created by T. Madas VECTOR DIFFERENTIAL VECTON DIFFERENCE DUATIONS

IN COLD IN COL ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARIASTRAILS.COM

Question 1 (**+)

A particle P is moving on the Cartesian plane so that its position vector \mathbf{r} m at time t s satisfies the differential equation

dr dt When t = 0, $\mathbf{r} \cdot \mathbf{i} = 0$ and $\mathbf{r} \cdot \mathbf{i} = 2\mathbf{j} - \mathbf{k}$. Express \mathbf{r} in terms of t. $\mathbf{r} = (\mathbf{j} + 2\mathbf{k})\mathbf{e}^t$ MUDDED EXPON $\bar{l}=\bar{\gamma}e_{f}$ UP A = (albic) $\begin{aligned} \sigma &= \left(\sigma_{l} \sigma_{l} \right) \bullet \underline{\mathcal{I}} \\ \sigma &= \left(\sigma_{l} \sigma_{l} \right) \bullet \underline{\mathcal{I}} \\ \bullet &= \left(\sigma_{l} \sigma_{l} \right) \bullet \underline{\mathcal{I}} \end{aligned}$ $T_{n}(i_{1}o_{1}o) = (o_{1}2_{1}-i)$ $\underline{A}_{\wedge}(l_{1}o_{1}o) = (o_{1}2_{1}-l)$ $\begin{pmatrix} O \\ b \\ C \end{pmatrix} \wedge \begin{pmatrix} I \\ O \\ O \end{pmatrix} = (O_1 Z_1 - I)$.4. a=0 (-b) = (0(2-1)) $\therefore \underline{\Gamma} = (\underline{i} + 2\underline{k}) e^{\underline{t}}$ Ĉ. Y.G.B. nadasn Created by T. Madas

Question 2 (**+)

A particle moves in a plane so that its position vector, \mathbf{r} m at time t s, satisfies the differential equation

 $\frac{d\mathbf{r}}{dt} + \mathbf{r} = 2t\mathbf{i} - \mathbf{e}^{-t}\mathbf{j}.$

When t = 0 the particle is at the point with position vector (i - 2j) m.

Express \mathbf{r} in terms of t.

2

$\mathbf{r} = (2t)$	$-2+3e^{-t}$ i -	$-\left(t\mathrm{e}^{-t}+2\mathrm{e}^{-t}\right)\mathbf{j}$
		5-
	DEALUSE WITH HARH COLLADOR	EPHEATHLY - LET I= (Z1.Y)
2	$\frac{dx}{\alpha t} + x = 2t$	$\frac{dy}{dt} + g = -e^{t}$
Se	THE NOHODATING FACIL P.C. BOTH SU $I.F = e^{\int I dt} = e^{t}$	3 240
	thug we using for that with $\Rightarrow \frac{d}{dt}(at^{t}) = 2te^{t}$	$\Rightarrow \frac{d}{dt} (4c_{f}) = -c_{f} c_{f}$
-6	$\rightarrow \frac{1}{\alpha t} (\Delta E) = 2te^{t} dt$ $\rightarrow 2e^{t} = \int 2te^{t} dt$ (by therefs)	$\rightarrow \frac{d}{dt}(ye^{t}) = -1$
4	$\Rightarrow \exists e^{at} = 2te^{t} - 2e^{t} + C$ $\Rightarrow \exists z = 2t - 2 + Ce^{-2t}$	\Rightarrow $ge^{t} = -t + k$ \Rightarrow $y = -te^{t} + ke^{-t}$
	τ=0,2=1 = -2+C C=3	teo y=-2 -2=0+2 k=-2
	COLLETING THE EXCLU	
h	$f = (x_{ig}) = (2t_{-2} + 3e^{-2t})$	-tet-zet)

Question 3 (***)

A particle moves in a plane so that its position vector, \mathbf{r} m at time t s, satisfies the differential equation

 $\frac{d\mathbf{r}}{dt} + (\tan t)\mathbf{r} = (2\sin t\cos^2 t)\mathbf{i} + (\cos^2 t)\mathbf{j}, \quad 0 \le t < \infty$

When t = 0 the particle is at the point with position vector **j** m.

Express \mathbf{r} in terms of t.

<u></u>	
SEPARATE THE O.D.E IMID CONFONES	26 - LET I= (24 y)
da + about = 2011 toot =	dy :+yhant = cost
WHERATING FARTOR FOR BOTH O.D.ES 1	2
IF=e ^{fbutdt} =e ^{bulsetl} =	$sect = \frac{1}{6at}$
twice we allow for galat 0.1.f	
dt(asect) = 2smticitiset	<u>d</u> (ysect) = caltsect
$\frac{d}{dt}(asect) = 2sinticat$	d (yeart) = cat
asset = $\int 2 \cos t \sin t dt$	ysect = Just dt
$\frac{a}{\cos t} = \operatorname{suft} + A$	and a sint + B
2 = Sultiest + Acout	y = surticust + Biost
trojaro	t⊨ojy≂i
0= 0+A	1 = 0 + B B = 1
A=O	12 = 1
· a = smfmst	: y= Sinticist + Last
: f= (x,y)= [sinftust, sh	tiast + cost]

 $\mathbf{r} = (\sin^2 t \cos t)\mathbf{i} + (\sin t \cos t + \cos t)\mathbf{j}$

Second Or, Balliston I. V.C. T. N. G.B. MARINESINATISCOM I. Y. G.B. MARINANSCOM I. Y. ASTRAILS COM I. Y. C.B. MARIASINALIS.COM I. Y. C.B. MARIASIN

Question 1 (**)

A particle P is moving on the Cartesian plane so that its position vector \mathbf{r} m at time t s satisfies the differential equation

dr

When t = 0, P has position vector $(\mathbf{i} + \mathbf{j})$ m and moving with velocity $(2\mathbf{i} - \mathbf{j})$ ms⁻¹.

Express \mathbf{r} in terms of t.

 $\mathbf{r} = (-\mathbf{i}+2\mathbf{j})+(2\mathbf{i}-\mathbf{j})e^t$ or $\mathbf{r} = (2e^t-1)\mathbf{i}+(2-e^t)\mathbf{j}$

$\frac{ab}{2b} = \frac{a^2b}{2b} = \frac{a^2b}{2b}$ $Q = \frac{ab}{2b} - \frac{a^2b}{2b}$	$\begin{array}{c} & \ \ \ \ \ \ \ \ \ \ \ \ \$
$\gamma_{z-y=0}$ $y_{z-y=0}$ $y_{z-y=0}$	$\therefore \underline{A} = (-1, 2)$ $\therefore \underline{\Gamma} = (-1, 2) + (2, -1)e^{\frac{1}{2}}$ or
$\frac{\Gamma = \underline{A} + \underline{B} e^{t}}{\Gamma = \underline{Y} = \underline{B} e^{t}}$	$\underline{\Gamma} = \left(2e^{t}-1, 2-e^{t}\right)$

Question 2 (**+)

A particle P is moving on the Cartesian plane so that its position vector \mathbf{r} m at time t s satisfies the differential equation

$$\frac{d^2\mathbf{r}}{dt^2} - \frac{d\mathbf{r}}{dt} = 6(\mathbf{r} + t\,\mathbf{i} - 2\mathbf{j})$$

When t = 0, P has position vector $(\mathbf{i} + 2\mathbf{j})$ m and moving with velocity $(3\mathbf{i} - \mathbf{j})$ ms⁻¹.

Express \mathbf{r} in terms of t.

$$\Box, \mathbf{r} = \frac{1}{15} e^{3t} (17\mathbf{i} - 3\mathbf{j}) - \frac{1}{10} e^{-2t} (3\mathbf{i} - 2\mathbf{j}) e^{t} + \frac{1}{6} (\mathbf{i} + 12\mathbf{j}) - t \mathbf{i}$$

or
$$\mathbf{r} = \left(\frac{17}{15} e^{3t} - \frac{3}{10} e^{-2t} - t + \frac{1}{6}\right) \mathbf{i} + \left(-\frac{1}{5} e^{3t} + \frac{1}{5} e^{-2t} + 2\right) \mathbf{j}$$

$\frac{dt_{z}}{dt_{z}} - \frac{dt}{dt} = \mathcal{L}\left(t_{1} + t_{1}^{2} - 2t_{1}^{2}\right) \qquad t = t_{1} + 2t_{1}$ $\overrightarrow{dt} = \frac{1}{2} + 2t_{1}$
START BY REWRITING THE O.D.E IN ITS "ISDAL PREN"
$\frac{d\underline{\hat{c}}}{dt^2} - \frac{d\underline{c}}{dt} - 6\underline{\hat{c}} = 6\underline{t}\underline{i} - 12\underline{j}$
THIS SPUT OWN TWO O.D.ES FOR $1 = 1 = 1$ with $1 = 1$
$\frac{d_{x}^{2}}{dt^{2}} - \frac{d_{x}}{dt} - 6_{2} = 6t \qquad \frac{d_{y}^{2}}{dt^{2}} - \frac{d_{y}}{dt} - 6_{y} = -12.$
THE AUXILIARY GRATIAN FOR SHITTLE IS
$ \Rightarrow \gamma^2 - \lambda - 6 = 0 \Rightarrow (\lambda + 2)(\lambda - 3) = 0 \Rightarrow \lambda = < \frac{3}{2} $
: a= Aet+Bet q g= Cet+ Det
PARTICULAR INTEGRAL FOR THE FIRST" GOVATION
$\begin{array}{cccc} \cdot \mathfrak{A} = P + Q & \xrightarrow{\qquad \text{SM B}} & H \oplus T + \circ \circ \mathcal{E} \\ \cdot \mathfrak{A} = P & \xrightarrow{\qquad \text{SM B}} & -P - \mathcal{C} (P + Q) \equiv \mathcal{G} \\ \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & -\mathcal{C} P - \mathcal{C} p = \mathcal{G} \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} P \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0 \\ \cdot \mathfrak{A} = 0 & \xrightarrow{\qquad \text{SM B}} & \stackrel{\text{SM B}}{\longrightarrow} & \stackrel{\text{SM B}}{\longrightarrow} & -\mathcal{C} = 0 \\ \cdot \mathfrak{A} = 0$
11/2

HONCE BY HONE THE INDUCH	WHIL PENNRAL SOUTIONS BE
TO APPLY CONDITIONS	Sour Ariandic 20001005 PD
a= Ae+ Be+ t+ t	y= Ce3t+ De2t+
$\frac{dx}{dt} = 34e^{3t} - 28e^{-2t} - 1$	$\frac{du}{dt} = 3Ce^{st} - 2De^{2t}$
t=0, a=1	• too yaz
== 1 - 4 + 8 + F	=> 2 = C + b + 2
→ A+B = S	
t=0, dt=3	· tro dy a -1
⇒3 = 3A -28-1	⇒ -1 = 3C - 2D
9 3A-2B=4	[D = -c]
[A= &-B]	-1 = 3C-2(-C)
≥ 3(±-B) -2B=4	-1 « SC
> \$-36-28=4	C.2 - 1
≠ - 5B = ₹	D = 1
	4

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100
HANC	t wt finally obtain	2	8 14 MIL 1781	
3.=	17 e3t 3 e2t + t			- 1920) 88
		a		
9=	15 e2t - 5 e2t +2			
= 2	$\left[\frac{i\eta}{i\zeta}e^{i\xi}-\frac{3}{i0}e^{i\xi}-\xi\right]$	$\frac{1}{2} \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2}$	$+\frac{1}{5}\overline{e}^{2t}+2$	
9	<u>e</u>		/	Γ.
- 1	$\frac{1}{15}e^{st}[17_{1}^{*}-32]-$	1 e2 31-21	$\left] + \frac{1}{6} \left(\frac{1}{2} + 12 \underline{1} \right) - \frac{1}{6} \right]$	- <u>i</u>
			11	/
11				
		hint		