RELATIVE

MOTION

Created by T. Madas

Question 1 (**)

An aeroplane is travelling at the same horizontal level. The speed of the aeroplane relative to the air is $v \mathrm{~ms}^{-1}$ due north.

The air is blowing from south-west at $25 \mathrm{~ms}^{-1}$.

Given the magnitude of the speed of the aeroplane relative to the ground is $180 \mathrm{~ms}^{-1}$, determine the value of v.

Question 2 (**)
As a boat moves, it travels at $4 \mathrm{~ms}^{-1}$ due north, relative to the water. The water is moving due west at $5 \mathrm{~ms}^{-1}$.
a) Find the magnitude of the velocity of the boat relative to the ground.
b) Determine the bearing at which the boat is moving as viewed by a stationary observer outside the boat.

Question 3 (**)
A boat A is sailing at 15 knots due north.

To the captain of boat A another boat B is appearing to be sailing at 12 knots on a bearing of 120°.

Determine the actual speed of B.

Question 4 (**)
A river which has parallel banks 168 m wide is flowing at constant speed $0.8 \mathrm{~ms}^{-1}$.

A boy can capable of swimming at $1 \mathrm{~ms}^{-1}$ swims across at right angles to both banks.

Determine the time the boy takes to swim across the river.

Created by T. Madas

Question 5 (**)
William is standing on the observation platform of a tall lighthouse.

He is observing a boat is sailing through water, which flowing due west at $3 \mathrm{~ms}^{-1}$. The velocity of the boat relative to the water is $8 \mathrm{~ms}^{-1}$, due north.

Find the speed and direction, as a bearing, of the boat as it is observed by William.

Created by T. Madas

Question $6 \quad(* *+)$

The banks of a river are modelled as parallel lines of constant width 42 m . The river flows with constant speed of $0.84 \mathrm{~ms}^{-1}$, throughout its width. The points P and Q are on opposite river banks so that $P Q=42 \mathrm{~m}$, as shown in the figure above.

Alex and Bradley are swimmers, both capable of swimming relative to the water with a speed of $1.4 \mathrm{~ms}^{-1}$.

Alex sets from Q and decides to cross the river in the shortest possible time, and in doing so he reaches the opposite bank at the point R.
a) Calculate the distance $P R$.

Bradley sets from P and decides to cross the river directly across reaching the opposite bank at the point Q.
b) Calculate the time taken by Bradley to reach Q.

$$
|P R|=25.2 \mathrm{~m}, t=37.5 \mathrm{~s}
$$

Question $7 \quad(* *+)$
An aeroplane capable of speed $U \mathrm{~ms}^{-1}$, is flying with this speed on a bearing of β.

As observed from the ground, due to the cross wind this plane is flying with a speed of $180 \mathrm{~ms}^{-1}$, on a bearing of 60°.

If the cross wind is blowing from the west with a speed of $36 \mathrm{~ms}^{-1}$, calculate the value of U and the value of β.

Created by T. Madas

Question 8 (***)

An aeroplane is travelling at the same horizontal level and in a northerly direction relative to the ground. The speed of the aeroplane relative to the air is $400 \mathrm{kmh}^{-1}$.

Question 9 (***)
A bird is capable of flying at $70 \mathrm{kmh}^{-1}$.

The bird wishes to fly to its next which 20 km due East from it current position.

There is a wind blowing from North-West at $60 \mathrm{kmh}^{-1}$.
a) Find the direction, as a bearing, in which the bird must fly to reach its nest.
b) Calculate the time, in minutes, for its journey.

Created by T. Madas

Question 10 (***)

The banks of a river are modelled as parallel lines of constant width. The river flows with constant speed of $2.7 \mathrm{~ms}^{-1}$, throughout its width. A boat travels with constant velocity $3.6 \mathrm{~ms}^{-1}$ relative to the water, in a direction perpendicular to the river banks.

The boat starts at a point A on one river bank and ends up at a point B on the opposite river bank. The path $A B$ forms an acute angle β with the river bank, as shown in the figure above.
a) Calculate ...
i. $\quad .$. the speed of the boat at it travels from A to B.
ii. ... the value of β.

The boat returns from B to A, following exactly the same straight path.
b) Determine the velocity of the boat when rowed back from B to A, given that it is still rowed with a constant velocity $3.6 \mathrm{~ms}^{-1}$ relative to the water.

$$
v=4.5 \mathrm{~ms}^{-1}, \beta=53.13^{\circ}, v=1.26 \mathrm{~ms}^{-1}
$$

Created by T. Madas

Question 11 (***)

A river flows with constant speed of $V \mathrm{~ms}^{-1}$, throughout its width. The banks of the river are modelled as parallel lines of constant width of 30 m .

A boat starts at O and travels upstream with constant speed $\sqrt{3} \mathrm{~ms}^{-1}$ relative to the water, in a direction of 60° to the river bank, as shown in the figure above. The point A is on the opposite river bank so that $O A$ is perpendicular to both river banks.

The point B is on the same bank as A, so that $|A B|=5 \mathrm{~m}$, downstream. To an observer on one of the banks of the river the boat sails on a straight line from O to B.
a) Calculate the time it takes the boat to travel from O to B.
b) Determine the value of V, correct to two decimal places.
$t=20 \mathrm{~s}, V=1.12 \mathrm{~ms}^{-1}$

Question 12 (***)
The vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors mutually perpendicular to one another.

At time $t=0 \mathrm{~s}$, the respective position vectors of two particles P and Q, relative to a fixed origin O, are $(-6 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k}) \mathrm{m}$ and $(-2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \mathrm{m}$.
P has constant velocity $(3 \mathbf{i}+\mathbf{j}) \mathrm{ms}^{-1}$ and Q has constant velocity $(\mathbf{i}-\mathbf{k}) \mathrm{ms}^{-1}$.

Find the cosine of the angle $P O Q$ when the distance between P and Q is least.

Question 13 (***)
Two straight horizontal roads meet at right angles at a junction O.

One of the roads is directed south to north and the other west to east.

A cyclist is travelling north on the first road at constant speed $6 \mathrm{~ms}^{-1}$ and at time $t=0 \mathrm{~s}$ is 200 m south of O.

A car is travelling west on the second road at constant speed $24 \mathrm{~ms}^{-1}$ and at time $t=0 \mathrm{~s}$ is 960 m east of O.

Determine the shortest distance between the cyclist and the car if they continue to move at the above described fashion.

$$
d_{\min }=\frac{160}{\sqrt{17}} \approx 38.81 \ldots
$$

Created by T. Madas

Question 14 (***)

A cyclist is travelling in a southerly direction at a constant speed $10 \mathrm{kmh}^{-1}$, on a straight horizontal road.

To the cyclist the wind appear to be blowing from the north-west with a constant horizontal speed of $12 \mathrm{kmh}^{-1}$.

Determine, as a three figure bearing, the direction from which the wind is blowing.

Created by T. Madas

Question 15 (***)
At noon, two ships A and B are 30 km apart, with A on a bearing of 240° from B.

Ship B is moving at $7 \mathrm{kmh}^{-1}$ on a bearing of 030°. The maximum speed of A is $15 \mathrm{kmh}^{-1}$. Ship A sets a course to intercept B as soon as possible.
a) Find the course set by A, giving the answer as a bearing to the nearest degree.
b) Determine the time at which A intercepts B.
\square $\approx 047^{\circ}, 15: 31$

Question 16 (***)
An airplane flying at $600 \mathrm{kmh}^{-1}$ in still air travels directly from A to B.

The point B is 700 km away from A, on a bearing 030° from A.

There is a steady wind, blowing from the west with a speed of $50 \mathrm{kmh}^{-1}$, throughout the flight.
a) Determine, as a bearing, the course the pilot should steer the airplane in order to travel directly from A to B, and hence calculate the flight time.
b) Find, as a bearing, the course the pilot should steer the airplane in order to travel directly from B to A, assuming the wind is blowing steadily from the west with the same speed.
\square , $025.9^{\circ}, 1$ hour, 7 minutes, 234°

Created by T. Madas

Question 17 (***)

A river flows with constant speed of $V \mathrm{~ms}^{-1}$, throughout its width. The banks of the river are modelled as parallel lines of constant width of 24 m .

A boat starts at O and travels upstream with constant speed $U \mathrm{~ms}^{-1}$ relative to the water, in a direction of 60° to the river bank, as shown in the figure above. The point B is on the opposite river bank so that $O B$ is perpendicular to both river banks.

The point C is on the same bank as B, so that $|B C|=6 \mathrm{~m}$, downstream.

To a stati0nary observer on one of the banks of the river the boat sails on a straight line from O to C.

Show that $V=\frac{1}{9}(3+4 \sqrt{3})$.

Question $18 \quad\left({ }^{* * *}+\right.$)
At 14.00 hours a coastguard patrol ship first sights an unidentified boat, 12 km away on a bearing of 210°.

The unidentified boat is sailing at $18 \mathrm{kmh}^{-1}$ on a bearing of 290°.

The coastguard patrol ship is sailing at $36 \mathrm{kmh}^{-1}$.
a) Find, as a bearing, the course at which the coastguard patrol ship should steer in order to intercept the unidentified boat.
b) Calculate the time at which the interception will take place.
\square $\square, \approx 236^{\circ}, 14: 31$

Detue a rewaiy iempart
Anwatens 14:00

$T=12$
$T=0.517 \ldots$. poes
T - 30.7 mancris
$T \approx 31$ MINTHS

Created by T. Madas

At noon two boats A and B are 10.5 km apart with B on a bearing 060° from A.

Boat B is travelling due North with a constant speed of $12 \mathrm{kmh}^{-1}$. Boat A is capable of a maximum speed of $18 \mathrm{kmh}^{-1}$ and sets on a course to intercept A.
a) Calculate the bearing at which A must travel in order to intercept A in the least possible time.
b) Given instead that A travels on a bearing of 060° determine ...
i. ... the closest distance between A and B.
ii. ... the time it takes for the two boats to get closest together.

$$
\approx 025^{\circ}, d_{\min }=\frac{3}{2} \sqrt{21} \approx 6.87 \mathrm{~km}, 12: 30
$$

Question 20 (***+)
The radar of a battleship detects a destroyer, 50 km North of the battleship.

The destroyer is moving on a bearing of 120° with constant speed $40 \mathrm{kmh}^{-1}$.

The maximum speed of the battleship is $25 \mathrm{kmh}^{-1}$ and on detecting the destroyer, it heads on a bearing θ° with maximum speed, in order to get as close as possible to the destroyer.
a) Find the value of θ.

The guns of the battleship have a range of 10 km .
b) Determine whether the destroyer gets within the range of the battleship's guns.

$$
\theta \approx 68.7^{\circ}, \quad d_{\min } \approx 18.2 \mathrm{~km}>10 \mathrm{~km}
$$

Created by T. Madas

Question 21 (***+)

When a boat is sailing due North with constant speed $12 \mathrm{kmh}^{-1}$, the wind appears to the crew on the boat to be blowing from the West.

The boat increases its speed to $20 \mathrm{kmh}^{-1}$ and changes its direction to a bearing θ°, where $\tan \theta=\frac{3}{4}$. The wind now appears to the crew on the boat to be blowing from the North.

Assuming the true velocity of the wind is the same throughout the boat's journey determine in any order ...

- $\quad .$. the true speed of the wind.
- ... the true direction of the wind.
- ... the apparent speed of the wind when the boat is sailing at $20 \mathrm{kmh}^{-1}$ on a θ° bearing.

$$
\left|v_{w}\right|=12 \sqrt{2} \approx 17.0 \mathrm{kmh}^{-1}, 045^{\circ} \text { or from SW, }\left|v_{w}\right|=4 \mathrm{kmh}^{-1}
$$

Question 22 (***+)
A ship A is sailing due east with constant speed $20 \mathrm{kmh}^{-1}$.

At 15.00 hours, another ship B is 11 km away on a bearing of 160° from A.
Find the latest time by which B can intercept A, assuming that B will set on such course with constant speed $19 \mathrm{kmh}^{-1}$.
\square , 17:43

Created by T. Madas

Question 23 (***+)
A ship B is moving on a bearing 060° at constant speed $30 \mathrm{kmh}^{-1}$.

Another ship A moving with constant speed $V \mathrm{kmh}^{-1}$ sets on a course to intercept B, when A gets to a position 40 km east of B.
a) Find the minimum value of V, required for interception.
b) Given further that $V=25$, determine the time it takes A to intercept B.

Question 24 (***+)
When a jogger is running due North with constant speed $4 \mathrm{~ms}^{-1}$, the wind appears to him to be blowing from the West.

When the jogger is running due North with constant speed $8 \mathrm{~ms}^{-1}$, the wind appears to him to be blowing from the North West.

Assuming the true velocity of the wind is the same throughout the joggers run, determine in any order ...

- ... the true speed of the wind.
- ... the true direction of the wind.

$$
\left|v_{w}\right|=4 \sqrt{2} \approx 5.66 \mathrm{~ms}^{-1}, 045^{\circ} \text { or from SW }
$$

Question 25 (***+)
A coastal base C is on bearing 045° from an army airport base $B, 150 \mathrm{~km}$ away.

As part of a training exercise, a plane leaves B on a direct path to C. On reaching C, the plane immediately returns directly back to B, along the same path.

The plane is flying with constant speed $700 \mathrm{kmh}^{-1}$ relative to the air. During the entire flight there is a wind blowing from a bearing of 105°, with speed $50 \mathrm{kmh}^{-1}$.

Determine the flight time in minutes and seconds.
\square , 25 minutes -45 seconds

Created by T. Madas

Question 26 (***+)
When a man is walking due North with constant speed $4 \mathrm{kmh}^{-1}$, the wind appears to him to be blowing from the East.

When the man is jogging due South with constant speed $12 \mathrm{kmh}^{-1}$, the wind appears to him to be blowing with constant speed $20 \mathrm{kmh}^{-1}$.

Assuming the true velocity of the wind is the same throughout the man's walking and jogging, determine the true speed and direction of the wind.
$\left|v_{w}\right|=4 \sqrt{10} \approx 12.65 \mathrm{kmh}^{-1}, 288^{\circ}$

Created by T. Madas

Question 27 (***+)

When a boat is sailing due North with constant speed $20 \mathrm{~km} \mathrm{~h}^{-1}$, the wind appears to him to be blowing from a direction with bearing 060°

The boat turns around and starts sailing south with the same speed.

The wind now appears to be blowing from a direction with bearing 150°.

Assuming the true velocity of the wind is the same for both parts of the journey, find the true velocity of the wind.

$$
\left|v_{w}\right|=20 \mathrm{~ms}^{-1}, \text { from a bearing } 120^{\circ}
$$

Created by T. Madas

Question 28 (***+)

The radar of a battleship detects a destroyer, 50 km west of the battleship.

The destroyer is moving on a bearing of 30° with constant speed $40 \mathrm{kmh}^{-1}$.

The maximum speed of the battleship is $30 \mathrm{kmh}^{-1}$ and on detecting the destroyer, it heads on a bearing θ° with maximum speed, in order to get as close as possible to the destroyer.
a) Find the value of θ.

The guns of the battleship have a range of 10 km .
b) Determine whether the destroyer gets within the range of the battleship's guns.
c) Calculate the actual distance the battleship covers from the instant it sets in pursuit of the destroyer until it gets as close to it.

$$
\theta \approx 348.6^{\circ}, d_{\min } \approx 9.89 \mathrm{~km}<10 \mathrm{~km}, \approx 55.57 \mathrm{~km}
$$

Question 29 (***+)
A ship A is travelling at a constant speed of $20 \mathrm{kmh}^{-1}$ on a bearing of 040°.

At 17.00 hours, another ship B is 30 km away from A and the bearing of A from B is 300°. Ship B is travelling at a constant speed of $U \mathrm{kmh}^{-1}$ and sets on a course to intercept A.
a) Find the least possible value of U.
b) Given that $U=24$, determine the earliest time at which B intercepts A.

Created by T. Madas

Question 30 (***+)

At time $t=0$ two walkers A and B are 250 m apart with B due south of A. The park in which they are taking their walk is wide and its grounds are completely flat.
A is walking due east with constant speed $1.6 \mathrm{~ms}^{-1}$.
B walks with constant speed $1.5 \mathrm{~ms}^{-1}$ in a straight line and in such a way so that he passes as close as possible to B.
a) Find, as a bearing, the direction of the path of B

The two walkers are at their closest distance together, $D \mathrm{~m}$, at time $T \mathrm{~s}$.
b) Calculate, in any order, ...
i. ... the value of D.
ii. .. the value of T.

Question 31 (***+)
A yacht Y is moving with constant speed $24 \mathrm{kmh}^{-1}$ on a straight line course of bearing 120°. At a given instant, a patrol boat X, is due south of Y and sets on a straight line course with constant speed $U \mathrm{kmh}^{-1}$ to intercept Y.
a) Calculate the minimum value of U so that X can intercept Y.
b) Given that $U=30$ determine the bearing that X must move on so that interception takes place.
c) Given instead that $U=10$ find the bearing that X must move on so that it passes as close as possible to Y.

$$
U_{\min }=12 \sqrt{3} \approx 20.8 \mathrm{kmh}^{-1}, \approx 044^{\circ}, \approx 086^{\circ}
$$

\square

Question 32 (***+)
A patrol boat is due south of a fishing trawler. The trawler is sailing at constant speed of $12 \mathrm{kmh}^{-1}$ on a bearing 120°.

The patrol boat decides to intercept the trawler and travels in a straight line with constant speed $U \mathrm{kmh}^{-1}$.
a) Find the minimum value of U.
b) Given instead that $U=22$, determine \ldots
i. ... the bearing of the course that the patrol must take to intercept the trawler.
ii. ... the distance the trawler and the distance the patrol boat cover until the interception takes place.

$$
U_{\min }=6 \sqrt{3} \approx 10.39 \mathrm{~km} \mathrm{~h}^{-1}, \quad \approx 028^{\circ}, D_{P} \approx 3.47 \mathrm{~km}, D_{T} \approx 1.89 \mathrm{~km}
$$

Created by T. Madas

Question 33 (***+)

At noon a frigate is 18 km away from a ship and at that time the bearing of the frigate relative to the ship is 120°.

The ship is sailing east at a constant speed of $20 \mathrm{kmh}^{-1}$.
a) Determine the minimum speed with which the frigate can intercept the ship.

The frigate sets off to intercept the ship by sailing at a constant speed of $15 \mathrm{kmh}^{-1}$.
b) Calculate, to the nearest degree, the two possible bearings which the frigate can follow, and hence find the shorter of the two possible interception times, correct to the nearest minute.

Question 34 (***+)
A ship B is travelling due east at a constant speed of $15 \mathrm{~km} \mathrm{~h}^{-1}$.

At midnight, another ship A is 24 km away from B so that the bearing of B from A is 240°. Ship B is travelling at a constant speed of $U \mathrm{kmh}^{-1}$ and sets on a course to intercept A.
a) Find the least possible value of U.
b) Given that $U=12$, determine the two possible bearings at which A can sail so it can intercept B.
Determine the actual distance covered by A in each of these two cases.
$, U=7.5, \quad \theta \approx 099^{\circ}, d \approx 79.5 \mathrm{~km}, \quad \theta \approx 201^{\circ}, d \approx 12.9 \mathrm{~km}$

Question 35 (****)
The unit vectors \mathbf{i} and \mathbf{j} are oriented due east and due north, respectively.

Two boats, A and B, are moving in the open sea with velocities $(7 \mathbf{i}+3 \mathbf{j}) \mathrm{kmh}^{-1}$ and $(-3 \mathbf{i}+9 \mathbf{j}) \mathrm{kmh}^{-1}$, respectively.

At noon, B is on a bearing of 120° from $A, 12 \mathrm{~km}$ away.

Calculate, correct to the nearest m , the closest distance between the two boats and the time when they are at that closest distance.
\square $d \approx 202 \mathrm{~m}, 13: 02$

- THE Distmule sewlean tith-atides at timt t
$d=\left|r_{-2}-r_{A}\right|$
$d=|6 \sqrt{3}-10 t, 6 t-6|$
$d=\sqrt{(6 \sqrt{3}-10 t)^{2}+(6 t-6)^{2}}$
$d=\sqrt{68-120 \sqrt{3 t}+100 t^{2}+36 t^{2}-72 t+36}$
$d=\sqrt{136 t^{2}-(32+200 \sqrt{3}) t+144}$
$d^{2}=136 t^{2}-24(3+5 \sqrt{3}) t+14 t$
- LtT $f(t)=136 t^{2}-24(3+5 \sqrt{3}) t+104$ By couretina THy squine of camues
$f^{\prime}(t)=2 \pi t-24(3+5 \sqrt{3})$
- soluning are zero yians
$t=\frac{24(3+5 \sqrt{3})}{272}=1.0288$
$\approx 13: 02$
- AND To FiND THe MIDNOM DISTANCF
$d_{\text {min }}=\sqrt{166(10288)^{2}-(72+120 \sqrt{3})(10288)+744}$
$\approx 0.201839 \ldots \mathrm{~km}$
$\simeq 202 \mathrm{~m}$

Question 36 (****)
At a certain instant, a ship A is sighted 35 km north of a fixed observation point O, sailing with constant speed $25 \mathrm{kmh}^{-1}$ on a bearing 045°.

At the same instant another ship B is sighted 12 km east of O.
B sails with a maximum constant speed of $19 \mathrm{kmh}^{-1}$, in a direction so that it passes as close as possible to A.
a) Determine, correct to three decimal places, the bearing at which B is sailing.
b) Find, correct to the nearest metre, the shortest distance between A and B.
c) Calculate, in minutes and seconds, the time B takes to pass closest to A.

$$
\approx 4.464^{\circ}, \approx 33960 \mathrm{~m}, \approx 54^{\prime}-14^{\prime \prime}
$$

Created by T. Madas

Question 37 (****)

On the radar screen of a plane A, an enemy aircraft B is observed on a bearing 120°, 200 km way. The speed of the enemy craft is $1200 \mathrm{kmh}^{-1}$ on a bearing 330°. The two aircrafts are at the same altitude.
A immediately sets with constant speed V_{A} to intercept B.
a) Determine the minimum value of V_{A} which makes the interception possible.
b) Given that $V_{A}=1400 \mathrm{kmh}^{-1}$, determine the bearing A must follow in order to intercept B, in the shortest possible time T, and find the value of T, correct to the nearest second.
c) Given instead that $V_{A}=550 \mathrm{kmh}^{-1}$, determine the bearing A must follow in order to pass as close as possible to B, and find this closest distance correct to the nearest metre.

$$
600 \mathrm{kmh}^{-1}, 94.62^{\circ}, 5^{\prime}-12^{\prime \prime}, 32.72^{\circ}, 9492 \mathrm{~m}
$$

Question 38 (****)
The vectors \mathbf{i} and \mathbf{j} are unit vectors mutually perpendicular to one another.

A man is about to swim across a river, starting at a fixed point O on one river bank to a point A in the opposite river bank. The position vector of A relative to O is $50 \mathbf{i} \mathrm{~m}$. The river flows parallel to \mathbf{j} and the speed of the flow is given by

$$
\frac{3}{125}\left(50 x-x^{2}\right) \mathbf{j ~ m s}^{-1}
$$

The man swims with constant velocity $(a \mathbf{i}-b \mathbf{j}) \mathrm{ms}^{-1}$, taking 62.5 s to reach A.

Determine the value of b.

Question 39 (****)
When a boat is sailing due North with constant speed $15 \mathrm{kmh}^{-1}$, the wind appears to the crew on the boat to be blowing from the direction 030°.

When another boat is sailing due South with constant speed $15 \mathrm{kmh}^{-1}$, the wind appears to the crew on that boat to be blowing from the direction 120°.

Assuming the true velocity of the wind is the same relative to the earth for both boat crews determine the velocity of the wind.

$$
\mathbf{v}_{w}=-\frac{15}{2}(\sqrt{3} \mathbf{i}+\mathbf{j}) \quad \text { or } \quad|\mathbf{v}|_{w}=15, \text { from bearing } 060^{\circ}
$$

Created by T. Madas

Created by T. Madas

Question 40 (****)

Three particles A, B and C are moving on a horizontal plane.

The speed of A is $10 \mathrm{~ms}^{-1}$ due west and the speed of C is $16 \mathrm{~ms}^{-1}$ due east.
Relative to A, B is moving on a bearing of 330°.
Relative to C, B is moving on a bearing of 300°.
Determine the speed and direction of motion of B.

Question 41 (****+)
Two particles A and B are moving on a horizontal plane with constant velocities.

At a given instant B is on a bearing of 048° relative to A and the distance between A and B is 50 m .

The distance between A and B reduces to 25 m after 2 s with B due north from A.

It is further given that the actual speed of A is $16 \mathrm{~ms}^{-1}$ and B is moving on a bearing of 205°.

Determine the two possible bearings in which A could be moving and the two possible speeds of B.
\square

$$
\left|\mathbf{v}_{B}\right| \approx 20.3 \mathrm{~ms}^{-1} \cap \mathbf{v}_{A} \text { on a bearing } \approx 147^{\circ} \cup\left|\mathbf{v}_{B}\right| \approx 28.7 \mathrm{~ms}^{-1} \cap \mathbf{v}_{A} \text { on a bearing } \approx 187^{\circ}
$$

Created by T. Madas

Question 42 (****+)
A ship A is sailing West at 8 mph and a ship B is sailing East at 28 mph .

To a man on A the wind appears to be blowing on a bearing of 170° and to a man on B the wind appears to be blowing on a bearing of 120°.

Find the direction, as a bearing, and the speed of the wind.

Created by T. Madas

Question 43 (*****)
To a motorist P driving South on a level road with constant speed u, the wind appears to be blowing from a bearing $(90+\theta)^{\circ}$.

To a motorist Q driving North on a level road with constant speed u, the wind appears to be blowing from a bearing $(90+\varphi)^{\circ}$.

To a motorist R driving North on a level road with constant speed $2 u$, the wind appears to be blowing from a bearing $(90+\psi)^{\circ}$.

Assuming that the true speed and direction of the wind is the same for all three motorists, show that

