leq 0$ $\left[\int_{a}^{b}f(x)g(x)\,dx\right]^{2}\leq\int_{a}^{b}\left(f(x)\right)^{2}dx\,\int_{a}^{b}\left(g(x)\right)^{2}dx$

2

 $\left| x \sqrt{syn^2} \ d_x \right|^2 \leq \int_0^{\frac{T}{2}} \left|^2 \ d_x \ \int_0^{\frac{T}{2}} \left(\sqrt{syn^2} \right)^2 \ d_x$ $\int_{0}^{\mathbb{T}} \sqrt{\sin x} \, dx \int_{0}^{1} \leq \frac{1}{2} \times 1$ $\int_{0}^{\mathbb{T}} \sqrt{\sin x} \, dx \leq \sqrt{\frac{1}{2}}$ $(a) \begin{cases} f(x) = (x)^{\frac{1}{2}} \\ g(x) = (x)^{\frac{1}{2}} \end{cases}$ $\begin{array}{c} \underbrace{\left[\left(\sum\limits_{i=1}^{T} (\operatorname{Stan}^{i})_{i}^{*} \operatorname{d}_{i}\right)_{i}^{*}\right]}_{\prod_{i=1}^{T} (\operatorname{Stan}^{i})_{i}^{*} \operatorname{d}_{i}^{*}\right]} \leq \int_{0}^{\frac{T}{2}} (\operatorname{Stan}^{i})_{i}^{*} \operatorname{d}_{i}^{*} \operatorname{d}_{i}^{*}$ The & sour dr > The

1202.81

proof

F.C.P.

(*****) Question 280

Mada

I.V.C.B. Madasm

Smarns com i vog

I.F.G.B

I.V.G.B.

alasmaths.com

By using the substitution $\sqrt{x} = \tan \theta$, or otherwise, find

I.V.G.P.

 $\int \frac{(x+3)\sqrt{x}}{(x+1)^2} \, dx.$

0	<u> </u>
WING THE SUBSTITUTION GUES	
V2 = tant [10 0 = artan 2]	
a = lago	
de = 2500 tange do	
TRANSPORT THE NOTHERNAL	
$\int \frac{(243)\sqrt{X^{2}}}{(2c+1)^{2}} dt = \int \frac{(3+t_{0}^{2}\theta)}{(1+t_{0}^{2}\theta)^{2}} \times 29c^{2}\theta \tan \theta \ d\theta$	
= $\int \frac{2sd\theta \log(3+\log^2\theta)}{(s+d\theta)^2} d\theta$	
$= \int \frac{\sin(\theta)}{2 \sin(\theta)} d\theta$	
Suntuhula All Ida Statu	
$= \int \frac{2(st(\theta-1)(s+st(\theta-1)))}{st(\theta-1)} d\theta$	1
$= \int \frac{2(sk(\theta-1)(sk(\theta+2))}{sk(\theta+2)} d\theta$	- 12
$= \int \frac{2sete + 2sete - 4}{see2e} de$	

C.P.

<i>iA</i> •	10
2	Cp.
ß	$\frac{2x^2}{x^2} + 6$
'n	<u> x+1</u>
	n
	$= \int 2se^2\theta + 2 - 4\omega e^2\theta d\theta$
	$= \int 2\delta_{t} \left(\frac{\partial}{\partial t} + 2 - 4 \left(\frac{1}{2} + \frac{1}{2} \right) \delta_{t} \right) d\theta$
	= J 2kk30+2 -2 - 26020 dQ
	= 24m9 - 2420 + C
db G	= $2\log\theta - 28m\theta \log\theta + C$
	= 2/amb - <u>21mbicht</u> xiato + C
	= 2true - staring 10
	= 2 tomb - 2 tomb - + C
	$= 2\sqrt{2} - \frac{2\sqrt{2}}{1+2} + C$
	$= 2\sqrt{2} \left[1 - \frac{1}{2^{\mu_1}} \right] + C$
	$= 2\sqrt{2} \left[\frac{3+1-1}{3+1-1} \right] + C$
	$= 2\sqrt{\lambda_1} \left(\frac{\lambda}{\lambda_{+1}}\right) + C$
	$= \frac{2a^k}{2} + C$

ths.com

+C

A.C.D.

Madasmanns Com I. Y. C.B. Madasm

(****) Question 281

COM I.F.C.B.

Smaths,

I.F.G.B.

alasmaths.com

By using the substitution $u = \sec x + \sqrt{\tan x}$, or otherwise, find

 $1 + 2\sin x \sqrt{\tan x}$ $\frac{1}{2\left[1+\cos x\sqrt{\tan x}\right]\cos x\sqrt{\tan x}}$

u= secar + views = secar + (tana) + du - seculariz + 12 (Ima) seca

= $\frac{1}{\log x} \frac{\sin x}{\cos x} + \frac{(\cos x)^{\frac{1}{2}}}{2(\sin x)^{\frac{1}{2}}(\cos x)}$

 $\frac{-51n_2}{6n_2} + \frac{(6n_2)^{\frac{1}{2}}}{2(5n_2)^{\frac{1}{2}}n_2^{\frac{1}{2}}}$

 $\frac{dy}{d\lambda} = \frac{1}{\cos^2} \left[\sin \alpha + \frac{(\cos \alpha)^{\frac{1}{2}}}{2(\sin \alpha)^{\frac{1}{2}}} \right]$ $\frac{d\mu}{dx} = \frac{1}{2(sx_0)^{\frac{1}{2}}} \frac{1}{2(sx_0)^{\frac{1}{2}}} \frac{1}{2(sx_0)^{\frac{1}{2}}} \frac{1}{2(sx_0)^{\frac{1}{2}}}$

2.9/2 + cost2 2/052 sut

 $\ln |\sec x + \sqrt{\tan x}| + C$

The Com

1.G.D.

1+

madasm.

- $\int \frac{\left[2s_{\text{tr}}^{\frac{1}{2}}s_{\text{tr}}^{\frac{1}{2}}x+1\right]\left[\cos^{\frac{1}{2}}x\right]}{\left[\cos^{\frac{1}{2}}s_{\text{tr}}^{\frac{1}{2}}x+1\right]\left[2s_{\text{tr}}^{\frac{1}{2}}x\cos^{\frac{1}{2}}x\right]} du$ $\int \frac{e^{\frac{1}{2}} \cos 2 + \cos 2}{\left[\cos 2 \cos 2 + \cos 2 + \cos 2 \right]} dx$
- J [ant + 1][2012+ and] de

-dx.

J Costa south +1 du

- SACIL WEST. SACIL WEST. WEST. 5H+2 + 26(2
- J 14412 + Secz
- J to de $|n|_{q}| + C$

C.B.

A.C.B.

Madasmans.com

- h Juliani + secal + 0

nadasmaths.com

I.Y.C.B. Madash

Created by T. Madas

2017

Question 282 (*****)

It is given that

R,

F.C.B.

 $\frac{\cot x \operatorname{cosec} x + 2 \cot x}{1 + \operatorname{cosec} x} dx \equiv \ln \left[\left[1 + f(x) \right] f(x) \right] + \operatorname{constant}.$

Using integration techniques, determine an expression for f(x).

i.C.B.

Question 283 (*****)

Ĉ.Ŗ.

F.C.B.

$$I = \int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{6}{\sin x + \sin 2x} \, dx$$

Use appropriate integration techniques to show that

 $I = A \ln N + B \ln M \quad ,$

where A, B, N and M are integers to be found.

SUBSTITUTIO lu= Go⊂r a=∰ → u=£ $xmu2 - = \frac{ub}{ch}$ it= ∰ → u= o $dx = -\frac{du}{snx}$ $\int_{-\frac{1}{2}}^{0} \frac{c}{sm_{\lambda}(1+2u)} \left(-\frac{du}{sm_{\lambda}}\right) = \int_{0}^{\frac{1}{2}} \frac{c}{sm_{\lambda}^{2}(1+2u)} du$ $=\int_{0}^{\frac{1}{2}}\frac{c}{\left(1-c_{0}\zeta_{2}\right)\left(1+2u\right)}\,du\quad =\int_{0}^{\frac{1}{2}}\frac{c}{\left(1-d^{2}\right)\left(1+2u\right)}\,du$ $= \int_{-1}^{\infty} \frac{\zeta}{(1-y)(1+y)(1+2y)}$ $\frac{6}{(1-u)(1+u)(1+2u)} = \frac{A}{2u+1} + \frac{B}{1-u} + \frac{C}{1+u}$ G = A(1-u)(1+u) + B(2u+u)(1+u) + C(2u+u)(1-u)· If $u=1 \rightarrow 6 \circ GR \rightarrow B=1$ · If $u=1 \rightarrow 6 \circ -2C \rightarrow C \circ -3$

 $I = 8 \ln 2 - 3 \ln 3$

i G.B.

Mada

1+

(****) Question 284

I.V.C.B. Madasn

Smarns com trees

1720

I.F.G.B

alasmaths.com

Use the substitution $x = tan(\frac{1}{2}\theta)$, to find a simplified expression for

 $x \arccos \left[\frac{1 - x^2}{1 + x^2} \right] dx.$

1.60

nadasm.

nadasmaths.com

±0 lay2(±0) - ± [2tay(€0] - 0] + C

 $\frac{1}{2}\theta \tan^2(\frac{1}{2}\theta) - \tan(\frac{1}{2}\theta) + \frac{1}{2}\theta + C$

 $\frac{1}{2}\theta\left(1+\frac{1}{2}\left(\frac{1}{2}\theta\right)\right) - \frac{1}{2}\left(\frac{1}{2}\theta\right) + C$

 $\left[\operatorname{antwa} \right] \left[1 + \lambda^2 \right] - \lambda + C$ + (1+22) arctanz + C

10 bu((20) Ste? (20) fay?(20) $\frac{1}{2}\theta ha^{2}(\frac{1}{2}\theta) - \int \frac{1}{2} ha^{2}(\frac{1}{2}\theta) d\theta$

 $\frac{1}{2}\theta \left[\omega_1^2(\frac{1}{2}\theta) - \frac{1}{2} \right] \leq \frac{1}{2} \left[\omega_1^2(\frac{1}{2}\theta) - \frac{1}{2} \right]$

2011

Created by T. Madas

nadasmaths.com

ic.p.

(****) Question 285

6

By using a suitable trigonometric substitution, or otherwise, find

6

20/2.51

The

1. Y.C.B. Madası

2017

Created by T. Madas

I.C.B.

Com I.V.C.B.

I.F.G.B.

(*****) Question 286

The function f is defined as

$$f(x) \equiv 2^{\ln x}, \ x \in [1,\infty).$$

Show, with details workings, that

nadası,

Madasm,

120

alasmaths.

I.F.G.B.

SM3/hs.com

I.C.p

$$f(x) = 2^{\ln x}, x \in [1,\infty).$$
aits workings, that
$$\int_{1}^{x} f(x) dx = \frac{2c-1}{1+\ln 2}.$$

$$\int_{1}^{x} \frac{1}{\sqrt{1-\frac{1}{1$$

the COL

1.4.

The Com

I.V.C.P.

Madasn

Created by T. Madas

aths.com

I.Y.G.B.

Smarns-Com L.K.C.B

The Com

1.Y.C.

Question 288 (*****)

It is given that

Y.C.

I.C.B.

I.C.B.

$$u^{2} = \frac{1 - x^{2}}{(1 - x)^{2}}, \ x \neq \pm 1.$$

a) Show clearly that ...

i. ...
$$x = \frac{u^2 - 1}{u^2 + 1}$$
.
ii. ... $1 - x^2 = \frac{4u^2}{(u^2 + 1)^2}$

iii.
$$\dots \frac{dx}{du} = \frac{4u}{\left(u^2 + 1\right)^2}$$

b) Hence show further that

1

$$\int \frac{3}{(4x+5)\sqrt{1-x^2}-3(1-x^2)} \, dx = \frac{2\sqrt{1-x}}{\sqrt{1-x}-3\sqrt{1+x}} + \text{ constant} \, .$$

(a) I) TRAINARIA & PRIOR

$$\begin{aligned}
\vec{q}^{2} = \frac{1-2^{2}}{(1-x)^{2}} = \frac{(1-3)(1x)}{(1-x)^{2}} = \frac{1+x}{1-x} \\
\Rightarrow q^{2}(1-x) = 1+x \\
= \frac{1}{(1+x)^{2}} \quad \text{Read} \end{aligned}$$
(1) Adder the Assive 24thout

$$\begin{aligned}
1 -x^{2} = 1 - (\frac{q^{2}(1-x)}{(1+x)^{2}} = 1 - \frac{q^{2}-2q^{2}+1}{(1+x)^{2}} \\
= \frac{1}{(1+x)^{2}} \quad \text{Read} \end{aligned}$$
(2) Diffeotion (2) Note Heaves to (3)

$$q = \frac{q^{2}(1-x)}{(1+x)^{2}} = 1 - \frac{2}{(1+x)^{2}} = (-2(1+x))^{-1} \\
= \frac{1}{(1+x)^{2}} \quad \text{Read} \end{aligned}$$
(3) Diffeotion (3) Note Heaves to (3)

$$q = \frac{q^{2}(1+x)}{(1+x)^{2}} = 1 - \frac{2}{(1+x)^{2}} = (-2(1+x))^{-1} \\
= \frac{1}{q^{2}} = (-2(1+x))^{-1} \\
= \frac{1}{q^{2}} = \frac{1}{(1+x)^{2}} \quad \text{Read} \end{aligned}$$
(4) Diffeotion (4) Note Heaves to (3)

$$q = \frac{1}{(1+x)^{2}} = 1 - \frac{2}{(1+x)^{2}} = (-2(1+x))^{-1} \\
= \frac{1}{q^{2}} = \frac{1}{(1+x)^{2}} \quad \text{Read} \end{aligned}$$
(5) Diffeotion (2) Note Heaves to (3)

$$q = \frac{1}{(1+x)^{2}} = \frac{1}{(1+x)^{2}} = 1 - \frac{2}{(1+x)^{2}} = (-2(1+x))^{-1} \\
= \frac{1}{q^{2}} = \frac{1}{(1+x)^{2}} = \frac{1}{(1+x)^{2}} = 1 - \frac{2}{(1+x)^{2}} = \frac{1}{(1+x)^{2}} = \frac{1}$$

COM

Inadası,

Ins.com

proof

6

I.C.B.

Madasma,

S.Com

- $= \int \frac{t_{2d}}{(q_u^2+1)_{2d} t_{2u^2}} du \quad = \quad \int \frac{c}{(q_u^2+1) c_u} du$
- $= \int \frac{\zeta}{q_{1}^{2} \cdot d_{n+1}} dq \qquad = \int \frac{\zeta}{(3n+1)^{n}} du = \int \frac{\zeta}{(3n+1)^{n}} du = \int \frac{\zeta}{(3n+1)^{n}} du = \int \frac{\zeta}{(3n+1)^{n}} du = \int \frac{1}{(3n+1)^{n}} du = \int \frac{1}{(3n+1)^{$
- $= \frac{2}{1-3} \frac{\sqrt{1-3^{2}}}{\sqrt{1-3^{2}}} + C = \frac{2(1-3)}{(-3-3)^{2}} + C$
- $= \frac{2(1-\lambda)}{(1-\lambda) 3(1-\lambda)^{\frac{1}{2}}(1+\lambda)^{\frac{1}{2}}} + C = \frac{2\sqrt{1-\lambda^{-1}}}{\sqrt{1-\lambda^{-1}} 3\sqrt{1+\lambda^{-1}}} + C$

(****) Question 289

By using the substitution $x = 2 \tan^2 \theta$, or otherwise, find

Smaths.

1.4.6.5

naths.com

Question 290 (*****)

It is given that

$$\sqrt{5-4x-x^2} = (1-x)u, x \neq 1, x \neq -5$$

a) Show clearly that ...

i. ... $x = \frac{u^2 - 5}{u^2 + 1}$

ii. ...
$$dx = \frac{12u}{(u^2 + 1)^2} du$$
.

b) Hence show further that

$$\int \frac{x}{\left(5 - 4x - x^2\right)^{\frac{3}{2}}} \, dx = \int \frac{u^2 - 5}{18u^2} \, du$$

c) Find a simplified expression for

$$\int \frac{x}{\left(5-4x-x^2\right)^{\frac{3}{2}}} dx \ .$$

5-2x

 $9\sqrt{5-4x-x^2}$

$$\frac{1}{\sqrt{2}\sqrt{2}-1} = \frac{1}{\sqrt{2}\sqrt{2}-1} + \frac{1}{\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}} + \frac{1}{\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}}$$

Question 291 (*****)

By using an appropriate trigonometric substitution, or otherwise, find an exact value for the following integral.

Question 292 (*****)

F.C.B.

I.C.B.

$$I = \int_0^\infty \frac{1}{\left(x + \sqrt{x^2 + 1}\right)^2} \, dx \, .$$

- a) Use the substitution $u = x + \sqrt{x^2 + 1}$ to find the value of *I*.
- **b**) Verify the answer to part (**a**) by a trigonometric substitution.

 $\frac{3}{8}$

15

α= tauθ da= sa299 dA

(1+5)

19 (1+5MB)⁻³ do

\$

F.G.B.

11₂₀₂

(*****) Question 293

Smarns.com i K.C.B

I.F.G.B

I.V.G.B.

Find an exact value for the following integral.

madasmaths.com

The Com

 $\frac{2\pi}{3}$

1.4.6

6

nadasm.

Created by T. Madas

I.F.G.B

(*****) Question 294

C.B.

I.F.G.B.

Smaths,

COM

1.1.6.

Smaths,

I.F.G.B.

20

Determine, as an exact simplified fraction, the value of the following integral.

 $\int_{\frac{3}{2}}^{\frac{5}{2}} \left(4x^2 - 16x + 15\right)^4 dx.$

	PROCEED BY FACTORIZING			
•	$= \frac{\int_{\frac{\pi}{2}}^{\pi} (3x-2)_{t} (3x-2)_{t} dx}{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (4x_{t}^{t}-1)x_{t}^{t} (3x+12)_{t} dx} = \frac{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left[(5x-2)_{t}^{t} (3x+12)_{t} (3x+12)_{t} dx\right]}{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (4x_{t}^{t}-1)x_{t}^{t} (3x+12)_{t} dx}$	s)(22-5)] ⁴	d)	
	2			
0.	INTHOLATE BY PAOLS	{(21-3)*	8(22-3)3	
12	$\dots = \left[\frac{1}{2}\left(\underline{\alpha},\underline{\alpha}\right)\left(\underline{\alpha},\underline{s}\right)^{\frac{1}{2}}\left[\frac{1}{2}-\frac{1}{2}\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\underline{\alpha},\underline{s}\right)\left(\underline{\alpha},\underline{s}\right)^{\frac{1}{2}}dx\right]$	² [2-x5] ²	(22-5)4	
SIL-	INTEGRATE BY PARCE FOR A SECOND ITME	,		,
4.11	6 1 75 15 2 6 7	(21-3)3	6(21-3)2	}
911	$= -\frac{9}{5} \left[\frac{1}{2} \frac{(2x^2)^2}{(2x^2)^2} \frac{(2x^2)^2}{(2x^2)^2$	<u></u>	(21-1)3	ŝ
	$\frac{1}{2}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (2-5)^{\frac{\pi}{2}} (2-5)^{\frac{\pi}{2}} dx$			
10	by parts for a threa time			
		(a-3) ²	4(22-3)	{
	$= \frac{1}{5} \left\{ \left[\frac{1}{12} 2 x - 5 \left[\frac{5}{2} x - \frac{5}{7} \right] \frac{5}{2} - \frac{5}{7} \int_{\frac{1}{2}}^{\frac{5}{2}} (2 - 3 \left[2 x - 5 \right] dt \right\} \right\}$	#(21-5)7	2(2-55)	{
2	$= -\frac{b}{35}\int_{\frac{1}{2}}^{\frac{\pi}{2}} (21-3)(21-5)^{7} dx$			
/ h				
. / A.).		
		- h.		
X .			36	
- " I s. "	<u>ж</u>	Þ		
		ľ., .		1
		*/	5 - C	r
		- 5	æ.	
	· • • • • • • • • • • • • • • • • • • •		74	F,
	10		- 54	đ

C.P.

madasmans.com

$= -\frac{44}{35} \left[\frac{1}{1000} (22-5)^{\frac{1}{2}} - \frac{1}{5} \left[\frac{2}{(22-5)^{\frac{1}{2}}} dx \right] \right]$	22-3 2 (22-5) ⁶	2
= -325 [] + (21-5)] - 8 [(21-5) dz]	12 (22-5)°	(22-5)7
$= \frac{1}{10} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (2x-5)^8 dx$		
- 70] 2 (22-5) 42		
$= \frac{1}{16} \left[\frac{1}{16} (2s-s)^{9} \right] \frac{1}{2}$		
$= \frac{1}{1260} \left[\left(2x - 5 \right)^{\frac{5}{2}} \right] \frac{5}{2}$		
$= \frac{1}{1260} \left[0 - (-2)^{9} \right]$		
= <u>512</u> 1260		
= 128		
<u> II</u>		
//		
 A polyage stands of the second standard st		
	÷	
	, en 1	
	-	
· · · · · · · · · · · · · · · · · · ·	<i>#</i>	
· · · · · · · · · · · · · · · · · · ·	Y. 7	1.
	<u>ل</u> هد ا	s.
	45 A	C.#2
	×.	100
	- K.A	

nadasmaths.com

I.V.C.B.

 $\frac{128}{315}$

6

Madasm.

Madasn

Created by T. Madas

2017

(*****) Question 295

Find an exact value for

alasmaths.com

1.V.C.B. 11

I.F.G.B

 $\frac{x\sin x}{\sqrt{4-\cos^2 x}}$ dx.

You my assume without proof that

I.C.B. $\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin\left(\frac{x}{a}\right) + \text{ constant }.$

0 let $I = \int_{0}^{n} \frac{\partial s_{max}}{\sqrt{4 - \log a}} da$ SUBSTITUTION) 3=T-4 ↔ da = - dy and the generation of the gene MTI 60.54 - 60.517 51.44 017 (agy - ડ્રોક્સક્સ) ²= લ્લેપુ $I = \int_{\eta}^{0} \frac{(\eta - y) \sin y}{\sqrt{4 - \cos^2 y}} (-dy) = \int_{0}^{\eta} \frac{(\eta - y) \sin y}{\sqrt{4 - \cos^2 y}} dy$ $\frac{1}{\sqrt{14}-\cos^2 y} dy - \int_0^1 \frac{y \sin y}{\sqrt{4}-\cos^2 y} dy$ $I = \pi \int_{0}^{\pi} SMy (4 - (\alpha x_{y}^{2})^{\frac{1}{2}} dy - I$ $2I = \pi \left[suy \left(4 - (a_{y}^{2})\right)^{2} dy \right]$ dy = - Sing wat luuna y=o ⊢→ v=n y=Ti ⊢→ v=1 Smarns Com I. K.C.B.

$\implies \Im I = \pi \int_{1}^{-1} \frac{s_{im}g}{\sqrt{4 - v^{2\gamma}}} \left(-\frac{dv}{s_{im}g} \right)$	
$\implies \mathcal{I} - \frac{\pi}{2} \int_{-1}^{1} \frac{1}{\sqrt{4-y^2}} dv$	
$\implies \mathcal{J} = \underbrace{\mathbb{T}}_{k} \times \underbrace{\mathbb{R}}_{0}^{1} \underbrace{\mathbb{T}}_{\sqrt{4-\sqrt{2}}}^{1} \underbrace{\mathbb{R}}_{k} \times \underbrace{\mathbb{R}}_{0}^{1} \underbrace{\mathbb{R}}_{\sqrt{4-\sqrt{2}}}^{1} \underbrace{\mathbb{R}}_{k} \times \underbrace{\mathbb{R}}_{0}^{1} \underbrace{\mathbb{R}}_{$	
$\implies \mathcal{I} = \pi \int_0^1 \frac{1}{\sqrt{2^2 - \sqrt{2^2}}} \mathrm{d} v$	
$\Rightarrow I = \pi \left[\alpha rcs_{N} \frac{y}{2} \right]_{b}$	
\Rightarrow $J = \pi \left[arcsm \frac{1}{2} - areanin \right]$	
$\frac{\pi}{2} \times \pi = I \subset$	
$\implies \int_{0}^{T} \frac{\chi_{SWX}}{\sqrt{4-\omega_{XX}^{2}}} dx = \frac{TT^{2}}{6}$	

2017

P.C.P.

Ths.com

 $\frac{\pi^2}{6}$

aths.com

1.G.D.

6

Created by T. Madas

Ò

Question 296 (*****)

A family of functions, known as the Chebyshev polynomials of the first kind $T_n(x)$, is defined as

 $T_n(x) = \cos(n \arccos x), \ -1 \le x \le 1, \ n \in \mathbb{N}.$

Evaluate the following integral

G.B.

i C.B.

 $\int_{-1}^{1} \frac{T_n(x) T_m(x)}{\sqrt{1-x^2}} \, dx \, .$

0

 $= \left[\frac{1}{2(n+w)} \sup \left[((n+w)\frac{1}{2}) + \frac{1}{2(n+w)} \sup \left[((n+w)\frac{1}{2}) - \frac{1}{2} \right] \right]_{0}^{T} = 0$ $\left[AS \sup \{ \theta = 0 \ \} \in \mathbb{Z} \quad \emptyset \quad n+w_{1} \ \} = M \in \mathbb{Z} \right]$

F.G.B.

na

Question 297 (*****)

The function y = f(x) is defined in the largest possible real domain by

$$f(x) \equiv \ln\left[x^2 - 2x + 2\right]$$

Sketch the graph of f(x) and determine an exact simplified value for the area of the finite region bounded by the graph of f(x) and the coordinate axes.

 $\frac{1}{2}\pi - 2 + \ln 2$

na

Question 299 (*****)

1. K.C.

I.C.P.

Use integration by parts to find a simplified expression for

~~~)





Question 300 (\*\*\*\*\*) Use trigonometric identities to find a simplified expression for







- STALTONG FROM THE DIFFERENCE OF STRUMES IN THE NUMFRATOR OF THE SAX DOORS ANOLE IN THE DEVOLUTIONTER
- $\cdots = \int \frac{\left(\sum h_{x}^{0} \log h_{x}^{0}\right) \left(\log h_{x}^{0} + \log h_{x}^{0}\right)}{\left(-\frac{1}{2} \left(\sum \log h_{x} + \log h_{x}^{0}\right)^{2}\right)} d\mu = \int \frac{\left(\sum h_{x}^{0} \log h_{x}^{0}\right) \left(\log h_{x}^{0} + \log h_{x}^{0}\right)}{\left(-2 \exp h_{x} + \log h_{x}^{0}\right)} d\mu$
- $= \int \frac{(\sin^2 x \cos^2 x)(\sin^2 x + \cos^2 x)}{1^2 2\sin^2 x \cos^2 x} dx = \int \frac{(\sin^2 x \cos^2 x)(\sin^2 x + \cos^2 x)}{(\sin^2 x + \cos^2 x)} dx$
- CKPIMO THE DUFFERENCE OF SQUARES IN THE NULLERATOR & THE BRACKET IN THE DRNOW NATION
- $\int \frac{(3N_{x}^{2}-\omega_{x}^{2})(3N_{x}^{2}+\omega_{x}^{2})(3N_{x}^{2}+\omega_{x}^{2})}{3N_{x}^{2}+\omega_{x}^{2}} dx$
- $\int \frac{ds}{ds} \frac{ds}{ds} \frac{ds}{ds} = \int \frac{ds}{ds} \frac{ds}{ds$

```
=-<u>1</u>_sm2x+C
```

## Question 301 (\*\*\*\*\*)

I.V.G.B.

I.F.G.B.

I.C.B.

2017

I.V.C.

2

By using an appropriate substitution followed by trigonometric identities, show that

 $\frac{x\tan x}{\tan x + \sec x} dx = \frac{1}{2}\pi(\pi - 2).$  $\mathbf{J}_0$ 

dα = π− θ dα (T-D) = that - true = - true (1-0) (-tang) (-de) atoma de 0 - Soco - tono do June-Obus do  $\theta_{b} = \frac{\theta_{md} \theta_{r}}{\theta_{md} + \theta_{292}} \int_{0}^{\pi} - \theta_{b} = \frac{\theta_{md} \pi}{\theta_{md} + \theta_{292}} \int_{0}^{\pi}$ with I = Jaharpe di

Section - try of do section - (section) du 96 |+ G322 Secto - two + O E = T ((-1 -0 +1)-(1-0+0)] T = 2 € ⇒ 2I = T [T-2]  $9 \ 1 = \frac{1}{2} \pi (\pi - 2)$  $\int_{0}^{T} \frac{x \tan x}{\tan x + \operatorname{SHOR}} dx = \frac{1}{2} \pi (\pi - 2)$ 

nn

proof

3

1+

nadasn

20,



(\*\*\*\*\*) Question 303

> $\frac{1}{1 + \tan^n x}$ -dx,  $n \in \mathbb{Q}$ .

B. Madasmaths

I.F.G.B. Find the value of the above integral, for all values of n



naths.com

 $\frac{\pi}{4}$ 

I.C.B.

Smains.co

I.V.C.D

## Question 304 (\*\*\*\*\*)

By suitably rewriting the numerator of the integrand, find a simplified expression for the following integral.







asillatilis.co.

1.4.6.5

Maths.com

Question 306 (\*\*\*\*\*)

 $I = \int_{-\infty}^{\infty} \left| x^3 \left( 2^{-x^2} \right) \right| \, dx$ 

It is given that  $I \approx 2$ .

Ĉ.Ŗ.

. C.H.

Use this fact to estimate the value of ln 2 correct to 1 significant figure.

| 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 122                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| • As $d^{2} \times 2^{2^{k}}  S $ COD, THE MODULE IN THE INTERVALO WILL<br>be EVEN<br>E.g. $(Q)$                                                                                                                                                                                                                                                                                                                                                                                         | $= -\frac{1}{\ln 2} \left[ -\frac{2^{N}}{\ln 2} \right]_{0}^{-\infty}$ $= -\frac{1}{\ln 2} \left[ 0 - \frac{1}{\ln 2} \right]$ $= -\frac{1}{(\ln 2)^{2}}$ |
| $ \begin{array}{c} -\infty & \Box_{0} & \forall & \forall \sigma_{0} \\ & & & \forall & \sigma_{0} \\ & & & = \int_{-\infty}^{\infty} Z^{2}\left(2^{\alpha}\right)\left(\frac{du}{-2\lambda}\right) & & & & \\ & & & = \int_{-\infty}^{\infty} Z^{2}\left(2^{\alpha}\right) - du & & \\ & & & & \\ & & & & \\ & & & = \int_{-\infty}^{\infty} -u\left(2^{\alpha}\right) - du & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $ | • highly large the<br>$\frac{1}{(l_{22})^{2}} \approx 2 (12f)$ $(l_{12})^{2} \approx \frac{1}{2} \approx 0.49$ $l_{12} \approx 0.7$ $(12f)$               |
| • $b_1$ events user<br>$ = \left[ \frac{u(2^{\alpha})}{m^{\alpha}} \right]_{0}^{\infty} - \int_{0}^{-\infty} \frac{1}{m^{\alpha}} du \qquad \qquad \frac{u}{2^{\alpha}} \frac{1}{m^{\alpha}}$ $= 0 - 0 - \frac{1}{\ln^{2}} \int_{0}^{\infty} 2^{\alpha} du$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |

hs.com

 $\ln 2 \approx 0.7$ 

adasmaths,

I.C.P.

COM

Mana

nn

### Question 307 (\*\*\*\*\*)

I.G.B.

I.F.G.B.

The definite integral I is defined in terms of the constant k, where  $k \neq 0$ ,  $k \neq \pm 1$ .

$$I = \int_0^{\frac{1}{2}\pi} \frac{1}{1 + k^2 \tan^2 x} \, dx$$

Use appropriate integration techniques to show that

I.C.A

 $I = \frac{\pi}{2(k+1)}$ 



m

K.C.F.

proof

ne,

Mada

I.F.G.B.

1

6

### Question 308 (\*\*\*\*\*)

By suitably rewriting the numerator of the integrand, find a simplified expression for the following integral.



2

### (\*\*\*\*\*) Question 309

Find the value of the following definite integral.



¥.4.0

6



Created by T. Madas

P.C.P.



## Question 312 (\*\*\*\*\*)

720

1. V.G.B. 111.20

COM

I.F.G.B

I.F.C.p

ismans,

0

By using appropriate substitutions, or otherwise, show that

Y.G.B.

I.Y.G.B.

 $\frac{\ln(1+2x)}{1+4x^2} dx =$  $\frac{\pi \ln 2}{16}$ ci.24  $\frac{\ln(1+2x)}{1+4x^2} dx = \int_0^{\infty}$ hici+toul) (Estão da)  $I = \pm \begin{bmatrix} \frac{1}{2} & h(1+bug) & dQ \end{bmatrix}$ 

 $\left(1 + t_{\text{torus}}(\underline{x}, -t_{\text{torus}}) \left(-4t\right) = \pm \int_{-\infty}^{\infty} \left| t_{\text{torus}}(\underline{x}, -t_{\text{torus}}) \right| dt$   $\left| t_{\text{torus}}(\underline{x}, -t_{\text{torus}}) \right| dt = \pm \int_{-\infty}^{\infty} \left| t_{\text{torus}}(\underline{x}, -t_{\text{torus}}) \right| dt$ 

 $=\frac{1}{2}\int_{-\frac{1}{2}}^{\frac{1}{2}} \ln\left[\frac{2}{1+tmp}\right] dd$ 

1202

Ś

1+

nadasn.

he,

proof

h(1+tano) do

Madasn.

27

In (1+tamp) do

- Elith(1+bang)dd

A DOULDAN

ths.col

1.40

### (\*\*\*\*\*) Question 313

2

2

Use appropriate integration techniques to show that



Question 314 (\*\*\*\*\*)

$$= \int_0^{\frac{1}{2}} \frac{\ln(1+2x)}{1+4x^2} \, dx \, .$$

a) Use an appropriate trigonometric substitution to show that

$$= \int_{0}^{\frac{\pi}{4}} \frac{1}{2} \ln \sqrt{2} + \frac{1}{2} \ln \left[ \frac{\cos\left(\theta - \frac{1}{4}\pi\right)}{\cos\theta} \right] d\theta$$

**b**) Show further that

$$= \frac{\pi \ln 2}{16} + \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{1}{2} \ln \left[ \frac{\cos\left(\varphi - \frac{1}{8}\pi\right)}{\cos\left(\varphi + \frac{1}{8}\pi\right)} \right] d\varphi.$$

c) Deduce that

12

$$I = \frac{\pi \ln 2}{16}.$$

, \_\_\_\_, proof

marns.

Co,

m

20/201

15

9

| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} \left( \varphi_{0} \left( \varphi_{0} \psi_{1} \right) \left( \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{1} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{1} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{1} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)_{0} & \varphi_{2} \left( \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{1}{$ | $1 + Q_{2}^{2} =$<br>$1 + (2)^{2} =$<br>$1 + tail = sec^{2}t$<br>$(1 + tail = sec^{2}t$<br>$2 + tail = sec^{2}t$<br>$2 + sec^{2}t$<br>$d_{2} = sec^{2}t$<br>$d_{3} = \frac{1}{2}sec^{2}t$<br>$d_{3} = \frac{1}{2}sec^{2}t$<br>$d_{3} = \frac{1}{2}sec^{2}t$<br>$d_{3} = \frac{1}{2}sec^{2}t$<br>$d_{3} = \frac{1}{2}sec^{2}t$ |
| MENIPULATE TO EMEMOLIC FORM BY INSPECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6= oristow?a                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{l} \displaystyle \partial b \left( (\partial \omega u) d \frac{1}{2} - \left[ \left( \partial \partial \omega \frac{1}{2} + \partial \omega u \frac{1}{2} u \right) \mathcal{D}_{1} \right] d \frac{1}{2} \stackrel{\mathcal{T}}{\longrightarrow} \right] = \\ \displaystyle b \left( (\partial \omega u) d \frac{1}{2} - \left[ \left( \partial \partial \omega \frac{1}{2} \omega c + \partial \omega u \frac{1}{2} \omega u \right) \mathcal{D}_{1} d \right] d \frac{1}{2} \stackrel{\mathcal{T}}{\longrightarrow} \right] = \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                                                                                                                                                                                             |
| $= \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \ln \left[ \cos(\theta - \frac{\pi}{2}) \right] - \frac{1}{2} \ln(\cos\theta) d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                               |
| $= \int_{0}^{\infty} \frac{z}{1+\rho} p_{n} + \frac{z}{\rho} \rho p_{n} (\theta - \frac{1}{2}) - \frac{z}{1+\rho} (m\theta) q\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                               |
| $= \int_{0}^{\frac{1}{2}} \frac{1}{2^{\frac{1}{2}}} \sqrt{2} + \frac{1}{2} \ln \left[ \frac{a_{\Delta}(p-\overline{n}_{4})}{c_{\Delta}p} \right] d\theta \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                               |
| 5) SPUT THE INCHERAL & CAE A FUETHER SUBSTITUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                               |

 $= \int_{a}^{T} \frac{1}{2} \ln \sqrt{2} \, da$  $= \frac{1}{2} \ln 2 \cdot \int_{a}^{T} 1 \, d1$ 

| Ì | $= \left[ \left(\frac{1}{4} \ln 2\right) \theta \right]_{0}^{\frac{1}{2}4} + \frac{1}{2} \int_{0}^{\frac{1}{4}} \ln \left[ \frac{\cos(\theta - \frac{1}{4})}{\cos^{\theta}} \right] d\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ANSTHE SUBSTITUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | $\phi = \theta - \frac{2}{L} \iff \theta = \phi + \frac{2}{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | • q\$ = 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\begin{array}{ccc} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | $= \frac{\pi h \rho}{16} + \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln \left[ \frac{\cos(\phi - \pi_{\theta})}{\cos(\phi + \pi_{\theta})} \right] d\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | () LOOKING AT THE FINAL MADEVIC GIVIN WE SUGARST WE HAVE AN ODD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | WREEDAUD IN THE SYMMETRICAL DOWNER) - LET f(b) BE THE INFORMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | $ = (-\xi \partial t - \xi \partial t -$ |
| ы | $= \mu \left[ \frac{\cos(\phi + \frac{2\pi}{2})}{\cos(\phi + \frac{2\pi}{2})} \right] = -\mu \left[ \frac{\cos(\phi + \frac{2\pi}{2})}{\cos(\phi + \frac{2\pi}{2})} \right] = -\frac{1}{2}(\phi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | $\therefore \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} b \left( \frac{\cos(\phi - \overline{w})}{\cos(\phi + \overline{w})} \right) d\phi = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | $\therefore  I = \int_{0}^{\frac{1}{2}} \frac{\ln(1+2)}{1+4\lambda^{2}} d\lambda = \frac{\pi \ln 2}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | ts Beprend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

V

Question 315 (\*\*\*\*\*)

$$I = \int \frac{2x+1}{\sqrt{x-1}} \, dx \, .$$

a) Show that

I.C.B.

I.G.B.

$$= \frac{4}{3}(x-1)^{\frac{3}{2}} + 6(x-1)^{\frac{1}{2}} + \text{constant}$$

You may not use any substitution or integration by parts.

**b**) Determine the value of a, given that





| =) 243+9A - | 164=0                                                            | min                          |
|-------------|------------------------------------------------------------------|------------------------------|
|             | 2 49-164 \$0<br>16418-64 \$0<br>128436-164=0<br>(A-4) 11-1 FAROL | 2 82.<br>2 41<br>164 = 2x2x4 |

P.C.A



2017

Inadasn.

*a* =17

K.C.B. Madasa

11-5-

F.G.B.



#### (\*\*\*\*\*) Question 317

By using an appropriate substitution or substitutions, show that



Question 318 (\*\*\*\*\*)

$$f(x) = \begin{cases} x - [x] & x \in \mathbb{R}, \ [x] = 2k + 1, \ k \in \mathbb{Z} \\ -x + [x] + 1 & x \in \mathbb{R} \ [x] = 2k, \ k \in \mathbb{Z} \end{cases},$$

where [x] is defined as the greatest integer less or equal to x.

Find the value of

I.V.G.B. Ma

I.C.B.

0

 $\frac{\pi^2}{8} \int_{-8}^{8} f(x) \, \cos(\pi x) \, dx \, .$ 

 $-f(x) = \begin{cases} x - [x] \\ -x + [x] + 1 \end{cases}$ IF [x] IS €V6N fai BY 77477: f(x) 15 61M3 f(3) 15 46640D1C (14e4082)  $\frac{\pi^2}{8}\int_{-\pi}^{\pi} f(x) \cos \pi x \, dx = \frac{\pi^2}{4}\int_{-\pi}^{8} f(x) \cos \pi x.$  $4 \times \frac{T^2}{4} \int_0^2 f(x) \cos \pi x \, dx = \pi^2 \int_0^2 f(x) \cos \pi x \, dx$  $\pi^{2}\int_{1}^{1}(1-x)\log \pi x \, dx + \pi^{2}\int_{1}^{2}(x-1)$ α=i⊢ α=2 ⊢

=  $\pi^2 \int_0^1 (1-\lambda) \cos(\lambda d\lambda + \pi^2 \int_0^1 -u \cos(\pi u) du$ =  $\pi^2 \int_0^1 (1-x) \log \pi dx + \pi^2 \int_0^1 -x \cos \pi x dx$ =  $\pi^2 \int_{0}^{1} (1-2\alpha) \cos(\alpha \alpha) d\alpha$  $= \pi^{2} \left\{ \left[ \frac{1-2\alpha}{\pi} \cdot \frac{1}{2\pi} \int_{0}^{1} + \frac{2}{\pi} \int_{0}^{1} \sin \pi x \, dx \right\}$ =  $2\pi \int_{\Omega} sm\pi_{\lambda} d\lambda$  $\int_{0}^{1} \left[ c \pi 2 \omega \frac{1}{\eta} - \right] \pi c =$  $\int_{1}^{0} \left[ \chi \pi 2 \omega \right] c =$ 

23

nn,

4

ths.com

4.6.0

6

Created by T. Madas

I.V.C.B.

### Question 319 (\*\*\*\*\*)

I.Y.G.B

I.C.B.

I.C.B.

By using symmetry arguments, find the exact value of the following integral

 $e^{|\cos x|} [\sin(\cos x) + \cos(\cos x)] \sin x dx$ .

 $e(\cos 1 + \sin 1) - 1$ 

11+



Created by T. Madas

3

I.F.C.B.

ma

ng

Question 320 (\*\*\*\*\*)

\*)  
$$I = \int_{0}^{1} \left[ \prod_{r=1}^{10} (x+r) \right] \left[ \sum_{r=1}^{10} \left( \frac{1}{x+r} \right) \right] dx.$$

Show by a detailed method that

G.B.

F.C.B.

 $I = a \times b!,$ 

where a and b are positive integers to be found.



1+

a = b = 10

F.G.B.

Question 321 (\*\*\*\*\*)

$$I = \int \sqrt{\tan x} \, dx \, .$$

**a**) Use a suitable substitution to show that

$$= \int \frac{1 + \frac{1}{u^2}}{\left(u - \frac{1}{u}\right)^2 + 2} \, dx + I = \int \frac{1 - \frac{1}{u^2}}{\left(u + \frac{1}{u}\right)^2 - 2} \, dx$$

b) By using a further substitution in each of the integrals of part (a) find a simplified expression for I, in terms of x.

You may assume without proof that

$$\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \arctan\left[\frac{x}{a}\right] + \text{constant} \, .$$

$$], \frac{1}{\sqrt{2}} \arctan\left[\frac{\tan x - 1}{\sqrt{2}\tan x}\right] + \frac{1}{2\sqrt{2}} \ln\left[\frac{\tan x - \sqrt{2}\tan x + 1}{\tan x + \sqrt{2}\tan x + 1}\right] + C$$

ta) we out on

6

$$\begin{aligned} \mathbf{a} & \int \sqrt{4\omega_{n}} \, d\mathbf{k} & \dots \text{ if Assumption} \\ \mathbf{a} & \int \sqrt{4\omega_{n}} \, d\mathbf{k} & = \int \frac{2\omega}{1+\omega_{n}} \, d\mathbf{k} \\ & = \int \omega \left(\frac{2\omega}{1+(\omega)} \, d\mathbf{k} = \int \frac{2\omega}{1+(\omega)} \, d\mathbf{k} \\ & = \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \int \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \int \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \int \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \int \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \int \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \int \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \int \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k} + \int \frac{1}{1+\frac{1}{1+\omega}} \, d\mathbf{k} \\ & = \frac{1}{\frac{1}{1+\omega}} \, d\mathbf{k}$$

#### (\*\*\*\*) Question 322

I.F.C.p

I.F.G.B.

By using an appropriate substitution or substitutions, show that

I.G.B.

COM I.Y.C.B.

 $\ln(\sin x) dx = -\pi \ln 2.$ 



FG.B.

200



proof

140

6

-

Madası,

he,

Created by T. Madas

D

Question 323 (\*\*\*\*\*)

It is given that

Y.G.B.

$$I = \int_{\frac{1}{2}\pi}^{\pi} \frac{3 + \cos x}{13 + 3\cos x + 2\sin x} \, dx \quad \text{and} \quad J = \int_{\frac{1}{2}\pi}^{\pi} \frac{2 + \sin x}{13 + 3\cos x + 2\sin x} \, dx$$

By considering two linear combinations in I and J, show that

$$I = \frac{1}{26} \left[ 3\pi - \ln\left(\frac{81}{16}\right) \right],$$

and find a similar expression for J



| · thence we there  |                                                            |
|--------------------|------------------------------------------------------------|
| 3I + 2J = T/2 ×3   | 9I+6J= 375                                                 |
| 2]-3] = 123 ×2     | $4I - 6J = 2ln\frac{2}{3}$                                 |
|                    | 13I = 3II + 21N =                                          |
|                    | I = ts[sII_2/nz]                                           |
|                    | $I = \frac{1}{26} \left[ 3\Pi - 4 \ln \frac{3}{2} \right]$ |
|                    | $I = \frac{1}{24} \left[ 3\pi - \ln \frac{81}{16} \right]$ |
| O AND SIMILARDY    | /                                                          |
| 3I + 2J = 71/2 × 2 | 6I + 4J - T                                                |
| 21 - 35 = h3 × 3   | 6I - 9J = 3hiz                                             |
|                    | 02                                                         |
|                    | 13J = T-3/43-                                              |
|                    | $J = \frac{1}{13} \left[ T + 3 \ln \frac{3}{2} \right]$    |
|                    | $J = \frac{1}{15} \left[ \pi + \ln \frac{27}{8} \right]$   |
|                    | 7                                                          |
|                    | //                                                         |
|                    |                                                            |
|                    |                                                            |
|                    |                                                            |
|                    |                                                            |
|                    |                                                            |

Ĉ.Ŗ

1201

11+

 $I = \frac{1}{13} \left[ \pi + \ln\left(\frac{27}{8}\right) \right]$ 

di.

#### (\*\*\*\*\*) Question 324

man

Smarks Com I. K. C. B.

I.F.G.p

I.F.G.B.

alasmaths.com

By using an appropriate substitution or substitutions, show that

$$\int_0^1 \frac{\ln(x+1)}{1+x^2} \, dx = \frac{\pi \ln 2}{8}$$





nadasmans.com

I.Y.C.B. Madasn

 $\int_{-\frac{1}{1+x^2}}^{1} \frac{h(1+x)}{h+x^2} dx = \frac{\pi}{p} h_2$ 

i.G.p.

madasmans.com

proof

4.60

6

nadasm.

Created by T. Madas

2017

Question 325 (\*\*\*\*\*)

It is given that

K.C.B. Madasm

Smaths.com

I.F.G.p

asmarns,

2

$$I = \int_0^{\frac{1}{3}} \frac{32x^2}{(x^2 - 1)(x + 1)^3} dx$$

Show that  $I = \frac{7}{6} - 2\ln 2$ .

| $\int_{0}^{\frac{1}{2}} \frac{322^{2}}{(2^{k-1})(x+1)^{k}} dx = \int_{0}^{\frac{1}{2}} \frac{322^{2}}{(2^{k-1})(2^{k+1})^{k}} dx$                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTINUE WITH A SMARE SUBSTITUTION                                                                                                                    |
| du=doc                                                                                                                                                |
| $\chi_{=0} \longrightarrow \psi_{=1}$                                                                                                                 |
|                                                                                                                                                       |
| $\dots \int_{1}^{\frac{\mu}{2}} \frac{32(\mu-1)^2}{(\mu-2) u^4} d\mu = \int_{1}^{\frac{\mu}{2}} \frac{32}{u^4} \times \frac{u^2 - 2u + 1}{u - 2u} du$ |
| MANIPOLATE BY DIVIDING "BACKWARDS" 45 JULION BROW                                                                                                     |
| $-\frac{1}{2} + \frac{3}{2}u - \frac{1}{2}u^2 - \frac{1}{2}u^3$<br>-2 + U $\left[1 - 2u + u^2\right]$                                                 |
|                                                                                                                                                       |
| - <u>1 + ±4</u><br>- <u>±</u> 4 + 42                                                                                                                  |
| $-\frac{1}{2}u + \frac{1}{2}u^{2}$                                                                                                                    |
|                                                                                                                                                       |
| $\frac{1}{2}u^2$<br>$-\frac{1}{2}u^2 + \frac{1}{2}u^3$                                                                                                |
| - 4a. 4.8a.                                                                                                                                           |
| - = = = = = = = = = = = = = = = = = = =                                                                                                               |
| <u> </u>                                                                                                                                              |
| ~                                                                                                                                                     |
| (WE SHOLD THING BERT THE 32 WITH 02-24+1)                                                                                                             |
|                                                                                                                                                       |
|                                                                                                                                                       |

| WE | WING TO THE INDIERAL WE OBTAIN                                                                                                                                                        |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\int_{1}^{\frac{1}{2}} \frac{2\varrho}{u^{\alpha}} \left[ -\frac{1}{2} + \frac{3}{4}u - \frac{1}{6}u^{2} - \frac{1}{4}u^{3} + \frac{1}{6}\frac{1}{4}u^{\alpha} \right] du$           |
| -  | $\int_{1}^{\frac{4}{3}} - \frac{16}{u^{4}} + \frac{24}{u^{3}} - \frac{4}{u^{2}} - \frac{2}{u} + \frac{2}{u-2} du$                                                                     |
|    | $\left[\frac{16}{30^3} - \frac{12}{0^2} + \frac{4}{4} - 2\ln[u] + 2\ln[u-2]\right]_{l}^{\frac{16}{3}}$                                                                                |
| n  | $\begin{bmatrix} \frac{16}{38} & -\frac{12}{4} & +\frac{4}{3} & -2h\frac{4}{3} + 2h\left[ \frac{2}{3} \right] \\ -\frac{16}{4} & -\frac{16}{3} & -\frac{16}{3} \end{bmatrix} = \dots$ |
|    | [ 5 - 12 + 4 - 24+ + 24+ + 7]                                                                                                                                                         |
| 1  | $\frac{16}{64} - \frac{12x^{2}}{16} + \frac{4x^{2}}{4} - 2lw_{3}^{2} + 2lw_{3}^{2} - \frac{16}{3}t^{12} - 4$                                                                          |
| -  | $\frac{16 \times 9}{64} = \frac{3 \times 9}{4} + 3 = 2\ln \frac{4}{3} - 2\ln \frac{2}{3} - \frac{16}{3} + 8$                                                                          |
| =  | $\frac{9}{4} - \frac{27}{4} - \frac{16}{3} + 11 - 2\ln(\frac{1}{3}\times\frac{2}{3})$                                                                                                 |
| 1  | $11 - \frac{16}{3} - \frac{18}{4} - 2m2$                                                                                                                                              |
| 1  | $n = \frac{16}{3} = \frac{9}{2} = 2m2$                                                                                                                                                |
| -  | $\frac{66-32-27}{6}-2m_2=\frac{7}{6}-2m_2$                                                                                                                                            |

logsmaths.com

I.F.C.P.

GB

ths.com

proof

4.6.0

1.4

12dasma

Madasn,

Created by T. Madas

COM

I.Y.G.B.

Question 326 (\*\*\*\*\*)

I.V.G.B. M.

I.F.G.B.

 $I = \int_0^{\frac{1}{2}\pi} 4\sin x \sqrt{\cos 2x} \, dx.$ 

By using an appropriate substitution or substitutions, show that

 $I = 2 - \sqrt{2} \ln\left(1 + \sqrt{2}\right).$ 

| $I = \int_{0}^{\frac{1}{4}} 4\sin x \sqrt{\cos 2x}  dx = 2 - \sqrt{2}$                                                     | "hn(1+12")                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| STREET WITH TREEPOSMITTER IRANITIES                                                                                        |                                                                                                          |
| ⇒I= J = J = 45142, 21032-1 dx 4- 5                                                                                         | TX911 (AGB[IT IT 28'V                                                                                    |
| $\Rightarrow 1 = \int_{1}^{\frac{1}{2}} 4smi\sqrt{2u^{2}-1} \frac{du}{-smi}$                                               | $U = COSCL \frac{dM}{dX} = -SIMX$                                                                        |
| $\Longrightarrow I = \int_{\mathcal{Q}}^{1} 4\sqrt{2u^{2}-1} du$                                                           | dr = - SINX<br>AND THE LIMITS                                                                            |
| MEXT CONTINUE WITH A TRIGONOMATRIC<br>COR HYPPREDUCE SUBSTITUTION ;                                                        | z=0 ↔ 6=<br>α=≖ ⊷ 6=≌                                                                                    |
| $\Rightarrow I = \int_{0}^{\frac{1}{2}} 4\sqrt{\frac{5600-1}{500-1}} \frac{5600 \log 0}{\sqrt{27}} d\theta \qquad \bullet$ | $sec\theta = \sqrt{2}u$<br>$sec\theta tand d\theta = \sqrt{2} du$                                        |
| $\rightarrow J = \int_{0}^{\frac{1}{2}} f_{22} f_{44,0} (set blow 0) d0$                                                   | 560 = √24<br>SEO fund do = √2 du<br>du = <u>SEO bind</u> do<br><del>√2<sup>1</sup></del> do<br>u=1 +→ ∓: |
| $\Rightarrow I = \int_{0}^{\frac{1}{2}} \frac{4}{r_{2}} t_{u}^{2} \theta \sec \theta$                                      | 4= 2 → θ=0                                                                                               |
| AS THURSENS BO YORADI LUCIUBO ON 21 SPART RA                                                                               | NGCEER BY PHET                                                                                           |
|                                                                                                                            |                                                                                                          |

⇒ I= [k=laulased] = k=

1.94

Ob 8522 B322 B32 F = [ 0 - IT XIX H] = I @  $H = \frac{\mu}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} SeC\theta (1 + fruite) d\theta$ -1- $\theta = \frac{1}{12} - \frac{1}{12} \int_{0}^{\frac{1}{2}} st d\theta d\theta - \frac{1}{12} \int_{0}^{\frac{1}{2}} sc \theta du^{2} \theta d\theta$  $4 - \frac{1}{\sqrt{2}T} \left[ \ln \left| \sec(\theta + \tan \theta) \right]^{\frac{1}{2}} - \tilde{T} \right]$ 「コーチー告[m(12+1)-]ut] -I Aln(2+1) THUS 2, h (G+1) 12 h(12+1)

0

COM

proof

I.V.C.B. Mada

6

#### (\*\*\*\*\*) Question 327

Find as an exact fraction the value of I,



#### Question 328 (\*\*\*\*\*)

The integral I is defined as

$$I = \int_0^{\pi} \frac{\sin^2 x}{1 + \cos^2 x} \, dx \, .$$

a) Show by a detailed method that

$$I + \pi = \int_{0}^{\frac{1}{2}\pi} \frac{4}{1 + \cos^{2} x} \, dx.$$

**b**) Hence, find the value of I in exact simplified form.

c) Verify the answer obtained in part (b) by an alternative method by first writing the integrand of I as a function of  $\cot^2 x$ .

 $\sqrt{2}$ 

 $I = \pi$ 

| On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) <u>Process At Follows</u><br>$= \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda + \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda = \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda + \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda = \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda + \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda + \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda = \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda + \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda = \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda + \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda = \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda = \int_{0}^{T} \frac{\sin \lambda}{1 + \cos \lambda} d\lambda + \int_{0}^{T} \frac{1}{1 + \cos \lambda} d\lambda = \int_{0}^{T} \frac{1}{1 +$ | $\frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \right) + \pi \left( \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \right) + \pi \left( \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \right) + \pi \left( \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2} \right) + \pi \left( \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}$ |
| $\begin{array}{rcl} (\Delta SUVUS & UUDIR! NO FOR & SUTUR! OF THE NEW ON A TY SEC2 (there you for that the suture shows in the second of the se$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $= \int_{0}^{\infty} \frac{1}{(1+cdy)+cdy} dx = \int_{0}^{\infty} \frac{1}{1+2cdy} dx$ $= \int_{0}^{\infty} \frac{1}{(1+2cdy)+cdy} dx$ $= \int_{0}^{\infty} \frac{1}{1+2cdy} dx$ $= du = -sc_{2}du$ $= du = -sc_{2}du$ $= du = -\frac{du}{1+cdy}$ $= 3t_{2} = -\frac{du}{1+cdy}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $= \int_{-\infty}^{\infty} \frac{1}{u^2 + \left(\frac{1}{\sqrt{n}}\right)^n} - \frac{1}{u^2 + 1} du$ $\leq \forall \phi i  \text{UT(GD/b) I.i. A SPLUIT(D/L) SUBPL}$ $= 2 \int_{0}^{\infty} \frac{1}{u^2 + \left(\frac{1}{\sqrt{n}}\right)^n} - \frac{1}{u^2 + 1} du$ $= 2 \left[ -\frac{1}{\sqrt{n}}  \text{arch}(\frac{n}{\sqrt{n}}) -  \text{arch}(u_n) \right]_{0}^{\infty}$ $= 2 \left[ -\frac{1}{\sqrt{n}}  \text{arch}(\sqrt{n}) -  \text{arch}(u_n) \right]_{0}^{\infty}$ $= 2 \left[ -\frac{1}{\sqrt{n}}  \text{arch}(\sqrt{n}) -  \text{arch}(u_n) \right]_{0}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\int_{\infty}^{\infty} \frac{1}{1+2\lambda^{2}} \left(-\frac{du}{1+u^{2}}\right) = \int_{-\infty}^{\infty} \frac{1}{(1+2\lambda^{2})(1+u^{2})} du$ $\frac{PRTIALFRATIONS(FOUL WITHOR CREMENTION)}{(1+2\lambda^{2}-1+u^{2})} = \int_{-\infty}^{\infty} \frac{1}{(1+2\lambda^{2}-1+u^{2})} du$ $= \int_{-\infty}^{\infty} \frac{2}{(1+2\lambda^{2}-1+u^{2})} du$ $= \int_{-\infty}^{\infty} \frac{1}{(1+\frac{1}{2})} - \frac{1}{(1+u^{2})} du$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= \lambda \left[ \lambda \Delta B B M_{0} \left( \lambda^{2} M_{0} \right) - O C S m_{0} \right]_{0}$ $= \lambda \left[ \left( \lambda^{2} \lambda \frac{T}{2} - \frac{T}{2} \right) - (0 - 0) \right]$ $= \pi \sqrt{2} - \pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### (\*\*\*\*) **Question 329**

By using an appropriate substitution or substitutions, followed by partial fractions show that



Question 330 (\*\*\*\*\*)

$$= \int \frac{\sec^2 x}{\sqrt{\sec x + \tan x}} \, dx.$$

Without using a verification approach, show that

 $I = (\sec x + \tan x)^{\frac{1}{2}} - \frac{1}{3}(\sec x + \tan x)^{-\frac{3}{2}} + \text{constant}.$ 

You may consider the substitution  $u = \sec x + \tan x$  useful at some stages in the manipulation of the integrand.



### Question 331 (\*\*\*\*\*)

Use an appropriate integration method to determine an antiderivative for the following indefinite integral.



#### (\*\*\*\*) Question 332

Use partial fractions followed by integration by parts to show that



1+