GRAVIL BROBLES, BROBL TASTRAILS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHA

Question 1 (**)

C,

The weight of a satellite of mass M when it is on the surface of the Earth is Mg.

 $H = \frac{gR^2}{V^2}$

, proof

 $= - \frac{G_{44}M}{(R_{1}+4)^2}$ $\frac{G_{-M}M}{(R_{+}+1)^2}$ $\frac{G_{-M}M}{(R_{+}+1)^2}$

9 22 × 2++ M × 2++ 8 R² R++

F=R, F=wi G <u>wild</u> BR

This satellite is moving with constant speed V in a circular orbit above the Earth's equator, at a height H above the surface of the Earth.

If the radius of the Earth is m, show that

Question 2 (**+)

A particle P is projected vertically upwards from a point on the surface of the Earth and moves in a straight line directly away from the centre of the Earth.

When P is at a distance x from the centre of the Earth, the gravitational force exerted by the Earth on P has magnitude $\frac{k}{x^2}$, where k is a positive constant, and is directed towards the centre of the Earth.

At the surface of the Earth the acceleration due to gravity is g.

The Earth is modelled as a fixed sphere of radius R.

a) If air resistance is ignored, show that the motion of P is governed by the differential equation

 $v\frac{dv}{dx} = -\frac{gR^2}{x^2},$

where v is the speed of P.

When P is projected from the surface of the Earth with speed U, where U < 2gR, the greatest height of P above the surface of the Earth is D.

b) Find the value of D, in terms of U, R and g

 $2gR^{\prime}$ D =2gR - U

Question 3 (***)

The Earth is modelled as a fixed sphere of radius R.

A particle *P* is fired vertically upwards from a point on the surface of the Earth with speed $\sqrt{\frac{3}{2}gR}$, and moves in a straight line directly away from the centre of the Earth.

When P is at a distance x from the centre of the Earth, the gravitational force exerted by the Earth on P has magnitude inversely proportional to the square of x, and is directed towards the centre of the Earth.

Assuming that air resistance is ignored, determine the speed of P, in terms of R and g, when it is a height of 2R above the surface of the Earth.

$\begin{aligned} & \lim_{k \to \infty} \frac{1}{2} \sqrt{1 + \sum_{k \to \infty}^{k \to \infty} \frac{1}{2}} \frac{1}{2} \frac{1}{$	START WOLL & NARRALL & CONSIDER THE RATION ON THE SURGE	
$\begin{array}{l} & \underset{(\lambda \in \mathcal{A}^{k})}{\overset{(\lambda \in \mathcal{A}^{k})}}}}} \\ & \underset{(\lambda \in \mathcal{A}^{k}) \overset{(\lambda \in \mathcal{A}^{k})}{\overset{(\lambda \in A^{k})}{\overset{(\lambda \in \mathcal{A}^{k})}{\overset{(\lambda \in \mathcal{A}^{k})}$	OF THE GARTY IN ORDER TO GET AN EXPERSION FOR THE PROPERTUALITY	
$\begin{aligned} & \cos(\theta_{1} t'_{1} \operatorname{SLRe} 2 - k) & \qquad $	LONIST AND	
$\begin{aligned} & \Rightarrow \int_{1}^{\infty} \frac{1}{k} \int_{1$	ON GAOTY'S SURFACE 2=2	
$\begin{aligned} b_{2} = b_{1}^{2} k^{2} \\ \frac{b_{2}}{b_{2}} \\ $	$Mg = \frac{k}{D^2}$	
(200) CO(200) eff type (contract) of unitary) $(200) CO(200) eff type (contract) of unitary)$ $(200) CO(200) eff type (cont$	k= make	
$ = \left[\frac{1}{2} A_{\alpha} \right]_{\alpha \in \Lambda}^{\alpha \in \Lambda} = \left[\frac{3}{2} \frac{1}{2} $	Now LOCIEND AT THE ERONTION OF LIGTION	
$ \Rightarrow m_{n}^{eq} = -\frac{k_{n}}{\lambda^{2}} $ $ \Rightarrow m_{n}^{eq} \frac{d_{n}}{d_{n}} = -\frac{m_{n}^{eq} R^{2}}{\lambda^{2}} $ $ \Rightarrow \gamma^{eq} \frac{d_{n}}{d_{n}} = -\frac{m_{n}^{eq} R^{2}}{\lambda^{2}} $ $ \Rightarrow \gamma^{eq} \frac{d_{n}}{d_{n}} = -\frac{m_{n}^{eq} R^{2}}{\lambda^{2}} \frac{d_{n}}{d_{n}} $ $ \Rightarrow \int_{\gamma^{eq}} \sqrt{u} \frac{d_{n}}{d_{n}} = \int_{-\frac{1}{2}} \frac{d_{n}^{eq}}{\lambda^{2}} \frac{d_{n}}{d_{n}} $ $ \Rightarrow \int_{\gamma^{eq}} \sqrt{u} \frac{d_{n}}{d_{n}} = \int_{-\frac{1}{2}} \frac{d_{n}^{eq}}{\lambda^{2}} \frac{d_{n}}{d_{n}} $ $ \Rightarrow \left[\frac{1}{2} \chi^{eq} \right]_{\gamma^{eq}} \sqrt{\frac{d_{n}^{eq}}{\chi^{eq}}} = \left[\frac{d_{n}^{eq}}{\lambda_{n}} \right]_{\lambda^{eq}} \frac{d_{n}^{eq}}{\lambda^{eq}} $	IN GENERAL	
$\Rightarrow \int v dy = -\frac{dp^2}{2t} dx$ $\Rightarrow \int v dy = -\frac{dp^2}{2t} dx$ $i \frac{dy}{dt} \int \frac{dy}{dt} = -\frac{dp^2}{2t} dx$ $\Rightarrow \int \frac{dy}{dt} \int \frac{dy}{dt} \int \frac{dy}{dt} = -\frac{dp^2}{2t} dt$ $\Rightarrow \int \frac{dy}{dt} \int \frac{dy}{dt} \int \frac{dy}{dt} = -\frac{dp^2}{2t} dt$	$\rightarrow m\tilde{\chi} = -\frac{k}{\lambda^2}$	
$\begin{aligned} & \lambda = -\frac{\delta R^{2}}{2\tau} dx \\ & = -\frac{\delta R^{2}}$	$\implies m \sqrt{du} = - \frac{m_2 p_1}{2^2}$	
$\begin{split} \frac{\left W_{\mathrm{Trig}}(\mathcal{L}_{\mathrm{T}}) \sim \delta_{\mathrm{s}}(\mathbf{x} \to \mathbf{r}) - \nabla_{\mathrm{s}}(\mathcal{L}_{\mathrm{s}}(\mathbf{x}) - 2\mathbf{r}) - \sqrt{\frac{1}{2}\delta_{\mathrm{s}}^{2}} \right ^{2}}{\int_{0}^{1/2} \int_{0}^{1/2} \int_{0}^{1/$	$\Rightarrow v dv = - \frac{2p^2}{x^2} dx$	
$ = \int_{1}^{\sqrt{n}\sqrt{V}} \int_{1}^{\sqrt{n}\sqrt{V}} dz = \int_{-\frac{\pi}{\sqrt{2}}}^{\sqrt{n}\sqrt{2}} \frac{dz^{2}}{dz} dz $ $ = \left[\frac{1}{2}\chi^{q_{1}}\right]_{\gamma_{1}\sqrt{\frac{1}{\sqrt{2}\sqrt{V}}}}^{q_{1}} = \left[\frac{d\xi^{q_{1}}}{a_{1}}\right]_{\lambda=R_{1}}^{\lambda=3d} $	INTHERATION IN THE CONDITION 2-R, V- 13021	
$\Rightarrow \left[\frac{1}{2}Y^{*}\right]_{Y^{*}\sqrt{\frac{1}{2}\beta^{2}}}^{Y^{*}\sqrt{\frac{1}{2}\beta^{2}}} = \left[\frac{\partial^{2}z}{\partial x}\right]_{x=0}^{x=y_{x}}$	$\Rightarrow \int_{v_{2}\sqrt{bb_{1}}}^{v_{2}} \int_{v_{2}}^{v_{2}} \frac{1}{\sqrt{b}} dv \qquad z = \int_{v_{2}}^{v_{2}} \frac{1}{\sqrt{b}} \frac$	
	$\Rightarrow \left[\frac{1}{2}V^{k}\right]_{V^{k}}^{V^{k}}\sqrt{\frac{1}{2}g^{k}} = \left[\frac{g^{k}}{2}\right]_{X^{k}}^{X^{k}}$	
$=9 \frac{1}{2} \nabla^2 - \frac{1}{2} \left(\frac{3}{2} \partial P \right) = \partial P^2 \left[\frac{1}{3P} - \frac{1}{P} \right]$	$\Rightarrow \frac{1}{2}\nabla^2 - \frac{1}{2}(\frac{3}{2}\partial k) = \partial k^2 \left[\frac{1}{3k} - \frac{1}{k}\right]$	

Question 4 (***)

A particle P, of mass m, is projected vertically upwards from a point on the surface of the Earth and travels in a straight line away from the centre of the earth. The Earth is modelled as a fixed sphere of radius R. At the surface of the Earth the acceleration due to gravity is g.

When P is at a distance x from the centre of the Earth, the force exerted by the Earth on P has magnitude $\frac{k}{x^2}$ towards the centre of the Earth, where k is a positive constant.

a) Show that $k = mgR^2$.

When P is at a height $\frac{1}{4}R$ above the surface of the Earth, the speed of P is \sqrt{gR} .

b) Given that air resistance can be ignored, find, in terms of R, the greatest distance from the centre of the Earth reached by P.

Question 5 (***+)

A particle P, of mass m, is fired vertically upwards from a point on the surface of the Earth and moves in a straight line directly away from the centre of the Earth.

When P is at a distance x from the centre of the Earth, the gravitational force exerted by the Earth on P has magnitude $\frac{\lambda}{x^2}$, where λ is a constant, and is directed towards the centre of the Earth.

At the surface of the Earth the acceleration due to gravity is g.

The Earth is modelled as a fixed sphere of radius R.

When P is at a height $\frac{1}{2}R$ above the surface of the Earth, the speed of P is \sqrt{gR} .

Given that air resistance can be ignored, find, in terms of R, the greatest distance from the centre of the Earth reached by P.

|x=6R|

STARTING WITH & DIAFRAM &	ł
CONSIDIE THE PARTICLE ON THE SUBACE	
OF THE ENOTH, TO START WITH	
$\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & & $	
NEXT CONSLIDER. THE ARBITRARY CASE	
\Rightarrow mä = $-\frac{3}{2^2}$	
\Rightarrow With $e = -\frac{m_{H}p}{3^2}$	
$\Rightarrow \ddot{\alpha} = -\frac{\delta P}{J^2}$	
$\Rightarrow \sqrt{q_1} = -\frac{x_2}{q_1}$	
WHERATE SUBJECT TO THE 2= 2+2 > V= JB2	
$\implies \int_{v=0}^{v=0} dv = \int_{\frac{2v+d}{2}}^{\frac{2v+d}{2}} dt$	
$\longrightarrow \left[\frac{1}{2}v^2\right]_{\sqrt{2D^2}}^{\circ} = \left[\frac{4V^2}{2}\right]_{2=3/2}^{2=6}$	
→ 0-±& = \$\$^[+ - ±]	
$\rightarrow -\frac{1}{2k} = \frac{1}{4} - \frac{2}{3k}$	
$\Rightarrow \frac{2}{32} - \frac{1}{22} = \frac{1}{3}$	
$\Rightarrow \frac{1}{6R} = \frac{1}{2}$ $\therefore d = 6R$	-

Question 6 (***+)

A particle P, of mass m, is projected vertically upwards from a point on the surface of the Earth and moves in a straight line directly away from the centre of the Earth.

The Earth is modelled as a fixed sphere of radius R.

The distance of P from the centre of the Earth is denoted by x.

At the surface of the Earth the acceleration due to gravity is g.

The Earth's gravitational effect is modelled as a force F, whose magnitude is inversely proportional to x^2 .

a) Show that $F = \frac{mgR^2}{r^2}$.

P is projected with initial speed 4U and reaches a speed U at a height R above the surface of the Earth.

b) Ignoring air resistance, find U^2 , in terms of g and R.

 1^{2} -

k=mg22

Question 7 (***+)

A piece of spaceship debris P, of mass m, is falling vertically downwards in a straight line towards the centre of the earth. The Earth is modelled as a fixed sphere of radius R. At the surface of the Earth the acceleration due to gravity is g.

When P is at a distance x from the centre of the Earth, the force exerted by the Earth on P has magnitude $\frac{k}{x^2}$ towards the centre of the Earth, where k is a positive

constant.

a) Show that $k = mgR^2$.

P starts falling from rest x = 3R

b) Ignoring air resistance, determine the speed of P as it crashes onto the surface of the earth, in terms of g and R.

Question 8 (***+)

Above the Earth's surface, the magnitude of the gravitational force on a particle due to the Earth is inversely proportional to the square of the distance of the particle from the centre of the Earth. The Earth is modelled as a sphere of radius R and the acceleration due to gravity at the Earth's surface is g.

Let x denote the height of P above the surface of the Earth.

When x = 2R, P has speed $\sqrt{\frac{1}{2}gR}$.

Ignoring air resistance, find the speed of P in terms of g and R, when x = R.

Question 9 (***+)

A particle P, of mass m, is falling vertically downwards in a straight line towards the centre of the earth. The Earth is modelled as a fixed sphere of radius R.

At the surface of the Earth the acceleration due to gravity is g.

When P is at a distance x from the centre of the Earth, the force exerted by the Earth on P has magnitude $\frac{k}{x^2}$ towards the centre of the Earth, where k is a positive constant.

When x = 4R the speed of P is \sqrt{gR} .

Ignoring air resistance determine the speed of P as it reaches the

Ignoring air resistance, determine the speed of P as it reaches the surface of the earth, in terms of g and R.

ä 4 † 9	IND THE CONSTRUCT K, AS k ON THE S	where of the filled is my , it with a
$T \qquad \qquad \downarrow \frac{k}{\lambda^2}$	The K = mg	
	<u>k = mak</u> 2	
2	Sciume THE O.D.E. SUBJECT TO THE G	OULTION V= JRg , x= UR
	\Rightarrow $\ln \alpha = -\frac{k}{\alpha^2}$	$ \Rightarrow \frac{1}{2}v^2 - \frac{1}{2}(Rg) = \frac{gR^2}{R} - \frac{g}{g}$
	\implies max = $-\frac{MBR^2}{a^2}$	=> 1/2 - 1/2 = gl - 491
	$\Rightarrow \tilde{x} = -\frac{\beta p^2}{x^2}$	= v2 - 3k - 23k - 23k
\bigcirc	$= \sqrt{\frac{dy}{dt}} = -\frac{-\frac{dy^2}{2t}}{2t}$	$\implies \chi^2 = \frac{5}{2}gR$
teo	$\Rightarrow \int V dV = \int_{-\infty}^{\infty} \frac{a_1 p_2}{2^2} dx$	== V = J \$9R
.a.= 4R	V=teg a=4R	
A- YB	$\Longrightarrow \left[\frac{1}{2}\Lambda_{5}\right]_{\Lambda}^{\Lambda} \approx \left[\frac{3}{8}\frac{3}{K_{5}}\right]_{s=g}^{\chi=g_{5}}$	

Question 10 (****)

A particle P, of mass m, is projected vertically upwards with speed U, from a point on the surface of the Earth, and moves in a straight line directly away from the centre of the Earth.

When P is at a distance x from the centre of the Earth, the gravitational force exerted by the Earth on P has magnitude $\frac{mk}{x^2}$, where k is a positive constant, and is directed towards the centre of the Earth.

At the surface of the Earth the acceleration due to gravity is g.

The Earth is modelled as a fixed sphere of radius R.

The kinetic energy of P at x = 2R is half the kinetic energy when at x = R.

Ignoring air resistance, express k in terms of U and R.

STATING WITH A DIAROM 24	MON CONSIDER THE KINETIC EXECUT
ON GARAKE JI=R	★ ML Q ² INTIAL LINETIC GIFEBY = ±mU ²
$\frac{-w_1k}{R^2} = 3m_0^2$	$\frac{1}{2}$
NEXT THE EQUATION OF WOTION	$\Rightarrow \frac{1}{2} \times $
⇒)Mä = - <u>wk</u>	$\neg U^2 = 2(U^2 + 2)$
	=> U ² = 2U ² - BR
ap2	$= U^2 = 2gR$
	$\implies dk = \frac{1}{2}n_r$
$\Rightarrow v dv = -\frac{\partial v}{\partial z}$	$\Rightarrow g \ell^2 = \frac{1}{2} R \tau^2$
WITHARATH SUBJECT TO CONDITION a=2, V=U	$ = \frac{1}{2} k = \frac{1}{2} k v^2 $
$\Rightarrow \int_{\lambda=\underline{\Lambda}}^{\lambda=\underline{\Omega}} q \eta = \int_{z=2\pi}^{z=2\pi} \frac{z_{x}}{2} q x$	
$\implies \begin{bmatrix} \frac{1}{2}v^{\lambda} \end{bmatrix}_{v=0}^{v=\overline{V}} = \begin{bmatrix} \frac{4}{3r} \\ \frac{1}{2}x^{\lambda} \end{bmatrix}_{x=0}^{x=20}$	
$\rightarrow \frac{1}{2}\nabla^{2} - \frac{1}{2}\nabla^{2} - \frac{aR^{2}}{2R} - \frac{aR^{2}}{R}$	
$\implies \frac{1}{2}\overline{V}^2 - \frac{1}{2}\overline{U}^2 = -\frac{1}{2}gR$	
$\implies \gamma^{*} - \sigma^{2} = -g \mathcal{L}$	
- v2 = U2-gR	

RU

Question 11 (****)

A particle P is fired vertically upwards with speed U, from a point on the surface of the Earth and moves in a straight line directly away from the centre of the Earth.

When P is at a distance x from the centre of the Earth, the gravitational force exerted by the Earth on P has magnitude inversely proportional to the distance of P from the centre of the Earth, and is directed towards the centre of the Earth.

At the surface of the Earth the acceleration due to gravity is g.

The Earth is modelled as a fixed sphere of radius R.

Given that the air resistance can be ignored, find the least value of U in terms of g and R, so that P does not fall back on to the surface of the Earth.

	HOW THE EROATION DE WITCH
A 9	\Rightarrow With $= -\frac{k}{x^2}$
K.	= MV du = - Mg22
	$ \longrightarrow \int_{v=0}^{v=v} \int_{v=0}^{v=v} \frac{d^{2n}}{d^{2n}} \frac{d^{2n}}{d^{2n}} dz $
	$\Rightarrow \left[\frac{1}{2} \gamma^2 \right]_U^{\vee} = \left[\frac{\Re R^2}{2} \right]_R^{\perp}$
	$\implies \frac{1}{2}Y^2 - \frac{1}{2}U^2 = \frac{4R}{2} - 8$
	$\rightarrow v^2 - v^2 = \frac{2qk^2}{x} - 2qk$
FORGE = Mg	NOW "ESDAPE VERSION" IMPLYS V-20, 45 3L-200
wg. S	U ² = -2gl
Mg.R2) U = N2gR

 $U = \sqrt{2gR}$

Question 12 (*****)

A satellite is moving in a circular orbit above the Earth's equator.

The orbit is described as geostationary, which means that angular velocity of the satellite is identical to that of Earth's rotation, so it appears in a fixed position relative to an observer on the Earth.

The radius of the orbit, measured from the centre of the Earth, is r.

a) Show that

where M is the mass of the earth, T is the period of the motion and G is the universal gravitation constant.

b) Determine the value of r, and hence find the minimum number of satellites needed to view all the points on the earth's equator.

You may assume

- earth's mass, $M = 5.97 \times 10^{24}$ kg
- earth's radius, $R = 6.37 \times 10^6$ m
- universal gravitation constant, $G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$

3

STRATISCORT F.Y.G.B. TRACESTRATISCORT F.Y.G.B. TRACESTRATIS

T. T. C.B. IN2023 IN2018 COM I. Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. C.B. IN2023 IN2018 COM I.Y. ASTRAILS COM I. Y. C.B. MARIASTRAILS.COM I. Y. C.B. MARAST