Created by T. Madas

Question 1 (**)
The vectors \mathbf{i} and \mathbf{j} are horizontal unit vectors perpendicular to each other.

A bead of mass 0.2 kg is threaded on a smooth straight horizontal wire.

The bead is at rest at the point A with position vector $(2 \mathbf{i}+5 \mathbf{j}) \mathrm{m}$.

A single force $(2.6 \mathbf{i}-0.1 \mathbf{j}) \mathrm{N}$ acts on the bead and moves it to the point B with position vector $(17 \mathbf{i}-5 \mathbf{j}) \mathrm{m}$.

Find the speed of the bead at B.

Question 2 (**)
The vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

A particle P moves from the point A, with position vector $(2 \mathbf{i}+4 \mathbf{j}+a \mathbf{k}) \mathrm{m}$, where a is a constant, to the point B, with position vector $(3 \mathbf{i}+a \mathbf{j}+2 \mathbf{k}) \mathrm{m}$, under the action of a constant force $\mathbf{F}=(4 \mathbf{i}+a \mathbf{j}+3 \mathbf{k}) \mathrm{N}$.

The work done by \mathbf{F}, as it moves P from A to B, is 18 J .

Find the possible values of a.

Question 3 (***)
A small bead is threaded on a smooth, straight horizontal wire which passes through the point $A(3,-4)$ and the point $B(5,4)$.

The bead moves under the action of a single horizontal force \mathbf{F} of magnitude 65 N , whose line of action is parallel to the straight line with equation

$$
5 x-12 y=10
$$

Given that all distances are measured in m , find the work done by \mathbf{F} as it moves the bead from A to B.

Question 4 (***)
The vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

A particle of mass 5 kg is initially at rest at the point P with position vector $(4 \mathbf{i}-\mathbf{j}+7 \mathbf{k}) \mathrm{m}$ when is acted by a force \mathbf{F} which causes it to move to the point Q with position vector $(9 \mathbf{i}+9 \mathbf{j}-3 \mathbf{k}) \mathrm{m}$.

It is further given that

$$
\mathbf{F}=[(\lambda+1) \mathbf{i}+(\lambda+\mu) \mathbf{j}+(1+\lambda-2 \mu) \mathbf{k}] \mathbf{N},
$$

where λ and μ are scalar constants.

If \mathbf{F} is acting in the direction $P Q$, determine the speed of the particle as it passes Q.

Question 5 (****)
The vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

A particle, of mass 0.5 kg , passes through the point A whose position vector is $(12 \mathbf{i}-15 \mathbf{j}-2 \mathbf{k}) \mathrm{m}$, with speed $U \mathrm{~ms}^{-1}$. The particle is moving due to the action of the following two constant forces, \mathbf{F}_{1}, and \mathbf{F}_{2}.

$$
\mathbf{F}_{1}=\left(\begin{array}{r}
-2 \\
4 \\
5
\end{array}\right) \mathrm{N} \quad \text { and } \quad \mathbf{F}_{2}=\left(\begin{array}{c}
k-2 \\
2 k+3 \\
3 k-1
\end{array}\right) \mathrm{N},
$$

where k is a scalar constant.

Determine the value of U, given further that it passes through the point B, whose position vector is $(-8 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}) \mathrm{m}$, with speed $29 \mathrm{~ms}^{-1}$.
\square , $U=5 \mathrm{~ms}^{-1}$

Question6 (****)
The vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

A particle of mass 2 kg , which is free to move in any direction, is acted by two forces

$$
\mathbf{F}_{1}=(-5 \mathbf{i}+4 \mathbf{j}-9 \mathbf{k}) \mathrm{N} \quad \text { and } \quad \mathbf{F}_{2}=(\alpha \mathbf{i}+\beta \mathbf{j}+\gamma \mathbf{k}) \mathrm{N}
$$

where α, β and γ are scalar constants.

These two forces cause the particle to move directly from the point P with position vector $(4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}) \mathrm{m}$ to the point Q with position vector $(-4 \mathbf{i}+5 \mathbf{j}+\mathbf{k}) \mathrm{m}$.

If the respective speeds of the particle at P and Q are $4 \mathrm{~ms}^{-1}$ and $14 \mathrm{~ms}^{-1}$, determine the values of α, β and γ.

$$
\alpha,[\alpha, \beta, \gamma]=[-5,6,4]
$$

\square

Question 7 (****)
The vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

A particle P moves from the point A, with position vector $(-10 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) \mathrm{m}$ to the point B, with position vector $(8 \mathbf{i}+11 \mathbf{j}+9 \mathbf{k}) \mathrm{m}$, under the action of the following three forces $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3}.

- $\mathbf{F}_{1}=(\mathbf{i}+2 \mathbf{j}+6 \mathbf{k}) \mathrm{N}$.
- $\quad \mathbf{F}_{2}=(7 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}) \mathrm{N}$
- $\mathbf{F}_{3}=[(2 k-1) \mathbf{i}+(2 k+2) \mathbf{j}+(3-2 k) \mathbf{k}] \mathrm{N}$, where k is a scalar constant.

Determine the work done by the three forces in moving the particle from A to B.

Question 8 (*****)
The vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to each other.

A particle, of mass 0.5 kg , passes through the point A whose position vector is $(14 \mathbf{i}-10 \mathbf{j}) \mathrm{m}$, with speed $5 \mathrm{~ms}^{-1}$. The particle is moving due to the action of the following two constant forces, \mathbf{F}_{1}, and \mathbf{F}_{2}.

$$
\mathbf{F}_{1}=\left(\begin{array}{c}
-\lambda \\
2 \lambda \\
v
\end{array}\right) \mathrm{N} \quad \text { and } \quad \mathbf{F}_{2}=\left(\begin{array}{c}
\mu-2 \\
2 \mu+3 \\
3 \mu-1
\end{array}\right) \mathrm{N},
$$

where λ, μ and v are scalar constants.

It further given that the particle passes through the point B, whose position vector is $(-6 \mathbf{i}+10 \mathbf{j}+4 \mathbf{k}) \mathrm{m}$, with speed $29 \mathrm{~ms}^{-1}$.

Determine the value of each of the constants λ, μ and v.
\square $, \lambda=2, \mu=-1, \nu=5$

\#itemariof faf of	
(tay	

