VECTOR
 DIFFERENTIAL EQUATIONS

Question 1 (**+)
A particle P is moving on the Cartesian plane so that its position vector $\mathbf{r} m$ at time $t \mathrm{~s}$ satisfies the differential equation

$$
\frac{d \mathbf{r}}{d t}=\mathbf{r}
$$

When $t=0, \mathbf{r} \cdot \mathbf{i}=0$ and $\mathbf{r}_{\wedge} \mathbf{i}=2 \mathbf{j}-\mathbf{k}$.

Express \mathbf{r} in terms of t.

Question 2 (**+)
A particle moves in a plane so that its position vector, $\mathbf{r} \mathrm{m}$ at time $t \mathrm{~s}$, satisfies the differential equation

$$
\frac{d \mathbf{r}}{d t}+\mathbf{r}=2 t \mathbf{i}-\mathrm{e}^{-t} \mathbf{j}
$$

When $t=0$ the particle is at the point with position vector $(\mathbf{i}-2 \mathbf{j}) \mathrm{m}$.

Express \mathbf{r} in terms of t.

$$
\mathbf{r}=\left(2 t-2+3 \mathrm{e}^{-t}\right) \mathbf{i}-\left(t \mathrm{e}^{-t}+2 \mathrm{e}^{-t}\right) \mathbf{j}
$$

	$\rightarrow y=-t^{+}+k^{*}$
me, $\times 1$	to $\mathrm{y}_{0}=2$
$\sum_{c=3}=+\cdots$	
	(tet-2et)

Question 3 (***)
A particle moves in a plane so that its position vector, $\mathbf{r} \mathrm{m}$ at time $t \mathrm{~s}$, satisfies the differential equation

$$
\frac{d \mathbf{r}}{d t}+(\tan t) \mathbf{r}=\left(2 \sin t \cos ^{2} t\right) \mathbf{i}+\left(\cos ^{2} t\right) \mathbf{j}, \quad 0 \leq t<\frac{\pi}{2}
$$

When $t=0$ the particle is at the point with position vector $\mathbf{j} \mathrm{m}$.

Express \mathbf{r} in terms of t.

$$
\mathrm{P}, \mathbf{r}=\left(\sin ^{2} t \cos t\right) \mathbf{i}+(\sin t \cos t+\cos t) \mathbf{j}
$$

Second Order

Question 1 (**)
A particle P is moving on the Cartesian plane so that its position vector $\mathbf{r} m$ at time $t \mathrm{~S}$ satisfies the differential equation

$$
\frac{d^{2} \mathbf{r}}{d t^{2}}=\frac{d \mathbf{r}}{d t}
$$

When $t=0, P$ has position vector $(\mathbf{i}+\mathbf{j}) \mathrm{m}$ and moving with velocity $(2 \mathbf{i}-\mathbf{j}) \mathrm{ms}^{-1}$. Express \mathbf{r} in terms of t.

$$
\mathbf{r}=(-\mathbf{i}+2 \mathbf{j})+(2 \mathbf{i}-\mathbf{j}) \mathrm{e}^{t} \quad \text { or } \quad \mathbf{r}=\left(2 \mathrm{e}^{t}-1\right) \mathbf{i}+\left(2-\mathrm{e}^{t}\right) \mathbf{j}
$$

Question $2 \quad(* *+)$
A particle P is moving on the Cartesian plane so that its position vector $\mathbf{r} m$ at time $t \mathrm{~s}$ satisfies the differential equation

$$
\frac{d^{2} \mathbf{r}}{d t^{2}}-\frac{d \mathbf{r}}{d t}=6(\mathbf{r}+t \mathbf{i}-2 \mathbf{j})
$$

When $t=0, P$ has position vector $(\mathbf{i}+2 \mathbf{j}) \mathrm{m}$ and moving with velocity $(3 \mathbf{i}-\mathbf{j}) \mathrm{ms}^{-1}$.

Express \mathbf{r} in terms of t.

$$
\begin{aligned}
& \mathbf{r}=\frac{1}{15} \mathrm{e}^{3 t}(17 \mathbf{i}-3 \mathbf{j})-\frac{1}{10} \mathrm{e}^{-2 t}(3 \mathbf{i}-2 \mathbf{j}) \mathrm{e}^{t}+\frac{1}{6}(\mathbf{i}+12 \mathbf{j})-t \mathbf{i} \\
& \text { or } \\
& \mathbf{r}=\left(\frac{17}{15} \mathrm{e}^{3 t}-\frac{3}{10} \mathrm{e}^{-2 t}-t+\frac{1}{6}\right) \mathbf{i}+\left(-\frac{1}{5} \mathrm{e}^{3 t}+\frac{1}{5} \mathrm{e}^{-2 t}+2\right) \mathbf{j}
\end{aligned}
$$

\square

