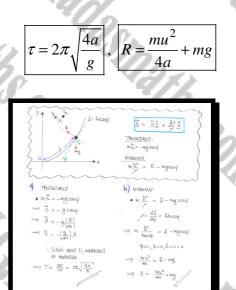

INTRINSIC INTRINSIC INTRINSIC INATES INTRIN. COORDINATES ASSINGUIS COM I. Y. C.B. MARIASINGUIS COM I. Y. C.B. MARIASING

A bead of mass m is made to slide along a smooth wire, which is fixed in a vertical plane, and is bent into the shape of an inverted cycloid with intrinsic equation

$s = 4a\sin\psi$,


where a is a positive constant, s is measured from the origin O, and ψ is the angle the tangent to the cycloid makes with the x axis.

The bead is released from a point on the cycloid where $s \neq 0$.

a) Show that the period of the resulting oscillations is independent of the position from which the bead was released.

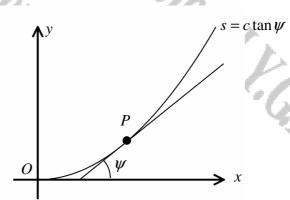
The bead passes through the lowest point of the path with speed u.

b) Determine in terms of m, u, a and g, the magnitude of the reaction of the wire on the bead as it passes through the lowest position of the wire

Question 2 (**)

A particle moves with constant speed u on the curve with intrinsic equation

$$s = a \tan \psi, \ 0 \le \psi < \frac{\pi}{2},$$


where a is a positive constant, s is measured from the origin O, and ψ is the angle the tangent to the curve makes with the x axis.

Show that the magnitude of the normal component of the acceleration of the particle, t seconds after starting from the point where $\psi = 0$, is

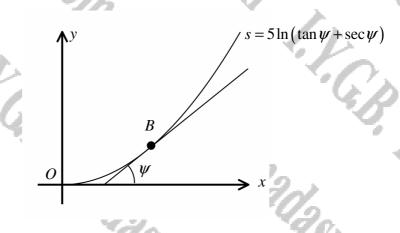
	, proof
2	$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $
	$\frac{\overline{H}\xi}{\sigma} \frac{1}{\sqrt{2}} \frac{1}{2$
	We need to four Gummitz $s' = THE spec S above the \frac{\partial B E}{\partial s} = 0\Rightarrow (ds' = 0)$
2	$ = \int_{a}^{b} ds = \int_{a}^{b} dt $ $ = \int_{a}^{b} ds = $
	$\frac{\frac{d^2}{d^2}}{a^2} = \cdots = \frac{au^2}{a^2 + g^2} = \frac{au^2}{a^2 + u^2 t^2}$

6

Question 3 (**)

A particle P is moving with constant speed u on the catenary with intrinsic equation

 $s=c\tan\psi, \quad 0\leq\psi<\frac{\pi}{2},$

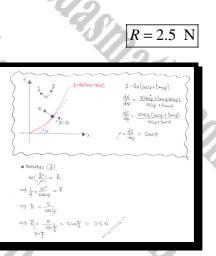

where c is a positive constant, s is measured from the origin O, and ψ is the angle the tangent to the catenary makes with the x axis.

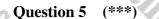
Find an expression for the magnitude of the acceleration of the particle and hence state the maximum magnitude of its acceleration.

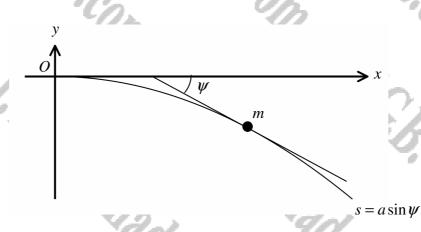
 u^2 си |a| = $a|_{\max}$ С

S= ctanp $a = \frac{s_1^2}{s_2^2} + \frac{s_2^2}{s_1^2} h$ $\int_{a}^{a} \alpha = \frac{u^{2}}{\int_{a}^{a}} = \frac{u^{2}}{c \operatorname{side}^{2}} = \frac{u^{2}}{c(1+t)a^{2}\psi}$ $\frac{u^2}{C(1+\frac{s^2}{C^2})}$ ⇒ [a] = $\frac{u^2}{\frac{1}{c}(c^2+\beta^2)}$

Question 4 (**+)


A bead of mass 0.25 kg is made to slide along a smooth wire, which is fixed in a horizontal plane, and is bent into the shape of a curve with intrinsic equation

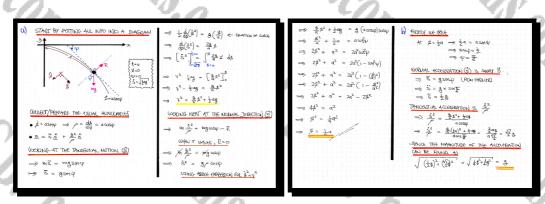

$$s = 5\ln(\tan\psi + \sec\psi), \quad 0 \le \psi < \frac{\pi}{2}$$


where a is a positive constant, s is measured from the origin O, and ψ is the angle the tangent to the curve makes with the x axis.

The bead is moving along the wire with constant speed 10 ms^{-1} .

Determine the magnitude of the reaction of the wire on the bead, when $\psi = \frac{\pi}{3}$.

The figure above shows a particle of mass m, which is free to slide along a smooth surface, whose vertical cross section is the curve C with intrinsic equation

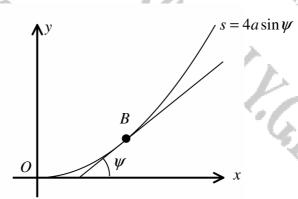

$$s = a \sin \psi, \ 0 \le \psi < \frac{\pi}{2}$$

where *a* is a positive constant.

The arclength s is measured from the origin O, and the angle ψ is the angle the tangent to C makes with the positive x axis, as shown in the figure above.

The particle is projected from O with speed $\sqrt{\frac{1}{2}}ag$ and leaves the surface at the point P.

- **a**) Find the value of s at P.
- **b**) Determine the magnitude of the acceleration at P.



acceleration = g

 $s = \frac{1}{2}a$

Created by T. Madas

Question 6 (***)

A bead of mass m is made to slide along a smooth wire, which is fixed in a vertical plane, and is bent into the shape of an inverted cycloid with intrinsic equation

$$s = 4a\sin\psi, \ 0 \le \psi < \frac{\pi}{2}$$

'n.

where a is a positive constant, s is measured from the origin O, and ψ is the angle the tangent to the cycloid makes with the x axis.

The bead is projected from O with tangential speed $\sqrt{3ag}$.

Show that when ψ :

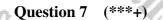
a) ... the speed of the bead is \sqrt{ag} .

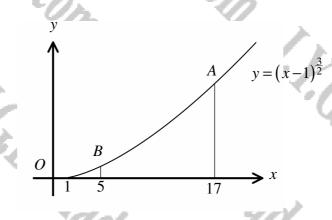
b) ... the magnitude of the reaction of the wire on the bead is $\frac{3}{4}\sqrt{2}mg$.

proof

4ag [sm24]

400 (0 - sin2 I)


to Bre


ay

⇒ V= Vay

when y=== 1 = = = = = = +200 ; == = y makes

1 3 3 x 4asmy	Lum	$\Rightarrow \frac{1}{2}m(\sqrt{3qy})^2 = mgy + \frac{1}{2}mv^2 \qquad \qquad$	V2])
	$\beta = \frac{d}{dw} = 4\alpha \omega_{S} \psi$	$\Rightarrow 3ag = 2gy + v^2$ $\Rightarrow v^2 = 2gy + v^2$	² - 30
	ACCELERATION IN INTERNOLS	$ \Rightarrow V^{2} = 3ag - 2g(2assify) $ $ \Rightarrow V^{2} = ag(3 - 4sify) $ $ \Rightarrow V^{2} = ag(3 - 4sify) $	- 3e
2 Thing	$\mathcal{Q} = \frac{\mathbf{s} \cdot \mathbf{s}}{\mathbf{s}} + \frac{\mathbf{s} \cdot \mathbf{s}}{\mathbf{s}} + \frac{\mathbf{s}}{\mathbf{s}} \mathbf{s} + \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s}$	when you I and y	2
and the stage	>	$V^2 \approx ag(3 - 4sm^2 \overline{T})$ $\Rightarrow 1$	V =
a) METHOD A (BY EVERILES)		V= ag	
dy dy dy = smp	METHOD B (BY THE GOUNTIA) OF THISGRATHAL MOTION)	N= Jag	
. da (ymægm - = žm ymæge - ≥ ≈	b) LOCKING AT THE NORMAL DIRECTION OF MC	57(0r)
) dy = sany ds ⇒ dy = sany ds dy by by	$\rightarrow n \frac{qs}{qs} = -\frac{3}{2} \sin h$	$\implies M \stackrel{s^2}{=} = R - mgaaqu$	
⇒ ∫l dy = ∫siny((da(coop) dy	→ vdv = -g.sm/ψ d≴	$\Rightarrow m \frac{3^2}{4acosy} = R - mg cosy$	
y=0 pino ⇒ [9]= [4asimpulay dip	V dv = -g smy dy dy	$(uhon \frac{1}{2}v = \frac{1}{2}v = 0$ is $(uhon \frac{1}{2}v = 1)$	2 13
y = [2asity]	S⇒ vdv = -g.smp(dacosp)d4	$\frac{mag}{4a_{\frac{1}{2}}} = R - m_{\frac{1}{2}} \frac{\sqrt{2}}{2}$	
$\Rightarrow y = 2asnfy$	- v du = - 4ag smyrosp de .	$\frac{Mg}{\frac{3}{\sqrt{2}}} = R - \frac{1}{2}Mg\sqrt{2}$	
NOW LE. + PE. 5 KE. + PE.	$ \begin{array}{l} \displaystyle \underset{v=\sqrt{3mg}}{\longrightarrow} \int_{v=\sqrt{3mg}}^{v} dv &= \int_{-4mg}^{\psi=\frac{\pi}{2}} dy \ \text{ output} \ dv \\ \psi=0 \end{array} $	= 12 mg = 2 - 2 12 mg	
THUNG THE LEVEL OF O AS THE ZEND POTNOME UNIT	$= \left[\frac{1}{2}v^2\right]_{V_{2}}^{V} = \left[-2a_3 sh_V\right]_{0}^{\frac{1}{2}}$	=> 2 = 3/2 mg	
THE REPORT OF	· · · · · · · · · · · · · · · · · · ·		

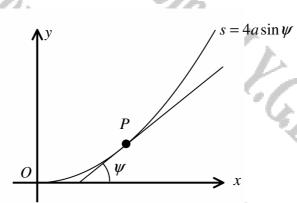
A rollercoaster car, of mass 200 kg, is constrained to move along a rail path with Cartesian equation

 $y = (x-1)^{\frac{3}{2}}$.

The car comes to instantaneous rest at the point A, where x = 17, and immediately begins to freely slide downwards towards the origin O, as shown in the figure above. The point B, lies on the same rail path, where x = 5. The car is modelled as a particle moving along a smooth rail path without any air resistance.

As the car passes through B, calculate ...

a) ... the magnitude of the acceleration of the car as it passes through B.


b) ... the magnitude of the normal reaction exerted by the rails onto the car

 $a \approx 16.0 \text{ ms}^{-2}$

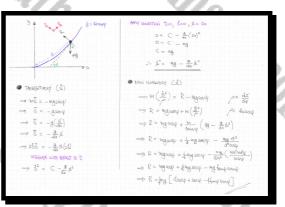
 $R \approx 3223 \text{ N}$

12.			5.82
	(a) SIMPLING WITH A THREAM THIS PERFORMS SALF ANXILLEY TRACT $4 \rightarrow 0$ (LINE) $4 \rightarrow 0$ (LINE) $4 \rightarrow 0$ (LINE)	NEXT THE REDUCE OF COLUMPUSE p , the CHERTING	b) Lacking AT THE NUTTER, slowAug $\Rightarrow h \left(\frac{v^2}{r}\right) = R - mg \cos \psi$ $\Rightarrow R = \frac{mv^2}{r^2} + mg \cos \psi$ AT B we HAVE $r = \frac{1}{28}$ $r^2 = 128$ $r^2 = \frac{200 \times 1128}{82 \sqrt{10}} + 2003 \times \frac{1}{100}$ $\Rightarrow R = \frac{200 \times 1128}{\sqrt{100}} + 2003 \times \frac{1}{100}$ $\Rightarrow R = \frac{2000 \times 128}{\sqrt{100}} + \frac{2004}{\sqrt{100}}$ $\Rightarrow R = \frac{2000}{\sqrt{100}} + \frac{2004}{\sqrt{100}}$ $\Rightarrow R = \frac{104008}{\sqrt{100}}$ $\Rightarrow R = 3222 \cdot 93331$ $\Rightarrow R = 3222 \cdot N$
	nad.	Created by T. Madas	Mado

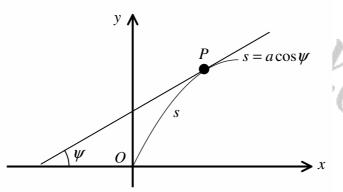
Question 8 (***+)

A bead of mass m is made to slide along a smooth wire, which is fixed in a horizontal plane, and is bent into the shape of a curve with intrinsic equation

 $s = 4a\sin\psi, \ 0 \le \psi < \frac{\pi}{2}$


where a is a positive constant, s is measured from the origin O, and ψ is the angle the tangent to the curve makes with the x axis.

The bead is released from rest from a point on the wire where s = 2a.


Show the magnitude of the reaction of the wire on the bead, R, is given by

 $R = \frac{1}{4}mg \left[4\cos\psi + \sec\psi - 4\tan\psi\sin\psi \right].$

proof

Question 9 (****)

The figure above shows a bead of mass m, modelled as a particle P, sliding freely along a smooth wire bent into the shape of the curve with intrinsic equation

$s = a\cos\psi, \ 0 \le \psi \le \frac{\pi}{2},$

where a is a positive constant, s is measured from the origin O, and ψ is the angle the tangent to the curve makes with the x axis.

Given that the bead was projected from the highest point on the wire with tangential speed $\sqrt{\frac{1}{2}ag}$, determine a simplified expression for the magnitude of the normal reaction between the bead and the wire, as the bead reaches O.

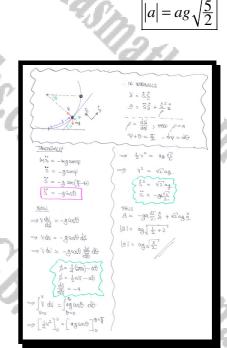
Accession in unenalists $\begin{aligned} \Delta &= \frac{1}{2} \frac{\Delta}{2} + \frac{\Delta}{2} \frac{\Delta}{2} \frac{\Delta}{2} + \frac{1}{2} \frac{\Delta}{2} \frac{\Delta}{2} + \frac{1}{2} \frac{\Delta}{2} \frac{\Delta}{2} \\ &\text{Locking, in The transmit direction (2)} \\ &\Rightarrow M_{1}^{2} = -\log m_{1} \psi \\ &\Rightarrow S = -gram \psi \\ &\Rightarrow \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} - gram \psi \\ &\Rightarrow \frac{1}{2} \frac$

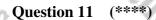
⇒ š ² = - 2gsincip (-asincip)dip
⇒ š²=∫ zagism?ų dų
WARDON GUARS
$\Longrightarrow \begin{bmatrix} \dot{\boldsymbol{z}}^2 \end{bmatrix}_{\dot{\boldsymbol{z}} = \sqrt{\frac{1}{2} \omega_{\boldsymbol{z}}}}^{\dot{\boldsymbol{z}}} = \int_{\psi = \omega}^{\psi = \frac{\omega}{2}} \frac{2ag}{(\frac{1}{2} - \frac{1}{2}\omega_{\boldsymbol{z}} 2\phi)} d\phi$
$\Rightarrow \dot{s}^{2} - \frac{1}{2} a_{g} = \int_{\psi=0}^{\frac{T}{2}} a_{g} (1 - \cos 2\psi) d\psi$
$\implies \dot{s}^{z} - \dot{z}_{ag} = ag \left[\psi - \frac{1}{4} a_{N2} \psi \right]_{b}^{a}$
$\Rightarrow \beta^2 - \frac{1}{2}a_g = \frac{\pi a_g}{2}$
\implies $\dot{s}^2 = \frac{1}{2} \pi ag + \frac{1}{2} ag$
$\Rightarrow \dot{s}^{2} = \frac{1}{2} ag.(\pi + 1)$
NOW NORMANY (近) (WHHN Y=亚)
$-5 m \frac{\dot{s}^2}{\rho} = mgus \phi - R$
= R = mgcasy - mit

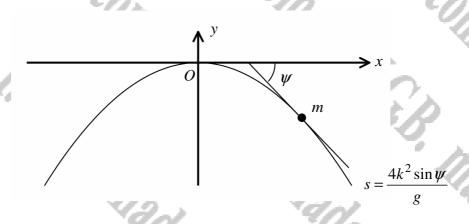
R = mgcosty - M[zag(T+1)] R= mgcosy + Img THI HAN U= F R=0 + + mg +++

 $(\pi+1)mg$

Question 10 (****)


A bead B is free to slide along a smooth wire which is bent into a circle of radius a, with centre at C. The wire is fixed in a vertical plane.

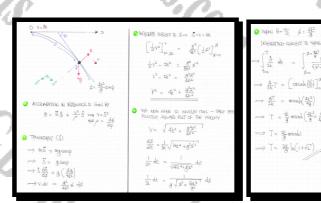

The bead is held at a point A, where CA is horizontal, and released from rest.


When the angle ACB is θ the bead has speed v.

Use intrinsic coordinates (s, ψ) to find the magnitude of the acceleration of the bead

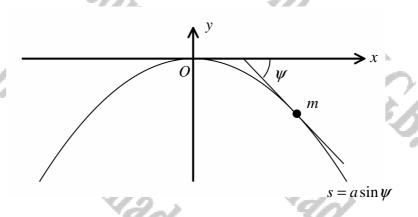
A bead of mass m is made to slide along a smooth wire, which is fixed in a vertical plane, and is bent into the shape cycloidal arch with intrinsic equation

$$s = \frac{4k^2 \sin \psi}{g},$$


where k is a positive constant.

The arclength s is measured from the origin O, and the angle ψ is the angle the tangent to the cycloid makes with the positive x axis as shown in the figure above.

The bead passes through the highest point of the cycloidal arch O, at time t = 0, with speed 2k. The particle passes through the point where $\theta = \frac{1}{2}\pi$, when t = T


Show that

$$T = \frac{2k}{g} \ln\left(1 + \sqrt{2}\right).$$

proof

Question 12 (****)

A bead of mass m is made to slide along a smooth wire, which is fixed in a vertical plane, and is bent into the shape cycloidal arch with intrinsic equation

$s = a \sin \psi ,$

where *a* is a positive constant.

The arclength s is measured from the origin O, and the angle ψ is the angle the tangent to the cycloid makes with the positive x axis as shown in the figure above.

The bead passes through the highest point of the cycloidal arch O, with speed $\sqrt{\frac{1}{2}}ag$.

When the particle has travelled a distance s, its speed is v and the normal reaction from the wire to the bead is R.

- a) Show, with a detailed method, that ...
 - **i.** ... $v^2 = \frac{g}{2a} \Big[2s^2 + a^2 \Big].$
 - **ii.** ... $R = \frac{mg}{2\cos\psi} \left[1 4\sin^2\psi \right].$
- **b**) Find the distance travelled by the bead by the time R = 0.

[solution overleaf]

42,

0

M21120

Question 13 (****)

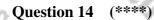
A particle is constrained to move on a curve with intrinsic equation $s = f(\psi)$.

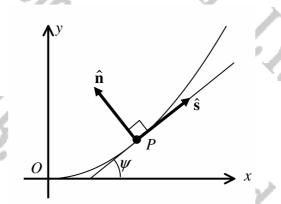
It is moving in such a way so that it has constant tangential acceleration of magnitude a, and constant radial acceleration of magnitude 2a, where a is a positive constant.

When t = 0, s = 0, $\psi = 0$ and the particle is moving with speed u.

Find the intrinsic equation of the curve on which the particle is moving.

• III INTENSIC COORDINATES $\underline{a} = \frac{s}{2} \frac{2}{r} + \frac{v^2}{r}$	м <u>р</u>
• SURNET TO S = q q to $\frac{V^2}{\rho} = 2q$	≈0, ≠=0,14=0, \$ = 4
$\begin{array}{c} \bullet & = a & (There are are are are are are are are are $	$\begin{array}{c} \textcircled{O} \begin{array}{l} \sqrt{2} \\ \overrightarrow{p} \end{array} = 2a \left(vround ty \right) \\ \overrightarrow{p} \end{array} \\ \overrightarrow{p} \begin{array}{l} \overrightarrow{p} \end{array} \\ \overrightarrow{p} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \\ \overrightarrow{p} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \\ \overrightarrow{p} \end{array} \end{array} $ \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \\ \overrightarrow{p} \end{array} \\ \overrightarrow{p} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \\ \overrightarrow{p} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \\ \overrightarrow{p} \begin{array}{l} \frac{\sqrt{2}}{2a} \end{array} \end{array} \\ \overrightarrow{p} \end{array} \\ \\ \overrightarrow{p} \end{array} \\ \\ \\ \overrightarrow{p} \end{array} \\ \\ \overrightarrow{p} \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\


 $- s^{1} = \frac{u^{2}}{2u}$ $\frac{d}{d\psi}(se^{\psi}) = \frac{4t^2}{2q}e^{-\psi}$ Juz et dy = E - $\frac{u^2}{2q}e^{\psi}$ $\beta = Ee^{\psi} - \frac{u^2}{2a}$ $E = \frac{4l^2}{2q}$ $\implies s = \frac{u^2}{2q}e^{-\psi} - \frac{u^2}{2q}$


 u^2

 $s = \frac{1}{2a}$

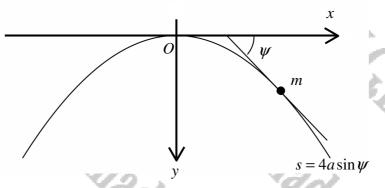
e^ψ

 $d = \frac{q^2}{2a} \left[e^{\psi} - 1 \right]$

A particle P is constrained to move on a path, so that its distance travelled along that path, measured from the origin O, is denoted by s. The angle the tangent to P at any position on the path makes with the x axis is denoted by ψ .

The unit vector along the tangent to the path at P is denoted by \hat{s} and the unit vector along the normal to the path at P, directed towards the centre of curvature of the path is denoted by \hat{n} , as shown in the figure above.

Show that the acceleration of the particle is


 $\ddot{s}\hat{s} + \frac{\dot{s}^2}{2}\hat{n}$

where ρ denotes the radius of curvature.

NOW THE VEDERY UPDER HAS MAGNITUR (SPECO) V & US OF A TRAINING DIRECTION
$ \begin{array}{l} \searrow \\ & \searrow \\ \end{array} \\ \Rightarrow \\ \frac{\partial \chi}{\partial t} = \\ \frac{\partial \xi}{\partial t} \left(v_{2}^{2} \right) = \\ \frac{\partial \chi}{\partial t} \stackrel{e}{=} \\ + v \frac{\partial \xi}{\partial t} \left(\frac{z}{2} \right) \\ \end{array} $
$\Rightarrow \frac{dy}{dt} = \frac{ds}{ss} + y\psi\hat{n}$ $\Rightarrow \frac{dy}{dt} = \frac{ss}{ss} + s\psi\hat{n}$
$\Rightarrow \frac{\partial u}{\partial t} = \tilde{s} \stackrel{\circ}{\underline{s}} + \stackrel{\circ}{\underline{s}} \frac{\partial u}{\partial t} \stackrel{\circ}{\underline{n}}$
$\frac{\partial_{x} \dot{x}}{\partial t} \times \frac{\partial b}{\partial t} \dot{x} + \frac{\partial c}{\partial t} \ddot{x} = \frac{\partial b}{\partial t} \leftarrow \\ \dot{u} \dot{z} \dot{z} \dot{z} + \dot{z} \dot{z} \dot{z} = \frac{\partial b}{\partial t} \leftarrow \\ \dot{u} \dot{z} \dot{z} \dot{z} \dot{z} \dot{z} \dot{z} = \frac{\partial b}{\partial t} \leftarrow \\ \dot{u} \dot{z} \dot{z} \dot{z} \dot{z} \dot{z} \dot{z} \dot{z} z$
$\Rightarrow \frac{dv}{dt} = \frac{s_{s}^{*}s}{s_{s}^{*}} + \frac{s_{s}^{*}s}{p}$

Question 15 (****)

A section of thin flexible gutter type tubing, with a smooth groove running along its length is bend into the shape of a cycloid with intrinsic equation

$s = 4a\sin\psi, \ 0 \le \psi < \frac{\pi}{2},$

where a is a positive constant.

The cycloidal tubing is fixed in a vertical plane with its vertex coinciding with a Cartesian origin O, where the directions of x and y increasing are measured as shown the above figure.

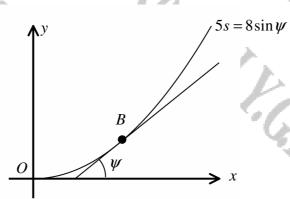
The arclength s is measured from O, and the angle ψ is the angle the tangent to the cycloidal tubing makes with the positive x axis also shown in the figure above.

A particle of mass m is placed in the groove of the tubing at O.

The particle is slightly disturbed and begins to travel down the rod, where the groove keeps the particle from falling to either side of the tubing.

a) Show that while the particle is still in contact with the tubing

 $y = 2a\sin^2\psi.$

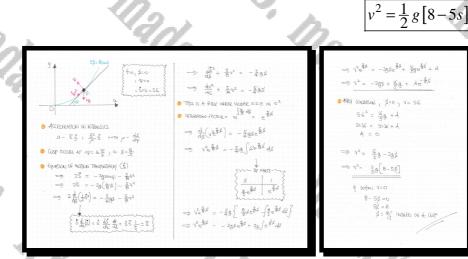

b) Show further than the particle leaves the tubing when y = a.

proof

[solution overleaf]

Question 16 (****)

A bead B is made to slide along a smooth wire, which is fixed in a vertical plane, and is bent into the shape of an inverted cycloid with intrinsic equation


$$5s = 8\sin\psi, \ 0 \le \psi < \frac{\pi}{2},$$

where s is measured from the origin O, and ψ is the angle the tangent to the cycloid makes with the x axis.

The bead is projected from \overline{O} with tangential speed 5.6 ms⁻¹.

Use intrinsic coordinates to find an expression, in terms of s and g, for the speed of the bead and hence show that the bead comes to rest at a cusp.

You may not consider energy conservation in this question.

Ψ

т

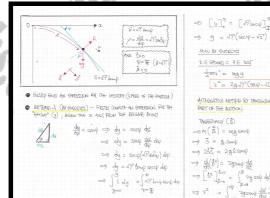
Question 17 (****)

0

 $s = \sqrt{7} \tan \psi$

d = 7

 $\rightarrow x$

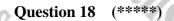

The figure above shows a particle of mass m, which is free to slide along a smooth surface, whose vertical cross section is the curve C with intrinsic equation

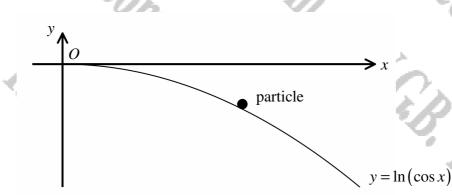
 $s = \sqrt{7} \tan \psi$, $0 \le \psi < \frac{\pi}{2}$.

The arclength s is measured from the origin O, and the angle ψ is the angle the tangent to C makes with the positive x axis, as shown in the figure above.

The particle is released from rest from a point A on the surface, where $\psi = \frac{1}{4}\pi$, and leaves the surface at the point B.

Determine the distance AB along the curved surface.




= y = 17 (sec y - 12) NOW BY GUERDIES K.E GADNED = P.E LOST $\frac{1}{2}$ mi² = mgy $\sqrt{2} = 2g\sqrt{7}(sm/-\sqrt{2})$ ACTEONATIVE METHOD BY TANGGARIAN PART OF THE MUTICAN (2) YUMITGARAT m(#) = mgsmup = S = g.sunf -) 255 = 295 Smit - d(32)= 2gsmp de $\begin{array}{l} \rightarrow & \frac{d}{dt} \left(\frac{d^2}{dt} \right) = \frac{2g_{\text{shart}}}{g_{\text{shart}}} \text{ at} \\ \Rightarrow & \left[\frac{d^2}{dt} \right]_{\frac{d^2}{dt} = 0}^{\frac{d^2}{dt}} = \int_{\frac{d^2}{dt} = 0}^{\frac{d^2}{dt}} \frac{dg}{dt} \text{ d} \\ & \frac{2g_{\text{shart}}}{g_{\text{shart}}} \frac{dg}{dt} \text{ d} \end{array}$

FINALLY TO FIND THE DISTAN 2gsmp N7 set due Secre = 212 = 18 => v2= 2g17 fix burpson do VE NT => V2 = 2817 [sery] ~~ ⇒ V2 = 2gV7" [SECH - N2] : tamp=17 (AS BARDER) \$ = 17 fame NUME AT THE NOUNAL DIDLETTON OF NUTTON) (A is it lows the suppose =) m (12)= mg cosy - R (Letvis The surrive) Ath famp=17 =>Ku2 = Mgp map 6. 5=7 = 2817 [seap-12] = 8 \$\$ (054) => 2N7 [SECY - N2] = 17 SECY GEG $\implies 2[seq -\sqrt{2}] = seq$ = Sect = 212

Created by T. Madas

Egenup de du

The figure above shows a particle which is free to slide along a smooth surface, whose vertical cross section is the curve C with equation

 $y = \ln\left(\cos x\right), \ 0 \le x < \frac{\pi}{2}.$

The particle is projected from O with speed $\sqrt{\frac{1}{3}g}$ tangential to C and leaves the surface at the point P.

Show that the distance *OP* along *C* is $\operatorname{arcosh}\left(e^{\frac{1}{3}}\right)$

	V.2	
	$ = \frac{1}{2} > 0 (122) (122)$	 4ccelety
ø	START BY ORTHANING AN INTERVICE GRAPHICA OF THE GRADY, WHERE IS IS MADE AND	<u>a</u> =
	$\frac{dy}{dx} = \tan \psi$ $\frac{dy}{dx} = \frac{1}{\cos \psi} (-\sin x) = -\tan x = -\tan (-x)$	IN THE THE
	at cont into the	-> W
	$\psi = -\chi$ at	
1	$\beta = \int_{1}^{\infty} \sqrt{1 + \left(\frac{d_1 \lambda_2}{d_2}\right)^2} dx = \int_{1}^{\infty} \sqrt{1 + \frac{d_1 \lambda_2}{d_1}} dx = \int_{1}^{\infty} \frac{\lambda_2}{d_2} \text{sec } x dx$	-> v
1		
6	$= \left[\left[h_{1} \right]_{stat} + \left[h_{ux} \right]_{u}^{2} = \left[h_{1} \right]_{stat} + \left[h_{ux} \right]_{u} - \left[h_{1} \right]_{u}^{2} \right]$	
	$\therefore \beta = \ln(sta + tous)$ $o \leq z < \frac{\pi}{2}$	- 5
	$\beta = \ln(\sec \psi - \tan \psi) - \frac{\pi}{2} < \psi \leq 0$ is subserve show a first	V-
	$\leq = \ln(\sec\psi + \tan\psi)$ $0 \leq \psi < \frac{\pi}{2}$ as denote with $\psi + d$ And ψ with $\alpha + \alpha$ and	⇒ [±
0	NOT STAT WITH A GOOD DIAGRAM	- 12
		$\rightarrow V^2$
	$O \qquad P = \frac{1}{2} P = \frac{1}{2} P$	$\Rightarrow \sqrt{2}$
	$\rho = \frac{\varsigma_{\rm sc}^2 \varepsilon_{\rm sc} + \varsigma_{\rm sc} \varsigma_{\rm sc}}{\varsigma_{\rm sc}^2 \varepsilon_{\rm sc} + \varepsilon_{\rm sc} \varsigma_{\rm sc}}$ $\rho = \frac{\varsigma_{\rm sc} \varepsilon_{\rm sc} (\varepsilon_{\rm sc} + \varepsilon_{\rm sc})}{\varsigma_{\rm sc} \varepsilon_{\rm sc} (\varepsilon_{\rm sc} + \varepsilon_{\rm sc})}$	 LOOKING AT
	and a sect	$\implies m \frac{v^2}{p}$
		= Mrv2
1	Vy y= h(usz) o≤x<™	⇒ 38
	S = m(secu+timp) o ≤ v < ₹	

· Acceleration in intrinsics is given by
$\underline{a} = \frac{\hat{s}}{\hat{s}} + \frac{\hat{s}}{\hat{s}} = \frac{\hat{s}}{\hat{s}} = \frac{\hat{s}}{\hat{s}} = \frac{\hat{s}}{\hat{s}} = \frac{\hat{s}}{\hat{s}} = \hat{s}$
● NO THE THORFATIAL DIRECTION (≦)
== yhis = Wigsmy
$q_{\text{MM2-B}} = \frac{vb}{zb} V cm$
es y du = g.sm.y dz
=> v du = q smy (de) du
- > du = gsmpsecyde
$= \int_{v}^{v} dv = \int_{v}^{v} \frac{1}{2} dv$
$\Rightarrow \left[\frac{1}{2} v^2 \right]_{\sqrt{\frac{2}{3}}}^{\vee} = \left[g \ln (see\psi) \right]_{\circ}^{\psi}$
= 1/2 - 28 = 3 p keep 1 - April
\implies $v^2 - \frac{1}{3}g = 2gh(seup)$
$\implies v^2 = \frac{1}{3}g + 2g\ln(\omega\omega\psi)$
\bullet LOOKING AT THE NORMAL SIRECTION ($\underline{\hat{M}}$).
→ ^M V² = Mgasey - K (UNHS THE SUBFACE
⇒ Mu ² = Mgpiosų
=> == == == == == == == == == =========

 $= \frac{1}{2} \frac{1}{2} + \frac{2}{2} h(xep) = \rho \exp \varphi$ $\Rightarrow \frac{1}{2} + \frac{2}{2} h(xep) = (xep)exp$ $\Rightarrow \frac{1}{2} + \frac{2}{2} h(xep) = 1$ $\Rightarrow \frac{2}{2} h(xep) = \frac{1}{2}$ $\Rightarrow h(xep) = \frac{1}{2}$ $\Rightarrow xep = e^{\frac{1}{2}}$ $= \frac{1}{2} \frac{1}$

proof

Question 19 (*****)

A right prism is fixed so that its axis is horizontal.

A particle is placed on the highest point of the outer smooth surface of the prism whose cross section has equation

 $y = 1 - \cosh x$, $x \ge 0$.

The particle is slightly disturbed and begins to move in a path along the cross section of the outer surface of the prism whose equation is given above.

 $d = \sqrt{3}$

Determine the distance the particle travels until the instant it leaves the surface.

 $\Re(\sec (v-1)) = \Re(\frac{dg}{dw}) \cos \psi$ $\sum_{i=1}^{d} \left(\frac{1}{2} \sum_{i=1}^{d} \frac{1}{2} \sum$ 9= 25 + 52 2 $\Rightarrow \frac{d}{dz} \left(\frac{1}{2z} \right) = \frac{d}{dz} \left(\frac{1}{2z} \right)$ 256CY - 2 = 5624 (152 - Samp de $m_{f} = \frac{d_{S}}{dt}$ 2secy - 2 = Secy 1 = Jamy de dy SOLP = 2 (or wep= ==) War 45 = secu ψ= 7/3 gsmysedy dy ds S= Jany \$ = ton (F) zgsecnip + C 5= 15 t=0, \$=0, 4=0, \$=V=0 0= 2g + C C= - 2g As REDURNE $\left(\frac{dy}{dx}\right)^{2}$ + 1 = 1 + sun ha = coshe Š= № = 2gsecip - 2g $\sqrt{1 + \left(\frac{dq}{d\lambda}\right)^{L}} d\lambda$ $: \sqrt{2} = 2q(sec\psi - 1)$ a cosha da = suba] $W(\frac{v^2}{v}) = M_{000} = k$ MN2 = Macosa Nm de = - fand & de