Created by T. Madas

Question 1 (**)

The figure above shows a particle sliding down a rough plane inclined at an angle of 30° to the horizontal. The box is released from rest at the point A and passes through the point B, which lies 10 m further down the plane, with a speed of $v \mathrm{~ms}^{-1}$.

The points A and B lie on a line of greatest slope on the plane.
The coefficient of friction between the particle and the plane is $\frac{1}{4}$.

Find the value of v, correct to three significant figures.

Created by T. Madas

Question 2 (**)
A particle of mass 0.8 kg is sliding on a rough horizontal surface reducing its speed from $15 \mathrm{~ms}^{-1}$ at a point A, to $10 \mathrm{~ms}^{-1}$ at a point B. It is assumed that the only resistance to the motion of the particle is the ground friction.
a) Given that the distance $A B$ is 20 m , determine the work done by the friction in the particle's journey from A to B.
b) Find, to three significant figures, the value of the coefficient of friction between the particle and the horizontal surface.

Created by T. Madas

Question 3 (**)

A small box of mass 2 kg is sliding on a floor between two points A and B. The box has a speed of $8 \mathrm{~ms}^{-1}$ at A and comes to rest at B.

The box is modelled as a particle and the floor as a rough horizontal plane, where μ is the coefficient of friction between the particle and the horizontal plane.
a) Calculate the kinetic energy loss as the box moves from A to B.
b) Given that $A B=12 \mathrm{~m}$, find the value of μ.

Question 4 (***)
A particle of mass 2 kg is projected vertically upwards from ground level with a speed of $21 \mathrm{~ms}^{-1}$ and comes to instantaneous rest at a height of $d \mathrm{~m}$ above the ground. The particle is subject to a constant non gravitational resistance of 7 N , assumed constant throughout the motion.

Use work and energy considerations to determine the value of d.

$$
d \approx 16.58 \mathrm{~m}
$$

Created by T. Madas

Question $5 \quad(* *+)$
A particle of mass 2 kg is projected vertically upwards from ground level with a speed of $20 \mathrm{~ms}^{-1}$ and comes to instantaneous rest at a height of 10 m above the ground. The particle is subject to a constant non gravitational resistance of $R \mathrm{~N}$, throughout the motion.

Use work and energy considerations to determine the value of R.

$$
R=20.4 \mathrm{~N}
$$

Created by T. Madas

Question $6{ }^{(* *+)}$

The figure above shows a small box of mass 4 kg , pulled by a rope along rough horizontal ground. The box has a speed of $10 \mathrm{~ms}^{-1}$ at the point A and $12 \mathrm{~ms}^{-1}$ at the point B.

The force supplied by the rope is 50 N and is inclined at an angle θ to the horizontal ground, where $\tan \theta=\frac{4}{3}$.

The box is modelled as a particle experiencing a constant ground friction of $F \mathrm{~N}$.
Given that the distance $A B$ is 200 m , use work and energy considerations to find the value of F.

Created by T. Madas

Question 7 (**+)

Created by T. Madas

Question $8 \quad(* * *)$

The figure above shows the path of a cyclist on a section of a road from A to B, where the distance $A B$ is 1200 m .

The cyclist leaves point A at the top of a hill with a speed $V \mathrm{~ms}^{-1}$ and descends a vertical distance of 50 m to the bottom of the hill. He then ascends a vertical distance of 25 m to the top of another hill at point B.

The cyclist takes 110 s to travel from A to B and is assumed to be working at the constant rate of 40 W , throughout the motion.

The combined mass of the cyclist and his bike is 80 kg .

The cyclist and his bike are modelled as a single particle subject to a constant non gravitational resistance of 20 N , throughout the motion.

Show that speed of the cyclist at B is $V \mathrm{~ms}^{-1}$.

Created by T. Madas

Question 9 (***)
A car of mass 1500 kg is travelling up a hill on a straight road, with the engine of the car working at the constant rate of 13 kW for 1 minute.

During this minute the car increases its speed from $7 \mathrm{~ms}^{-1}$ to $24 \mathrm{~ms}^{-1}$ and in addition to the work done against gravity, 80000 J of work is done against resistances to motion parallel to the direction of motion of the car.

Calculate the vertical displacement of the car in this 1 minute interval.

$$
h \approx 20.73 \mathrm{~m}
$$

Created by T. Madas

Question 10 (***)
A particle P of mass 4 kg is moving on the line of greatest slope of a rough plane, inclined at an angle θ to the horizontal, where $\tan \theta=\frac{3}{4}$.

The particle is projected up the plane with a speed $u \mathrm{~ms}^{-1}$ from a point A on the plane, comes to instantaneous rest at a point B, and then slides back down the plane passing through A again.

The coefficient of friction between the particle and the plane is $\frac{2}{7}$ and the distance $A B$ is 2.5 m .

Use work and energy considerations to find ...
a) ... the value of u.
b) ... the speed of the particle as it passes through A again.

Created by T. Madas

Question 11 (***)
0

The figure above shows a box of mass 0.5 kg sliding down a rough plane inclined at an angle of 30° to the horizontal. The box passes through the point A with a speed of $10 \mathrm{~ms}^{-1}$ and through the point B, which lies 12 m further down the plane, with a speed of $9 \mathrm{~ms}^{-1}$.
a) Find the loss in energy of the box as it moves from A to B.

The coefficient of friction between the box and the plane is μ.
b) Find the value of μ, correct to three significant figures.

Question 12 (***)
\rightarrow

The figure above shows a particle sliding down a rough plane inclined at an angle α to the horizontal, where $\tan \alpha=\frac{4}{3}$. The box is released from rest at the point A and passes through the point B, which lies 10 m further down the plane, with a speed of $7 \mathrm{~ms}^{-1}$.

Use work and energy considerations, to show that the coefficient of friction between the particle and the plane is $\frac{11}{12}$.

Created by T. Madas

Question 13 (***)
A particle of mass 0.5 kg is projected with a speed of $5 \mathrm{~ms}^{-1}$ from a point A on a rough plane, inclined at an angle of 20° to the horizontal.

The particle slides up the plane and comes to instantaneous rest at a point B on the plane which is 2 m away from A.

The points A and B lie on the line of greatest slope on the plane. The particle is subject to a constant non gravitational resistance of $R \mathrm{~N}$, throughout the motion.
a) Determine the value of R, correct to three significant figures.

The angle of the plane is now increased to 40° but the value of R remains unchanged.

The particle is next projected with a speed of $8 \mathrm{~ms}^{-1}$ from A and slides up the plane coming to instantaneous rest at a distance $d \mathrm{~m}$ away from A.
b) Find the value of d, correct to three significant figures.

$$
R \approx 1.45 \mathrm{~N}, d \approx 3.48 \mathrm{~m}
$$

Created by T. Madas

Question 14 (***)

A woman and her bike are modelled a single particle of combined mass 72 kg .

The woman cycles with constant speed of $5 \mathrm{~ms}^{-1}$, up a straight road, which lies on the line of greatest slope of a plane inclined at an angle θ to the horizontal, where $\sin \theta=\frac{2}{21}$.

The total non gravitational resistance experienced by the cyclist is assumed to be constant at 25 N .
a) Find the power generated by the woman when cycling up the hill.

The woman then turns her bike around at some point A on the road. She freewheels down the same road starting with a speed of $5 \mathrm{~ms}^{-1}$. She passes through some point B on that road with a speed $v \mathrm{~ms}^{-1}$.

The total non gravitational resistance experienced by the cyclist is assumed to be the same as in part (a).

Question 15 (***+)
A particle of mass 2 kg is dragged by a constant force of 49 N , up the line of greatest slope of a rough plane, inclined at an angle of 30° to the horizontal. This force is also acting in the line of greatest slope of the plane. The coefficient of friction between the particle and the plane is 0.5 .

The particle passes through two points on the plane A and B which are 4 m apart, and point B is at a higher level on the plane than point A.

Given that the particle is passing through A with a speed of $10 \mathrm{~ms}^{-1}$, use work and energy considerations to find the speed of the particle as it passes through B.

Question 16 (***+)
A car of mass 1230 kg is moving on a straight road which lies on the line of greatest slope of a rough plane, inclined at an angle θ to the horizontal, where $\tan \theta=\frac{9}{40}$.

There is a constant non gravitational resistance of 400 N acting on the car.

The car passes through two points on the plane A and B, with speeds $6 \mathrm{~ms}^{-1}$ and $20 \mathrm{~ms}^{-1}$, respectively, where the point B lies at a higher level on the plane than A.

The distance $A B$ is 615 m and it takes 50 s for the car to travel this distance.
a) Find, in MJ , the work done by the engine of the car.
b) Determine the average rate at which the engine of the car is working.

Question (***+)
A block of mass 5 kg is pulled along a rough, straight, horizontal road by a constant horizontal force of magnitude 47 N .

The block moves in a straight line between two points A and B, where $|A B|=7 \mathrm{~m}$.

The coefficient of friction between the block and the road is 0.5 .

Find the speed of the particle at A given that its speed at B is 4 times as large as its speed at A.

Created by T. Madas

Question 17 (***+)

Two particles A and B, of mass m and $3 m$ respectively, are attached to each of the ends of a light inextensible string. The string passes over a smooth pulley P, at the top of a fixed smooth plane, inclined at 30° to the horizontal.

Particle A is held at rest on the incline plane while B is hanging freely at the end of the incline plane vertically below P, as shown in the figure above. The two particles, the pulley and the string lie in a vertical plane parallel to the line of greatest slope of the incline plane.

The particles are released from rest, from the same horizontal level with the string taut. When B has fallen by a distance l, its speed is v, and A has not yet reach P.

By using energy considerations and ignoring air resistance, express v in terms of g and l.

Question 18 (***+)
A car of mass 1300 kg is travelling on a straight road which lies on the line of greatest slope of a plane inclined at an angle θ to the horizontal, where $\sin \theta=\frac{1}{10}$.

The total non gravitational resistance experienced by the car is assumed to be a constant force of magnitude of 400 N . The engine of the car is working at the constant rate of 30 kW .

The car is passing through the point A with a speed $10 \mathrm{~ms}^{-1}$ and continues to accelerate up the plane, passing through the point B with speed $30 \mathrm{~ms}^{-1}, 30 \mathrm{~s}$ after passing through A.

By modelling the car as a particle, find ...
a) ... the acceleration of the car at A.
b) ... the distance $A B$.

Created by T. Madas

Question 19 (***+)
A car of mass 2000 kg is travelling up a line of greatest slope of a hill, inclined at $\arcsin (0.1)$.

At a given time the speed of the car is $10 \mathrm{~ms}^{-1}$ and 10 s later the speed of the car is $12 \mathrm{~ms}^{-1}$, having covered a distance of 80 m .

The engine of the car is assumed to be working at a constant rate of 24 kW , and it is assumed that the truck experiences a constant air resistance, $R \mathrm{~N}$.

Calculate the value of R.

Created by T. Madas

Question 20 (****)

The figure above shows a box of mass 120 kg being pulled up the line of greatest slope of the plane inclined at an angle β to the horizontal, by an electrically operated cable. The cable is supplying a constant tension of 1500 N and is inclined at an angle β to the plane.

The box passes through the point A with speed $5 \mathrm{~ms}^{-1}$ and through the point B which is higher up the plane with speed $v \mathrm{~ms}^{-1}$. The distance $A B$ is 10 m .

There is a constant non gravitational resistance of 180 N acting on the box.
The box is modelled as a particle and the cable as a light inextensible string.
Given that $\tan \beta=\frac{3}{4}$ find the value of v.

Created by T. Madas

Question 21 (****)

$$
A
$$

A particle of mass m travels along a path $A B C D$, whose cross section is shown in the figure above.

Section $A B$ is vertical and of length x. Section $B C$ is an arc of a quarter circle of radius x. Section $C D$ is horizontal and of length d.

The particle is released from rest from A and comes to rest at D.
The particle experiences a constant frictional force only when travelling along the straight section $C D$.

Find the speed of the particle, in terms of g and x, when is at the midpoint of $C D$.

Created by T. Madas

Two particles A and B, of mass m and $4 m$ respectively, are attached to each of the ends of a light inextensible string.

The string passes over a smooth pulley P, at the top of a rough plane, inclined at θ to the horizontal, where $\tan \theta=\frac{4}{3}$.
The coefficient of friction between A and the plane is $\frac{7}{24}$.

Particle A is held at rest on the incline plane while B is hanging freely at the end of the incline plane vertically below P, as shown in the figure above. The two particles, the pulley and the string lie in a vertical plane parallel to the line of greatest slope of the incline plane. The particles are released from rest with the string taut. When B has fallen by a distance L, its speed is v, and A has not yet reach P.

Ignoring air resistance, express v in terms of g and L.

Created by T. Madas

Created by T. Madas

Question 23 (****+)
A smooth bead car of mass 0.1 kg is threaded onto a smooth, straight, vertical wire.

The bead is threaded to one end of a light, inextensible string of length 2 m .
The string is passing over a smooth fixed peg and a particle of mass 0.25 kg is attached to the other end of the string.

The string is taut and the particle lies undisturbed vertically below the peg while the bead is held as the same vertical level as the peg.

The horizontal distance between the peg and the wire is 0.5 m .

When the bead is released from rest, it descends a vertical distance $x \mathrm{~m}$, before it comes momentarily to rest.

Determine the value of x.

Question 24 (****+)
A particle is projected from a point A, with speed U, up the line of greatest slope of a rough plane inclined at angle θ to the horizontal.

The particle moves up the plane comes to instantaneous rest at before it starts sliding down the plane, passing through A with speed V.

Show that

$$
\frac{V^{2}}{U^{2}}=\frac{\tan \theta-\mu}{\tan \theta+\mu}, \quad \mu<\tan \theta
$$

where μ is the coefficient of friction between the particle and the plane.

Question 25 (****+)
A particle is projected from a point P, with speed U, up the line of greatest slope of a rough plane inclined at angle θ to the horizontal.

The particle moves up the plane comes to instantaneous rest at the point Q before it starts sliding down the plane, passing through the point R with speed U.

Show that

$$
|P R|=\frac{\mu U^{2} \cos \theta}{g\left(\sin ^{2} \theta-\mu^{2} \cos ^{2} \theta\right)}, \quad \mu<\tan \theta,
$$

where μ is the coefficient of friction between the particle and the plane.

 \rightarrow Chorlide Level
$\Rightarrow K E_{\mathrm{P}}+P E_{\mathrm{F}}+W_{(m)}-W_{Q)}=K E_{p}+P E_{Q}^{C}$
$\Rightarrow \frac{1}{2} m u-m g h-(\mu R) x d=0+0$
$\Rightarrow \frac{1}{2} m \tau^{2} \tau^{2}-m g d \sin \theta-4 n g \cos \theta \cdot d=0$
$\Rightarrow v^{2}-2 g d \sin \theta-2 \mu g d \cos \theta=0$
$\Rightarrow V^{2}=2 g d(\sin \theta+\mu \cos \theta)$
$\Rightarrow d=\frac{0^{2}}{2 g(\sin \theta+\mu \cos \theta)}$

- Next concliger the Jowienty from Q to R takne- the listl of Q to -
$\Rightarrow N E Q+P t_{Q}+W_{\text {IG }}-W_{\text {aR }}=K E_{R}+P \cdot E_{R}$ $\Rightarrow-\mu R(x+d)=\frac{1}{2} m \sigma^{2}-m g H$
$\Rightarrow-2 \operatorname{sig}(x+d) \cos \theta=\theta^{2}-2 g(x+d) \sin \theta$

Created by T. Madas

Question 26 (*****)

A pump draws water from a tank and pours it at the end of a pipe, of constant cross section, which is located 10 m vertically above the point where the water is drawn.

When the pump is working at the constant rate of 900 W the water is pouring at the end of the pipe with constant speed $20 \mathrm{~ms}^{-1}$.

Determine the cross sectional area of the pipe, in cm^{2}.

You may assume that the density of the water is $1000 \mathrm{~kg} \mathrm{~m}^{-3}$

