uas marns com Created by T. Madas

asmaths.com

, I.V.C. POLAR CORDINATES OLAN and CENTRAL FORCES VIRSUARING C. 1. Y. G.B. MARIASINATISCOM I.Y. G.B. MARIAGOM

Question 1 (**)

A particle P is moving on a cardioid with polar equation

 $r = a(1 + \sin \theta), \ 0 \le \theta < 2\pi,$

where a is a positive constant.

The radius vector OP, where O is the pole, rotates with constant angular speed ω .

Find an expression for the speed of P in terms of a, ω and θ , and hence determine the maximum speed of the speed of P and the value of θ when this maximum speed occurs.

$\sum_{r \in \sigma_{T, r}(r)} a = \omega = O \qquad (\theta_{r, r} + 1) a = 1$	MAX Theorem
234009 (J) = X 807 + 37 = X	
$\dot{\eta} \rightarrow \partial_{z} \partial_{z} \partial_{z} = \dot{\theta} (\partial_{z} \partial_{z}) = \frac{\partial b}{\partial z} \frac{\partial b}{\partial z} = \frac{\partial b}{\partial z} \frac{\partial b}{\partial z}$	CARDIOLD
$\hat{\Theta}_{M} = \underbrace{\widehat{\Theta}_{M}}_{2} \hat{\Psi} \hat{\Psi}_{M} \underbrace{\widehat{\Theta}_{M}}_{2} \hat{\Psi} \hat{\Psi}_{M} $	
$\Rightarrow \underline{V} = \sqrt{(aucos\theta) + (auc(1+sup))^2}$	
$\Rightarrow \underline{v} = aw \sqrt{bab} + 1 + 2sm0 + sm0}$ $\Rightarrow \underline{v} = aw \sqrt{2 + 2sm0}$	
* V_MAX = 2aw	
$ \Gamma \text{ occull with sing}= \implies \theta \circ \mathbb{I}_2$	8

Question 2 (**)

A particle P is moving on a plane, and its position in time t s is described in plane polar coordinates (r, θ) , by the parametric equations

$$r = 3\sqrt{5}t^2$$
, $\theta = t^2 - 6t$, $t \ge 0$.

Determine the speed of P and the magnitude of its acceleration when t = 2.

Question 3 (**)

A particle P is moving on a plane, and its position in time t s is described in plane polar coordinates (r, θ) , where O is the pole.

 $r = a\theta$,

The path of P traces the spiral with polar equation

where a is a positive constant.

The radius vector OP rotates with constant angular speed ω .

Determine a simplified expression for the magnitude of the acceleration of P in terms of a, ω and r.

 $(\overset{\circ}{r} - r \dot{\Theta}^z) \stackrel{\circ}{\underline{r}} \ + \ \overset{i}{\underline{r}} \frac{d}{dt} \left(r^z \dot{\Theta} \right) \stackrel{\circ}{\underline{\Theta}} \label{eq:eq:eq_energy_states}$ $(\alpha \Theta \omega^2) \dot{r} +$ $\frac{\alpha^2 \omega}{\alpha \theta} \frac{d}{dt} (\theta^2) \frac{1}{\theta}$ + $\frac{a_{W}}{2}$ × 28° $\hat{\theta}$ $\hat{\theta}$

 $|\mathbf{a}| = \omega^2 \sqrt{4a^2} +$

Question 4 (**)

A particle P is moving on a cardioid with polar equation

$$= a(1 - \sin \theta), \ 0 \le \theta < 2\pi,$$

where a is a positive constant.

The radius vector OP, where O is the pole, rotates with constant angular speed ω .

The magnitude of the acceleration of P is denoted by f.

Find an expression for f in terms of a, ω and θ , and hence state the greatest value of f and the value of θ when this greatest value of f occurs.

 3π $f = a\omega^2 \sqrt{5 - 4\sin\theta}$ $f_{\rm max} = 3a\omega^2$ 2 $= (\ddot{r} - r\dot{\Theta}^2)\dot{\underline{r}}$ ê[ën⊰ $\frac{d\theta}{dt} = \dot{\theta} = \omega$ a (1-sma) a (-1030) 8 $\alpha \omega^2 \sin \theta - \alpha (i - \sin \theta) \omega^2] \stackrel{\wedge}{\underline{\Gamma}} + (2(-\alpha \omega)) \omega^2 + ($ θ]×ω+ α(ε-smθ)×0]θ $\overset{\circ}{\Gamma} = \left[\alpha \omega^2 \left[2 \sin \theta - i \right] \overset{\circ}{\Gamma} + \left[-2 \alpha \omega^2 \cos \theta \right] \overset{\circ}{\underline{\theta}} \right]$ IF1-f $\int_{0}^{2} \sqrt{(2m\theta - 1)^{2} + (-2m\theta)^{2}}$ aw2 v 45490-45240+1+4620 $= au^2 \sqrt{4 (suft) + (m^2 \theta_1 + 1 - dsuft)}$ = aw2 v 5 - ASMB

Question 5 (**)

A particle P is moving on the curve with polar equation

$$r = k e^{\theta} , \ 0 \le \theta < 2\pi ,$$

where k is a positive constant.

The radius vector OP, where O is the pole, rotates with constant angular speed ω .

Find the magnitude and direction of the acceleration acting on P.

$ \mathbf{a} = 2mka$	$\partial^2 e^{\theta} = 2mr\omega^2,$	transversly	ą
	Sp.		
ils.C	$\begin{array}{c} = \omega = \hat{\Theta} \hat{\Phi} \hat{\Theta} = \hat{\theta} \hat{\theta} \hat{\theta} = \hat{\theta} \hat{\theta} \hat{\theta} = \hat{\theta} \hat{\theta} \hat{\theta} = \hat{\theta} \hat{\theta} \hat{\theta} = \hat{\theta} \theta$	$\begin{array}{c} coupper \\ \hline \\ \bullet \\ \hline \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet$	>
1	esentian estantian decen- altrade xim 1 = 2m/bade And ACT IN TH	$= 2 \left\{ \omega_{k}^{2} \mathcal{E} \right\} \\ = 3 \left\{ \omega_{k}^{2} $	

Question 6 (**+)

In a plane polar coordinate system (r, θ) , the base unit vectors are defined as $\hat{\mathbf{r}}$ in the direction of r increasing, and $\hat{\mathbf{\theta}}$ perpendicular to $\hat{\mathbf{r}}$, in the direction of θ increasing.

- a) Given that the position vector \mathbf{r} of a particle *P* is given by $\mathbf{r} = r \hat{\mathbf{r}}$, derive expressions for the velocity and acceleration of *P* in plane polar coordinates. *You may assume standard differentiation results for* $\hat{\mathbf{r}}$ and $\hat{\mathbf{\theta}}$.
- **b)** If $r^2 \frac{d\theta}{dt}$ is constant state what can be deduced about the force acting on *P*

P is moving on the curve with polar equation

$$r = 2 + \cos\theta \ , \ 0 \le \theta < 2\pi$$

with **constant** angular speed $\sqrt{5}$ rads⁻¹.

c) Find the speed and the magnitude of the acceleration of P, when $\theta = \frac{\pi}{2}$.

 $[\mathbf{v} = \dot{r}\hat{\mathbf{r}} + r\dot{\theta}\hat{\mathbf{\theta}}], \quad \mathbf{a} = (\ddot{r} - r\dot{\theta}^2)\hat{\mathbf{r}} + \frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})\hat{\mathbf{\theta}}], \text{ no transverse force}, \\ [\mathbf{v}] = 5 \text{ ms}^{-1}], \quad [\mathbf{a}] = 10\sqrt{2} \text{ ms}^{-2}]$

DIFFERENTIATE VEINS THE STANDARD REVOTS
$\dot{\underline{\hat{n}}}_{-} = (\underline{\hat{\phi}})\underline{\underline{b}}_{-}$ $\beta = (\underline{\hat{a}})\underline{\underline{b}}_{-}$
$\Rightarrow \underline{l} = L \overline{t}$
$\frac{dt}{dt} + \frac{dt}{2} = \frac{dt}{dt} (1\hat{1}) = t\hat{1} = \frac{dt}{dt}$
\rightarrow $\chi = \hat{r} \hat{f} + \hat{f} \frac{\partial \hat{f}}{\partial \phi} \frac{\partial \phi}{\partial t} $
Ôĝn + <u>î</u> i - ⊻ ∈
$\frac{\partial \dot{\theta}_1 + \hat{1}_2 = \underline{v}}{\partial \theta_1 + \hat{1}_2 = \underline{v}} \leftarrow$
DIFFELGULATE AGAIN TO ORADIN THE ADDELEDATION VEDDE
$\Rightarrow \frac{dv}{dt} = \frac{d}{dt} (\hat{r}\hat{r}) + \frac{d}{dt} (\hat{r}\hat{\theta})$
$\frac{3}{3b}\dot{\theta}^{1} + \dot{\theta}\dot{\theta}^{1} + \dot{\theta}\dot{\theta}^{1} + \dot{\theta}\dot{\theta}^{1} + \dot{1}\dot{h}^{1}\dot{1}\dot{7}^{2} = a \in \mathbb{R}$
\$
$\dot{\Theta}(\hat{1}-\dot{\Theta})\dot{\Theta}1 + \hat{\Theta}\dot{\Theta}1 + \hat{\Theta}\dot{\Theta}1 + \hat{\Theta}\dot{\Theta}1 + \hat{1}\dot{T} = E \rightleftharpoons$
$\Rightarrow \underline{a} = (\ddot{r} - r\dot{\Theta}^{2})\underline{\hat{r}} + (2\dot{r}\dot{\Theta} + \dot{r}\dot{\Theta})\hat{\Theta}$
withof on Also be wartin As
$= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) - \frac{1}{2} \right) = \frac{1}{2} = \frac{1}{2}$
11

Question 7 (***)

A particle P is moving on a plane, and its position in time t s is described in plane polar coordinates (r, θ) , where O is the pole.

The radius vector OP rotates with constant angular speed ω .

The radial component of the acceleration of P has magnitude $r\omega^2$, and is directed towards O.

Initially, P is at the point with coordinates (a,0), where a is a positive constant, and has radial velocity $2a\omega$.

Determine a polar equation for the path of P, in terms of a.

 $r = a(2\theta + 1)$

Question 8 (***)

h.

In a plane polar coordinate system (r, θ) , the base unit vectors are defined as $\hat{\mathbf{r}}$ in the direction of r increasing, and $\hat{\mathbf{\theta}}$ perpendicular to $\hat{\mathbf{r}}$, in the direction of θ increasing.

a) Find expressions for
$$\frac{d}{d\theta}(\hat{\mathbf{r}})$$
 and $\frac{d}{d\theta}(\hat{\boldsymbol{\theta}})$

b) Given that the position vector **r** of a particle *P* is given by $\mathbf{r} = r\hat{\mathbf{r}}$, derive expressions for the velocity and acceleration of *P* in plane polar coordinates.

$$\begin{aligned} \hat{\mathbf{0}} \quad , \quad -\hat{\mathbf{r}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + r\dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{a} = \left(\ddot{r} - r\dot{\theta}^{2}\right) \hat{\mathbf{r}} + \frac{1}{r} \frac{d}{dt} \left(r^{2} \dot{\theta}\right) \hat{\mathbf{\theta}} \\ \\ \hat{\mathbf{0}} \quad , \quad -\hat{\mathbf{r}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + r\dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{a} = \left(\ddot{r} - r\dot{\theta}^{2}\right) \hat{\mathbf{r}} + \frac{1}{r} \frac{d}{dt} \left(r^{2} \dot{\theta}\right) \hat{\mathbf{\theta}} \\ \\ \hat{\mathbf{0}} \quad , \quad -\hat{\mathbf{r}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + r\dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \mathbf{v} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \vec{r} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \vec{r} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \vec{r} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \vec{r} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \vec{r} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \vec{r} = \dot{r} \hat{\mathbf{r}} + \dot{r} \dot{\theta} \hat{\mathbf{0}} \quad , \quad \vec{r} = \dot{r} \hat{\mathbf{r}} + \dot{r} \hat{\theta} \hat{\mathbf{0}} \quad , \quad \vec{r} = \dot$$

Question 9 (***)

A particle P is moving on a polar plane (r, θ) so that its velocity vector v forms a constant angle α with OP, where O is the pole, as shown in the figure above.

Given further that P crosses the initial line at r=1, show that the polar equation of the path of P is

 $r = e^{-\theta \cot \alpha}$

You may not use verification in this question.

 $P \qquad \qquad \forall \text{ Usany } \text{ if } \text{ if } \text{ for } \text{ for } \text{ if } \text{ for } \text{ fo } \text{ for } \text{ fo } \text{ fo$

proof

Question 10 (***)

A particle P, of mass m, is moving on a path with polar equation

 $r = a e^{k\theta}, \ 0 \le \theta < 2\pi$,

where a and k are positive constants.

The radius vector OP, where O is the pole, rotates with constant angular speed ω .

Show that the magnitude of the resultant force acting on the plane of its polar path is

$m\omega^2 r (k^2 + 1),$

where r is the distance OP.

The contract	$\begin{array}{l} -4cccellOATRAN h) +Derve (b) cellowates \\ \underline{\sigma} = \left(\overset{c}{t} - t \overset{c}{\theta}^2 \right) \overset{c}{\Sigma} + \frac{1}{T} \overset{c}{\underline{\sigma}} \left(t \overset{c}{\theta} \right) \overset{c}{\underline{\theta}} \\ \dot{\underline{\theta}} = \omega \left((coustroat) \\ \overline{\overline{\theta}} = 0 \end{array} \right)$
	THE PATH WITH REPERT TO TIME = KWT
PADIAL COMPONENT OF THE FORCE $\Rightarrow W(\tilde{\Gamma} - \Gamma \tilde{\theta}^2) = f_g$ $\Rightarrow \tilde{f}_g = W([\tilde{e}_{\omega}\tilde{r}_{-} - \Gamma \omega^2) = W \omega_0^2$	$\begin{pmatrix} f_{n} \end{pmatrix}$
TRANSUBLE COMPONENT OF THE	Frece (ô)

proof

 $\rightarrow u_1 \perp \frac{d}{r} \left(r^2 \omega \right) =$

 $\Rightarrow \mp = \frac{360}{7} \text{ s}_{1}^{2} \text{ s}_{2}^{2}$

- ⇒Ft = Zmw (b
- ⇒Fr = 2mkur
- FNAWY THE MAGNITUDE OF THE FORCE => \F| = | MNGP(12.1) F + 2mbn2r B
- $\Rightarrow [\underline{E}] = M \widehat{w} \widehat{\Gamma} [\underline{(k^2-1)} \widehat{\underline{E}} + 2k \widehat{\underline{B}}]$
- $\Rightarrow \left\{ F \right\} = W_{W}^{2} \sqrt{k^{4} \cdot k^{2}_{k}} \left(+ 4k^{2} \right) = W_{W}^{2} \sqrt{k^{4} \cdot 2k^{2} + 1} = W_{W}^{2} \sqrt{(k^{2} \cdot 1)^{2}}$

Question 11 (***)

A particle P rests on a smooth horizontal surface attached to a fixed point O on the surface by a light elastic string of natural length a.

When |OP| = a the particle is projected with speed \sqrt{ag} along the surface, in a direction perpendicular to OP.

Find the angular speed of P at the instant when |OP| = 2a.

to the fite of the of t
V 4 09= Jag
0
Allower (The) Burger
- rendering in forma
$\underline{\vec{\Gamma}} = (\vec{r} - r\dot{\Theta}^2)\underline{\vec{\Gamma}} + \frac{1}{2} $
NO TRANSLELSE FORCE
Mx L H [r*A)=0
$d(r^2 h) = p$
$h^2\dot{\Theta} = h = GORDERING (MUSULAL MUSULAL MUSULAM MUSULAM MUSULAL MUSULAM MUSULAL MUSULAM MUSULAL MUSULAM MUSULAL MUSULA MUSULA MUSULA MUSULAM MUSULAM MUSULAL MUSULAM MUSULAL MUSULAM MUSULA$
FIGH THE INITIAL CONDUCTION T= a ab = Jag"
WITTER AVENUER NORTH W
(WD) × a = Gwatha
Wyra = constant
$a_1 \overline{a_8}^{-1} = r^2 \dot{\Theta}$
α /w+a,) Γ= 2a
~ 1ag. = 40, 9
$\Theta = 4\lambda \frac{a}{a}$
/

 $\sqrt{\frac{g}{16a}}$

1

 $r = a e^{\frac{1}{2}\theta}$

Question 12 (***)

A particle P is moving on the curve with equation

where (r, θ) are plane polar coordinates, and a is a positive constant.

The angle the velocity of P makes with OP, where O is the pole, is denoted by α .

Determine the value of $\tan \alpha$.

 \hat{C}_{i}

K.C.

 $\tan \alpha = 2$

nadasn

Question 13 (***+)

A particle is moving on path whose polar equation is

 $r=1+2\cos\theta\,,\ 0\le\theta<2\pi\,.$

The particle is moving in such a way so that $\theta = 2t$, where t represents the time in s, measured after a given instant. All distances are measure in m.

Determine the speed of the particle and the magnitude of its transverse acceleration when its radial acceleration is 4 ms^{-1} .

êr+27=1 ≜(84)}; +2(81-7)= ≥=7+840+¥(81-7)=

F= 1+ 2008

 $\sqrt{12} \text{ ms}^{-1}$, $8\sqrt{3} \text{ ms}^{-2}$

VI= 12+ 120=

3131513

= V 1654/2+16022+1

11 (+ 13)

(***+) Question 14

At time t = 0, a particle is on the initial line of a standard polar coordinate system (r, θ) , and moving on a path with polar equation

$$r=\frac{1}{4}\mathrm{e}^{k\theta},\theta\geq 0\,,$$

where k is a constant.

Relative to the pole O, the particle has a constant angular velocity of 2 rads throughout the motion.

Given that the initial magnitude of the acceleration of the particle is 1.04 ms^{-2} determine the possible values of k.

$\left\{ \Gamma = \frac{1}{4} e^{k\theta} + t_{zO_j} \theta = 0 = 0 \right\}$	$\frac{\partial}{\partial} \left(\dot{\theta}^{*} \tau \right) \frac{1}{2b} \frac{1}{\tau} + \frac{1}{2} \left(\frac{c}{\theta} \tau - \vec{\tau} \right) = \underline{\alpha}$
ammuns	WHW t=0]al = 1.04
	$a = (k^2 - 1)\hat{f} + 2k\hat{\theta}$
L.	$ \alpha = \sqrt{(k^2 - 1)^2 + (2k)^2}$
$\theta = 2t + C$ } $t_{=0}, \theta = 0$	$1.01 = \sqrt{k^4 - 2k + 1 + 4k^2}$
DENDER THE (DUETTON) AS	$1:04 = \sqrt{k^4 + 2k + 1^4}$
$ = \int_{e}^{e} \int$	$l \cdot o_{\psi} = \sqrt{(k^2 + 1)^2}$
$\Longrightarrow \frac{dc}{dt} = \dot{r} = \frac{k}{2}e^{2kt}$	$ \cdot 04 = [k^{2} + 1]$ $ \cdot 04 = 1 \cdot 04$
$\implies \frac{dr}{dt^2} = \tilde{r} = k^2 e^{\frac{2k}{2}}$	-1.04 k ² = 0.04
RADIAL ACCELERATION (C)	-204
$ \overset{\text{\tiny tr}}{\Gamma} - \Gamma \overset{\text{\tiny tr}}{\Theta}^{z} = \overset{2}{k^{z}} \overset{2}{e} \overset{2}{k^{z}} \overset{2}{-} \frac{1}{4} \overset{2}{e} \overset{2}{k^{z}} \overset{2}{z} \overset{z}{=} \overset{2}{k^{z}} \overset{2}{-} \overset{2}{e} \overset{2}{-} \overset{2}{$	k= ± 0.2
TRANSURGE ACCELERATION Q	
$\frac{1}{r}\frac{d}{dt}(r^{2}\theta) = \frac{1}{4t^{2}t^{4}}\frac{d}{dt}\left[\frac{1}{16}e^{4tt} \times 2\right] = 4te^{2tt}\frac{d}{dt}\left[\frac{1}{t}e^{4tt}\right]$	
$=4e^{2k} \times \frac{k}{2}e^{4k} = 3ke^{2kt}$	

 $\pm \frac{1}{5}$

Question 15 (***+)

A man is standing at the centre at O of a circular platform, whose radius is 40 m, which is initially at rest.

At time t = 0 the platform begins to rotate about *O* with constant angular acceleration of 0.125 rads⁻¹, and at the same time the man begins to walk with constant speed 1.25 ms⁻¹, radially outwards relative to the platform.

Let r be the radial distance of the man from O and θ the angle by which the platform has turned.

Determine a polar equation for the path of the man, relative to the ground, in the form $r = f(\theta)$ and hence show that the platform has completed 10 revolutions by the time the man reaches the edge of the platform.

 $(\mathbf{r}_{1} + \mathbf{r}_{2}) = (\mathbf{r}_{2} + \mathbf{r}_{2}) = (\mathbf{r$

 $=5\theta^{\frac{1}{2}}$

Question 16 (****)

A particle of mass *m* is moving with constant angular velocity ω on a polar plane (r, θ) , with pole at *O*. The only force acting on the particle has magnitude $3mr\omega^2$, which acts radially outwards.

When t = 0, the particle is at the point (2a, 0), where a is a positive constant, and has no radial speed.

By forming and solving a suitable differential equation, show that the equation of the path of the particle is

 $r=2a\cosh\theta.$

Question 17 (****)

12

2

Relative to a fixed origin O, a particle P is moving with constant angular velocity ω on the curve with polar equation

 $r = k \, \mathrm{e}^{\theta \cot \alpha} \, ,$

where k and α are positive constants with $0 < \alpha < \frac{1}{4}\pi$.

Show that the magnitude of the acceleration of the particle is $\frac{v^2}{r}$, where v is the speed of the particle and r is the distance OP.

$\Gamma = k e^{\Theta \omega t \cdot \kappa}$ $\Theta \omega t \pi \sigma \omega \omega \sigma \tau \sigma \sigma$
DIFFESSION THE EVATION OF THE MITH TO OBMIN I'S \tilde{r} $\implies \tilde{r} = ke^{9 \text{ locky}}$ $\implies \tilde{r} = ke^{9 \text{ locky}}$, but w
$ \Rightarrow \vec{r} = r \text{ watx} $ $ \Rightarrow \vec{r} = \hat{r} \text{ watx} = (r \text{ watx}) \text{ watx} $ $ \Rightarrow \vec{r} = r \vec{w}_{\text{ad}}^2 x $
$\begin{array}{rcl} & \underline{\partial}_{\alpha}(\delta^{\alpha}r_{1}) \underbrace{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}(\delta^{\alpha}r_{2}) \underbrace{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}(\delta^{\alpha}r_{2}) \underbrace{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}(\delta^{\alpha}r_{2}) \underbrace{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}(\delta^{\alpha}r_{2}) \underbrace{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}(\delta^{\alpha}r_{2}) \underbrace{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} \\ & \underline{\partial}_{\alpha}\delta^{\alpha} & \underline{\partial}_{\alpha}\delta$
$\frac{\partial}{\partial t} \left(r^{2} h u r^{2} h u^{2} \right) + \frac{\partial}{\partial t} \left(r^{2} h u - \lambda^{2} h u^{2} u r \right) = \frac{1}{2} = \frac{1}{2}$
$\begin{array}{l} & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \right] \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2} \right) \right] \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2} \right) \right] \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2} \right) \right] \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \right] \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \right] \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \right) \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \right) \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \\ & \left[\hat{g}_{(1)}^{(1)} \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2$

· · · · · · · · · · · · · · · · · · ·
$\Rightarrow \ddot{\Sigma} = ru^{2} \left[\omega t_{x}^{4} - 2\omega t_{x}^{2} + (+4\omega t_{x}^{3})^{\frac{1}{2}} \right]$ $\Rightarrow \ddot{\Sigma} = ru^{2} \left[\omega t_{x}^{4} + 2\omega t_{x}^{2} + (-1)^{\frac{1}{2}} \right]$ $\Rightarrow \ddot{\Sigma} = ru^{2} \sqrt{(\omega t_{x}^{2} + 1)^{\frac{3}{2}}}$ $\Rightarrow \ddot{\Sigma} = ru^{2} \omega \omega t_{x}^{2}$
NONT WE REQUIRE A WHOMMY EXPRESSION, TO OFT THE SPEED
$\Rightarrow \underline{y} = \hat{t}\hat{L} + \hat{U}\hat{U}\hat{U}$ $\Rightarrow \underline{y} = (routry)\hat{L} + rou\hat{U}\hat{U}$ $\Rightarrow \underline{y} _{z} = (rou(totx\hat{L} + \hat{U}))$ $\Rightarrow \underline{y} _{z} - rou\sqrt{totx^{2} + 1}$
$\Rightarrow (\underline{y} = r_{W} \sqrt{cost^{2}}$
FINALLY WE ORTAIN
$\left \frac{\mathcal{L}}{\Gamma} \right = n v^2 \cos \varepsilon_{\mathcal{X}}^2 = \frac{1}{\Gamma} \left(r^2 w^2 \cos \varepsilon_{\mathcal{X}}^2 \right) = \frac{ v ^2}{\Gamma}$

AS DEPUICAC

C.P.

proof

Question 18 (****)

C.p.

5

A particle P, of mass m, moves in a plane under the action of a force F which is directed towards a fixed origin O.

The magnitude of F is $\frac{mk}{r^3}$, where r = |OP| and k is a positive constant.

Initially r = a and the particle has speed $\frac{\sqrt{k}}{a}$ in a direction perpendicular to *OP*.

Use polar coordinates to describe the motion and path of P

moving on a circle of radius *a* with constant speed

	$\hat{\theta} \left(\hat{\theta}^{(r)} \right)_{\alpha} \hat{\theta} = \hat{\eta}_{1} \left(\hat$
• TRANSFACENT WHERE WIND FACE $\rightarrow \frac{10}{26} \frac{1}{26} \left(e^{-i\phi} \right)^2 = 0$ $e^{-i\phi} = 1 + i \left(e^{-i\phi} \right)^2$ $\rightarrow e^{-i\phi} = 1 + i \left(e^{-i\phi} \right)^2$	• PRIVALY NOAT $\Rightarrow \chi_{n}^{2}(t^{2} - t_{0}^{2}) = \frac{y_{n}^{2}}{t^{2}}$ $\Rightarrow \tilde{t}^{2} - t \left(\frac{t_{1}}{(t^{2})}\right)^{2} - \frac{k}{t^{2}}$ $\Rightarrow \tilde{t}^{2} - \frac{k}{t^{2}} = -\frac{k}{t^{2}}$ $\Rightarrow \tilde{t}^{2} = 0$ $-(force t = construct)$ $(ggg t = 0)$ $\tilde{t} = 0$ $(total truck)$ $(the truck)$
	* IT WOULS WH ARAF OF RABIUS A WITH CONSTRUT SPEED

2

 $= a e^{k\theta}$

Question 19 (****)

A particle P of mass m is moving on a polar plane (r, θ) , with pole at O.

The path of P traces the spiral with polar equation

where a and k are positive constants.

A variable force acts on P, acting in the radial direction with magnitude F.

Initially $\theta = 0$, and at that instant the transverse speed of P is U

Show that

proof

Question 20 (****)

A particle of mass 0.1 kg is attached to one end of a light elastic string and the other end is attached to a fixed point O on a smooth horizontal surface. The string has natural length 0.8 m and modulus of elasticity 61.74 N.

The string is then extended to 3.2 m and the particle is projected with speed $u \text{ ms}^{-1}$ at right angles to the string. In the subsequent motion, the polar coordinates of the particle relative to O are (r, θ) .

a) Express $r^2 \dot{\theta}$ in terms of u.

During the motion the maximum value of r is 4 m and at that position the particle has speed $v \text{ ms}^{-1}$.

b) Show clearly that

 $v = \frac{4}{5}u$.

c) By considering energies in two suitable positions, show that v = 98

 $\theta =$ u = 3.2u(b) MAX T IS 4 2=6174N 1-05 + + (+ 6) = = (~-+62)++ THUDGH-ODT THE NUTTION THERE IS ONLY w(+祟(vら)) r0 = h = 6 $d = (\bar{\varphi}_T) f$ WAWN two, r=3.2, r0=0 $\frac{1}{2} \left(0 \cdot i \right) u^2 + \frac{\int i \cdot 7 I_{-}}{2 \times 0.8} \left(3 \cdot 2 - 0 \cdot 8 \right)^2 = \frac{1}{2} \left(0 \cdot 1 \right) \left(\frac{4}{5} u \right)^2 + \frac{d \cdot 7 I_{-}}{2 \times 0.8} \left(4 - 0 \cdot 8 \right)^2$ 3.24 =h fo [r20 = 3.24 = 170.813

Question 21 (****)

A particle P is moving on a plane, and its position in time t s is described in plane polar coordinates (r, θ) , where O is the pole.

The radius vector OP rotates with constant angular speed ω .

The radial component of the acceleration of P has magnitude $2r\omega^2$, and is directed towards O.

Initially, *P* is at the point with coordinates (a,0), where *a* is a positive constant, and has radial velocity $\sqrt{3} a\omega$.

Determine, in terms of a, a polar equation for the path of P.

<u></u>	
GRUEN IN THE PRESLEM	
$\dot{\Theta} = \omega = \omega \omega \omega \pi \sigma$ $\dot{\Gamma}: (\dot{F} - \dot{F} \dot{\Theta}^2) = -2\omega^2 r$	t=0 θ=0 t=a f= uSaw
WORKING AT THE ACCELERATION EAD	iauy (<u>f)</u>
$ \begin{array}{rcl} & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & $	
SOWING THE O.D.E., WHICH & A S	someter s.H.M. south
$\implies \frac{d^2 r}{dt^2} = -\omega^2 r$	
⇒ r(t)= Alasut + Bamut	
APPLY THE CONDITION (=0, F=0) => r(t) = a cocut + Bernut	MERC Q=A
DIFFORENTIATE TO APPRY THE OTHER CO	Noman
$ \begin{array}{c} \longrightarrow & \hat{r}(t) = -\alpha w \omega w t + B w \cos \theta \\ \hline \psi_{m} \omega = B \omega \\ B = w \overline{s}_{m} \end{array} $	wt) r=o r=√∑auo

Luna P+ tuzart = 2a SmI cout + an I smut usin (ut + I) : r(0) = 2a.Sm (0+#

 $r = 2a \sin \theta +$

π

6

Question 22 (****)

A particle P of mass m is attached to one end of a light elastic string of natural length a and modulus of elasticity mg. The other end of the string is attached to a fixed point O on a smooth horizontal surface. The particle is held in contact with the horizontal table so that |OP| = 2a and projected with horizontal speed u in a direction perpendicular to OP.

Show that when r = a and the radial speed of P is $\sqrt{3u^2 + 2ag}$.

'GN		1/0
1 to 12	$\begin{array}{l} \frac{Acceleration (\mathbf{n}_{1},\mathbf{n}_{2},\mathbf{n}_{3},\mathbf{n}_{4$	$\Rightarrow \tilde{t}^{*} - \frac{4\pi \tilde{t}_{12}^{*}}{r^{*}} = \frac{g_{11}^{*}}{a} - g_{11}^{*}$ $\Rightarrow MUTRAY THE O.5.F. DY 2f_{11}^{*} dual MARE$ $\Rightarrow 2\tilde{r}^{*}\tilde{r} - \frac{g_{0}\tilde{t}_{12}}{r^{*}}\tilde{r} + \frac{g_{11}^{*}}{a}r^{*} - g_{1}^{*}$ $\Rightarrow \frac{d_{1}}{dt}(\tilde{r}^{*}) + \frac{d_{1}}{dt}(\frac{4\pi \tilde{r}^{*}}{r^{*}}) = \frac{d_{1}r^{*}}{dt}(g_{11}) + C$ $\Rightarrow \tilde{r}^{*} + \frac{4\pi \tilde{r}^{*}}{r^{*}} = g_{11}^{*} - g_{11} + C$
$ \begin{aligned} & \text{TRASURCUS THERE IN NO FOLCE} \\ & \text{IN } n + \frac{1}{r} \frac{d}{rk} \left(\binom{n}{2} \frac{1}{2} \right) = O \\ & \Gamma^2 \frac{1}{2} = \frac{1}{r} \left(\frac{darran}{r} \right) \\ & \text{INTALLY} \\ & \frac{dr}{r} \frac{1}{r} \frac{1}{r} \frac{1}{r} \frac{d}{r} \left(\frac{r}{r} \right) \\ & \frac{dr}{r} \frac{1}{r} \frac{1}{r} \frac{dr}{r} \frac{dr}{r} \\ & \Rightarrow h = \frac{dr}{r} \frac{dr}{r} \\ & \Rightarrow h = \frac{dr}{r} \frac{dr}{r} \frac{dr}{r} \\ & \Rightarrow h = \frac{dr}{r} \frac{dr}{r} \\ & \Rightarrow h = \frac{dr}{r} \frac{dr}{r} \\ & \Rightarrow h = dr$	STEING.	• t^{20} , t^{rac}

proof

Question 23 (****)

A particle P of mass 0.45 kg is attached to another particle Q of mass 2 kg by a light inextensible string of length 1.2 m.

The string passes through a small smooth hole O on a smooth large table, so and P lies on the table and Q is hanging vertically below O.

When |OP| = 0.3 m, P is projected with horizontal speed 7 ms⁻¹ at right angles to the taut string.

 $T = \frac{9}{50} \left[20 - \frac{9}{r^3} \right].$

Show that when |OP| = r m, the tension in the string T satisfies

proof

Question 24 (****+)

A particle P of mass 0.5 kg is moving on the circle with equation

$$(x-1)^2 + y^2 = 1.$$

The particle is subject to a force of magnitude F, which always acts in the direction PO, where O is the origin.

The particle is observed passing through the point (2,0) with speed 0.125 ms tangential to the circle and parallel to the y axis.

Show that if |OP| = r m, then

proof

Question 25 (****+)

A particle of mass *m* is placed inside a smooth tube *OA* of length $\frac{17}{8}a$. Initially the particle is at rest at a distance *a* from *O*

The tube is made to rotate with constant angular velocity ω , in a horizontal plane through a vertical axis passing through O. The particle reaches A in time T.

Show that $T = \ln 2$.

ø

proof

Question 26 (****+)

A particle P, of mass m, is moving on a plane passing though a fixed origin O under the action of a force F, which acts radially in the direction PO.

The distance *PO* at time *t* s is denoted by *r*. At time t = 0, r = a and the speed of *P* is *U*, pointing in a direction perpendicular to *PO*.

Given that $F = \frac{2maU^2}{r^2}$ determine the least value of r in the subsequent motion.

 $\underline{\hat{\theta}}^{(2)} = \hat{\underline{\hat{\theta}}} + \hat{\underline{\hat{\eta}}} + \hat{\underline{\hat{\theta}}} +$ $\frac{d^2 U^2}{d^2} - \frac{4 d U^2}{d} = C$ 1202 - 4902 - 303 $30^2 + 4aV^2 - a^2V^2$ E= ma $0 = m \times \pm \frac{d}{dt} (r^2 \theta)$ $\Rightarrow \frac{d}{dt} (\Gamma^2 \hat{\theta}) = 0$ $r^2\dot{\theta} = \omega$ h= r(rOl = a×0 h= av m(F-r62) $r\left(\frac{aU}{D}\right)^2 = -\frac{2aU}{D}$ SNXP 126=h=a75 $2rr = \frac{2a^2U^2r}{r} + \frac{4aU^2r}{r} = c$ $\frac{d}{dt}(\hat{r}^2) + \frac{d}{dt}\left(\frac{a^t\vec{U}^t}{r^2}\right) - \frac{d}{dt}\left(\frac{4aU^2}{r}\right) = 0$

 $r_{\min} = \frac{1}{3}a$

Question 27 (****+)

A particle P, of mass m, is moving on a plane passing though a fixed origin O under the action of a force F, which acts radially in the direction PO. The distance PO at time t s is denoted by r. The path of P has polar equation

 $r = a \left(2 + \cos \theta \right),$

where a is a positive constant.

At time t = 0, $\theta = 0$ and the speed of P is U.

Find, in terms of π , a and U, the time it takes P to return to its starting position.

	4. A.C.		
$\begin{array}{c} \frac{\partial \Delta A}{\partial t} & (\Delta C \otimes C \otimes D \otimes A \otimes H + f \\ \underline{V} = \underline{\hat{x}} = \hat{r} \cdot \underline{\hat{r}} + r \hat{\Phi} \cdot \underline{\hat{f}} \\ \underline{\varphi} = \underline{\hat{r}} = (\hat{r} \cdot r + \hat{r} + \hat{f} + f$	bullet Mannau, RI, SHI HASE (1 = 0 + 0 + 0 + 0) (1 = 0 + 0 + 0 + 0) (1 = 0 + 0 + 0 + 0) (1 = -0 + 0) (1 = -	$d_{1} = \frac{\partial^{2} r_{1}}{\partial t} = \frac{\partial^{2} r_{1$	A THEN SHA HELE HAVE USUAL SHE ALTER SHE

 $\frac{3\pi a}{U}$

(****+) **Question 28**

R,

K.C.

When a particle is on the initial line of a standard polar coordinate system (r, θ) , it has transverse velocity a, where a is a positive constant.

The particle is moving on a path with polar equation

 $\frac{a}{1+\sin\theta}\,,\,-\pi<\theta<\pi\,.$

If the particle experiences a force, which directed towards the pole at all times, show

that the radial acceleration of the particle is $-\frac{4a^3}{r^2}$.

ON 21 323HT ACTING WE HAVE NO IN THE &, DIRECTION 120 = h (w r(ré) = k • $\Gamma\dot{\theta}$ = 2q (Given) $\alpha(2\alpha) = b$, h= 2a ACCENERATION IN POLAES MUCE WE HAVE $\hat{\underline{\alpha}} = (\hat{\vec{n}}_1 - \hat{\vec{n}}_1 + \hat{\vec{n$ $\Gamma^2 \dot{\Theta} = 2c$ LOOKING AT THE PADIAL ACCELERATION Ut REPUBLE F $\Gamma = \alpha C_{1+2M} \Theta$ $=\dot{\theta}\left(\theta_{ZQI}\right)\left(\theta_{WZ+I}\right)a - = \dot{\tau} = \dot{\tau} = \frac{1}{2} \in \frac{1}{2}$

i = -a Boso x ---- $a \cos \theta \times \left(\frac{\Gamma}{a}\right)^2 \times \left(\frac{2a^2}{a^2}\right)^2$

=) $\dot{\Gamma} = -2a \cos\theta$

 $\dot{\Theta} \times (\theta m s d t (\dot{r}) = \frac{1}{2} \left(-2a (\omega s \theta) \right) = (2a s m \theta) \times \dot{\Theta}$

 $\frac{4a^3}{r^2} \times sin \theta = \frac{2a^3}{r^2} \left(\frac{q}{r-1} \right)$ $\overset{*}{\Gamma} = \Gamma \overset{*}{\Theta}^2 = - \frac{4\alpha^2}{\Gamma^2} \left(\frac{\alpha}{\Gamma} - l \right) = \Gamma \left(\frac{2\alpha^2}{\Gamma^2} \right)^2$ $\frac{40^{4}}{r^{3}} - \frac{40^{3}}{r^{2}} - \frac{40^{4}}{r^{3}}$

proof

C.P.

5

Question 29 (****+)

A circular rough wire of radius a and centre O is fixed with the plane of the wire in a horizontal position. A particle of mass m is threaded on the wire. The system lies in a field which exerts a vertical force on the particle in such a way so that the particle is weightless whilst inside the field. The coefficient of friction between the particle and the wire is μ .

When t = 0, the particle is at the point with polar coordinates $(r, \theta) = (a, 0)$, and is given an initial angular speed ω .

a) By forming and solving a suitable differential equation, show that the angular speed of the particle $\frac{d\theta}{dt}$, in time t satisfies

 $d\theta$ $\mu\omega t + 1$ dt

b) Show further that the time T it takes the particle to complete its first revolution is given by

proof

Question 30 (****+)

A particle P, of mass m, is moving around a fixed origin O under the action of a single force of magnitude $\frac{mk}{r^2}$, where k is a positive constant.

This force is always directed along PO towards O.

At time t the length OP is r and the angular velocity of P around O is $\frac{d\theta}{dt}$

a) Show that if h is a positive constant

 $\frac{d^2r}{dt^2} - \frac{h^2}{r^3} = -\frac{k}{r^2}.$

b) By using the substitution $u = \frac{1}{r}$ show further that

 $\frac{1}{A\cos\theta + B\sin\theta + C}$

where A, B and C are constants.

proof

 $\begin{pmatrix} \frac{1}{2}Ak(r)(a) \\ \frac{1}{r} - \frac{k^2}{r^3} = -\frac{k}{r^2} \end{pmatrix}$

+ 1/2

$\begin{array}{c} \mathbf{Q} \\ $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
$ \begin{array}{c} \textbf{Threasensy (G)} & \textbf{Originary (G)} \\ \hline \textbf{Threasensy (G)} & \textbf{O} \\ \hline \textbf{Threasensy (G)} & \textbf{O} \\ \hline \textbf{O} \\ \hline \textbf{Threasensy (G)} & \textbf{O} \\ \hline \textbf{O} \hline \textbf{O} \\ \hline \textbf{O} \hline \textbf{O} \\ \hline \textbf{O} \hline$	$\begin{array}{rcl} & = \frac{\gamma_{1}^{2}}{2} - \frac{\eta_{2}^{2}}{2\theta_{2}} - \frac{\gamma_{1}^{2}}{2\theta_{2}} - \frac{\gamma_{2}^{2}}{2\theta_{2}} \\ & = \frac{\lambda_{1}^{2}}{2\theta_{2}^{2}} + \frac{\lambda_{2}^{2}}{2\theta_{2}} \\ & = \frac{\lambda_{2}}{2\theta_{2}^{2}} \\ & = \frac{\lambda_{2}}{2\theta_{2}} \\ & $

Question 31 (*****)

A particle of mass *m* is free to move on a smooth horizontal surface. The particle is attached to one end of a light elastic spring of natural length l and modulus of elasticity λ . The other end of the spring is attached to a fixed point *O*, on the surface.

The particle is held on the surface with the spring at its natural length and then is projected with speed U at right angles to the spring.

Ignoring air resistance and assuming that in standard S.I. units m=1, l=1, $9\lambda=8$ and U=2, determine the range of values of the length of the spring in the subsequent motion.

 $1 \le \text{length} \le 3$

×952

 $\frac{1}{1}$ $\frac{1}{2}\dot{\Theta}$ $\dot{\Theta}$ $\implies \frac{d}{dt} \left(\hat{r}^2 \right) = \frac{d}{dt} \left[-\frac{\mu}{r^2} \right] - \frac{d}{dt} \left[\frac{\mu}{r} r^2 \right] + \frac{d}{dt} \left[\frac{\kappa}{r} r \right]$ 42 $\hat{a} = (\hat{r} - r\hat{\Theta}^2)\hat{f} + \frac{1}{2}\frac{d}{dr}(r^2\hat{\Theta})\hat{\Theta}$ $\Rightarrow \quad \dot{\Gamma}^2 = -\frac{\psi}{\Gamma^2} - \frac{g}{q}\Gamma^2 + \frac{16}{q}\Gamma + C$ 5 F-3 11 4 PACER Γ=0, Γθ=22 $(\Gamma - l) \left[2\Gamma^{*}(\Gamma - 3) + 4\Gamma(\Gamma - 3) + 3(\Gamma - 3) \right] = 0$ $0 = -4 - \frac{8}{9} + \frac{16}{9} + C$ $(1-1)(1-3)(21^2+41+3) = 0$ NO TEANSURESE FORCE DURING THE MUTTON (6) $\overset{*2}{\Gamma}_{z} = \frac{28}{9} - \frac{4}{r^{2}} - \frac{8}{9}\Gamma^{2} + \frac{4}{9}r$ $\widehat{k}_{t}\frac{1}{\mathcal{K}}\frac{d}{d\mathcal{T}}\left(\widehat{r}^{2}\widehat{\mathbf{G}}^{*}\right)=c$ $(\Gamma-1)(\Gamma-3)(2\Gamma^3+4\Gamma+3)\leqslant \circ$ r=0 (RATHER THAN is >0) 120 = h = constans $\frac{2\theta}{q} + \frac{1\xi}{q}\Gamma - \frac{4}{F^2} - \frac{g}{q}\Gamma^2 = 0$ ROAL THE INITIAL CONDUCTION! r(r4) = h $\frac{7}{9} + \frac{1}{9}\Gamma - \frac{1}{\Gamma^2} - \frac{2}{9}\Gamma^2 = 0$ $7 + 4r - \frac{q}{r^2}$ - 202 =0 $\therefore \Gamma^2 \dot{\theta} = 2$ 752+453 - 0 204 00 NoT $m(\ddot{r} - r\dot{\Theta}^2) =$ $-\Gamma\left(\frac{2}{m}\right)^{2} = 0$ $2r^{3}(r-1) = 2r^{2}(r-1) - 9r(r-1) = =(r-1)(2r^2-qr-q) = 0$ $\frac{4}{r^2}$ + $\frac{8}{9}r - \frac{8}{9}$ LOOK FOR MORE FAREBRE FOR THE WERE ±1, ±3, ±