asmarns.com

asmaths.com asmarns.com asmaths.com KINEMATICS & Inadas Inadas

alasmaths.com

BY ADVANCED DIFFERENTIAL EQUATIONS Y.C.B. Madasmanna I.Y.C.B. Manakan I.Y.C.B. Madasmanna Madasmanns.Com

Question 1 (**+)

In this question take $g = 10 \text{ ms}^{-2}$.

A particle of mass M kg is released from rest from a height H m, and allowed to fall down through still air all the way to the ground.

Let $v \text{ ms}^{-1}$ be the velocity of the particle t s after it was released.

The motion of the particle is subject to air resistance of magnitude $\frac{mv^2}{60}$.

Given that the particle reaches the ground with speed 14 ms⁻¹, find the value of H.

V-2 5 (° 1 da 1 da -30 [n/600-12] [2]

150

101

 $H = 30 \ln$

≈11.865.

Question 2 (***)

An object is released from rest from a great height, and allowed to fall down through still air all the way to the ground.

Let $v \text{ ms}^{-1}$ be the velocity of the object t seconds after it was released.

The velocity of the object is increasing at the constant rate of 10 ms^{-1} every second, but at the same time due to the air resistance its velocity is decreasing at a rate proportional its velocity at that time.

The maximum velocity that the particle can achieve is 100 ms⁻

By forming and solving a differential equation, show that

$v = 100 \left(1 - e^{-0.1t} \right)$

proof

 $\Rightarrow \left[-\frac{10}{h} (100-v) \right]_{0}^{v} = \left[t \right]_{0}^{t}$ $\Rightarrow \left[\ln (100 - v) \right]_{v}^{v} = \left[-\frac{1}{10} t \right]_{v}^{t}$ (h(joo-v) - lhloo =

 $\Rightarrow lh\left(\frac{lto-v}{loo}\right) = -\frac{l}{loc}L$

 $\frac{100-V}{100} = e^{-\frac{1}{10}t}$

100-V= 100ett

100 - 100 e bt = V

-Lt

PENING & DIFFERENTIAL GRUATION THE TREMINAL DECOUPY AA V=100 24 = 0 0 = 10 - K× 100 1001 = 10 k= + de = 10 - iov THE O.D.E BY SEPARATION OF UNRINGLES V-001 = $\frac{10}{100-y}$ dy = 1 dt INFRATE SUBJECT TO THE CONDITION, t=0, V=0 $\frac{10}{100-V}$ dv = $\int_{0}^{t} 1$ dt

Question 3 (***)

A small raindrop of mass m kg, is released from rest from a rain cloud and is falling through still air under the action of its own weight. The raindrop is subject to air resistance of magnitude kmv N, where v ms⁻¹ is the speed of the raindrop t s after release, and k is a positive constant.

a) Show clearly that

 $v = \frac{g}{k} \left(1 - e^{-kt} \right).$

The raindrop has terminal speed V.

b) Show that the raindrop reaches a speed of $\frac{1}{2}V$ in time $\frac{1}{k}\ln 2$ seconds.

a) Sakin to 7	(6) TRANINAL SPEED
	5 =0 , 0=g-KV
and the second	V= a
Emig	$\sum \sum_{v=V(1-e^{it})}$
ma = mg - kunt	$\left\langle \Rightarrow \frac{1}{2} \nabla = \nabla \left(1 - \bar{e}^{kt} \right) \right\rangle$
⇒ ž = g - kv	> = = - = l-ett
⇒ & = g-kv	= ett = 1
= [to du = [i dt	$\Rightarrow e^{tt} = 2$
J S-EV two	> = Lt = ln2
=) [- [[h]g-kv]] = [t];	$\zeta \Rightarrow t = \frac{1}{k} \ln 2$
$\Rightarrow \left[\ln \left(g - k \cdot v \right) \right]_{0}^{v} = \left[- k \cdot t \right]_{0}^{t}$. As Exputed
⇒ lulg-kul-lug = -kt	ζ
-> lin (&-by) = -kt	ζ
- &- kv = e kc	5
-> g-kv = gett	2
- g-ge = kv	4
→ v- \$(1-ett) A 240	uread)

proof

Question 4 (***)

A particle of mass 2 kg is attached to one end of a light elastic spring of natural length 0.5 m and modulus of elasticity 5 N. The other end of the string is attached to a fixed point O on a smooth horizontal plane.

The particle is held at rest on the plane with the spring stretched to a length of 1 m and released at time t = 0 s.

During the subsequent motion, when the particle is moving with speed $v \text{ ms}^{-1}$ it experiences a resistance of magnitude 8v N. At time t s after the particle is released, the length of the spring is (0.5+x) m, where $-0.5 \le x \le 0.5$.

a) Show that x is a solution of the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + a\frac{\mathrm{d}x}{\mathrm{d}t} + bx = 0$$

where a and b are positive integers to be found.

b) Hence express x in terms of t.

c) Show further that the particle almost comes to rest, as the spring returns to its natural length.

a = 4, b = 5,

= @24Gtast + BSINT)

 $x = \frac{1}{2}e^{-2t} [2\sin t + \cos t]$

Question 5 (***)

A particle P of mass M kg is attached to one end of a light elastic spring of natural length a m and modulus of elasticity 4Ma N. The other end of the string is attached to a fixed point O on a smooth horizontal plane.

The particle is held at rest on the plane with the spring at its natural length.

At time t = 0 s, P is projected with speed $\sqrt[3]{4}$ ms⁻¹ in the direction PO.

During the subsequent motion, when the particle is moving with speed $v \text{ ms}^{-1}$ it experiences an additional resistive force of magnitude 5Mv N. At time t s after the particle is released, the length of the spring is (a + x) m, where $-a \le x \le a$.

a) Show that x is a solution of the differential equation

- **b**) Hence express x in terms of t.
- c) Determine the greatest value of x.

-38= 43 B= - 5x45 a 3 = 1. 2 + (- 2 + 1 = +) a.e. L3[4] (et - (et)) Mä $x = \frac{1}{2} \sqrt{4} \left[\frac{1}{2k^2} \frac{1}{\sqrt{k^2}} \right]$ $L = \frac{1}{3} \sqrt[3]{4^1} \left[\frac{1}{\sqrt[3]{4^1}} - \frac{1}{4\sqrt[3]{4^1}} \right]$ = 1 14 × 3 × 14

 $e^{-t} + e^{-t}$

∛4

 $x_{\text{max}} = 0.\overline{25 \text{ m}}$

Question 6 (***)

A small truck, of mass 1500 kg, travels along a straight horizontal road, with the engine working at the constant rate of 30 kW. The truck starts from rest and t s later its speed is $v \text{ ms}^{-1}$.

The truck during its motion experiences air resistance proportional to its speed.

When the speed of the truck reaches 20 ms^{-1} its acceleration is 0.6 ms^{-2}

a) Show clearly that

 $=\frac{1000-v^2}{v^2}$

b) Calculate the time it takes the truck to reach a speed of 27 ms^{-1}

(a) $\rightarrow 0.6$ $b_{1} \rightarrow 20$ $\rightarrow 1500$ $P = D_{1}$ $D - b_{2} = 2ma$	$\begin{cases} (b) \int_{\frac{q}{2} = \frac{2}{\sqrt{N}}}^{\frac{q}{2} = \frac{2}{\sqrt{N}}} dy = \int_{\frac{1}{\sqrt{N}}}^{\frac{1}{2}} d\xi \\ y_{xo} & t_{xo} \\ y_{xo} & t_{xo} \\ \frac{1}{\sqrt{N}} = \int_{\frac{1}{\sqrt{N}}}^{\frac{1}{2}} dy = \int_{\frac{1}{\sqrt{N}}}^{\frac{1}{2}} t_{xo} \\ \frac{1}{\sqrt{N}} = \int_{\frac{1}{\sqrt{N}}}^{\frac{1}{2}} dy = \int_{\frac{1}{\sqrt{N}}}^{\frac{1}{2}} d\xi \\ \frac{1}{\sqrt{N}} = \int_{\frac{1}{\sqrt{N}}}^{\frac{1}{2}} dy = \int_{\frac{1}{\sqrt{N}}}^{\frac{1}{2}} dx \\ \frac{1}{\sqrt{N}} = \int_{\frac{1}{\sqrt{N}}}^{\frac{1}{2}} dy $
$\begin{cases} 30000 = Dr20 \\ D = (SO) \\ C = SO \\ C = 30 \\ $	$ \begin{array}{c} & & & \\ & & & \\ & & \Rightarrow \left(h(1000 - v^{\dagger}) \right)_{0}^{27} = \left[-\frac{1}{23} t \right]_{0}^{4} \\ & & \Rightarrow \left(h_{2} 270 - h_{1000} \right)_{0}^{27} = -\frac{1}{23} t \\ & & \Rightarrow h_{1} 271 - h_{1000} = -\frac{1}{23} t \end{array} $
$\begin{array}{c} 3_{VV} & \xrightarrow{\text{prod}} D = \frac{P}{V} \\ & \underbrace{ V_{VX} }_{VX} = D - \frac{2}{50V} \\ \Rightarrow 1500\% & = \frac{36000}{V} - 30V \\ \end{array}$	$\Rightarrow t_{=2} t_{ h } \frac{\log q}{2\tau }$ $\Rightarrow t_{=2} 37.64 t_{+1}$
$\Rightarrow 50 \Delta = \frac{1000 - V^2}{V}$	

 $t \approx 32.64 \text{ s}$

Question 7 (***+)

A small truck, of mass 1800 kg, travels along a straight horizontal road, with the engine working at the constant rate of 45 kW.

The total resistance experienced by the truck during its motion is 25v, where $v \text{ ms}^{-1}$ is the speed of the truck at time t s.

The track takes T s to accelerate from 18 ms^{-1} to 24 ms^{-1} , and in that time it coves a distance X m.

a) By forming and solving a differential equation, show clearly that

 $T = 36\ln\left(\frac{4}{3}\right).$

b) Determine the value of X.

 $X = -216 + 1080 \ln\left(\frac{3}{2}\right) \approx 222 \text{ m}$

Question 8 (***+)

An object is placed on the still water of a lake and allowed to fall down through the water to the bottom of the lake.

Let $v \text{ ms}^{-1}$ be the velocity of the object t seconds after it was released.

The velocity of the object is increasing at the constant rate of 9.8 ms^{-1} every second.

At the same time due to the resistance of the water its velocity is decreasing at a rate proportional to the square of its velocity at that time.

The maximum velocity that the particle can achieve is 14 ms

Show clearly that ...

a) ... $20 \frac{dv}{dt} = 196 - v^2$.

b) ... $v = 14 \left(\frac{1 - e^{-1.4t}}{1 + e^{-1.4t}} \right)$

proof

 $\begin{array}{c} \frac{1}{3}t+c \\ \Rightarrow t+v = te^{\frac{1}{3}t} \\ \Rightarrow v +ve^{\frac{1}{3}t} = te^{\frac{1}{3}t} \\ \Rightarrow v(ve^{\frac{1}{3}t} = te^{\frac{1}{3}t} \\ \Rightarrow ve^{\frac{1}{3}t} \\ \Rightarrow v$

 $d_{L_{in}} + e_{0} \quad v = o_{j} \quad i = 4$ $\lim_{h \to V} e_{j} = e_{j}^{\frac{1}{h}} t$ $(i_{1} + v) = e_{j}^{\frac{1}{h}} t$ $(i_{1} + v) = e_{j}^{\frac{1}{h}} t$

Question 9 (****)

A particle P of mass m is attached to the midpoint of a light elastic spring AB, of natural length l and modulus of elasticity λ . The end A of the spring is attached to a fixed point on a smooth horizontal floor. The end B is held at a point on the floor where |AB| = 2a, a > l.

At time t = 0, P is at rest on the floor at the point M, where |MA| = a.

The end B is now moved along the floor in such a way that AMB remains in a straight line and at time t s, $t \ge 0$

 $|AB| = 2a + A\sin 2t ,$

where A is a positive constant.

a) Show that, for $t \ge 0$

$$\frac{d^2x}{dt^2} + \frac{2\lambda}{ml}x = \frac{A\lambda}{ml}\sin 2t,$$

where x = |MP| for $t \ge 0$.

It is now given that m = 0.5 kg, l = 1 m, $\lambda = 4 \text{ N}$ and A = 1.5 m.

b) Find the time at which *P* first comes to instantaneous rest.

-Т н $T_2 = \frac{\lambda}{p} (a + \alpha - 1)$ TI = 2 (Za + Asm2E -a-2-1) = A(q-2-1+45m2+) EQUATION OF INSTITUT Ma = て- ち $m\ddot{x} = \frac{2}{\rho} \left(\alpha - x - l + A_{SM2t} \right) - \frac{2}{\ell} \left(\alpha + x - l \right)$ $max = \frac{1}{p} \left[-2x + Asnat \right]$ $m\ddot{a} + \frac{2\lambda}{p}\alpha = \frac{A\lambda}{p} \operatorname{sm2t}$ it + 22 a = 42 swet As Repurero 0.D.t Becauts $x + \frac{2x4}{0.5\times1}x = \frac{1.5\times4}{0.5\times1}$ single STARY FURYTION c(t) = Poosilt + Qumilt

Created by T. Madas

 $t = \frac{1}{3}\pi$

 $\begin{aligned} \mathbf{x}(\mathbf{t}) &= \operatorname{Posellt} + \operatorname{Qsm4t} + \operatorname{sm2t} \\ \mathbf{\hat{x}}(\mathbf{t}) &= \operatorname{APsm4t} + \operatorname{4Qcoslt} + \operatorname{2coslt} \end{aligned}$

2=0,2=0 0=P

0 = 4Q + 2 $Q = -\frac{1}{2}$

cosilt = cosof

 $\begin{pmatrix}
2c = 0 \pm 2n\pi \\
6c = 0 \pm 2n\pi
\end{pmatrix}$

 $\begin{pmatrix} t = \pm n\pi \\ t = \pm n\pi \\ t = \pm n\pi \\ 3 \end{pmatrix}$

 $\begin{aligned} \alpha(t) &= \sin 2t - \frac{1}{2}\sin 4t \\ \dot{\Omega}(t) &= 2\cos 2t - 2\cos 4t \end{aligned}$

 $0 = 2\cos 2t - 2\cos 4t$

 $\begin{pmatrix} 4t = 2t \pm 2m \\ 4t = -2t \pm 2m \\ m \end{pmatrix}^{N=0,1/2,3} .$

Question 10 (****)

A car of mass 1440 kg is moving along a straight horizontal road.

The engine of the car is working at a constant rate of 43.2 kW.

When the speed of the car is $v \text{ ms}^{-1}$, the resistance to motion has magnitude 12v N.

Calculate the distance travelled by the car as it accelerates from a speed of $v \text{ ms}^{-1}$ to a speed of $v \text{ ms}^{-1}$.

– 2400 ≈ 899 m

 $d = 3600 \ln \left(\frac{5}{2}\right)$

Question 11 (****)

The engine of a racing car, of mass 1600 kg, is working at constant power of 100 kW.

- a) Given the total resistances to motion is 800 N, determine the time it takes the car to accelerate from 25 ms⁻¹ to 75 ms⁻¹.
- **b**) Given instead that the total resistances to motion have magnitude $\frac{1}{10}v$ N, where v is the speed car, determine the distance the car covers in accelerating from 25 ms⁻¹ to half the maximum speed of the car.

 $\overline{t = -100 + 250 \ln 2 \approx 73.29 \text{ s}}$, $x = \frac{1600}{3} \ln(\frac{9}{8}) \approx 62.82 \text{ m}$

Question 12 (****)

A small raindrop of mass m kg, is released from rest from a rain cloud and is falling through still air under the action of its own weight.

The raindrop is subject to air resistance of magnitude kmv^2 N, where v ms⁻¹ is the speed of the raindrop x m below the point of release, and k is a positive constant.

a) Solve the differential equation to show that

 $v^2 = \frac{g}{k} \left(1 - \mathrm{e}^{-2kx} \right).$

The raindrop has a terminal velocity U.

b) Show further that the raindrop reaches a speed of $\frac{1}{2}U$, after falling through a

distance of $\frac{U^2}{2g}\ln\left(\frac{4}{3}\right)$ metres.

WIND THE EQUATION OF MOTION (g-bu2) da 2 A. = 1 dz 子び = 十八章 (-2k)

proof

Question 13 (****)

A particle of mass m kg, is attached to one end A of a light elastic string AB, of natural length L m and modulus of elasticity 2mL N. Initially the particle and the string lie at rest on a smooth horizontal surface, with |AB| = L m

At time t = 0, the end B of the string is set in motion with constant speed 2U ms⁻¹, in the direction AB, and at time t s, the extension of the string is x m and the displacement of the particle from its initial position is y m.

There is air resistance impeding the motion of the particle, of magnitude 3mv, where $v \text{ ms}^{-1}$ is the speed of the particle at time t s.

a) Show that while the string is taut

$$\frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 2x = 6U$$

- **b)** Express x in terms of U and t.
- c) Hence find the speed of the particle at time t s.

+ 22 = 50 \$ CHUPIS

d) State the extension of the string and the speed of the particle as t gets infinitely large

 $x = U(3 + e^{-2t} -$

-7Ae - Be

4e

as $t \to \infty$, $x \to 3U$

v = 2U(1+e)

 $\begin{aligned} \mathbf{x} &= \mathbf{U} \left(\mathbf{x} + e^{-\mathbf{x}} - \mathbf{u} + e^{-\mathbf{x}} \right) \\ \mathbf{x} &= \mathbf{y} = 2\mathbf{U} - \mathbf{x} \\ \mathbf{x} &= \mathbf{y} = 2\mathbf{U} - \mathbf{U} \left[-2e^{-\mathbf{x}} + \mathbf{u} + e^{-\mathbf{x}} \right] \\ \mathbf{y} &= 2\mathbf{U} + 2\mathbf{U} e^{-\mathbf{x}} - \mathbf{u} \\ \mathbf{y} &= 2\mathbf{U} \left[1 + e^{-\mathbf{x}} - 2e^{-\mathbf{x}} \right] \end{aligned}$

 $\chi = T \left(3 + e^{2t} - 4e^{t}\right)$ $\eta' = 2T \left(1 + e^{2t} - 2e^{t}\right)$

(d) k

and

 $v \rightarrow 2U$

Question 14 (****)

A particle of mass 2 kg, is attached to one end A of a light elastic spring AB, of natural length 1.5 m and modulus of elasticity 12 N. Initially the end of the spring B is held at rest, with the particle hanging in equilibrium vertically below B.

At time t = 0, the end B of the spring is set in oscillatory motion so that the vertical displacement of B below its initial position is given by $5\sin 2t$ m, where t is measured in s.

At time t s, the extension of the spring is x m and the displacement of the particle from below its initial position is y m. It is assumed that there is no air resistance impeding the motion of the particle.

a) Show clearly that

 $\frac{d^2y}{dt^2} + 4y = 20\sin t \; .$

b) Express y in terms of t.

 $y = 4\sin t - 2\sin 2t$

Question 15 (****)

A particle P, of mass 2 kg, is attached to one end of a light elastic spring of natural length 0.55 m and stiffness 8 Nm⁻¹.

The other end of the spring is attached to a fixed point O, so that P is hanging in equilibrium vertically below O.

At time t = 0, P is pulled vertically downwards, so that OP = 1.5 m, and released from rest.

The motion of P takes place in a medium which provides resistance of magnitude 10|v| N, where |v| ms⁻¹ is the speed of P at time t s.

If x denotes the distance of the particle from O at time t, express x in terms of t.

Question 16 (****+)

A small raindrop of mass m kg, is released from rest from a rain cloud and is falling through still air under the action of its own weight.

The raindrop is subject to air resistance of magnitude kmv N, where v ms⁻¹ is the speed of the raindrop x m below the point of release, and k is a positive constant.

a) Show, by forming and solving a differential equation, that

The raindrop has a limiting speed V.

b) Show further that the raindrop reaches a speed of $\frac{1}{2}V$, after a falling through a

distance of $\frac{V^2}{2g}(-1+\ln 4)$ metres.

proof LOOKING AT THE ORIGINAL O D.E ä=g-kv MUTING-SPEED → X=0 → V = % the IF N= LV= 1/2k Ida $x = \frac{9}{k^2} \ln \left| \frac{3}{8 - k} \right| - \frac{v}{k}$ du = - k da $2 = \frac{8}{k^2} \ln \left| \frac{8}{3 - k \frac{9}{2k}} \right| - \frac{9}{k} \frac{1}{k}$ $\Rightarrow \int_{a}^{a} \frac{-bv}{g-bv} dv = \int_{a}^{\infty} \frac{b}{b} dx$ $\alpha = \frac{q}{k^2} \ln 2 - \frac{q}{2k^2}$ $\int_{a-kv}^{v} \frac{(a-kv)-a}{a-kv} dv = \int_{a-kv}^{a} -k dx$ $\alpha = \frac{8}{2k^2} \left[2l_{H2} - l \right]$ $\Rightarrow \int_{1}^{v} 1 - \frac{a}{a-kv} dv = \int_{1}^{v} \frac{b}{k} dv$ $\chi = \frac{1}{29} \times \frac{9^2}{k^2} \left[\ln 4 - 1 \right]$ $\rightarrow \left[v + \frac{3}{k} \ln \left[g - k_x \right] \right]^2 - \left[-k_x \right]^2$ $\mathfrak{L} = \frac{1}{2\mathfrak{Z}} \operatorname{V}^{2} \left[\operatorname{I}_{\mathfrak{Y}} \mathfrak{L} - \mathfrak{I} \right]$ $\left[v + \frac{3}{2} \ln \left| \frac{1}{2} - \frac{3}{2} \ln \frac{1}{2} \right] = -k_2 - k_2$ a- 2/2 [-1+ [n4 ala g-kv = -v - & h 8-kv $L = \frac{a}{k^2} \left| h \left| \frac{a}{g - b} \right| - \frac{V}{K} \right|$ AS REQUIRES

A particle, of mass m, is attached to one end of a light elastic spring of natural length a and modulus of elasticity $\frac{1}{2}mg$. The other end of the spring is initially stationary at the point O so that the particle is hanging in equilibrium vertically below O.

At time t=0, the end of the spring which is at O begins to oscillate so that its **positive** displacement from O is given by $\frac{1}{2}a\sin 2t$.

If x denotes the distance of the particle from O at time t, show that

 $x = 3a + \frac{a\omega}{2(\omega^2 - \omega^2)}$ $-[\omega \sin 2t - 2\sin \omega t]$

where $\omega^2 = \frac{g}{2a}$

Question 17

(****+)

O	CONTING AT THE DIMERAN.	THE COMPLEMENTALY RANCOULD IN THE STONORA S.H.M. SOUTON
2	$\Rightarrow m\tilde{x} = m\theta - \frac{\sqrt{2}}{2}(x - \sigma - \frac{1}{2}\sigma cm x + r)$	a = Acosut + Banut FOR PARTICULAR INTERAL WE TRY
Ta	$\Rightarrow M\tilde{\chi} = my - \frac{2mg}{a} (\chi - a - \frac{1}{2}a \sin 2t)$ $\Rightarrow \tilde{\chi} = g - \frac{3}{2a} (\chi - a - \frac{1}{2}a \sin 2t)$	• $a = P + qsingt$ • $\ddot{a} = -4qsingt$ - $a = -4qsingt$
Wig	$\Rightarrow \ddot{a} = g - \frac{g_{a}}{2a} + \frac{1}{2g} + \frac{1}{4g} \sin t$ $\Rightarrow \ddot{a} + \frac{g_{a}}{2a} = g - \frac{g_{a}}{2a} + \frac{1}{2g} \sin t$	$\equiv 3u^2 + \frac{1}{2}u^2 u^2 + \frac{1}{2}u^2 u^2 + \frac{1}{2}u^2 +$
IN QUILIBELIOU Mg - T - Ze Theg = Zmg e	$(47 \omega^2 = \frac{a}{2q} \rightarrow g = 2a\omega^2$	$= \frac{2}{3}a\omega^2 + \frac{1}{2}a\omega^2\omega^2$ $\implies \frac{1}{2}a\omega^2 = \frac{1}{2}a\omega^2$ $\implies \frac{1}{2}a\omega^2$ $\implies \frac{1}{2}a\omega^2$
e= 2a 41006 t=0 x= 2a+a=3a	$\rightarrow \ddot{a} + w\dot{a} = \frac{1}{2}(aw) + \frac{1}{2}(aw) and$ $\rightarrow \ddot{a} + w\dot{a} = 3aw^2 + \frac{1}{2}aw^2sn2t$	$Q = \frac{\alpha \omega^2}{\alpha (\omega^2 n)}$

-HEALE THE PRIMARAL SOLUTION IS GNIN BY
$\alpha = 400000t + B sim (int + 3a + \frac{aw^2}{26w^2-q)} sim?$
APPy t=0, 2=30
3a = A + 3a
A=0
$D = 3a + Bsimut + \frac{aw^2}{2(w^2+4)}sm^2t$
DIFFEEGNTIATE AND MARY CONDITION t=0, 2=0
$\dot{\sigma} = Burrosut + \frac{aw^2}{w^2 + 4}$ west
$O = Bw + \frac{\alpha w^2}{w^2 - w}$
$B = -\frac{m_{z}}{am}$
$J = 3q + \frac{a\omega^2}{2(\omega^2 q)} \operatorname{senzt} - \frac{a\omega}{\omega^2 - q} \operatorname{senut}$
$3 = 3q + \frac{g_{3}}{2(w^2q)} \left[w \sin 2t - 2 \sin \omega t \right]$

, proof

Question 18 (****+)

A small raindrop of mass m kg, is released from rest from a rain cloud and is falling through still air under the action of its own weight. The raindrop is subject to air resistance of magnitude kv^2 N, where $v \text{ ms}^{-1}$ is the speed of the raindrop t s after release, and k is a positive constant.

a) Show clearly that

$$v = \frac{1}{c} \left(\frac{1 - e^{-2cgt}}{1 + e^{-2cgt}} \right), \text{ where } c^2 = \frac{k}{mg}$$

The raindrop has a terminal speed V

b) Show that the raindrop reaches a speed of $\frac{1}{2}V$ in time $\sqrt{\frac{m}{4gk}} \ln 3$ seconds.

$(0) \qquad (1) (1) (2) $	$ \begin{array}{c} (b) Thermal Setter \Rightarrow \underbrace{du}_{M} = 0 \\ \qquad \qquad$
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	$\frac{V^{2}}{V} = \frac{1}{2c}$ $\frac{V}{V} = \frac{1}{2c}$
$ = \frac{\partial u}{\partial t} = g - \frac{k}{\delta \eta} v^{2} $ $ = \int_{v}^{u} \frac{1}{g - \frac{1}{\delta \eta} v} dv = \int_{v}^{1} \frac{1}{\delta t} $ $ = \int_{v}^{u} \frac{1}{g - \frac{1}{\delta \eta} v} dv = \int_{v}^{1} \frac{1}{\delta t} $	$ \Rightarrow \frac{1}{2c} = \frac{1}{c} \left(\frac{1 - \frac{e^{2L_0^2}}{1 + e^{2L_0^2}}}{\frac{1}{1 + e^{2L_0^2}}} \right) $ $ \Rightarrow \frac{1}{2c} = \frac{1 - \frac{e^{2L_0^2}}{1 + e^{2L_0^2}}}{\frac{1}{1 + e^{2L_0^2}}} $ $ \Rightarrow 1 + \frac{e^{2L_0^2}}{1 + e^{2L_0^2}} = 2 - 2e^{-L_0^2} $
$ = \int_{0}^{1} \frac{1}{1 - \frac{1}{2m^2}} dv = \int_{0}^{1} 1 dt $ $ = \int_{0}^{1} \frac{1}{1 - \frac{1}{2m^2}} dv = \int_{0}^{1} 1 dt $ $ = \int_{0}^{1} 1 dt = \int_{0}^{1} \frac{1}{1 - \frac{1}{2m^2}} dv = \int_$	$ \exists e^{2igt} = 1 $ $ \exists e^{2igt} = \frac{1}{2} $ $ \exists e^{2igt} = \frac{1}{2} $
$\Rightarrow \int_{0}^{V} \frac{dv}{1 - c^{2} c^{2}} = \int_{0}^{L} g dt$ $\Rightarrow V = \frac{1}{c} \left(\frac{a c g t}{1 + c^{2} c g t} \right)$ $\Rightarrow V = \frac{1}{c} \left(\frac{a c g t}{1 + c^{2} c g t} \right)$ $\Rightarrow V = \frac{1}{c} \left(\frac{a c g t}{1 + c^{2} c g t} \right)$	$2x_{3}t = \ln 3$ $= t = \frac{1}{2c_{3}}\ln 3$ $= t = \sqrt{\frac{1}{2c_{3}}}\ln 3$
$\int O\left([-\alpha)(\mu\alpha)\right) \qquad $	= t- It is his

proof

2

Question 19 (****+)

14

I.C.B.

A particle, of mass *m*, is projected vertically upwards with speed *u* and moves under the action of its weight and air resistance of magnitude $\frac{1}{2}mgv^{\frac{2}{3}}$, where *v* is the speed of the particle at time *t*.

Show that the distance the particle covers until it comes to instantaneous rest is

 $\frac{3}{g} \left[u^{\frac{4}{3}} - 8u^{\frac{2}{3}} + 32\ln\left(1 + \frac{1}{4}u^{\frac{2}{3}}\right) \right]$

and todays

122-82 +16 MZ

(Z2-162+32MZ] = 382 $\exists (4+u^{34})^{2} - 16(4+u^{34}) + 32\ln(4+u^{34}) - 16+64-32\ln 4 = \frac{1}{3}g_{2}.$ $\Rightarrow \frac{1}{39}\alpha = u^{\frac{4}{3}} - 8u^{\frac{4}{3}} + 32\ln\left(\frac{4+u^{\frac{3}{3}}}{4}\right)$ $\mathcal{X} = \frac{3}{9} \left[u^{\frac{5}{3}} - 8u^{\frac{3}{4}} + 32b_1 \left(1 + \frac{1}{4}u^{\frac{5}{6}} \right) \right]$

·C.A

proof

2

Question 20 (*****)

[In this question $g = 10 \text{ ms}^{-2}$]

Two particles A and B, or respective masses 8 kg and 2 kg, are attached to the ends of a light elastic string of natural length 2.5 m and modulus of elasticity 80 N.

The string passes through a small smooth hole on a rough horizontal table.

A is held at a distance of 2.5 m from the hole and B is held at a distance of 2 m vertically below the hole. The coefficient of friction between A and the table is 0.5.

Both particles are released simultaneously from rest.

a) Find an expression for the subsequent velocity of A and hence verify that A first comes to rest 0.47524 s after release.

 $\sqrt{5}$

2

v =

 $\sin(\sqrt{20t})$

-2t

 $d \approx 0.15578...$ m

b) Calculate the distance *A* covers until it first comes to rest.

\$ cosut + 3 $-\frac{e}{C} = lo(\frac{1}{2}losol + \frac{3}{4}) \begin{cases} a = \left(\frac{S(u)}{4} - \frac{2u}{w}\right)s \end{cases}$ a(0.47524) = 45 Sulta du' $\dot{\alpha} = \frac{\sqrt{3}}{2} \sin(\sqrt{2}t) - 2t$ HERATE: $\mathcal{I} = -\frac{1}{4}\cos(45) - \frac{1}{4}z + 1$ t=0, 2=0 0 = - 1 + D D=1 $\mathfrak{L}=\frac{1}{4}\left(1-\log\sqrt{2}\right)-\frac{1}{2}$ $\mathcal{X}(0.41524) = \frac{1}{4}(1 - \cos(0.47524 \times \sqrt{23})) - 0.47524^2 \approx 0.15578$