ROTATIONAL AND TONAL ARSTRAME TA. 1. Y.G.B. HARRANNISCOM I.Y.G.B. MARANNA

Question 1 (**)

E.P.

A uniform circular hoop rolls without slipping, with its plane vertical, down the line of greatest slope of a rough fixed plane, inclined at an angle α to the horizontal.

Find the magnitude of the acceleration of the centre of the hoop, in terms of g and θ .

2

Madasn.

Question 2 (**)

A uniform spherical shell, of radius a, is rolling without slipping, down the line of a greatest slope of rough fixed plane, inclined at an angle of 30° to the horizontal.

The spherical shell started from rest.

After time T, of rolling without slipping down the plane for a distance of 15a, it has angular speed Ω .

Determine, in terms of a and g, an expression for T and an expression for Ω .

T = 10 $\Omega = 3$

I. = 7-mai FSHR ao, 2=a0, 2=a0 3, 8

Question 3 (**)

A uniform rod AB, of mass m and length 2a is rotating with constant angular velocity ω about M, the centre of the rod.

The centre of the rod has constant speed v.

At a certain instant A becomes fixed. The sense of direction of the rotation of the rot remains unchanged after A becomes fixed.

Determine the angular velocity with which the rod begins to rotate about A, in terms of v, a and ω .

 $\Omega = \frac{3v + a\omega}{4a}$

Sect.	AFTE	
A A B	Ax a x a	8)
BY CONSERVATION OF ANGULAR MON		
$\Longrightarrow I_6 \omega + w_N(a) = I_A S$	2	10.00
$\Rightarrow \pm Main + Mua = \pm Ma^2S$	2	
$\implies a_{i\omega}^2 + 3a_V = 4a_i^2 Q$		
\Rightarrow and $+3v = 4a52$		
$\int \mathcal{D} = \frac{d\omega + 3V}{4u}$	5	

Question 4 (**+)

A uniform rod AB, of mass m and length 2a is falling freely under gravity, rotating with constant angular velocity ω about O, the centre of the rod.

When the rod is in horizontal position and O has speed u, A becomes fixed.

The sense of direction of the rotation of the rod rchanges after A becomes fixed.

Determine the angular velocity with which the rod begins to rotate about A, in terms of u, a and ω .

	a 3 to (Brook)	$\begin{bmatrix} T_{0} = \frac{1}{3} m \alpha^{2} \\ T_{4} = \frac{11}{3} m \alpha^{2} \end{bmatrix}$
/ / <u>2a</u>	(AFTIRE)	14= 3-M4-1
Postmit		3
🧳 ANOULAE WAN HEAS	OF ANOUAR WOMPNON theor	Нибионе Кош АКВЛ А
- My xa	RHORT	-J. D.
	$- mua + \frac{1}{3}ma^2\omega = -\frac{1}{2}$ $-u + \frac{1}{3}a\omega = -\frac{1}{2}a\Omega$	
	-30 + aw = - fas	
	4a.D = 3u-aw	
\Rightarrow	$\mathcal{R} = \frac{3u - aw}{4a}$	

Question 5 (**+)

A uniform solid cylinder, of radius a, is rolling without slipping with its axis horizontal, down a rough fixed plane, inclined at an angle of 30° to the horizontal.

 $\mu \geq \frac{1}{9}\sqrt{3} \; .$

a) Find the angular acceleration of the cylinder, in terms of a and g.

The coefficient of friction between the cylinder and the plane is μ .

b) Show that

?Ą

2

Question 6 (**+)

A uniform circular hoop, of radius a, is rolling without slipping on a rough horizontal plane, with constant angular speed ω .

The hoop reaches a vertical step of height $\frac{2}{5}a$, which is at right angles to its direction of motion, as shown in the figure above.

When the hoop touches the step at the point P, it begins to rotate about P, without slipping or loss of contact, with angular speed Ω .

 $\Omega = \frac{4}{5}\omega.$

By considering angular momentum conservation, show that

proof

Question 7 (***)

R,

A uniform circular hoop is rolling without slipping down a rough fixed plane, inclined at an angle α to the horizontal.

The coefficient of friction between the disc and the plane is μ .

Using a detailed method, show that

 $\mu \geq \frac{1}{2} \tan \alpha$.

proof

わっ

Question 8 (***)

5.

A uniform circular disc is rolling without slipping down a rough fixed plane, inclined at an angle α to the horizontal.

The coefficient of friction between the disc and the plane is μ .

Using a detailed method, show that

 $\mu \geq \frac{1}{3} \tan \alpha$.

proof

ろっ

- ⇒ ztona < µ(miliozo
- = H> Stand to B

Question 9 (***)

14

K.C.

The centre *O* of a uniform solid sphere has an initial speed of 5 ms⁻¹ up a rough fixed plane, inclined at an angle θ to the horizontal, where $\sin \theta = \frac{1}{7}$. The centre of sphere comes to instantaneous rest after covering a distance *d* m up the plane.

Given that the sphere was rolling without slipping in its journey up the plane, find the value of d.

d = 12.5 m

Question 10 (***)

A uniform solid sphere is rolling without slipping down a rough fixed plane, inclined at an angle θ to the horizontal.

The coefficient of friction between the sphere and the plane is μ .

Using a detailed method, show that

 $\mu \geq \frac{2}{7} \tan \theta$.

	Received without supported where s
¢.	• RELOTION DOES NO WORK, SO
i la	MERIMINICAL GUBBBY IS CONSTRUED
E CONTRACTOR	• FsyR
T X	· Ical, ical, Xeal
10 Mg	@] = = = mq2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
JEARLY : MIX = M	$y_{\text{sm}\theta-F} = y_{\text{sm}\theta} = F_{\text{sm}\theta} = F_{\text{sm}\theta}$
$TATIONAUY : I \overline{\Theta} = F$	a $\int \frac{2}{5}m_{a}^{2}\Theta = Fa$
DC = macmA - F 7	
nic=masm0−F了= ;waiii=F	2 charificity the age of
	Win + Z-mal = mashi
	ž + zač = gsmb
	$\ddot{x} + \ddot{z}\dot{x} = g_{2m}\theta$
	Braze = 2-5
	St = Sgamb
	w= 7gamo
NOW WIT = mgemb-F	
======================================	_F
⇒ F= Zmgsmθ	7
-Auo R= mgcost	$\Rightarrow F \leq \gamma R$
(40 ( <u>K- mg0020</u> )	$\int \frac{2}{7} \log \sin \theta \leq \frac{1}{7} (\log \cos \theta)$
	≥ bante ≤ p
	2 ≥ = fanto _

proof

### **Question 11** (***)

A uniform solid sphere, of radius r, is rotating about a diameter with constant angular velocity  $\Omega$ . The rotating sphere is gently placed on a rough fixed plane, inclined at an angle  $\alpha$  to the horizontal, the rotation direction being such so that the sphere would move up the line of greatest slope of the plane.

Given that the coefficient of friction between the sphere and the plane is  $\tan \alpha$ , show that the sphere will start rolling up the plane after a time

60 48	$2\Omega r$	. 'm
	$\overline{5g\sin\alpha}$ .	no van
a. Car	Als.	proof
3002 - Casa	Sin.	
The Dars	Ath.	$\left\{\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & $
Co. S		
	Con C	$\begin{array}{l} & 0 \text{ Instat. General of watched} \\ \Rightarrow & \text{with } = pk - w_3 \text{ Surve} \\ \Rightarrow & \text{with } = pk - w_3 \text{ Surve} \\ \Rightarrow & \text{with } = p \text{ Motor } - \text{Motore} \\ \Rightarrow & \text{ Motor } - \text{Motore} \\ \Rightarrow & \text{ Motor } = g(\text{motore} - \text{Surve}) \\ \Rightarrow & \text{ Motor } = g(\text{motore} - \text{Motore}) \\ \Rightarrow & \text{ Motor } = g(\text{motore} - \text{Motore}) \\ \Rightarrow & \text{ Motor } = g(\text{motore} - \text{Motore}) \\ \Rightarrow & \text{ Motor } = g(\text{motore} - \text{Motore}) \\ \Rightarrow & \text{ Motor } = g(\text{motore}) \\ \Rightarrow & \text{ Motore} = g(\text{motore}) \\ \end{array}$
r. Cr.	~~ ×	$ \begin{array}{l} \Rightarrow \begin{array}{l} \Rightarrow \begin{array}{l} \vdots \\ = g\left( \tan \kappa u_{S,K} - s_{K,K} \right) \\ \Rightarrow \begin{array}{l} \Rightarrow \begin{array}{l} \vdots \\ s \end{array} \\ = g\left( \tan \kappa u_{S,K} - s_{K,K} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \\ & \vdots \end{array} \\ \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \end{array} \\ \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \end{array} \\ \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \end{array} \\ \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} & \vdots \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \Rightarrow \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \begin{array}{l} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ $
V. K.C.	1. J.	$\begin{array}{c} \Leftrightarrow F = {}_{P} \mathbb{P} = \operatorname{vgsuex} \\ \bullet & \bullet \\$
60 5	· · G)	$\Rightarrow 0 = \mathcal{R} - \frac{5353m}{2r} t$ $\Rightarrow \frac{545m4}{2r} t \circ \Omega.$
	10. 9	$\left\langle \begin{array}{c} \rightarrow + \frac{2\Omega r}{5_3 \text{ surg}} \\ & \text{ is denoted} \end{array} \right\rangle$
(a. 19).	1902 ·	Dan do
Share ash	The second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
i'dha Mar	e the	na.
Co. I		20. 418
	000	n "Con
The lot		
1. V	, S.F.	1. C. 1
60 6		5 S
	100. 0	n na
12. 42.	Created by T. Madas	Man Ads

### **Question 12** (***)

A uniform solid sphere, of radius a, is rotating about a horizontal diameter with constant angular velocity  $\omega$ . The rotating sphere is gently placed on a rough horizontal surface and released. The coefficient of friction between the sphere and the surface is  $\mu$ .

<u>2aω</u> 7μg

Show that the sphere will slip for a time

before it starts rolling on the horizontal surface.

1

proof

 $\frac{2}{5}a\theta = \frac{2aw}{5} - Mgt$ £ra€

Zngt = aw

### **Question 13** (***)

A uniform rod AB, of mass m and length 2a, is falling freely under gravity with speed u, in a horizontal position.

The rod hits a rough peg P at a distance x from the centre of the rod and without rebounding, begins to rotate about P with angular speed  $\omega$ .

Determine, in terms of a, the value of x for which  $\omega$  is greatest.

$\left\{ \begin{array}{c} \downarrow u \\ \vdots \\ G \\ \downarrow \\ \downarrow$
BY TOTOBER MUTAMMOM AROLONA TO (NOTHALINAL AROLAND
$\implies (mu)_{\infty} = I_{p} \omega$
$\implies mu \propto = \left(\frac{1}{3}ma^{2} + mx^{2}\right)\omega$
$\implies \qquad \qquad$
$\implies 3u_{\mathcal{X}} = (a^2 + 3x^2) \omega$
$\implies M_{2} = \frac{3ux}{a^{2} + 3x^{2}}$
$\frac{d\omega}{dx} = \frac{(a^2 + 3a^2)(3u) - 3ux(6x)}{(a^2 + 3a^2)^2}$
$\frac{d\omega}{\omega t} = \frac{3ua^2 + 9u\chi^2 - 16u\chi^2}{(a^2 + 3t^2)^2} = \frac{3ua^2 - 9u\chi^2}{(a^2 + 3x^2)^2} = \frac{3u(a^2 - 3\chi^2)}{(a^2 + 3x^2)^2}$
$d_{1}^{k} = 3d_{1}^{k} = 0$ $d_{1}^{k} = 3d_{1}^{k} = 0$ $d_{2}^{k} = 3d_{1}^{k}$ $d_{1}^{k} = d_{1}^{k}$
$\mathcal{X} = \frac{\alpha}{\sqrt{3}} \qquad $

### **Question 14** (***)

A uniform solid sphere, of radius a, is rolling without slipping up a rough fixed plane, inclined at an angle of 30° to the horizontal.

At t = 0 the angular speed of the sphere is  $\omega$ .

Find the distance covered by the centre of the sphere before its angular speed is reduced to  $\frac{1}{2}\omega$ .

Give the distance in terms of a,  $\omega$  and g.



$\begin{array}{l} \theta_{D} = \mathcal{L} \in \mathbb{C}^{2} \text{ ansitz rodino}^{1} \\ \theta_{D} = \mathcal{L} \in \mathbb{C} \\ \theta_{D} = \mathcal{L} \in \mathbb{C} \\ \theta_{D} = \mathcal{L} \end{array}$	
PROTEND DOES NO WORK SO UNAMONIAL SUPERVISE SO UNAMONIAL SUPERVISE SO UNAMONIAL SUPERVISE SO UNAMONIAL SUPERVISE SO UNAMONIAL	
MOTION TO ZUDITALIAS OF MOTION	
● GUATIONS OF LIGTION	-1
$\begin{array}{c} (\mathcal{P}):  \text{wich} = -F - w_{0} \text{cm}_{30^{\circ}} \\ (\mathcal{P}):  I_{0}^{\circ} = -F_{0}  \text{w}_{0} \text{cm}_{30^{\circ}} \end{array} \right\} \implies F = -\frac{1}{\frac{G}{m}} \\ F = -\frac{1}{\frac{G}{m}} \end{array}$	
· EULINATE & AND THEY TO OBITIN THE ACCELERATION (S)	
= - marmaniso = IB	
$= -m\tilde{x} - \pm mg = \frac{2ma^2}{a} \frac{6}{a}$	
$\Rightarrow -\tilde{x} - \frac{1}{2} \tilde{g} = \frac{2}{3} \tilde{g}$	
⇒ -ã = ±3 + 3ã	
$= \frac{\partial g}{\partial z} = -\frac{\partial g}{\partial z} \qquad $	h
<ul> <li>Subary</li> </ul>	
pourse 21 ansiese 244100 g (W 21 abselle 2410004 "Million" nowet ≥ 1 23 abselle 242404 g (W±2 23 abselle 24/2004 "Million"	
$u = \delta u \qquad \qquad$	
$\begin{array}{c} \alpha = -\frac{5}{16} \alpha \\ S = -\frac{5}{2} \end{array} \qquad $	
て = 2(-たい)	
$V = \frac{1}{2} \log q$ $\implies \beta = \frac{21}{20q} \log q^2$	



### (***+) Question 15

A yo-yo toy is modelled as a uniform solid disc of mass m and radius a.

One end of a light inextensible string is fixed at a point on the rim of the yo-yo, and the rest of the string is wrapped several times around the rim. The disc of the yo-yo is held in a vertical plane with the other end of the string held fixed.

The yo-yo is projected vertically downwards with speed  $2\sqrt{ag}$ , so that the sting as it unwraps from the toy remains vertical.

Given that the string has not fully unwind, find the speed of the centre of the yo-yo, when the centre of the yo-yo has travelled a distance 9a.

		<u> </u>			
0	METTED A - BY TH	E Equations of Wotton	NETED B - B	Y EVERGHES	
1		LWARDY: Ma = Mg - T () Rotationally: IO = Ta (2)	<b>A</b>	↓ U= 2 √ Ag	$ \begin{array}{l} \longrightarrow  k \mathbb{E}_{\mathbf{A}} + \mathbb{P} \mathbb{E}_{\mathbf{A}} = k \mathbb{E}_{\mathbf{A}} + \mathbb{P} \mathbb{E}_{\mathbf{B}} \\ \\ \longrightarrow  \frac{1}{2} \ln u_{1}^{2} + \frac{1}{2} T \omega^{2} + \log I_{1} - \frac{1}{2} \ln u_{1}^{2} + \frac{1}{2} T \Omega^{2} \end{array} $
0	т	WROUND WITH SUP: I = a & 3	90		$\Rightarrow mu^2 + I\omega^2 + 3ngh = mv^2 + IQ^2$
	i for the second	$\left(\frac{1}{2} \ln q^2\right) \overset{*}{\theta} = Tq$ states with (2)			$\Rightarrow m_u^2 + \frac{1}{2} lm_u^2 + lm_q^2 R^2 lm_q^2 R^2$
	¥ ₩g	$\implies \frac{1}{2} \log \hat{\Theta} = T$ Tiby	τ∡		$\Rightarrow u^2 + \frac{1}{2}a^2u^2 + \log a = v^2 + \frac{1}{2}a^2\Sigma^2$
		$\Rightarrow \frac{1}{2} \ln \tilde{z} = T$ use (3)		↓ v= ?	BUT U=aw & V=a.52
	(I=1ma2)	$\Rightarrow$ mig = mg - $\frac{1}{2}$ mix SUB mo (1)	POTENTIAL # UNHL Mg		$\implies u^2 + \frac{1}{2}u^2 + 18ag = v^2 + \frac{1}{2}v^2$
	x ⁻	$\Rightarrow \hat{z} = g - \frac{1}{2}\hat{z}$			= 3-42 + 18ag = 3-12
		⇒ <u>≩</u> ä = 8			= 42 + 12ag = 22
١.		$\Rightarrow \alpha = \frac{2}{3}\theta$			- γ ² = (4ag)+12ag
1	BY SIMPLE KINEMATUS	s of <u>constrain</u> Accessibilition			⇒ 12 - Kag
Ą	2 a = 2 g 5 = 0	$V^2 = V^2 + 2ag$ $V^2 = Vag + 2\left(\frac{2}{3}\frac{a}{3}\right)(qa)$			> Y = HVag
1	<pre></pre>	$V^2 = 4ag + 12ag$ , $Y^2 = 16ag$ .			~
		V= 4vag			

 $v = 4\sqrt{ag}$ 

### Question 16 (***+)

A thin uniform solid rod AB of mass m and length 2a, is lying at rest on a smooth horizontal surface. A particle of mass m, moving with speed u on the same surface.

The particle, moving in a perpendicular direction to the rod, strikes the rod at the point C, where  $|AC| = \frac{4}{3}a$ , and immediately adheres to the rod.

Show that  $\frac{3}{7}$  of the kinetic energy is lost in the collision.

proof

### Question 17 (***+)

Two identical uniform rods AB and BC, each of mass m and length 2a, are rigidly joined at B, so that ABC is a right angle.

The system of the two rods lies at rest on a smooth horizontal surface, when it receives at C an impulse of magnitude J, in a direction parallel to BA.

Determine, in terms of J and m, the kinetic energy of the system after the impulse is received.



 $\frac{37J}{40m}$ 

### Question 18 (***+)

A uniform solid sphere, of radius a, is projected at time t = 0 up a line of greatest slope of a rough plane, inclined at angle  $\theta$  to the horizontal.

At the instant of projection the sphere has linear speed u and no angular velocity.

The coefficient of friction between the sphere and the plane is  $\mu$ .

Show that the sphere will slip until

 $=\frac{2u}{g\left(7\mu\cos\theta+2\sin\theta\right)},$ 

before it starts rolling up the plane.



proof

### Question 19 (***+)

A uniform spherical shell, of radius a, is projected at time t=0 down a line of greatest slope of a rough plane, inclined at angle  $\alpha$  to the horizontal. At the instant of projection the spherical shell has linear speed V and no angular velocity.

The coefficient of friction between the spherical shell and the plane is  $\mu$ .

Show that the spherical shell will slip until



before it starts rolling down the plane.



proof

Question 20 (***+)

A uniform solid sphere of radius a, is rolling without slipping on a rough horizontal plane, with constant speed V.

а

Р

 $\frac{2}{5}$ 

The sphere reaches a vertical step of height  $\frac{2}{5}a$ , which is at right angles to its direction of motion, as shown in the figure above.

When the sphere touches the step at the point P, it begins to rotate about P, without slipping or loss of contact.

 $V < \frac{147}{125}ag$ 

Show that

XOKING AT THE DIAGBAM BE	un
2ª C	MONINGST OF INGERTIA OF THE SPHERE
	$I_0 = \frac{2}{5}ma^2$
	$I_{p} = \frac{2}{3} ma^{2} + ma^{2} = \frac{7}{3} ma^{2}$
et Tite Answine verbony ne	50T P B6 S2
(IONSERVATION) OF MOMITA	UM ABOOT P
$\implies \underbrace{\left( \mathcal{I}_{\mathrm{b}} \omega \right) + \left( \mathrm{bnV} \right) \times \frac{3}{2}}_{\mathrm{dar} \ \mathrm{SHORe \ IMPRe}} \qquad $	sa = J _p Ω π Hette interact P
$\implies \frac{2}{5}ma^2\omega + \frac{3}{5}mVa$ $\implies 2a\omega + 3V$	= Ima ² D) - Im
adition 347 Jackson and TX	T AFTER THE IMPACT
10 m	MOIAUY, 45 IT ROMATIS ABOUT P
\$= 920 } St	⇒ Wr = R - mgoose
tana la	⇒ m(-S?a) = R - m3cosb
	⇒ l= macost -mas2



proof





A uniform circular disc, of mass m and radius a, is lying flat on a smooth horizontal surface. The points A and B lie on the circumference of the disc, so that AB is a diameter and the point M is the midpoint of AO, where O is the centre of the disc.

The disc is initially at rest, until a horizontal impulse J is applied at M, at an angle  $\alpha$  to AB, as shown in the figure above.

Show that the kinetic energy generated by the impulse is

 $\frac{J^2}{4m} \left(2 + \sin^2 \alpha\right).$ 

TOWOLAR SPECED W

ഹറി

 $max = \left(\frac{1}{2}ma^2\right)a$ 

 $D \qquad (AT \ Rest)$   $\frac{1}{2}MV^{2} + \frac{1}{2}IW^{2}$   $\frac{1}{2}mv^{2} + \frac{1}{2}(\frac{1}{2}ma^{2}w^{2})$ 

> + Ja:

, Jsma

K.F. REPORT F.F.

 $= \frac{1}{2}mv^2 + \frac{1}{4}ma^2\omega^2$  $= \frac{1}{4m} \left[ 2w_{f}^{2}v^{2} + w_{a}^{2}w^{2} \right]$  $= \frac{1}{4M} \left[ 2J^2 + J^2_{SWA} \right]$  $= \frac{J^2}{4m} \left[ 2 + SW^2 M \right]$ 4 BEDUPAD

proof

### Question 22 (***+)

A thin uniform solid rod AB of mass 5m and length 2a, is lying at rest on a smooth horizontal surface. A particle of mass m, moving with speed u on the same surface. The particle, moving in a perpendicular direction to the rod, strikes the rod at B. The rod begins to rotate with constant angular velocity  $\omega$ .

The coefficient of restitution between the rod and the particle is  $\frac{1}{3}$ .

Determine  $\omega$ , in terms of u and a, and find the speed of the particle after it strikes the rod, in terms of u.

+(sm)a2= 5ma T. = SX + Y = uROUT G-(mY) a + mYa 4 = 5 aw + > (II)  $(\times + \omega \alpha) - \gamma = \frac{1}{2}$ ×+wa->=+4 OBE IND E & CO

 $\frac{1}{2}a\left(\frac{4u}{8a}\right)$  $= u - S\left(\frac{U}{2T}u\right)$ 

4u

9a

 $\omega =$ 

7*u* 

27

### Question 23 (***+)

A uniform sphere of mass m and radius a lies at rest on rough horizontal ground. The coefficient of friction between the ground and the sphere is  $\mu$ .

The sphere is set in motion by a horizontal impulse of magnitude J, applied at a height  $\frac{1}{2}a$  above the ground. The impulse is applied in a vertical plane through the centre of the sphere. The sphere begins to move with speed U, along a straight line.

a) Calculate the magnitude of the initial angular velocity of the sphere and hence deduce that initially the sphere is slipping.

The sphere stops slipping when t = T

- **b)** Show clearly that  $T = \frac{9U}{14\mu g}$
- c) Show further that once the sphere stops slipping it moves with constant velocity, and determine its magnitude.

	BY CONSERVATION OF UNISAR MC	M0578MC		
and it	$   \int = m(v-o)   $ $   \int = mV $	+		
	• BY CONSERVATION OF ANDUNE ABOUT O	MOMIFION		
$\begin{bmatrix} I_{0} = \frac{2}{3} M q^{2} \end{bmatrix}$	$-J_{\lambda} \frac{1}{2}a = J(\omega - 0)$ $-\frac{1}{2}J_{\alpha} = \frac{2}{5}m_{\alpha}^{2}\omega$	+		
T° = 7 Wd.2	- 12/10/ = 3 yha w			
DUDE CONVERSE DE DEVE	$w = -\frac{sv}{4a}$			
SPHELE CHUNOT BE ROWIN	$ \begin{array}{c} \nabla \neq a \\ \nabla \neq a \\ \nabla \neq a \\ 1 \end{array} $	N EVIN THE MUS AGREE		
SUPPING ⇒ F=µR=µ	wg			
[®] REPATIONAWY [™]	TEquicitionally"			
2 2**	⇒mž = - pmg			
=) 0 = 540	-> 3 = - 4g => 2 = - 4gt+D			
$\Rightarrow \dot{\theta} = \frac{5\mu g}{2a} t + C$	Wunt=o i=U			
$ \begin{array}{l} \text{Wuny } t_{eo} & \dot{\theta} = -\frac{SU}{4a} \\ \Rightarrow & \dot{\theta} = -\frac{S\mu_{0}}{2a}t - \frac{SU}{4a} \\ \end{array} $	⇒[i= U-ygt]			
			8	

Rolunio = à= a Ó  $\Rightarrow U - \mu g t = \left[\frac{S\mu g}{2a}t - \frac{SU}{4a}\right]a$ ⇒ U - µgt 5 +9t - 5U = qU = Zyat a = U - 49 (9

 $\omega =$ 

5U

14

### Question 24 (***+)

A uniform solid circular cylinder, of radius a, is rolling without slipping with its axis horizontal, down a rough fixed plane, inclined at an angle  $\theta$  to the horizontal.

The cylinder began to roll from rest.

Let t be the time since the cylinder began to roll and x be the distance its axis travelled down the plane.

The cylinder began to slip when  $t = \sqrt{\frac{48a}{g}}$  and x = 4a. Show that  $\sin\theta = \frac{1}{4}$ proof FRIOTION DOES NO WORK . FS HI a=a0, i=a0, i=a0  $\begin{cases} ma = mgsm \\ \frac{1}{2}m^2 \theta = Fa \end{cases}$ ADD Wit + 1 mal = masme (t=0 1=0) smt + B (t=0 , x=0 460 t= , 48a 49 = 19 (48a) SINE SmQ=

θ



A rigid uniform rod AB of length 2a and mass m lies at rest on a smooth horizontal surface when it receives an impulse of magnitude J at A. The direction of the impulse is at an acute angle  $\theta$  to AB, as shown in the figure above.

a) Find the gain in the kinetic energy of the system, as a result of this impulse, in terms of m, J and  $\theta$ .

Immediately after receiving the impulse the end B, begins to move in a direction which makes an angle  $\psi$  with the AB produced.

**b**) Show that  $\tan \psi = 2 \tan \theta$ 

 $(1+3\sin^2\theta)$ 

В

O LINFARLY : J = (JSING) JJSMA :

tout. W = 2 tuy A

B



Two particles, A and B, of respective masses m and 2m are connected by a light rigid rod of length 2a. The system is lies at rest on a smooth horizontal surface when it receives an impulse of magnitude I at A. The direction of the impulse is at an acute angle  $\theta$  to AB, as shown in the figure above.

- a) Determine the speed of each of the particles immediately after the impulse is received, in terms of m, I and  $\theta$ .
- b) Find the gain in the kinetic energy of the system, as a result of this impulse, in terms of m, I and  $\theta$ .

 $\frac{I^2}{6m} \left(1 + 2\sin^2\theta\right)$  $|V_A| = \frac{I}{3m}\sqrt{1+8\sin^2\theta}$ ,  $|V_A| = \frac{I}{3m}\cos\theta$ ,  $(a_{200V}) + (a_{20}\dot{\epsilon} - a_{11}\dot{z}) = (a_{20}a_{11}\dot{z})$  $\left(Van\theta - \frac{2}{3}a \frac{3V sm\theta}{2a}\right)^2 + V^2 cod\theta$ = 16m9) + V2079 TRE OF MASS G  $B = \frac{1}{3m} \cos \theta$ (V=wr"> THE GAN IN KINETIC AVERBY IS GWW BY  $(2960)^2$   $(4cm0 + 4cm)^2 + (1000)^2$  $\frac{1}{2} \ln \frac{\mathrm{I}^2}{q_{w^2}} \left( 1 + 8 \alpha \mathrm{M}^2 \right) + \frac{1}{2} (2 \mathrm{M}) \frac{\mathrm{I}^2}{q_{w^2}} \cos^2 \theta$  $9(SPEFO)^2 = (Van0 + Iga \frac{3Van0}{2a})^2 + V^2aado$  $\frac{1}{18m}\left(1+8m^2\theta\right)+\frac{1}{9m}\cos^2\theta$  $(spece)^2 = (van\theta + 2van\theta)^2 + v^2co^2\theta$ IGOLAR ULLOONLY W, AROUT ITS  $= \frac{\mathbb{I}^2}{18m} \left[ 1 + 8sm^2\theta + 2cc^2\theta \right]$ €205V+ OM2.VP = (103342) € J2 (3+6500)  $\Rightarrow (SP(6))^2 = \sqrt{2} (9SP(6) + 6S^2)$ WA ARDY G 12 (1+25WP)  $\Rightarrow \exists \sin \theta \times [AG] = \left[ u_1 \times [AG]^2 \right] \times u_1 + \left[ 2u_1 \times [BG]^2 \right] \times u_1$  $= \left(\frac{1}{3m}\right)^2 = \left(\frac{1}{3m}\right)^2 \left(8cn^2\theta + 1\right)$ A NORMAN OF WILLIAN MONINT OF WARNA  $\frac{1}{2}(3M)V^2 + \frac{1}{2}I_{\mu}W^2 + \frac{1}{2}I_{\mu}W^2 \text{ Yields TH}$ TAKE THAT  $3h\sqrt{3}sm\theta \times \frac{4}{3}a^{4} = h(\frac{4}{3}a^{4})w + 2h_{1}(\frac{4}{3}a^{4})w$ SAME ANSWER WHERE  $\mathbb{I}_{_{\!\!A}}\,_{\!\!A}$   $\mathbb{I}_{_{\!\!B}}$  are the respective montrize OF INSERT OF AA B +

### **Question 27** (****)

A uniform solid sphere of mass m and radius a lies at rest on a rough horizontal surface when it is set in motion by a horizontal impulse of magnitude J.

The impulse is applied at a height  $\frac{1}{2}a$  above the surface, in a vertical plane through the centre of the sphere O, as shown in the figure below.



Determine the speed of O as a fraction of its original speed, when the sphere first begins to roll along the surface.





 $\frac{5}{14}$ 

# Question 28 (****+)

A uniform rod AB is bent at the point O, so that in the resulting L-shaped rigid object  $\measuredangle AOB = \frac{1}{2}\pi$ , |AO| = 1 m and |OB| = 4 m.

The object is placed flat on a smooth surface and an impulse is received at O in the direction OB.

In the resulting motion, determine the distance covered by O in a direction parallel to OB, until the instant the object has rotated by  $\frac{1}{2}\pi$  about its centre of mass.



≈ 29.40 m

### Question 29 (****+)

A uniform solid sphere of mass m and radius a lies at rest on a rough horizontal surface when it is set in motion by a horizontal impulse applied at a height below the centre of the sphere O.

The sphere initially begins to slide and at the same time spinning backwards. The initial speed of its centre is U and its initial angular speed about its centre is  $\Omega$ .

When the sphere stops sliding, it immediately begins to roll backwards.

Show that  $\Omega > \frac{5U}{2a}$ .

proof

(ION) 1/12 = -4 x/g 2 x/26 = -4 //g 3 5 48  $d = -\gamma st + T$  $\dot{\Theta} = -\frac{SMgt}{2a} + \Omega$ THE GROUND ) & 2+a0, ED OF POINT P (RE  $V = \left(- ygt + T\right) + \alpha \left(-\frac{5ygt}{2} + \Omega\right)$ V= U - Ygt - Sygt +all V= Utas2 - Zust

 $\int = \frac{2(\tau + a)(2 - \tau)}{\tau + a} \ll \text{Trans-contrast rough-strates}$ 

 $\vec{x} = \frac{\nabla \nabla}{\nabla} - \frac{2}{2} a \Sigma$  $\vec{x} = \frac{1}{2} (5\nabla - 2a \Sigma)$  $\vec{x} = \frac{1}{2} (5\nabla - 2a \Sigma)$  $\vec{y} = 5 \Delta a K + 5 \Delta A K +$ 

a= U - yg (2(U+as))

 $\hat{\mathfrak{A}} = \overline{U} - \stackrel{2}{\rightarrow} (\overline{U} + a\overline{R})$ 

### Question 30 (****+)

A uniform circular hoop of mass m and radius a lies at rest on a rough horizontal surface when it is set in motion by a horizontal impulse of magnitude J, applied at a height h above the surface, where h < a. The impulse is applied in a vertical plane through the centre of the hoop O, as shown in the figure below.

Given that the hoop first starts to roll along the surface when the speed of O is  $\frac{1}{3}$  of its initial speed, show that  $h = \frac{2}{3}a$ .

proof

$\begin{array}{c} \begin{array}{c} & & \\ & & \\ \hline \\$	$\begin{array}{c} \underbrace{\frac{\mathcal{A} \text{TEDuring + scale integral}}{W \tilde{\mathcal{A}} = -F} \\ W \tilde{\mathcal{A}} = -F \\ \mathcal{I} \tilde{\mathcal{B}} > \mathcal{T} \tilde{\alpha} \end{array} \xrightarrow{\tilde{\mathcal{A}}} = -\frac{F}{4\tau} + \\ \begin{array}{c} \tilde{\mathcal{A}} = -F \\ \tilde{\mathcal{B}} = -F \\ \tilde$
- BY INASCUATION OF ANOUAR MOUNSION	IT STARTS PSULLY WHAT $\vec{a}_{i} = \frac{1}{3} \left( \frac{T}{m_{i}} \right)$
$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$ \begin{array}{c} S_{0}  \overline{\underline{T}_{ij}}_{ij} = - \frac{F_{ij}}{F_{ij}} t + \frac{T_{ij}}{F_{ij}}, \\ \overline{F_{ij}} t = \frac{2T_{ij}}{3m_{ij}}, \\ \overline{F_{ij}} t = \frac{2T_{ij}}{3m_{ij}}, \\ \overline{F_{ij}} t = \frac{2T_{ij}}{3m_{ij}}. \end{array} $
$\begin{array}{l} \underset{T \in \mathcal{T}}{\underset{T }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\begin{array}{c} A \Gamma \ \ \mbox{Tild}  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\begin{array}{c} & \qquad $	For the Field Letter $\hat{\lambda} = a \hat{G}$ $\frac{1}{4} \hat{G} \frac{\gamma_{11}}{\gamma_{11}} = \begin{bmatrix} 2\hat{G} \hat{G} \\ \frac{1}{2}\hat{G} \hat{G} \\ \frac{1}{2}\hat{G} \\ \frac{1}{2}$
$\begin{array}{c} \prod\limits_{a,b \\ a \neq b \\ a \neq$	$ \begin{array}{c} \Rightarrow & \frac{1}{2} \\ \Rightarrow & \frac{1}$
3a-3h = a 3h = 2a h = 3ga / As Situredo	

### Question 31 (*****)

At time t = 0, the door of a train is open and at rest at right angles to the side of the train. The door is modelled as a uniform rectangular lamina, of mass m, smoothly hinged along a vertical edge. The horizontal line AB, through the centre of mass of the lamina is 2a.

The train begins to move forward in a straight line, with constant acceleration k.

Show that the angular velocity of the door at the instant when it slams shut is

proof

 $\frac{3k}{2a}$ 

→ fat = kaut - at = zab = kaso  $\Rightarrow \frac{2}{3}a(2\theta) = kas\theta$ - 3a(200) = kôuso  $\Rightarrow 2\dot{\theta}\ddot{\theta} = \frac{3k}{2a} \left[\dot{\theta} \cos\theta\right]$  $\Rightarrow d[\theta^2] = \frac{3k}{2a} dt[Sm\theta]$  $W(-\alpha\dot{\theta}^2) - W_1 k \leq W_1 \theta = 0$ 62 3k Smo  $R = -in[\alpha\theta^2 - ksin\theta]$ Sozo = 3K SmF SUGARAN (A) V 3K = a m[kias- at]

### Question 32 (*****)

A rod AB is resting on a smooth horizontal surface, with A smoothly pivoted in a fixed position. An **identical** rod AB is also resting on a smooth horizontal surface, totally unconstrained.

Each of the two rods receives at B a horizontal impulse J, at right angles to AB.

a) Show that the kinetic energy of the pivoted rod is  $\frac{3}{4}$  of the kinetic energy of the unconstrained rod.

Next consider the two rods starting from rest again.

Each of the two rods receives a horizontal impulse so the respective ends B of the rods both begin to move with speed U, at right angles to AB.

**b**) Show that the kinetic energy of the unconstrained rod is  $\frac{3}{4}$  of the kinetic energy of the pivoted rod.







proof