MOTION ON AXISYMETRIC SURFACES

Created by T. Madas

Question 1 (***)

A particle of mass m is moving on a smooth axisymmetric surface with equation

$$
z=f(r)
$$

where r measures the distance from the vertical axis of symmetry, and z is the vertical distance along that axis, measured from an arbitrary origin O.

The particle is set in motion at a point on the surface where $r=a$, with horizontal speed U, tangential to the surface.

If air resistance can be ignored, show that

$$
\dot{r}^{2}\left[1+\left[f^{\prime}(r)\right]^{2}\right]+2 g f(r)+g(r)=\text { constant }
$$

where g is a function to be found.

Created by T. Madas

Question 2 (***+)
A particle of mass m is moving on the smooth outer surface of a right circular cone, of semi-vertical angle $\alpha, \alpha<\frac{1}{2} \pi$, whose vertex is uppermost and its axis vertical.

The particle is set in motion at a point on the surface of the cone where the radius is a, with horizontal speed U, tangential to the surface of the cone.

At a general point on the cone with radius is r, the reaction force on the particle is R.

