POLAR CORDINATES

and

CENTRAL FORCES

Created by T. Madas

Question $1 \quad{ }^{(* *)}$
A particle P is moving on a cardioid with polar equation

$$
r=a(1+\sin \theta), 0 \leq \theta<2 \pi
$$

where a is a positive constant.

The radius vector $O P$, where O is the pole, rotates with constant angular speed ω.
Find an expression for the speed of P in terms of a, ω and θ, and hence determine the maximum speed of the speed of P and the value of θ when this maximum speed occurs.

Created by T. Madas

Question 2 (**) *
A particle P is moving on a plane, and its position in time $t \mathrm{~s}$ is described in plane polar coordinates (r, θ), by the parametric equations

$$
r=3 \sqrt{5} t^{2}, \quad \theta=t^{2}-6 t, \quad t \geq 0
$$

Determine the speed of P and the magnitude of its acceleration when $t=2$.

$$
|\mathbf{v}|_{t=2}=60 \mathrm{~ms}^{-1}, \quad|\mathbf{a}|_{t=2}=\sqrt{20765} \approx 144 \mathrm{~ms}^{-2}
$$

\square

Question 3 (**)
A particle P is moving on a plane, and its position in time $t \mathrm{~s}$ is described in plane polar coordinates (r, θ), where O is the pole.

The path of P traces the spiral with polar equation

$$
r=a \theta
$$

where a is a positive constant.

The radius vector $O P$ rotates with constant angular speed ω.

Determine a simplified expression for the magnitude of the acceleration of P in terms of a, ω and r.

Created by T. Madas

Question $4 \quad{ }^{(* *)}$
A particle P is moving on a cardioid with polar equation

$$
r=a(1-\sin \theta), 0 \leq \theta<2 \pi
$$

where a is a positive constant.

The radius vector $O P$, where O is the pole, rotates with constant angular speed ω.
The magnitude of the acceleration of P is denoted by f.

Find an expression for f in terms of a, ω and θ, and hence state the greatest value of f and the value of θ when this greatest value of f occurs.

$$
f=a \omega^{2} \sqrt{5-4 \sin \theta}, f_{\max }=3 a \omega^{2}, \quad \theta=\frac{3 \pi}{2}
$$

Question 5 (**)
A particle P is moving on the curve with polar equation

$$
r=k \mathrm{e}^{\theta}, 0 \leq \theta<2 \pi,
$$

where k is a positive constant.

The radius vector $O P$, where O is the pole, rotates with constant angular speed ω.

Find the magnitude and direction of the acceleration acting on P.
$|\mathbf{a}|=2 m k \omega^{2} \mathrm{e}^{\theta}=2 m r \omega^{2}, \quad$ transversly

Question $6 \quad(* *+)$
In a plane polar coordinate system (r, θ), the base unit vectors are defined as $\hat{\mathbf{r}}$ in the direction of r increasing, and $\hat{\boldsymbol{\theta}}$ perpendicular to $\hat{\mathbf{r}}$, in the direction of θ increasing.
a) Given that the position vector \mathbf{r} of a particle P is given by $\mathbf{r}=r \hat{\mathbf{r}}$, derive expressions for the velocity and acceleration of P in plane polar coordinates.

You may assume standard differentiation results for $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\theta}}$.
b) If $r^{2} \frac{d \theta}{d t}$ is constant state what can be deduced about the force acting on P.
P is moving on the curve with polar equation

$$
r=2+\cos \theta, 0 \leq \theta<2 \pi
$$

with constant angular speed $\sqrt{5} \mathrm{rads}^{-1}$.
c) Find the speed and the magnitude of the acceleration of P, when $\theta=\frac{\pi}{2}$.

$$
|\mathbf{v}|=5 \mathrm{~ms}^{-1}, \quad \mid=10 \sqrt{2} \mathrm{~ms}^{-2}
$$

Created by T. Madas

Question 7 (***)
A particle P is moving on a plane, and its position in time $t \mathrm{~s}$ is described in plane polar coordinates (r, θ), where O is the pole.

The radius vector $O P$ rotates with constant angular speed ω.

The radial component of the acceleration of P has magnitude $r \omega^{2}$, and is directed towards O.

Initially, P is at the point with coordinates $(a, 0)$, where a is a positive constant, and has radial velocity $2 a \omega$.

Determine a polar equation for the path of P, in terms of a.

$$
r=a(2 \theta+1)
$$

\square

Question 8 (***)
In a plane polar coordinate system (r, θ), the base unit vectors are defined as $\hat{\mathbf{r}}$ in the direction of r increasing, and $\hat{\boldsymbol{\theta}}$ perpendicular to $\hat{\mathbf{r}}$, in the direction of θ increasing.
a) Find expressions for $\frac{d}{d \theta}(\hat{\mathbf{r}})$ and $\frac{d}{d \theta}(\hat{\boldsymbol{\theta}})$
b) Given that the position vector \mathbf{r} of a particle P is given by $\mathbf{r}=r \hat{\mathbf{r}}$, derive expressions for the velocity and acceleration of P in plane polar coordinates.
$\hat{\boldsymbol{\theta}},-\hat{\mathbf{r}}, \mathbf{v}=\dot{r} \hat{\mathbf{r}}+r \dot{\boldsymbol{\theta}} \hat{\boldsymbol{\theta}}, \mathbf{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\mathbf{r}}+\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\boldsymbol{\theta}}\right) \hat{\boldsymbol{\theta}}$

$\Rightarrow \frac{d u}{d t}=\frac{d}{d t}(\hat{r} \hat{)})+\frac{d}{d t}(r \hat{\theta} \hat{\underline{e}})$
$\Rightarrow \underline{a}=\ddot{r} \hat{r}+i \frac{d}{d t} \hat{r}+\dot{r} \underline{\hat{\theta}}+r \ddot{\theta} \hat{\theta}+r \dot{\theta} \frac{d}{d t} \hat{\theta}$
$\Rightarrow \underline{a}=\dot{r} \hat{r}+i \frac{d \hat{r}}{d \theta} d \theta+\dot{\theta} \theta \hat{\theta} \hat{\theta}+r \ddot{\theta} \ddot{\theta}+r \dot{\theta} \frac{d \hat{\theta}}{d \theta} \frac{d \theta}{d t}$ $\Rightarrow \underline{a}=r \dot{r} \hat{\underline{~}}+\dot{r} \dot{\theta} \underline{\hat{\theta}}+\dot{r} \dot{\theta} \underline{\hat{\theta}}+r \ddot{\theta} \hat{\theta}+r \dot{\theta}^{2}(-\hat{\underline{I}})$
$\Rightarrow \underline{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\theta}$
$\Rightarrow \Delta=\left(r^{0}-r \dot{\theta}^{2}\right) \hat{r}+\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right) \hat{\theta}$

Created by T. Madas

A particle P is moving on a polar plane (r, θ) so that its velocity vector \mathbf{v} forms a constant angle α with $O P$, where O is the pole, as shown in the figure above.

Given further that P crosses the initial line at $r=1$, show that the polar equation of the path of P is

$$
r=\mathrm{e}^{-\theta \cot \alpha}
$$

You may not use verification in this question.
proof

Created by T. Madas

Question 10 (***)
A particle P, of mass m, is moving on a path with polar equation

$$
r=a \mathrm{e}^{k \theta}, 0 \leq \theta<2 \pi
$$

where a and k are positive constants.

The radius vector $O P$, where O is the pole, rotates with constant angular speed ω.

Show that the magnitude of the resultant force acting on the plane of its polar path is

Created by T. Madas

Question 11 (***)
A particle P rests on a smooth horizontal surface attached to a fixed point O on the surface by a light elastic string of natural length a.

When $|O P|=a$ the particle is projected with speed $\sqrt{a g}$ along the surface, in a direction perpendicular to $O P$.

Find the angular speed of P at the instant when $|O P|=2 a$.

Question 12 (***)
A particle P is moving on the curve with equation

$$
r=a \mathrm{e}^{\frac{1}{2} \theta}
$$

where (r, θ) are plane polar coordinates, and a is a positive constant.

The angle the velocity of P makes with $O P$, where O is the pole, is denoted by α. Determine the value of $\tan \alpha$.

Question 13 (***+)
A particle is moving on path whose polar equation is

$$
r=1+2 \cos \theta, 0 \leq \theta<2 \pi
$$

The particle is moving in such a way so that $\theta=2 t$, where t represents the time in s, measured after a given instant. All distances are measure in m .

Determine the speed of the particle and the magnitude of its transverse acceleration when its radial acceleration is $4 \mathrm{~ms}^{-1}$.

$$
\sqrt{12} \mathrm{~ms}^{-1}, 8 \sqrt{3} \mathrm{~ms}^{-2}
$$

Question 14 (***+)
At time $t=0$, a particle is on the initial line of a standard polar coordinate system (r, θ), and moving on a path with polar equation

$$
r=\frac{1}{4} \mathrm{e}^{k \theta}, \theta \geq 0
$$

where k is a constant.

Relative to the pole O, the particle has a constant angular velocity of $2 \mathrm{rads}^{-1}$, throughout the motion.

Given that the initial magnitude of the acceleration of the particle is $1.04 \mathrm{~ms}^{-2}$, determine the possible values of k.

Question 15 (***+)
A man is standing at the centre at O of a circular platform, whose radius is 40 m , which is initially at rest.

At time $t=0$ the platform begins to rotate about O with constant angular acceleration of $0.125 \mathrm{rads}^{-1}$, and at the same time the man begins to walk with constant speed $1.25 \mathrm{~ms}^{-1}$, radially outwards relative to the platform.

Let r be the radial distance of the man from O and θ the angle by which the platform has turned.

Determine a polar equation for the path of the man, relative to the ground, in the form $r=f(\theta)$ and hence show that the platform has completed 10 revolutions by the time the man reaches the edge of the platform.

Question 16 (****)
A particle of mass m is moving with constant angular velocity ω on a polar plane (r, θ), with pole at O. The only force acting on the particle has magnitude $3 m r \omega^{2}$, which acts radially outwards.

When $t=0$, the particle is at the point $(2 a, 0)$, where a is a positive constant, and has no radial speed.

By forming and solving a suitable differential equation, show that the equation of the path of the particle is

Question 17 (****)
Relative to a fixed origin O, a particle P is moving with constant angular velocity ω on the curve with polar equation

$$
r=k \mathrm{e}^{\theta \cot \alpha}
$$

where k and α are positive constants with $0<\alpha<\frac{1}{4} \pi$.

Show that the magnitude of the acceleration of the particle is $\frac{v^{2}}{r}$, where v is the speed of the particle and r is the distance $O P$.
\square
, proof

Question 18 ($* * * * *)$
A particle P, of mass m, moves in a plane under the action of a force F which is directed towards a fixed origin O.

The magnitude of F is $\frac{m k}{r^{3}}$, where $r=|O P|$ and k is a positive constant.

Initially $r=a$ and the particle has speed $\frac{\sqrt{k}}{a}$ in a direction perpendicular to $O P$.

Use polar coordinates to describe the motion and path of P

Question 19 (****)
A particle P of mass m is moving on a polar plane (r, θ), with pole at O.

The path of P traces the spiral with polar equation

$$
r=a \mathrm{e}^{k \theta}
$$

where a and k are positive constants.

A variable force acts on P, acting in the radial direction with magnitude F.

Initially $\theta=0$, and at that instant the transverse speed of P is U.

Show that

$$
F=\frac{m a^{2} U^{2}}{r^{3}}\left(k^{2}+1\right)
$$

Question 20 (****)
A particle of mass 0.1 kg is attached to one end of a light elastic string and the other end is attached to a fixed point O on a smooth horizontal surface. The string has natural length 0.8 m and modulus of elasticity 61.74 N .

The string is then extended to 3.2 m and the particle is projected with speed $u \mathrm{~ms}^{-1}$ at right angles to the string. In the subsequent motion, the polar coordinates of the particle relative to O are (r, θ).
a) Express $r^{2} \dot{\theta}$ in terms of u.

During the motion the maximum value of r is 4 m and at that position the particle has speed $v \mathrm{~ms}^{-1}$.
b) Show clearly that

$$
v=\frac{4}{5} u .
$$

c) By considering energies in two suitable positions, show that $v=98$

Created by T. Madas

Question 21 (****)

A particle P is moving on a plane, and its position in time $t \mathrm{~s}$ is described in plane polar coordinates (r, θ), where O is the pole.

The radius vector $O P$ rotates with constant angular speed ω.

The radial component of the acceleration of P has magnitude $2 r \omega^{2}$, and is directed towards O.

Initially, P is at the point with coordinates $(a, 0)$, where a is a positive constant, and has radial velocity $\sqrt{3} a \omega$.

Determine, in terms of a, a polar equation for the path of P.

Question 22 (****)
A particle P of mass m is attached to one end of a light elastic string of natural length a and modulus of elasticity mg . The other end of the string is attached to a fixed point O on a smooth horizontal surface. The particle is held in contact with the horizontal table so that $|O P|=2 a$ and projected with horizontal speed u in a direction perpendicular to $O P$.

Show that when $r=a$ and the radial speed of P is $\sqrt{3 u^{2}+2 a g}$.
\square
Accaketion in panirs $\ddot{r}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\tilde{r}}+\frac{1}{r} \frac{d}{d}\left(r^{2} \dot{\theta}^{2}\right) \hat{\underline{\theta}}$ Mosocus $\lambda=m g$
NATVuth Chory a

(3) Trasuiresy there 18 no furce
$\begin{aligned} r \times \frac{d}{d t}(r \theta) & =0 \\ r^{2} \hat{\theta} & =h \quad \text { (Cosestmin) }\end{aligned}$

- INTAAuy $\begin{aligned} r=2 a & \\ w r=u & \Rightarrow w(2 a)=u \\ & \Rightarrow w=\frac{u}{2 a}\end{aligned}$
$\begin{aligned} h & =(2 a)^{2}\left(\frac{u}{2 a}\right) \\ h & =2 a 4\end{aligned}$
$\therefore r^{2}{ }^{-}=2 a u$
(2) RADIALY we haut rife Thwion of the strina
$\Rightarrow m\left(\dot{r}-r \dot{\theta}^{2}\right)=-T$
$\Rightarrow m\left(\ddot{r}-r\left(\frac{2 a a}{r^{2}}\right)^{2}\right)=\frac{\lambda}{l} x$
$\Rightarrow m\left(\ddot{r}-\frac{4 a^{2} u^{2}}{r^{3}}\right)=\frac{m g}{a}(r-a)$
$\Rightarrow \ddot{r}-\frac{4 a^{2} u^{2}}{r^{2}}=\frac{3}{a}(r-a)$
\Rightarrow
0
$=$

$=$
$\Rightarrow \ddot{r}-\frac{4 a^{2} u^{2}}{r^{3}}=\frac{2 r}{a}-8$
MUCTIPY THE O.D.E BY $2 i$ a INIfCATE $\Rightarrow 2 r^{0} \dot{r}-\frac{8 a^{2} u^{2}}{r^{3}} i=\frac{2 g r}{a} i-g \dot{r}$ $\left.\Rightarrow \frac{d}{d t}\left(t^{2}\right)+\frac{d}{d t}\left(\frac{4 a^{2} u^{2}}{r^{2}}\right)=\frac{d g r^{2}}{d t t^{a}}\right)-\frac{d}{d t}(8 r)+C$ $\Rightarrow r^{2}+\frac{4 a^{2} u^{2}}{r^{2}}=\frac{g r^{2}}{a}-g r+C$
\qquad
$\Rightarrow \dot{r}^{2}+\frac{4 a^{2} u^{2}}{r^{2}}=\frac{क r}{a}(r-a)+u^{2}-2 a y$ (withow $r=a$
$\dot{r}^{2}+4 u^{2}=u^{2}-2 a g$ $\Rightarrow \dot{r}^{2}=3 u^{2}+2 a g$. $\Rightarrow|r|=\sqrt{3 a^{2}+2 a y}$

Question 23 (****)
A particle P of mass 0.45 kg is attached to another particle Q of mass 2 kg by a light inextensible string of length 1.2 m .

The string passes through a small smooth hole O on a smooth large table, so and P lies on the table and Q is hanging vertically below O.

When $|O P|=0.3 \mathrm{~m}, P$ is projected with horizontal speed $7 \mathrm{~ms}^{-1}$ at right angles to the taut string.

Show that when $|O P|=r \mathrm{~m}$, the tension in the string T satisfies

$$
T=\frac{9}{50}\left[20-\frac{9}{r^{3}}\right]
$$

Question 24 (****+)
A particle P of mass 0.5 kg is moving on the circle with equation

$$
(x-1)^{2}+y^{2}=1
$$

The particle is subject to a force of magnitude F, which always acts in the direction $P O$, where O is the origin.

The particle is observed passing through the point $(2,0)$ with speed $0.125 \mathrm{~ms}^{-1}$, tangential to the circle and parallel to the y axis.

Show that if $|O P|=r \mathrm{~m}$, then

$$
F=\frac{1}{4 r^{5}}
$$

Question 25 (****+)
A particle of mass m is placed inside a smooth tube $O A$ of length $\frac{17}{8} a$. Initially the particle is at rest at a distance a from O

The tube is made to rotate with constant angular velocity ω, in a horizontal plane through a vertical axis passing through O. The particle reaches A in time T.

Show that $T=\ln 2$.

Question 26 (****+)
A particle P, of mass m, is moving on a plane passing though a fixed origin O under the action of a force F, which acts radially in the direction $P O$.

The distance $P O$ at time $t \mathrm{~s}$ is denoted by r. At time $t=0, r=a$ and the speed of P is U, pointing in a direction perpendicular to $P O$.

Given that $F=\frac{2 m a U^{2}}{r^{2}}$ determine the least value of r in the subsequent motion.

$$
r_{\min }=\frac{1}{3} a
$$

\square

Created by T. Madas

Question 27 (****+)
A particle P, of mass m, is moving on a plane passing though a fixed origin O under the action of a force F, which acts radially in the direction $P O$. The distance $P O$ at time $t \mathrm{~s}$ is denoted by r. The path of P has polar equation

$$
r=a(2+\cos \theta)
$$

where a is a positive constant.
At time $t=0, \theta=0$ and the speed of P is U.

Find, in terms of π, a and U, the time it takes P to return to its starting position.

$$
t=\frac{3 \pi a}{U}
$$

Created by T. Madas

Question 28 (****+)
When a particle is on the initial line of a standard polar coordinate system (r, θ), it has transverse velocity a, where a is a positive constant.

The particle is moving on a path with polar equation

$$
r=\frac{a}{1+\sin \theta},-\pi<\theta<\pi
$$

If the particle experiences a force, which directed towards the pole at all times, show that the radial acceleration of the particle is $-\frac{4 a^{3}}{r^{2}}$. \square , proof

Question 29 (****+)
A circular rough wire of radius a and centre O is fixed with the plane of the wire in a horizontal position. A particle of mass m is threaded on the wire. The system lies in a field which exerts a vertical force on the particle in such a way so that the particle is weightless whilst inside the field. The coefficient of friction between the particle and the wire is μ.

When $t=0$, the particle is at the point with polar coordinates $(r, \theta)=(a, 0)$, and is given an initial angular speed ω.
a) By forming and solving a suitable differential equation, show that the angular speed of the particle $\frac{d \theta}{d t}$, in time t satisfies

$$
\frac{d \theta}{d t}=\frac{\omega}{\mu \omega t+1} .
$$

b) Show further that the time T it takes the particle to complete its first revolution is given by

$$
T=\frac{\mathrm{e}^{2 \mu \pi}-1}{\mu \omega}
$$

Created by T. Madas

Question 30 (****+)
A particle P, of mass m, is moving around a fixed origin O under the action of a single force of magnitude $\frac{m k}{r^{2}}$, where k is a positive constant.

This force is always directed along $P O$ towards O.

At time t the length $O P$ is r and the angular velocity of P around O is $\frac{d \theta}{d t}$.
a) Show that if h is a positive constant

$$
\frac{d^{2} r}{d t^{2}}-\frac{h^{2}}{r^{3}}=-\frac{k}{r^{2}} .
$$

b) By using the substitution $u=\frac{1}{r}$ show further that

$$
r=\frac{1}{A \cos \theta+B \sin \theta+C}
$$

proof

	ACCEGATON in Pones $\underline{a}=\left(\vec{r}-r \theta^{2}\right) \hat{\underline{r}}+\frac{1}{r} d\left(r^{2} \dot{\theta}\right) \hat{\theta}$
- Tennucorscy ($\hat{\theta}$)	(1) Rtolaly ($\hat{\underline{I}})$
$\Rightarrow m\left(\frac{1}{r d t}\left(r^{*} \theta\right)\right)=0$	$\Rightarrow m\left(r-r \dot{\theta}^{2}\right)=-\frac{m k}{r^{2}}$
$\Rightarrow \frac{d}{\frac{d}{x}}\left(r^{\circ} \theta^{\circ}\right)=0$	$\Rightarrow \ddot{r}-r \dot{\theta}^{2}=-\frac{k}{r^{2}}$
$\Rightarrow r^{2} \dot{\theta}=h \leftarrow$ constixis	$\Rightarrow \ddot{r}-r\left(\frac{h}{r 2}\right)^{2}=-\frac{k}{r^{2}}$
(4nantemountions PreantMAs)	$\Rightarrow \ddot{r}-\frac{h^{2}}{r^{3}}=-\frac{k}{r^{2}}$

Created by T. Madas

Question 31 (*****)

A particle of mass m is free to move on a smooth horizontal surface. The particle is attached to one end of a light elastic spring of natural length l and modulus of elasticity λ. The other end of the spring is attached to a fixed point O, on the surface.

The particle is held on the surface with the spring at its natural length and then is projected with speed U at right angles to the spring.

Ignoring air resistance and assuming that in standard S.I. units $m=1, l=1,9 \lambda=8$ and $U=2$, determine the range of values of the length of the spring in the subsequent motion.

