KINEMATICS

DYNAMICS

BY ADVANCED DIFFERENTIAL EQUATIONS

Question 1 (**+)
In this question take $g=10 \mathrm{~ms}^{-2}$.

A particle of mass $M \mathrm{~kg}$ is released from rest from a height $H \mathrm{~m}$, and allowed to fall down through still air all the way to the ground.

Let $v \mathrm{~ms}^{-1}$ be the velocity of the particle $t \mathrm{~s}$ after it was released.

The motion of the particle is subject to air resistance of magnitude $\frac{m v^{2}}{60}$.

Given that the particle reaches the ground with speed $14 \mathrm{~ms}^{-1}$, find the value of H.

Created by T. Madas

Question 2 (***)

An object is released from rest from a great height, and allowed to fall down through still air all the way to the ground.

Let $\quad v \mathrm{~ms}^{-1}$ be the velocity of the object t seconds after it was released.

The velocity of the object is increasing at the constant rate of $10 \mathrm{~ms}^{-1}$ every second, but at the same time due to the air resistance its velocity is decreasing at a rate proportional its velocity at that time.

The maximum velocity that the particle can achieve is $100 \mathrm{~ms}^{-1}$.
By forming and solving a differential equation, show that

$$
v=100\left(1-\mathrm{e}^{-0.1 t}\right)
$$

Created by T. Madas

Question 3 (***)
A small raindrop of mass $m \mathrm{~kg}$, is released from rest from a rain cloud and is falling through still air under the action of its own weight. The raindrop is subject to air resistance of magnitude $k m v \mathrm{~N}$, where $v \mathrm{~ms}^{-1}$ is the speed of the raindrop $t \mathrm{~s}$ after release, and k is a positive constant.
a) Show clearly that

$$
v=\frac{g}{k}\left(1-\mathrm{e}^{-k t}\right) .
$$

The raindrop has terminal speed V.
b) Show that the raindrop reaches a speed of $\frac{1}{2} V$ in time $\frac{1}{k} \ln 2$ seconds.

Question 4 (***)
A particle of mass 2 kg is attached to one end of a light elastic spring of natural length 0.5 m and modulus of elasticity 5 N . The other end of the string is attached to a fixed point O on a smooth horizontal plane.

The particle is held at rest on the plane with the spring stretched to a length of 1 m and released at time $t=0 \mathrm{~s}$.

During the subsequent motion, when the particle is moving with speed $v \mathrm{~ms}^{-1}$ it experiences a resistance of magnitude $8 v \mathrm{~N}$. At time $t \mathrm{~s}$ after the particle is released, the length of the spring is $(0.5+x) \mathrm{m}$, where $-0.5 \leq x \leq 0.5$.
a) Show that x is a solution of the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+a \frac{\mathrm{~d} x}{\mathrm{~d} t}+b x=0
$$

where a and b are positive integers to be found.
b) Hence express x in terms of t.
c) Show further that the particle almost comes to rest, as the spring returns to its natural length.

$$
a=4, b=5, x=\frac{1}{2} \mathrm{e}^{-2 t}[2 \sin t+\cos t]
$$

Created by T. Madas

Question 5 (***)
A particle P of mass M kg is attached to one end of a light elastic spring of natural length $a \mathrm{~m}$ and modulus of elasticity $4 M a \mathrm{~N}$. The other end of the string is attached to a fixed point O on a smooth horizontal plane.

The particle is held at rest on the plane with the spring at its natural length.
At time $t=0 \mathrm{~s}, P$ is projected with speed $\sqrt[3]{4} \mathrm{~ms}^{-1}$ in the direction $P O$.

During the subsequent motion, when the particle is moving with speed $v \mathrm{~ms}^{-1}$ it experiences an additional resistive force of magnitude $5 M \mathrm{~V} \mathrm{~N}$. At time $t \mathrm{~s}$ after the particle is released, the length of the spring is $(a+x) \mathrm{m}$, where $-a \leq x \leq a$.
a) Show that x is a solution of the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+4 x=0
$$

b) Hence express x in terms of t.
c) Determine the greatest value of x.

Question 6 (***)
A small truck, of mass 1500 kg , travels along a straight horizontal road, with the engine working at the constant rate of 30 kW . The truck starts from rest and $t \mathrm{~s}$ later its speed is $v \mathrm{~ms}^{-1}$.

The truck during its motion experiences air resistance proportional to its speed.

When the speed of the truck reaches $20 \mathrm{~ms}^{-1}$ its acceleration is $0.6 \mathrm{~ms}^{-2}$.
a) Show clearly that

$$
50 \frac{d v}{d t}=\frac{1000-v^{2}}{v}
$$

b) Calculate the time it takes the truck to reach a speed of $27 \mathrm{~ms}^{-1}$.
\square

$$
t \approx 32.64 \mathrm{~s}
$$

Created by T. Madas

Question 7 (***+)

A small truck, of mass 1800 kg , travels along a straight horizontal road, with the engine working at the constant rate of 45 kW .

The total resistance experienced by the truck during its motion is $25 v$, where $v \mathrm{~ms}^{-1}$ is the speed of the truck at time $t \mathrm{~s}$.

The track takes T s to accelerate from $18 \mathrm{~ms}^{-1}$ to $24 \mathrm{~ms}^{-1}$, and in that time it coves a distance $X \mathrm{~m}$.
a) By forming and solving a differential equation, show clearly that

$$
T=36 \ln \left(\frac{4}{3}\right) .
$$

b) Determine the value of X.

$$
X=-216+1080 \ln \left(\frac{3}{2}\right) \approx 222 \mathrm{~m}
$$

Created by T. Madas

Question 8 (***+)

An object is placed on the still water of a lake and allowed to fall down through the water to the bottom of the lake.

Let $\quad v \mathrm{~ms}^{-1}$ be the velocity of the object t seconds after it was released.

The velocity of the object is increasing at the constant rate of $9.8 \mathrm{~ms}^{-1}$ every second.

At the same time due to the resistance of the water its velocity is decreasing at a rate proportional to the square of its velocity at that time.

The maximum velocity that the particle can achieve is $14 \mathrm{~ms}^{-1}$.
Show clearly that ...
a) $\ldots 20 \frac{d v}{d t}=196-v^{2}$.
b) $. . v=14\left(\frac{1-\mathrm{e}^{-1.4 t}}{1+\mathrm{e}^{-1.4 t}}\right)$

Created by T. Madas

Question 9 (****)

A particle P of mass m is attached to the midpoint of a light elastic spring $A B$, of natural length l and modulus of elasticity λ. The end A of the spring is attached to a fixed point on a smooth horizontal floor. The end B is held at a point on the floor where $|A B|=2 a, a>l$.

At time $t=0, P$ is at rest on the floor at the point M, where $|M A|=a$.

The end B is now moved along the floor in such a way that $A M B$ remains in a straight line and at time $t \mathrm{~s}, t \geq 0$

$$
|A B|=2 a+A \sin 2 t,
$$

where A is a positive constant.
a) Show that, for $t \geq 0$
where $x=|M P|$ for $t \geq 0$.

It is now given that $m=0.5 \mathrm{~kg}, l=1 \mathrm{~m}, \lambda=4 \mathrm{~N}$ and $A=1.5 \mathrm{~m}$.
b) Find the time at which P first comes to instantaneous rest.

Created by T. Madas

Question 10 (****)
A car of mass 1440 kg is moving along a straight horizontal road.

The engine of the car is working at a constant rate of 43.2 kW .

When the speed of the car is $v \mathrm{~ms}^{-1}$, the resistance to motion has magnitude $12 v \mathrm{~N}$.

Calculate the distance travelled by the car as it accelerates from a speed of $y \mathrm{~ms}^{-1}$ to a speed of $v \mathrm{~ms}^{-1}$.

$$
d=3600 \ln \left(\frac{5}{2}\right)-2400 \approx 899 \mathrm{~m}
$$

Question 11 (****)
The engine of a racing car, of mass 1600 kg , is working at constant power of 100 kW .
a) Given the total resistances to motion is 800 N , determine the time it takes the car to accelerate from $25 \mathrm{~ms}^{-1}$ to $75 \mathrm{~ms}^{-1}$.
b) Given instead that the total resistances to motion have magnitude $\frac{1}{10} v \mathrm{~N}$, where v is the speed car, determine the distance the car covers in accelerating from $25 \mathrm{~ms}^{-1}$ to half the maximum speed of the car.

$$
t=-100+250 \ln 2 \approx 73.29 \mathrm{~s}, \quad x=\frac{1600}{3} \ln \left(\frac{9}{8}\right) \approx 62.82 \mathrm{~m}
$$

Question 12 (****)
A small raindrop of mass $m \mathrm{~kg}$, is released from rest from a rain cloud and is falling through still air under the action of its own weight.

The raindrop is subject to air resistance of magnitude $k m v^{2} \mathrm{~N}$, where $v \mathrm{~ms}^{-1}$ is the speed of the raindrop $x \mathrm{~m}$ below the point of release, and k is a positive constant.
a) Solve the differential equation to show that

$$
v^{2}=\frac{g}{k}\left(1-\mathrm{e}^{-2 k x}\right) .
$$

The raindrop has a terminal velocity U.
b) Show further that the raindrop reaches a speed of $\frac{1}{2} U$, after falling through a distance of $\frac{U^{2}}{2 g} \ln \left(\frac{4}{3}\right)$ metres.
\square , proof

Question 13 (****)
A particle of mass $m \mathrm{~kg}$, is attached to one end A of a light elastic string $A B$, of natural length $L \mathrm{~m}$ and modulus of elasticity $2 m L \mathrm{~N}$. Initially the particle and the string lie at rest on a smooth horizontal surface, with $|A B|=L \mathrm{~m}$

At time $t=0$, the end B of the string is set in motion with constant speed $2 U \mathrm{~ms}^{-1}$, in the direction $A B$, and at time $t \mathrm{~s}$, the extension of the string is $x \mathrm{~m}$ and the displacement of the particle from its initial position is $y \mathrm{~m}$.

There is air resistance impeding the motion of the particle, of magnitude $3 m v$, where $v \mathrm{~ms}^{-1}$ is the speed of the particle at time $t \mathrm{~s}$.
a) Show that while the string is taut

$$
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=6 U
$$

b) Express x in terms of U and t.
c) Hence find the speed of the particle at time $t \mathrm{~s}$.
d) State the extension of the string and the speed of the particle as t gets infinitely large

$$
\begin{array}{r}
x=U\left(3+\mathrm{e}^{-2 t}-4 \mathrm{e}^{-t}\right), \quad v=2 U\left(1+\mathrm{e}^{-2 t}-2 \mathrm{e}^{-t}\right), \\
\text { as } t \rightarrow \infty, \quad x \rightarrow 3 U \text { and } v \rightarrow 2 U,
\end{array}
$$

Question 14 (****)
A particle of mass 2 kg , is attached to one end A of a light elastic spring $A B$, of natural length 1.5 m and modulus of elasticity 12 N . Initially the end of the spring B is held at rest, with the particle hanging in equilibrium vertically below B.

At time $t=0$, the end B of the spring is set in oscillatory motion so that the vertical displacement of B below its initial position is given by $5 \sin 2 t \mathrm{~m}$, where t is measured in s .

At time $t \mathrm{~s}$, the extension of the spring is $x \mathrm{~m}$ and the displacement of the particle from below its initial position is $y \mathrm{~m}$. It is assumed that there is no air resistance impeding the motion of the particle.
a) Show clearly that

$$
\frac{d^{2} y}{d t^{2}}++4 y=20 \sin t
$$

b) Express y in terms of t.

Created by T. Madas

Question 15 (****)
A particle P, of mass 2 kg , is attached to one end of a light elastic spring of natural length 0.55 m and stiffness $8 \mathrm{Nm}^{-1}$.

The other end of the spring is attached to a fixed point O, so that P is hanging in equilibrium vertically below O.

At time $t=0, P$ is pulled vertically downwards, so that $O P=1.5 \mathrm{~m}$, and released from rest.

The motion of P takes place in a medium which provides resistance of magnitude $10|v| \mathrm{N}$, where $|v| \mathrm{ms}^{-1}$ is the speed of P at time $t \mathrm{~s}$.

If x denotes the distance of the particle from O at time t, express x in terms of t.

Created by T. Madas

Question 16 (****+)
A small raindrop of mass $m \mathrm{~kg}$, is released from rest from a rain cloud and is falling through still air under the action of its own weight.

The raindrop is subject to air resistance of magnitude $k m v \mathrm{~N}$, where $v \mathrm{~ms}^{-1}$ is the speed of the raindrop $x \mathrm{~m}$ below the point of release, and k is a positive constant.
a) Show, by forming and solving a differential equation, that

$$
x=\frac{g}{k^{2}} \ln \left(\frac{g}{g-k v}\right)-\frac{v}{k} .
$$

The raindrop has a limiting speed V.
b) Show further that the raindrop reaches a speed of $\frac{1}{2} V$, after a falling through a distance of $\frac{V^{2}}{2 g}(-1+\ln 4)$ metres.

Created by T. Madas

Question 17 (****+)

A particle, of mass m, is attached to one end of a light elastic spring of natural length a and modulus of elasticity $\frac{1}{2} m g$. The other end of the spring is initially stationary at the point O so that the particle is hanging in equilibrium vertically below O.

At time $t=0$, the end of the spring which is at O begins to oscillate so that its positive displacement from O is given by $\frac{1}{2} a \sin 2 t$.

If x denotes the distance of the particle from O at time t, show that

$$
x=3 a+\frac{a \omega}{2\left(\omega^{2}-4\right)}[\omega \sin 2 t-2 \sin \omega t],
$$

where $\omega^{2}=\frac{g}{2 a}$.

Created by T. Madas

Question 18 (****+)
A small raindrop of mass $m \mathrm{~kg}$, is released from rest from a rain cloud and is falling through still air under the action of its own weight. The raindrop is subject to air resistance of magnitude $k v^{2} \mathrm{~N}$, where $v \mathrm{~ms}^{-1}$ is the speed of the raindrop $t \mathrm{~s}$ after release, and k is a positive constant.
a) Show clearly that

$$
v=\frac{1}{c}\left(\frac{1-\mathrm{e}^{-2 \operatorname{cgt} t}}{1+\mathrm{e}^{-2 \operatorname{cct} t}}\right), \text { where } c^{2}=\frac{k}{m g} .
$$

The raindrop has a terminal speed V.
b) Show that the raindrop reaches a speed of $\frac{1}{2} V$ in time $\sqrt{\frac{m}{4 g k}} \ln 3$ seconds.
\square

Question 19 (****+)
A particle, of mass m, is projected vertically upwards with speed u and moves under the action of its weight and air resistance of magnitude $\frac{1}{2} m g v^{\frac{2}{3}}$, where v is the speed of the particle at time t.

Show that the distance the particle covers until it comes to instantaneous rest is

$$
\frac{3}{g}\left[u^{\frac{4}{3}}-8 u^{\frac{2}{3}}+32 \ln \left(1+\frac{1}{4} u^{\frac{2}{3}}\right)\right]
$$

Created by T. Madas

Question 20 (*****)
[In this question $g=10 \mathrm{~ms}^{-2}$]

Two particles A and B, or respective masses 8 kg and 2 kg , are attached to the ends of a light elastic string of natural length 2.5 m and modulus of elasticity 80 N .

The string passes through a small smooth hole on a rough horizontal table.
A is held at a distance of 2.5 m from the hole and B is held at a distance of 2 m vertically below the hole. The coefficient of friction between A and the table is 0.5 .

Both particles are released simultaneously from rest.
a) Find an expression for the subsequent velocity of A and hence verify that A first comes to rest 0.47524 s after release.
b) Calculate the distance A covers until it first comes to rest.

$$
v=\frac{\sqrt{5}}{2} \sin (\sqrt{20} t)-2 t, d \approx 0.15578 \ldots \mathrm{~m}
$$

