ROTATIONAL

AND
TRANSLATIONAL MOTION

Question 1 (**)
A uniform circular hoop rolls without slipping, with its plane vertical, down the line of greatest slope of a rough fixed plane, inclined at an angle α to the horizontal.

Find the magnitude of the acceleration of the centre of the hoop, in terms of g and θ.

Created by T. Madas

Question 2 (**)

A uniform spherical shell, of radius a, is rolling without slipping, down the line of a greatest slope of rough fixed plane, inclined at an angle of 30° to the horizontal.

The spherical shell started from rest.

After time T, of rolling without slipping down the plane for a distance of $15 a$, it has angular speed Ω.

Determine, in terms of a and g, an expression for T and an expression for Ω.

Created by T. Madas

Question 3 (**)

A uniform $\operatorname{rod} A B$, of mass m and length $2 a$ is rotating with constant angular velocity ω about M, the centre of the rod.

The centre of the rod has constant speed v.

At a certain instant A becomes fixed. The sense of direction of the rotation of the rod remains unchanged after A becomes fixed.

Created by T. Madas

Question 4 (**+)
A uniform rod $A B$, of mass m and length $2 a$ is falling freely under gravity, rotating with constant angular velocity ω about O, the centre of the rod.

When the rod is in horizontal position and O has speed u, A becomes fixed.
The sense of direction of the rotation of the rod rchanges after A becomes fixed.
Determine the angular velocity with which the rod begins to rotate about A, in terms of u, a and ω.

Created by T. Madas

Question 5 (**+)
A uniform solid cylinder, of radius a, is rolling without slipping with its axis horizontal, down a rough fixed plane, inclined at an angle of 30° to the horizontal.
a) Find the angular acceleration of the cylinder, in terms of a and g.

The coefficient of friction between the cylinder and the plane is μ.
b) Show that

Created by T. Madas
Question $6{ }^{(* *+)}$
2

A uniform circular hoop, of radius a, is rolling without slipping on a rough horizontal plane, with constant angular speed ω.

The hoop reaches a vertical step of height $\frac{2}{5} a$, which is at right angles to its direction of motion, as shown in the figure above.

When the hoop touches the step at the point P, it begins to rotate about P, without slipping or loss of contact, with angular speed Ω.

By considering angular momentum conservation, show that

$$
\Omega=\frac{4}{5} \omega
$$

Created by T. Madas

Question 7 (***)
A uniform circular hoop is rolling without slipping down a rough fixed plane, inclined at an angle α to the horizontal.

The coefficient of friction between the disc and the plane is μ.

Using a detailed method, show that

$$
\mu \geq \frac{1}{2} \tan \alpha
$$

\square

Created by T. Madas

Question 8 (***)
A uniform circular disc is rolling without slipping down a rough fixed plane, inclined at an angle α to the horizontal.

The coefficient of friction between the disc and the plane is μ.

Using a detailed method, show that

$$
\mu \geq \frac{1}{3} \tan \alpha
$$

Created by T. Madas

Question 9 (***)
The centre O of a uniform solid sphere has an initial speed of $5 \mathrm{~ms}^{-1}$ up a rough fixed plane, inclined at an angle θ to the horizontal, where $\sin \theta=\frac{1}{7}$. The centre of sphere comes to instantaneous rest after covering a distance $d \mathrm{~m}$ up the plane.

Given that the sphere was rolling without slipping in its journey up the plane, find the value of d.

Created by T. Madas

Question 10 (***)
A uniform solid sphere is rolling without slipping down a rough fixed plane, inclined at an angle θ to the horizontal.

The coefficient of friction between the sphere and the plane is μ.

Using a detailed method, show that

$$
\mu \geq \frac{2}{7} \tan \theta
$$

Question 11 (***)
A uniform solid sphere, of radius r, is rotating about a diameter with constant angular velocity Ω. The rotating sphere is gently placed on a rough fixed plane, inclined at an angle α to the horizontal, the rotation direction being such so that the sphere would move up the line of greatest slope of the plane.

Given that the coefficient of friction between the sphere and the plane is $\tan \alpha$, show that the sphere will start rolling up the plane after a time

Question 12 (***)
A uniform solid sphere, of radius a, is rotating about a horizontal diameter with constant angular velocity ω. The rotating sphere is gently placed on a rough horizontal surface and released. The coefficient of friction between the sphere and the surface is μ.

Show that the sphere will slip for a time

$$
\frac{2 a \omega}{7 \mu g}
$$

before it starts rolling on the horizontal surface.

Created by T. Madas

Question 13 (***)
A uniform $\operatorname{rod} A B$, of mass m and length $2 a$, is falling freely under gravity with speed u, in a horizontal position.

The rod hits a rough peg P at a distance x from the centre of the rod and without rebounding, begins to rotate about P with angular speed ω.

Determine, in terms of a, the value of x for which ω is greatest.

$$
x=\frac{a}{\sqrt{3}}
$$

Created by T. Madas

Question 14 (***)

A uniform solid sphere, of radius a, is rolling without slipping up a rough fixed plane, inclined at an angle of 30° to the horizontal.

At $t=0$ the angular speed of the sphere is ω.

Find the distance covered by the centre of the sphere before its angular speed is reduced to $\frac{1}{2} \omega$.

Give the distance in terms of a, ω and g.

Created by T. Madas

Question 15 (***+)

A yo-yo toy is modelled as a uniform solid disc of mass m and radius a.

One end of a light inextensible string is fixed at a point on the rim of the yo-yo, and the rest of the string is wrapped several times around the rim. The disc of the yo-yo is held in a vertical plane with the other end of the string held fixed.

The yo-yo is projected vertically downwards with speed $2 \sqrt{a g}$, so that the sting as it unwraps from the toy remains vertical.

Given that the string has not fully unwind, find the speed of the centre of the yo-yo, when the centre of the yo-yo has travelled a distance $9 a$.

Question 16 (***+)
A thin uniform solid rod $A B$ of mass m and length $2 a$, is lying at rest on a smooth horizontal surface. A particle of mass m, moving with speed u on the same surface.

The particle, moving in a perpendicular direction to the rod, strikes the rod at the point C, where $|A C|=\frac{4}{3} a$, and immediately adheres to the rod.

Show that $\frac{3}{7}$ of the kinetic energy is lost in the collision.

Created by T. Madas

Question 17 (***)
Two identical uniform rods $A B$ and $B C$, each of mass m and length $2 a$, are rigidly joined at B, so that $A B C$ is a right angle.

The system of the two rods lies at rest on a smooth horizontal surface, when it receives at C an impulse of magnitude J, in a direction parallel to $B A$.

Determine, in terms of J and m, the kinetic energy of the system after the impulse is received.

Created by T. Madas

Question 18 (***+)
A uniform solid sphere, of radius a, is projected at time $t=0$ up a line of greatest slope of a rough plane, inclined at angle θ to the horizontal.

At the instant of projection the sphere has linear speed u and no angular velocity.
The coefficient of friction between the sphere and the plane is μ.

Show that the sphere will slip until
before it starts rolling up the plane.

Question 19 (***+)
A uniform spherical shell, of radius a, is projected at time $t=0$ down a line of greatest slope of a rough plane, inclined at angle α to the horizontal. At the instant of projection the spherical shell has linear speed V and no angular velocity.

The coefficient of friction between the spherical shell and the plane is μ.

Show that the spherical shell will slip until

$$
t=\frac{2 V}{g(5 \mu \cos \alpha-2 \sin \alpha)}
$$

before it starts rolling down the plane.

Created by T. Madas

Question $20 \quad(* * *+)$

A uniform solid sphere of radius a, is rolling without slipping on a rough horizontal plane, with constant speed V.

The sphere reaches a vertical step of height $\frac{2}{5} a$, which is at right angles to its direction of motion, as shown in the figure above.

When the sphere touches the step at the point P, it begins to rotate about P, without slipping or loss of contact.

Created by T. Madas

Question $21 \quad\left({ }^{* * *}+\right)$

A uniform circular disc, of mass m and radius a, is lying flat on a smooth horizontal surface. The points A and B lie on the circumference of the disc, so that $A B$ is a diameter and the point M is the midpoint of $A O$, where O is the centre of the disc.

The disc is initially at rest, until a horizontal impulse J is applied at M, at an angle α to $A B$, as shown in the figure above.

Show that the kinetic energy generated by the impulse is

$$
\frac{J^{2}}{4 m}\left(2+\sin ^{2} \alpha\right)
$$

\square proof

$\sqrt{2}$	

$\rightarrow \quad 1=m(\vec{v}-u)$
$\rightarrow J=m y$
BY conservalion of anoulte nocutivinu theot O
$\Rightarrow\left(J_{\text {smak }}\right)_{x+2 a}-I_{n}\left(\begin{array}{ll}\omega & 0\end{array}\right)$

$\Rightarrow \frac{1}{2} J_{a} \sin \alpha=\left(\frac{1}{2} m a^{a}\right) \omega$
$\rightarrow \mathrm{J}_{\operatorname{sm} \alpha}=$ maw
fintrey Ankugh

- K.E Refoll $=0$ (AT RHT)
- $k e$ Afikr $=\frac{1}{2} m v^{2}+\frac{1}{2} J \omega^{2}$
$=\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{1}{2} m a^{2} \omega^{2}\right)$
$=\frac{1}{2} m v^{2}+\frac{1}{4} m a^{2} \omega^{2}$
$=\frac{1}{4 m}\left[2 m^{2} v^{2}+m^{2} a^{2} w^{2}\right]$
$=\frac{1}{4 m}\left[2 J^{2}+J^{2} \sin ^{2} \alpha\right]$
$=\frac{J^{2}}{4 m}\left[2+s^{2} x\right]$

Created by T. Madas

Question 22 (***+)

A thin uniform solid rod $A B$ of mass $5 m$ and length $2 a$, is lying at rest on a smooth horizontal surface. A particle of mass m, moving with speed u on the same surface. The particle, moving in a perpendicular direction to the rod, strikes the rod at B. The rod begins to rotate with constant angular velocity ω.

The coefficient of restitution between the rod and the particle is $\frac{1}{3}$.

Determine ω, in terms of u and a, and find the speed of the particle after it strikes the rod, in terms of u.

Created by T. Madas

Question 23 (***+)

A uniform sphere of mass m and radius a lies at rest on rough horizontal ground. The coefficient of friction between the ground and the sphere is μ.

The sphere is set in motion by a horizontal impulse of magnitude J, applied at a height $\frac{1}{2} a$ above the ground. The impulse is applied in a vertical plane through the centre of the sphere. The sphere begins to move with speed U, along a straight line.
a) Calculate the magnitude of the initial angular velocity of the sphere and hence deduce that initially the sphere is slipping.

The sphere stops slipping when $t=T$.
b) Show clearly that $T=\frac{9 U}{14 \mu g}$
c) Show further that once the sphere stops slipping it moves with constant velocity, and determine its magnitude.

$$
|\omega|=\frac{5 U}{4 a}, \quad|v|=\frac{5 U}{14}
$$

Question 24 (***+)
A uniform solid circular cylinder, of radius a, is rolling without slipping with its axis horizontal, down a rough fixed plane, inclined at an angle θ to the horizontal.

The cylinder began to roll from rest.

Let t be the time since the cylinder began to roll and x be the distance its axis travelled down the plane.

The cylinder began to slip when $t=\sqrt{\frac{48 a}{g}}$ and $x=4 a$.

Show that

$$
\sin \theta=\frac{1}{4}
$$

Created by T. Madas

Question $25 \quad\left({ }^{* * *}+\right)$

A rigid uniform rod $A B$ of length $2 a$ and mass m lies at rest on a smooth horizontal surface when it receives an impulse of magnitude J at A. The direction of the impulse is at an acute angle θ to $A B$, as shown in the figure above.
a) Find the gain in the kinetic energy of the system, as a result of this impulse, in terms of m, J and θ.

Immediately after receiving the impulse the end B, begins to move in a direction which makes an angle ψ with the $A B$ produced.
b) Show that $\tan \psi=2 \tan \theta$

Question 26 (***+)

Two particles, A and B, of respective masses m and $2 m$ are connected by a light rigid rod of length $2 a$. The system is lies at rest on a smooth horizontal surface when it receives an impulse of magnitude I at A. The direction of the impulse is at an acute angle θ to $A B$, as shown in the figure above.
a) Determine the speed of each of the particles immediately after the impulse is received, in terms of m, I and θ.
b) Find the gain in the kinetic energy of the system, as a result of this impulse, in terms of m, I and θ.

人 $,\left|V_{A}\right|=\frac{I}{3 m} \sqrt{1+8 \sin ^{2} \theta},\left|V_{A}\right|=\frac{I}{3 m} \cos \theta, \frac{I^{2}}{6 m}\left(1+2 \sin ^{2} \theta\right)$

$\Rightarrow(\cos \theta)^{2}=\left(\sqrt{s} m \theta-\frac{2}{3} a \omega\right)^{2}+(\operatorname{vos} \theta)^{2}$
Now WE an actin The section of EHAH PGRTIGE BY $\Rightarrow(\text { (sta) })^{2}=\left(\operatorname{Van} \theta-\frac{2}{3} a \frac{3 V \sin \theta}{2 a}\right)^{2}+V^{2} \cos ^{2} \theta$ $\Rightarrow(P \operatorname{cec} \theta)^{2}=(v \sin \theta-1 \sin \theta)^{2}+V^{2} \cos ^{2} \theta$ \Rightarrow STED of $B=\frac{I}{3 m} \cos \theta$
b)

Question 27 (****)
A uniform solid sphere of mass m and radius a lies at rest on a rough horizontal surface when it is set in motion by a horizontal impulse of magnitude J.

The impulse is applied at a height $\frac{1}{2} a$ above the surface, in a vertical plane through the centre of the sphere O, as shown in the figure below.

Determine the speed of O as a fraction of its original speed, when the sphere first begins to roll along the surface.

Created by T. Madas

Question 28 (****+)

A uniform $\operatorname{rod} A B$ is bent at the point O, so that in the resulting L-shaped rigid object $\measuredangle A O B=\frac{1}{2} \pi,|A O|=1 \mathrm{~m}$ and $|O B|=4 \mathrm{~m}$.

The object is placed flat on a smooth surface and an impulse is received at O in the direction $O B$.

In the resulting motion, determine the distance covered by O in a direction parallel to $O B$, until the instant the object has rotated by $\frac{1}{2} \pi$ about its centre of mass.

$$
\approx 29.40 \mathrm{~m}
$$

Created by T. Madas

Question 29 ($* * * *+$)

A uniform solid sphere of mass m and radius a lies at rest on a rough horizontal surface when it is set in motion by a horizontal impulse applied at a height below the centre of the sphere O.

The sphere initially begins to slide and at the same time spinning backwards. The initial speed of its centre is U and its initial angular speed about its centre is Ω.

When the sphere stops sliding, it immediately begins to roll backwards.
Show that $\Omega>\frac{5 U}{2 a}$.

Question $30 \quad(* * * *+)$
A uniform circular hoop of mass m and radius a lies at rest on a rough horizontal surface when it is set in motion by a horizontal impulse of magnitude J, applied at a height h above the surface, where $h<a$. The impulse is applied in a vertical plane through the centre of the hoop O, as shown in the figure below.

Given that the hoop first starts to roll along the surface when the speed of O is $\frac{1}{3}$ of its initial speed, show that $h=\frac{2}{3} a$.

Created by T. Madas

Question 31 (*****)
At time $t=0$, the door of a train is open and at rest at right angles to the side of the train. The door is modelled as a uniform rectangular lamina, of mass m, smoothly hinged along a vertical edge. The horizontal line $A B$, through the centre of mass of the lamina is $2 a$.

The train begins to move forward in a straight line, with constant acceleration k.

Show that the angular velocity of the door at the instant when it slams shut is $\sqrt{\frac{3 k}{2 a}}$.
\square

$m\left(-a \dot{\theta}^{2}\right)-m k \sin \theta=R$
$R=-m\left[a \dot{\theta}^{2}-k s i n \theta\right]$

- Tanduviracy (
$m(k \cos \theta)-40 \ddot{\theta}=T$
Now HiOM THE Quntion of sRaftoner Mollin $\Rightarrow I_{H} \ddot{\theta}=L$ (Nontas) $\Rightarrow \frac{1}{3} m a^{2} \theta=T_{x a}$. $\Rightarrow \frac{1}{3} m^{2} \ddot{\theta}=\operatorname{an}[\operatorname{kcos} \theta-\theta \dot{\theta}]$

Question 32 (*****)
A rod $A B$ is resting on a smooth horizontal surface, with A smoothly pivoted in a fixed position. An identical rod $A B$ is also resting on a smooth horizontal surface, totally unconstrained.

Each of the two rods receives at B a horizontal impulse J, at right angles to $A B$.
a) Show that the kinetic energy of the pivoted rod is $\frac{3}{4}$ of the kinetic energy of the unconstrained rod.

Next consider the two rods starting from rest again.
Each of the two rods receives a horizontal impulse so the respective ends B of the rods both begin to move with speed U, at right angles to $A B$.
b) Show that the kinetic energy of the unconstrained rod is $\frac{3}{4}$ of the kinetic energy of the pivoted rod.

