MOMENT OF INERTIA CALCULATIONS

Created by T. Madas

Created by T. Madas

Question 1 (**)

Use integration to show that the moment of inertia I of a thin uniform $\operatorname{rod} A B$, of length $2 a$ and mass m, about an axis through A and perpendicular to the length of the rod is given by

Question 2 (**)
A uniform circular disc, of mass m and radius a, is free to rotate about an axis L, through the centre of the disc and perpendicular to the plane of the disc

Prove, using integration, that the moment of inertia of the disc about L is $\frac{1}{2} m a^{2}$.
[You may assume without proof that the standard result of the moment of inertia of a uniform hoop about an axis through its centre and perpendicular to its plane.]

Created by T. Madas

Question 3 (** $^{(*)}$
Show that the moment of inertia of a uniform solid sphere of mass m and radius a, about one of its diameters is

$$
\frac{2}{5} m a^{2}
$$

[In this proof, you may assume standard results for the moment of inertia of uniform circular discs.]

Question 4 (***)
A uniform circular lamina L has mass m and radius a.
a) Show by integration that the moment of inertia of L about a perpendicular axis through the plane of the lamina and though its centre is $\frac{1}{2} m a^{2}$.

A closed hollow cylinder C has mass M, radius a and height h. The entire cylinder is made of the same material with uniform density.
b) Show that the moment of inertia of C about its axis of symmetry is
$\frac{1}{2} M a^{2}\left(\frac{a+2 h}{a+h}\right)$.

Question 5 (***+)
The finite region R is bounded by the x axis, the straight line with equation $x=3 a$ and the curve with equation $y=\sqrt{2 a x}$, where a is a positive constant.

A uniform solid S is generated by fully rotating R in the x axis.

If the mass of S is m, determine the moment of inertia of S about the x axis.
[In this question, you may assume standard results for the moment of inertia of uniform circular discs.]

Question 6 (***+)
Show by integration that the moment of inertia of a uniform solid circular cone of mass M, height h and base radius a, about its axis of symmetry, is given by

$$
\frac{3}{10} M a^{2} .
$$

[In this proof, you may assume standard results for the moment of inertia of uniform circular discs.]

Created by T. Madas

Question $8 \quad(* * *+$)
A uniform rod $A B$, of mass m and length $8 a$, is free to rotate about an axis L which passes through the point C, where $|A C|=2 a$.
a) Given that the moment of inertia of the rod about L is $\lambda m a^{2}$, use integration to find the value of λ.

A different rod $A B$, also of mass m and length $8 a$ is free to rotate about a smooth fixed axis L^{\prime}, which passes through the point C, where $|A C|=2 a$. The mass density of the section $A C$ is twice as large as the mass density of the section $C B$.
b) Given that the moment of inertia of this rod about L^{\prime} is $\mu m a^{2}$, determine the value of μ.

Created by T. Madas

Question 9 (****)
A triangular lamina $O A B$ has $|O A|=|O B|$ and $|A B|=2 a$. The height of the lamina drawn from O to $A B$ has length h.

Show by integration that the moment of inertia of the lamina about an axis through its vertex through O and perpendicular to the plane of the lamina, is given by

$$
\frac{1}{6} m\left(a^{2}+3 h^{2}\right)
$$

where m is the mass of the lamina.
[In this proof, you may assume standard results for the moment of inertia of uniform rods.]

\square

Question 10 (****)
A uniform equilateral triangular lamina $A B C$ has mass m and side length of $\sqrt{3} a$.

Show, by integration, that the moment of inertia of the lamina about an axis through one of its vertices and perpendicular to the plane of the lamina is $\frac{5}{4} m a^{2}$.
[In this proof, you may assume standard results for the moment of inertia of uniform rods.]
proof

Created by T. Madas

Question 11 (****)
A framework, in the shape of an equilateral triangle $A B C$, is formed by rigidly joining three uniform rods, each of mass m and length $2 a$.

Find the moment of inertia of the framework about an axis passing through A, and parallel to $B C$

Question 12 (****)
Show by integration that the moment of inertia of a uniform solid circular cone of mass m, height h and base radius a, about an axis through its vertex and parallel to its base, is given by

$$
\frac{3}{20} m\left(a^{2}+4 h^{2}\right)
$$

[In this proof, you may assume standard results for the moment of inertia of uniform circular discs.]

Question 13 (****)
Show by integration that the moment of inertia of a uniform solid hemisphere of mass m and radius a about a diameter of its plane face, is

$$
\frac{2}{5} m a^{2}
$$

[In this proof, you may assume standard results for the moment of inertia of a uniform circular disc about one of its diameters.]

Question 14 (****)
Show by integration that the moment of inertia of a uniform solid right circular cylinder of mass m and radius a about a diameter of its plane face, is

$$
\frac{m}{12}\left(3 a^{2}+4 h^{2}\right)
$$

[In this proof, you may assume standard results for the moment of inertia of a uniform circular disc about one of its diameters.]

Question 15 (****)
A thin uniform shell in the shape of a right circular cylinder of radius a and height h has both its circular ends removed.

The resulting open cylindrical shell has mass M.

Show by integration that the moment of inertia of this shell about a diameter coplanar with one of its removed circular ends, is given by

$$
\frac{1}{6} M\left(3 a^{2}+2 h^{2}\right)
$$

[In this proof, you may assume standard results for the moment of inertia of uniform circular hoops.]
\square , proof

Question 16 ($* * * * * *)$
Show that the moment of inertia of a thin uniform spherical shell of mass m and radius a, about one of its diameters is

[In this proof, you may use valid symmetry arguments instead of calculus.]

MOMENT OF INERTIA
 STANDARD RESULTS

Created by T. Madas

Question 1 (**)
A uniform square lamina has mass m and side length $2 a$.

The lamina is free to rotate in about an axis L, which is perpendicular to the lamina and passes through one of the vertices of the lamina.

Calculate the moment of inertia of the lamina about L, in terms of m and a.

$$
I=\frac{8}{3} m a^{2}
$$

σ

Question 2 (**)
A square frame $A B C D$ consists of four uniform rods $A B, B C, C D$ and $D A$.

Each of the rods has mass m and length $2 a$.

The frame is free to rotate about an axis L, which is perpendicular to the plane of the frame and passes through the midpoint of $A B$.

Calculate the moment of inertia of the lamina about L, in terms of m and a.

Created by T. Madas

Created by T. Madas

Question 3 (**)
Four uniform rods, each of mass m and length $2 \sqrt{2} a$, are rigidly joined together to form a square framework $A B C D$.

The framework is free to rotate about an axis L, which is perpendicular to plane of the framework and passes through A.

Calculate the moment of inertia of $A B C D$ about L, in terms of m and a.

$$
I=\frac{74}{3} m a^{2}
$$

Question $4 \quad$ (**)
A rectangular lamina $A B C D$, has mass m, length a and width b are rigidly joined together to form a square framework.

Calculate the moment of inertia of $A B C D$ about an axis through A perpendicular to the plane of $A B C D$.

$$
I=\frac{1}{3} m\left(a^{2}+b^{2}\right)
$$

Created by T. Madas

Question 5 (**)

A uniform circular disc, with centre C, has mass $5 m$ and radius a.

The straight line $A B$ is a diameter of the disc.

A particle of mass m is attached to the disc at the point M, where M is the midpoint of $A C$. The disc is free to rotate about an axis L, which lies in the plane of the disc and is a tangent to the disc at B.

Find the moment of inertia of the loaded disc about L.

Created by T. Madas

Question 6 (**+)

A compound pendulum consists of a thin uniform rod $O C$ of length $8 a$ and mass m is rigidly attached at C to the centre of a thin uniform circular disc of radius a and mass 4 m . The rod is in the same vertical plane as the disc. The pendulum is free to rotate in this vertical plane, through a smooth vertical axis through O, perpendicular to the plane of the disc.

Show that the moment of inertia of the pendulum about the above described axis is

Created by T. Madas

Question 8 (**+)

Two identical uniform rods $A B$ and $B C$, each of mass m and length l are rigidly joined at B, so that $\measuredangle A B C=90^{\circ}$. Three particles of masses $m, 2 m$ and $3 m$ are fixed at A, B and C, respectively. The system of the two rods and the three particles can rotate freely in a vertical plane about a horizontal axis through M, where M is the midpoint of $A B$.

Show clearly that the moment of inertia of the system about an axis through M and perpendicular to the plane $A B C$ is $\frac{62}{3} m l^{2}$.

Created by T. Madas

Question 9 (**+)

Two uniform discs, each of mass $2 m$ and radius a, are attached to each of the ends of a thin uniform rod $A B$, of mass $3 m$ and length $6 a$. The system lies in the same plane the centres of the discs being collinear with $A B$, and located $8 a$ apart.

The system is free to rotate about an axis on a point on the $\operatorname{rod} C$, where $|A C|=2 a$. This axis is perpendicular to $A B$ but lies in the same plane as the system.

Determine the moment of inertia of the system about C.

Question $10 \quad(* *+)$
A disc of radius r and centre O is removed from a larger uniform disc of radius R and centre O, forming an annulus of mass M.

Use standard results to show that the moment of inertia of the annulus about an axis through O and perpendicular to its plane, is

$$
\frac{1}{2} M\left(R^{2}-r^{2}\right)
$$

and use this result to deduce the moment of inertia of a circular hoop of mass M, about an axis through its centre and perpendicular to the plane of the hoop.

Question 11 (**+)
A thin uniform shell in the shape of a right circular cylinder of radius r and height h, with both its circular ends made of the same material and having the same thickness.

The resulting closed cylindrical shell has mass m.
Find the moment of inertia of the shell about its axis of symmetry.

$$
\frac{m r^{2}(r+2 h)}{2(r+h)}
$$

\square $=\frac{\pi r^{2}+\pi r^{2}+2 \pi r h}{}$ $=2 \pi r^{2}+2 \pi r h$
$=2 \pi(r+h)$
$\frac{m}{(r+h)}$

- NASS Of EACH Of THE DNo crewhe Brass $=\pi r^{2} \times \frac{m}{2 \pi r(r+h)}=\frac{m r}{2(r+h)}$ - MAES OF THE OUQUAA SURAYCE $=2 \pi r h \times \frac{m}{2 \pi T(T+h)}=\frac{m h}{r+h}$
- NEC BY THE STRETCH 2UUT, THE WUOAD SURFAEE ON BF DEDUCED TO A ARCULAR Whop of RAOLLSS, ANJD of THE SMTHT MASS CAOF OF THE BHEES IS MODEULID AS A DSC
 $2 \times \frac{1}{2}\left[\frac{m r}{2(r+b)}\right]$,

Two B +5E5 - $I_{x=}=$ $I_{\text {raxs }}=\frac{m r^{2}(r+2 h)}{2(r+h)}$

Created by T. Madas

Question 12 (***)

A thin uniform wire $A B$, of mass m and length $3 a$, is bent into the shape of an equilateral triangle.

Find the moment of inertia of the triangle about an axis through one of its vertices and perpendicular to the plane of the triangle.

Question 13 (***)

A composite body consists of a thin uniform rod $A B$, of mass m and length $3 a$, with the end B rigidly attached to the centre O of a uniform circular lamina, of radius $2 a$ and mass m. The rod is perpendicular to the plane of the lamina. The body is free to rotate in a vertical plane about a horizontal axis through A, and perpendicular to $A B$.

Find the moment of inertia of the body about the above described axis.

$$
I=16 m a^{2}
$$

Created by T. Madas

Question 14 (***)

A uniform $\operatorname{rod} A B$, has mass m and length $\sqrt{2} a$.
a) Use integration to find the moment of inertia of the rod about an axis through its midpoint O.

Three rods, identical to $A B$, are joined together to form an equilateral triangle $A B C$. The triangle is free to rotate about a fixed smooth axis L, which is perpendicular to the plane of $A B C$ and passes through one of the vertices of $A B C$.
b) Determine the radius of gyration of $A B C$ about L.

Created by T. Madas

Question 15 (***)

A shop sign is in the shape of a uniform circular disc of mass $4 m$ and radius a.
It is suspended vertically by two uniform rods $A B$ and $C D$, each of length $3 a$ and mass $2 m$. Two more rods $E F$ and $B D$, each of length $2 a$ and mass m are placed around the sign. All the rods are tangents to the disc so that $B F E D$ is a square as shown in the figure.

Use standard results to determine the moment of inertia of the shop sign and the 4 rods, about a horizontal axis through A and C.

Question 16 (***)
A thin uniform $\operatorname{rod} A B$, of length $2 a$ and mass m, is free to rotate about an axis L, which passes through A and is perpendicular to the length of the rod.
a) Use integration to show that the moment of inertia I of this rod about L is

$$
I=\frac{4}{3} m a^{2}
$$

b) Use this result and moment of inertia theorems, to determine the moment of inertia of a uniform square lamina, of side length $2 a$ and mass m, about one of its diagonals.

Created by T. Madas

A uniform lamina, of mass m, is formed from a square lamina $A B C D$ of side $2 a$, by removing a square of side $2 b$ so both squares have parallel sides and share the same centre, as shown in the figure above.

Find the moment of inertia of this lamina about an axis passing through the midpoint of $A B$ and the midpoint of $D C$.

Created by T. Madas

Created by T. Madas

A uniform lamina, of mass m, is formed from a square lamina $A B C D$ of side $2 a$, by removing a square of side a so both squares have parallel sides and share the same centre, as shown in the figure above.

Find the moment of inertia of this lamina about an axis through A and perpendicular to the plane of the lamina.

Created by T. Madas

Created by T. Madas

Question 19 (***)

The point A lies on the circumference of a uniform circular disc of diameter $4 a$.

A smaller circular disc with diameter $O A$ is removed from the larger disc, where O is the centre of the larger disc, as shown in the figure above.

The remaining composite lamina L has mass m.

Determine its moment of inertia of L about an axis lying on the plane on L, the axis passing through A and being perpendicular to $A O$.

$$
\frac{25}{4} m a^{2}
$$

\square
 (By THE Preppidivune A He BHocwneds) If $\frac{4}{3} m a^{2}$
\qquad $\frac{4}{3} m a^{2}+\left(\frac{4}{3} m\right)(2 a)^{2}=\frac{4}{3} m a^{2}+\frac{4}{3} m a^{2}=\frac{20}{3} m a^{2}$
 $\underbrace{\frac{1}{4}\left(\frac{1}{3} m\right) a^{2}}+\underbrace{\left(\frac{1}{3} m\right) a^{2}}=\frac{1}{12} m a^{2}+\frac{1}{3} m a^{2}=\frac{5}{12} m a^{2}$
 by subretatan ur ob stan) $\frac{20}{3} m a^{2}-\frac{5}{12} m a^{2}=\frac{25}{4} m a^{2}$

Created by T. Madas

Question 20 (***)
Four identical rods, each of mass m and length $2 a$ are joined together to form a square rigid framework $A B C D$.

A fifth rod $A C$, of mass $3 m$, is added to the framework for extra support.
The 5 rod framework is free to rotate about an axis L, which passes through A, and is perpendicular to the plane of $A B C D$.

Determine the moment of inertia of the framework about L.
$\square, I=\frac{64}{3} m a^{2}$

START BY A DIAGZATM - lenota of AC is $2 \sqrt{2} 0$ - Lenotil of An or AM is $\sqrt{5}$ a \qquad \qquad $I=\frac{1}{3} m q^{2}+m q^{2}=\frac{4}{3} m a^{2}$ MOMR \qquad homitut of inEeTIA of THE DOD AC $I=\frac{1}{3}(3 m)(\sqrt{2} a)^{2}+3 m(\sqrt{2 a})^{2}=2 m a^{2}+6 m a^{2}=8 m a^{2}$ \qquad $I_{T \pi}=\frac{4}{3} m a^{2}+\frac{4}{3} m a^{2}+\frac{16}{3} m a^{2}+\frac{16}{3} m a^{2}+8 m a^{2}$ ($A B$) (AD) (BC) (DC) (AC) $I_{\text {TUTAC }}=\frac{64}{3} \mathrm{mq}^{2}$

Created by T. Madas

Created by T. Madas

Question $21(* * *+)$
A uniform $\operatorname{rod} A B$ is bent at the point O, so that in the resulting L-shaped rigid object $\measuredangle A O B=\frac{1}{2} \pi,|A O|=4 a$ and $|O B|=a$.

Find the moment of inertia of the resulting object, about an axis through its centre of mass and perpendicular to the plane $A O B$.

Created by T. Madas

Question 22 (***+)

A uniform circular lamina has radius $4 a$ and centre O. The points A, B, C and D lie on the lamina and are vertices of a square whose centre is at O so that $|O D|=2 a$.

Four circular discs, each of radius a, with centres A, B, C and D are removed from the lamina. The remaining lamina forms a new composite lamina of mass m.

The new lamina is free to rotate in a vertical plane about a fixed smooth horizontal axis L, which is perpendicular to the lamina and passes through a point P at the circumference of the lamina.

Calculate the moment of inertia of the lamina about L, in terms of m and a.

Created by T. Madas

Created by T. Madas

Question 23 (***+)
A uniform lamina has mass m and is in the shape of a semicircle of radius a, centred at the point O. The centre of mass of the lamina is at the point G.

The lamina is free to rotate about a fixed smooth horizontal axis L, which is perpendicular the plane of the lamina and passes through G.

Calculate the moment of inertia of the lamina about L, in terms of m and a.

$$
I=\frac{m a^{2}}{18 \pi^{2}}\left(9 \pi^{2}-32\right)
$$

