Vasillains.com

asmaths.com DYNAMICS (SIMPLE DIFFERENTIAL EQUATIONS)

dasmaths.

THE MARSHARMS ON THE SUB THE SUBTE SUBTE SUBTES AND THE SUB THE SUBTES AND THE SUB THE SUB THE SUB THE SUB THE SUB THE SUB THE SUBTES AND THE SUB THE SUBTES AND THE SUB THE SUB THE SUB THE SUBTES AND THE SUB T A. I.Y.G.B. Malasmans. Malasman. Malasm

Question 1 (**)

A toy of mass 0.5 kg, is placed on a slope.

The toy is set in motion down the slope with an initial speed 2 ms⁻

The resultant force acting on the particle has magnitude (4-v) N, where v ms⁻¹ is the speed of the toy at time t s after it was set in motion.

By modelling the toy as a particle, determine the value of t when the speed of the toy reaches 3 ms⁻¹.

Question 2 (**)

A particle P is moving on the positive x axis with acceleration of magnitude

 $\frac{25}{x+1}\,\mathrm{ms}^{-2}\,,$

acting away from the origin O.

When the displacement of P from O is x m, its speed is $v \text{ ms}^{-1}$.

Given that P passes through O with speed 5 ms⁻¹, calculate the distance of P from O when its speed reaches 15 ms⁻¹.

Question 3 (**)

A particle P, of mass 2 kg, is moving on the positive x axis.

At time t s, its displacement from the origin O is x m and its velocity is $v \text{ ms}^{-1}$.

When x = 1, v = 1.

The resultant force acting on P has magnitude

 $\frac{2}{2x+1} \,\mathrm{N}\,,$

acting away from O.

a) Find an expression for v^2 in terms of x.

b) Find the distance of the particle from O when its speed is 2.739 ms⁻¹

 $v^2 = 1 + \ln\left(\frac{2x+1}{3}\right)$ $d \approx 999 \frac{1}{3} \text{ m}$

	And a second sec
(a) $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{cases} \Rightarrow \int_{V_{x_1}}^{V_{x_2}} d\omega = \int_{\lambda_{x_1}}^{X} d\lambda \\ \Rightarrow \int_{V_{x_1}}^{V_{x_1}} \int_{V_{x_1}}^{V_{x_1}} \int_{U_{x_1}}^{V_{x_1}} \int_{U_{x_1}}^{X} d\lambda \\ \Rightarrow \int_{V_{x_1}}^{V_{x_1}} \int_{V_{x_1}}^{V_{x_1}} \int_{U_{x_1}}^{V_{x_1}} \int_{U_{x_1}}^{V_{x_1}} \int_{U_{x_1}}^{V_{x_1}} \int_{U_{x_1}}^{U_{x_1}} \int_{U_{x_1$
(b) $1 + \frac{1}{2} (3 - \frac{1}{2})^{-1} = \frac{1}{2$	

Question 4 (**)

A particle P is moving on the positive x axis with acceleration of magnitude

 $\frac{4}{5}e^{-0.1x}$ ms⁻²,

acting away from the origin O.

When the displacement of P from O is x m, its velocity is $v \text{ ms}^{-1}$.

When x = 0, v = 2.

12

K.C.

a) Find an expression for v^2 in terms of x.

b) Determine the exact value of x when v = 4.

. CA

 $v^2 = 20 - 16e^{-0.1x}$, $x = 20\ln 2$

2

Question 5 (**)

i.G.B.

Y.G.B.

A particle P is moving on the x axis with acceleration of magnitude

$2x - \frac{3}{2}x^2 \text{ ms}^{-2}$,

acting away from the origin O.

When the displacement of P from O is x m, its velocity is $v \text{ ms}^{-1}$.

P passes through *O* when t = 0 and comes to instantaneous rest at x = 6.

a) Find an expression for v^2 in terms of x.

b) Determine the initial speed of P.

F.C.B.

 $= 144 + 2x^2 - x^3$, speed = 12 ms⁻¹

2

Manası

Question 6 (**+)

A particle P of mass 2 kg, is moving on a horizontal x axis, in the positive x direction. The only force acting on P is F, which acts in the positive x direction.

The magnitude of F is

$1 + 4\sqrt[3]{t}$,

where t is the time in seconds since the particle had velocity 4 ms⁻¹.

For the interval $0 \le t \le 8$, determine ...

- **a**) ... the work done by F.
- **b**) ... the impulse of F.

$\begin{aligned} & (k) \quad & (k) = 1 + 4\sqrt{k^2}, \\ & \Rightarrow 2 \frac{dk}{dt} = 1 + 4\sqrt{k^2}, \\ & \Rightarrow 2 \frac{dk}{dt} = 1 + 4\sqrt{k^2}, \\ & \Rightarrow 2 \frac{dk}{dt} = 1 + 4\sqrt{k^2}, \\ & \Rightarrow 2 \frac{dk}{dt} = 1 + 4\sqrt{k^2}, \\ & \Rightarrow 2 \frac{dk}{dt} = (1 + 4\sqrt{k^2}) \frac{dk}{dt}, \\ & \Rightarrow \frac{1}{2}\sqrt{2}\sqrt{k^2} = \frac{1}{k^2}\sqrt{k^2}, \\ & \Rightarrow \frac{1}{2}\sqrt{k^2}\sqrt{k^2}, \\ & \Rightarrow \frac{1}{2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}, \\ & \Rightarrow \frac{1}{2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}, \\ & \Rightarrow \frac{1}{2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}, \\ & \Rightarrow \frac{1}{2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}, \\ & \Rightarrow \frac{1}{2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}, \\ & \Rightarrow \frac{1}{2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}\sqrt{k^2}, \\ & \Rightarrow \frac{1}{2}\sqrt{k^2}\sqrt{k$

 $W_{\rm in} = 1008 \, \rm J$,

I = 56 Ns

(b) $T = \int_{1}^{t_{2}} F(t) dt = \int_{1}^{g} 1 + 4t^{\frac{1}{2}} dt = (g+4g) - 0 = 56$ Nz

Question 7 (**+)

 \hat{c}_{j}

.K.C.

A particle P starts from rest and moves on the x axis with acceleration of magnitude

 $\frac{60}{\left(t+3\right)^2}\,\mathrm{N}\,,$

acting in the direction of x increasing.

a) Find an expression for the velocity of P, in terms of t.

b) Show that the distance covered by P in the first 6 s of its motion is

 $60(2 - \ln 3)$ m.

60

t+3

1+

= 20

2

Question 8 (**+)

A particle P of mass 2 kg starts from rest and moves on the x axis.

At time t s, the resultant force acting on P has magnitude

$\frac{90}{\left(t+3\right)^2}\,\mathrm{N}\,,$

acting in the direction of x increasing.

- a) Find an expression for the velocity of P, in terms of t.
- **b**) State the limiting value for the velocity of P.
- c) Show that the distance covered by P in the first 6 s of its motion is

 $45(2-\ln 3)$ m.

 $v = 15 - \frac{45}{t+3}$, $v_{\text{max}} = 15 \text{ ms}^{-1}$

(a)	(c) $V = \frac{1}{15} - \frac{1}{15}$ $\Rightarrow \frac{dx}{dt} = \frac{1}{15} - \frac{4s}{15}$
$\Rightarrow 2\frac{\text{GH}}{\text{GH}} = \frac{\text{GH}}{20}$	$ \begin{array}{l} + b \left(\frac{2k}{6\pi^2} - \frac{2}{2} \right) & = \left(\frac{2k}{6\pi^2} - \frac{2}{2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{2} \right) \\ + b \left(\frac{2k}{6\pi^2} - \frac{2}{2} \right) & = \frac{2}{6\pi^2} \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{2k}{6\pi^2} - \frac{2}{6\pi^2} \right) & = \frac{2}{6\pi^2} \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} \right) \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6\pi^2} \right) \\ + b \left(\frac{k}{6\pi^2} - \frac{2}{6\pi^2} - \frac{2}{6$
$\Rightarrow \int_{1}^{v} d\omega = \int_{1}^{t} \frac{ds}{ds(t+3)^{2}} dt$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} = \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \end{array} = \begin{array}{l} \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $
$ = \frac{1}{\sqrt{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-$	$P(n 2k - \mathcal{E}_n 2k + de = \infty \iff \frac{1}{2}$ $P(n 2k + de = \infty \iff \frac{1}{2})$ $P(n 2k + de = \infty \iff \frac{1}{2})$ $P(n 2k + de = \infty \iff \frac{1}{2})$
$ \begin{array}{c c} & \frac{2k}{\xi_{\tau}} - 2l = V & \leftarrow \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	$ \begin{array}{c} \Rightarrow z = 90 - 45 _{9,3} \\ \Rightarrow z = 45 (z - _{13,3}) \\ \hline \\ \qquad \qquad$

Question 9 (***)

A particle P is moving on the x axis, starting from the origin O, and moving in the direction of x increasing with speed 8 ms⁻¹.

The acceleration of P is in the direction of x decreasing and has magnitude

 $\frac{3}{10}v^{\frac{1}{3}}\,\mathrm{ms}$

where v is the velocity of the particle at time t.

Find an expression for the displacement of P in terms of t.

- <u>3</u> V 3 V= f(t) STARING BY OBTAINING AN OF - 6 = - 30t 3 v3 dt - 4 = -26t = 4-<u>f</u>t (-3. dt $\Rightarrow (\sqrt{t})^{\frac{1}{2}} = (4 - \frac{1}{2}t)^{\frac{1}{2}}$ - 3 V3] = [-3/6 t] $(4 - \frac{1}{5}t)^{\frac{5}{2}}$ · V= dt CRIMN AN OPPLESDON FOR x=g(r)

 $x = 64 - 2\left(4 - \frac{1}{5}t\right)^{\frac{3}{2}}$

 $\left(4-\frac{1}{5}+\right)^{\frac{3}{2}} dt$ $\int_{-\infty}^{\infty} \left(4 - \frac{1}{4}t\right)^{\frac{3}{2}} dt$

 $= \left(-2\left(4-\frac{1}{2}\theta^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)$

[2(4-1+)\$]?

Question 10 (***)

A particle P, of mass 0.5 kg, is projected horizontally with speed $u \text{ ms}^{-1}$ from a fixed origin O on a smooth horizontal plane. When P has been moving for t s, its speed is $v \text{ ms}^{-1}$ and its displacement from O is x m.

The only force acting on P is a resistive force of magnitude $\frac{1}{4}v^3$.

a) Show clearly that

 $v = \frac{2u}{ux+2}$

b) Given further that when t = 18, x = 8, determine the value of u.

$ \begin{split} & (G_{1}) & (W_{2}^{**})_{n} = F \\ \Rightarrow \frac{1}{2} \sum_{n}^{*} = -\frac{1}{4} \sqrt{3} \\ \Rightarrow \frac{1}{2} \sum_{n}^{*} = -\frac{1}{2} \sqrt{3} \\ \Rightarrow \sqrt{2} \sum_{n}^{*} = -\frac{1}{2} \sqrt{3} \\ \Rightarrow \sqrt{2} \sum_{n}^{*} = -\frac{1}{2} \sqrt{3} \\ \Rightarrow \sqrt{2} \sum_{n}^{*} \sum$	$ \begin{array}{ll} \textbf{(b)} & \forall z = \frac{2u}{2u+2} \\ \Rightarrow \frac{dy}{dt} = \frac{2u}{2u+2} \\ \Rightarrow & (2u+2)dz = 2u d d \\ \Rightarrow & \int_{2u+2}^{2u+2} dz = \int_{2u}^{2u+2} dz \\ \Rightarrow & \int_{2u+2}^{2u+2} dz = \int_{2u}^{2u+2} dz \\ \Rightarrow & z = \int_{2u+2}^{2u+2} dz = \int_{2u+2}^{2u+2} dz \\ \Rightarrow & 32u+6z = 56u \\ & lc = 4u \\ & d_{u} = 4 \end{array} $

u = 4

1+

Question 11 (***)

A particle of mass 2 kg is moving along the positive x axis under the action of a single force of magnitude F N, which acts along the x axis in the direction of x increasing.

When the particle is $x \mod f$ rom the origin O, it is moving away from O with speed

 $\sqrt{8x^{\frac{3}{2}}+1}$ ms⁻¹.

Find the value of F when the particle is 9 m away from O.

F = 27

[ex +1] +

 $2v \frac{dy}{dx} = F$ $2\left[\cos^{2}(1)^{\frac{1}{2}} + \frac{1}{2}\left[\cos^{2}(1)^{\frac{1}{2}} + \cos^{2}(1)^{\frac{1}{2}}\right]$

Question 12 (***)

A particle P, of mass 2 kg, is released from rest and falls vertically.

When P has fallen a distance x m it has speed $v \text{ ms}^{-1}$.

P is falling under the action of its weight and air resistance of magnitude $\frac{1}{10}v^2$ N.

Show that at the instant when P has fallen through a distance of 20 m its speed is approximately 13 ms^{-1} .

proof

Question 13 (***)

A particle of mass 0.25 kg, falls vertically from rest, and when the particle has been falling for t s, its speed is $v \text{ ms}^{-1}$.

A resistive force of magnitude $\frac{1}{2}v$ is acting on the particle as it falls.

a) Show clearly that

$v = 4.9(1 - e^{-2t}).$

b) Calculate, correct to two decimal places, the distance the particle falls in the first 3 s of its motion.

(a) $4\frac{1}{2}v$ $m_{L}^{2} = m_{H} - \frac{1}{2}v$	
$\int \phi + \frac{1}{2} \int \phi = \frac{1}{4} \frac{d\omega}{dt} = \frac{1}{4} \frac{1}{2} - \frac{1}{2} v$	
$\left\langle \begin{array}{c} \downarrow \\ \downarrow $	
$\left\langle \begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
$ \begin{pmatrix} x = 0 & (A P R T R H e A) \\ x = 0 & \end{pmatrix} \implies \int V \frac{1}{\theta - x_0} = \int t \frac{1}{\theta + x_0} dt $	
$\Rightarrow \begin{bmatrix} -\pm bb \\ $	
$\Rightarrow \left(_{2} - 2 \times 1 \right)^{\vee} = \left(-2 \times 1 \right)^{\mathcal{L}}$	
=> ln[8-24] -lug = -2t	
$\Rightarrow \ln \left(\frac{q-2v}{2}\right) = -2t$	
$\Rightarrow \frac{9-2v}{8} = e^{-2t}$	
=) g-2v = g=2t	
- 3 - 3 5 - 5 N	
\Rightarrow $V = \frac{1}{2} \frac{a}{2} \left(1 - e^{2t}\right)$	
$\rightarrow v = 49(1 - e^{2t})$	
$(b) \frac{dz}{dt} = 4.9 \left(1 - e^{2t} \right)$	
$\Rightarrow \int_{1}^{\infty} dx = \int_{1}^{\infty} \frac{d^{n+1}}{dt} (1 - e^{2t}) dt$	
$\Rightarrow \left[x \right]_{o}^{2} = \left[49 \left(t + \frac{1}{2} \overline{o}^{2t} \right) \right]_{o}^{3}$	
$\implies x = 4.9 \left[(3 + \frac{1}{2} \tilde{e}^{6}) - (\frac{1}{2}) \right]$	
- a = 12.26 m	
77	

d ≈12.26 m

Question 14 (***)

A particle P of mass 1.5 kg is moving along a horizontal x axis.

At time t = 0 s, P is passes through the origin O with speed U ms⁻¹, moving in the direction of x increasing.

At time t s, |OP| = x and the resultant force F acting on P has magnitude 6(34-x) N.

Given that for t > 0 the greatest speed of P is 85 ms⁻¹, determine the value of U.

U = 51

at ● luž = F (x-112) ∂ = 2 24 % (m)-- 6(34- $\dot{x} = 4(34-x)$ • t=0, x=0, v=V $V \frac{dw}{dt} = 136 - 4x$ • MAX V 15 47 = (136-42.)ds 1362~272 2722-422+ the of BS, occupy with dy =vdy =0 1 34-2=0 LE 2= 34 V=85 (MAX) 852= 272×34-4×342+C 4624 + C : (V= 2601 + 272x - 4x2-) a=0 , V= 260 l2=V €

Question 15 (***+)

A particle P, of mass $\frac{1}{6}$ kg, is moving on a straight horizontal line under the action of the force

$$F = \left(\frac{1}{t} - 1\right) \left(\frac{1}{t} + 1\right) N$$

where t s is the time the particle is in motion, t > 0.

The motion of P is resisted by a constant force of magnitude 4 N.

It is further given that when the velocity of P is 18 ms^{-1} its acceleration is 24 ms^{-2}

Determine the values of t when the velocity of P is 10 ms^{-1} .

Ξ.	<u> </u>	l s.
	$(-1) = \frac{1}{2} = \frac{1}{2}$	$= 3 - 8 = (18 + 10t) - (\frac{5}{6} + 30t)$ $= -8 = (18 + 10t) - (\frac{5}{6} - 30t)$ $= 0 = 36 - \frac{5}{6} - 30t$
	$= \frac{1}{2} $	$= 0 = 6t - 1 - 5t^2$
	$\Rightarrow \frac{dv}{dt} = \frac{c}{t^2} - 30$	\rightarrow St ² - Gt + I = 0 \Rightarrow (St - I)(t - I)
	$\begin{array}{c} t_{n} = -t \\ t_{n} = -t $	\Rightarrow $t_{z} < \frac{1}{5}$
P	• SEPTENTING UNPUBLICS, SUBJECT TO THE CONDITION $t=\frac{1}{2}$, $V=10$ $\implies 1 dy = (\frac{2}{2} - 30) dt$	
	$\Rightarrow \int_{v=16}^{10} 1 dv = \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{z^2} -30 dt$	
	$\Rightarrow \left[v \right]_{18}^{10} = \left[-\frac{\epsilon}{t} - 3\alpha t \right]_{\frac{1}{2}}^{\frac{1}{2}}$ $\Rightarrow \alpha - 18 - \left[-\frac{\epsilon}{t} - 3\alpha t \right]_{\frac{1}{2}}^{\frac{1}{2}}$	

t = 1,

Question 16 (***+)

A particle P, of mass 0.2 kg, is moving on the positive x axis under the action of a force F which is directed towards the origin O.

The magnitude of F is given by $\frac{k}{x^3}$, where k is the positive constant and x is the distance OP.

P has a speed of 10 ms^{-1} , away from the origin, when OP = 1 m and sometime later it has a speed of 1 ms^{-1} , away from the origin, when OP = 10 m.

a) Show that k = 20.

b) Calculate the time it took P to reduce its speed from 10 ms^{-1} to 1 ms^{-1} .

	The second
(a) $w \dot{x} = -\frac{k}{\lambda^3}$ $\Rightarrow \frac{1}{\lambda} \dot{x} = -\frac{k}{\lambda^3}$	$ \begin{array}{c} (d) \\ (d) $
$\rightarrow \frac{1}{2} \sqrt{\frac{2}{2}} = -\frac{1}{2}$	$\langle \dot{\chi}^2 = \frac{100}{\chi^2}$
$\Rightarrow \int \frac{1}{2} \nabla \phi = \int -\frac{1}{2} \nabla \phi$	$V = \frac{10}{\alpha}$
$\implies \frac{1}{10}V^2 = \frac{K}{2\pi^2} + C$	$\left\langle \Rightarrow \frac{dx}{dt} = \frac{b}{x} \right\rangle$
$= \sqrt{\gamma_s} = \frac{2k}{2s} + D$	$ = \frac{1}{2} \frac{dx}{dx} = 10 dt $
-APRY LONDOTTONS:	
$\alpha = l_{\gamma} v = l_{\gamma} $	$\sum \rightarrow \lfloor \underline{z} x^{*} \rfloor_{i} = \lfloor lot \rfloor_{f_{i}}$
G=10)V=(=) 1= 100 32=10)V=(=) 1= 100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30=100 30 30=100 30=100 30 30 30 30 30 30 30 30 30 30 30 30 3	$\int -\frac{1}{2} = 10(\frac{1}{2} - \frac{1}{1})$
Sk + D = 100 $z_0k + D = 1$ $S \Rightarrow Subtract$	$\langle = t_1 - t_1 = \frac{93}{25}$
$\frac{99}{20}k = 99$	~ TIME 4.955
1/20 K = 1	(
K=20	
)

= 4.95 s

Question 17 (***+)

A particle P, of mass 0.5 kg, is moving on a straight horizontal line under the action of a constant force of magnitude 16 N. The motion of P is resisted by a force whose magnitude is proportional to the time t s, where t is measured from a given instant.

When t = 1, the velocity of P is 36 ms⁻¹ and its acceleration is 14 ms⁻².

Determine the values of t when the velocity of P is 28 ms^{-1} .

Question 18 (***+)

A car of mass 1250 kg is accelerating along a straight, horizontal road with the engine of the car producing a constant power of magnitude 31.5 kW.

The car is modelled as a particle with any other resistances to its motion ignored.

Find the distance covered by the car as its speed increases from 3 ms^{-1} to 6 ms^{-1} .

96000

Question 19 (***+)

A car of mass 1600 kg moves along a straight horizontal road.

At time t s the resultant force acting on the car has magnitude

where k is a positive constant.

The resultant force acts in the direction of motion of the car.

At time $t \le t, t \ge 1$, the speed of the car is $v \text{ ms}^{-1}$ and the car is at a distance x m from a fixed point O, on the road.

When t = 1 the car is at rest at O and when t = 4 the speed of the car is 15 ms⁻¹

Find the value of x when v = 16.

 $x = 80 - 20 \ln 5 \approx 47.81 \text{ m}$

Question 20 (***+)

At time t = 0 s, a particle is at the origin O, and moving with speed 6 ms⁻¹, in the positive x direction.

For $t \ge 0$, the particle moves with acceleration of magnitude $-\frac{3}{\sqrt{t+4}}$, which is

directed towards O.

1.0,

Find the distance of the particle from O, when it comes to instantaneous rest.

x = 14 m

Question 21 (***+)

A charged particle is accelerated in an electromagnetic field.

Its velocity, $v \text{ ms}^{-1}$, is given by

v=2t(x+3),

where x m is the distance of the particle from a fixed origin O, at time t s.

Given that x = 0 when t = 0, determine the acceleration of the particle when t = 2

		α_{-}
1	$ \begin{array}{c} \Psi \lor 2t(3+3) \\ \Rightarrow \oint_{CL}^{A} = at(2+5) \\ \Rightarrow \int_{\frac{1}{2+5}}^{1} dx = at(2+5) \\ \Rightarrow \int_{\frac{1}{2+5}}^{1} dx = \int_{0}^{1} t^{2} \\ x=0 \\ \Rightarrow \int_{0}^{1} \int_{\frac{1}{2+5}}^{1} dx = \int_{0}^{1} t^{2} \\ \Rightarrow h[a_1s_3] \int_{0}^{1} = \left[t^{2}\int_{-\infty}^{1} t^{2} \\ \Rightarrow h[\frac{1}{2+3}] = t^{2} \\ \Rightarrow \frac{1}{2+3} = e^{2} \\ \Rightarrow \frac{1}{2} = -\frac{1}{2} + \frac{1}{2} \\ \Leftrightarrow \\ \Rightarrow \left[2 = -\frac{1}{2} + \frac{1}{2} e^{2} \right] $	Thus $v = a E \left[(c_{a} + a_{b}^{e^{2}}) + a \right]$ $\Rightarrow v = a E \left[2a^{b^{2}} \right]$ $\Rightarrow v = c E e^{4a}$ $\Rightarrow \frac{b^{2}}{a^{2}} = ce^{2a} + 12b^{2}e^{4a}$ $\Rightarrow a = ce^{2a} + 12b^{2}e^{4a}$ Thus thus the a $a = ce^{a} \cdot a^{2}$ $a = ce^{a} \cdot a^{2}$ $a = ce^{a} \cdot a^{2}$ $a = 24e^{2}$ $\approx 393 ha^{-3}$

 $a = 54e^4 \approx 399 \text{ ms}^{-2}$

Question 22 (***+)

i.C.B.

. K.G.B.

A particle P, of mass 0.5 kg, is projected vertically downwards, in a viscous fluid with an initial speed 7 ms⁻¹. When P has been moving for t s, its speed is v ms⁻¹.

A resistive force of magnitude $\frac{49}{20}v$ is acting on *P*.

Calculate the approximate distance P covers in the first 0.5 s of its motion.

21/2SM

눈g - 쇞 49(2-N) 49 dt 49 dt (INTIALSPEED U GEMMIE THEN 2) [-49t] -40t $\left(-\frac{5}{4\cdot 9}\right)$

E.G.A.

d ≈1.93 m

Question 23 (***+)

A particle P of mass 0.5 kg is moving in a straight line on a smooth horizontal plane.

At time t = 0 s, P is at a distance of 1 m from the origin O and moving away from O with speed 4 ms⁻¹.

The resultant force acting on P has magnitude 8x N away from O, where x is the distance OP.

Find a simplified expression for the speed of P at time t.

Question 24 (***+)

A particle of mass 0.5 kg is moving along the positive x axis.

At time t s, where $t \ge 0$, the particle has displacement x m from the origin O, its velocity is $v \text{ ms}^{-1}$ and its acceleration is $a \text{ ms}^{-2}$.

When t = 0, x = 0.

Given that $v = \frac{60}{x+1}$, $x \ge 0$, determine for the time interval $0 \le t \le 8$...

- a) ... the displacement of the particle at the end of this time interval.
- **b**) ... the acceleration of the particle at the end of this time interval.
- c) ... the magnitude of the work done by the resultant force acting on this particle during this time interval.

	×	<u>A</u>
(d) $V = \frac{G_{O}}{2K_{H}}$ $\rightarrow \frac{dx}{dx} = \frac{G_{O}}{2K_{H}}$ $\Rightarrow (zx)dx = 60dt$ $\Rightarrow \int_{-\infty}^{\infty} z_{H} dx = \int_{0}^{\infty} z_{H} dx$ $\Rightarrow \int_{-\infty}^{0} z_{H} dx = \int_{0}^{0} z_{H} dx$ $\Rightarrow (zx)_{-0}^{0} = \int_{0}^{0} z_{H} dx$ $\Rightarrow (zx)_{-1}^{0} = (zx)_{-1}^{0}$ $\Rightarrow (2x)_{-1}^{0} = 12tt + 1$ $\Rightarrow (xx)_{-1}^{0} = 12tt + 1$ $\forall Mut t=8$ $(xt)_{-1}^{0} = 5kt$ $(xt)_{-1}^{0} = 5kt$ (x+1) = 3t x = 3	$\begin{cases} \textbf{(b)} V = \frac{c_0}{2\pi} \\ \Rightarrow \frac{d_V}{d_V} - \frac{c_0}{(c_0)^3} \\ \Rightarrow V \frac{d_V}{d_X} = \frac{c_0}{2\pi} (\frac{c_0}{(c_0)^3}) \\ \Rightarrow V \frac{d_V}{d_X} = -\frac{c_0}{2\pi} \\ \hline \alpha = -\frac{c_0}{(2\pi)^3} \\ \hline m^{\text{HW}} b = 8, 3 = 30 \\ \therefore \alpha = -\frac{c_0}{2\pi^3} \\ \alpha \approx -c_0 c_0 m_1^{-2} \end{cases}$	$\begin{cases} G \forall w = \int_{a_1}^{a_2} F(x) dx \\ \Rightarrow w = \int_{a}^{b_1} w x dx \\ \Rightarrow w = \int_{a}^{b_1} w x dx \\ \Rightarrow w = \int_{a}^{b_1} w x y dx dx \\ \Rightarrow w = \int_{a}^{b_2} w x dx dx \\ \Rightarrow w = \int_{a}^{b_2} \int_{a}^{b_2} (\frac{y y y}{y y}) dx \\ \Rightarrow w = \int_{a}^{b_2} -b c (y z t)^2 dt \\ \Rightarrow w = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v = f v = \int tro (y z t)^2 \int_{a}^{b_2} dt \\ \Rightarrow w = f v$

x = 30 m, $a \approx -0.121 \text{ ms}^{-1}$

||W| ≈ 899 J

Question 25 (***+)

A particle, of mass 0.5 kg, is moving on a straight line, under the action of a single force of magnitude

$$\left[\frac{25}{x^2} - \frac{50}{x^3}\right] \,\mathrm{N}\,,\ x > 0\,,$$

where x is the distance of the particle from a fixed origin O.

The particle is released from the point where x=1, with speed 13 ms⁻¹, in the direction of x increasing.

It is further given that in moving the particle from x = 1 to a point where x = k, k > 1, the force does work of -4 J.

a) Determine the possible values of k.

b) Find the least speed of the particle in its consequent motion.

 $k = 5 \cup k = \frac{5}{4}$, $V_{\min} = 12 \text{ ms}^{-1}$

Question 26 (****)

A particle P is moving on the x axis, starting from rest at the origin O.

The acceleration of P is in the direction of x increasing and has magnitude

$\frac{0.5}{v+3}$ ms⁻²

where v is the subsequent velocity of the particle.

Find the distance P covers in the first 7 seconds of its motion.

teo, 2=0, 2=v=0 $\dot{x} = \frac{0.5}{V+3}$ START FROM OBTATINING & RECATIONSTIP BETWEEN V & t $\frac{dV}{dt} = \frac{0.5}{V+3}$ $(3) dv = \frac{1}{2} dt$ du = 1 2 de $\left[\frac{1}{2}v^2+3v\right]_0^v = \left[\frac{1}{2}\epsilon\right]_0^t$ $\frac{1}{2}v^{2}t_{3V} = \frac{1}{2}t$ TWG THE SQUALE TO CONPLETE THE REARBANCEMANT = t+9 3+ Jt+9 V>0 GE t>0 3+ (++) -3 + (++)

 \Rightarrow $\begin{bmatrix} \alpha \end{bmatrix}_{0}^{1} = \begin{bmatrix} -3t + \frac{2}{3}(t+q)^{\frac{3}{2}} \end{bmatrix}_{1}^{7}$ $\left(-2(+\frac{2}{3}\times64)-(0+\frac{2}{3}\times27)\right)$ + 128 - 18 128 - 117 AFTUL USING $\frac{dv}{dE} = \frac{Q\cdot S}{V+3}$ of obtaining $V^2 + 6V = E$ - 0.5 V+3 WE FINALLY HANT Tosda $x = \frac{2}{3}\sqrt{3} + 3\sqrt{2}$ 2= 3+3 2 = 11 AS BHORE $= \left[\frac{1}{2}\chi\right]$ +y3+ = +x a= = = 12+342 NOW NOW T=7 $v^{2}+6v = 7$ x2+6x-7=0 (v - 1)(v + 7)

 $d = \frac{11}{3}$

Question 27 (****)

A particle is moving along the positive x axis.

At time t s, the particle is at a distance of x m from the origin O and is moving away from O with speed $v \text{ ms}^{-1}$.

The particle is moving in such a way so that the rate of change of change of its speed with respect to the distance covered is 0.5 s^{-1} .

It is further given that x = 4 and v = 3 when t = 0.

- a) Find the value of t when x = 16.
- **b**) Determine the acceleration of the particle when x = 16.

 $t = 2 \ln 3 \approx 2.20 \text{ s}$ $a = 4.5 \text{ ms}^{-1}$