FRAMEWORKS

MULTISTRUCTURES

Created by T. Madas

Question 1 (***)

A framework consists of 3 light rigid rods $A B, B C$ and $C A$ smoothly joined at their ends, forming a triangle.

It is also known that $\measuredangle B A C=\measuredangle B C A=\theta$, where $\theta=\arctan \left(\frac{3}{4}\right)$.

The framework is suspended below a horizontal ceiling by a vertical inextensible wire attached to B. A mass of weight 84 N is placed at A and another mass of weight $W \mathrm{~N}$ is placed at B, so that $A B$ remains horizontal, as shown in the figure above.

Find the magnitude of the internal forces acting on each of the 3 rods, classifying them as tension or thrust.
\square , $R_{A C}=140 \mathrm{~N}$, thrust,$R_{A B}=112 \mathrm{~N}$, tension,$R_{B C}=400 \mathrm{~N}$, tension

Created by T. Madas

Created by T. Madas

Question 2 (***)

A framework $A B C$ consists of three light pin jointed rods, freely hinged to a rigid support at B. The framework supports a weight of 60 N at C and is kept in equilibrium with $B C$ horizontal by a force P acting in the direction $C A$. The lengths of the three rods, in m , are marked on the diagram, and $\measuredangle B A C=90^{\circ}$, as shown in the figure above.
a) Find the value of P.
b) Calculate the magnitude of each of the internal forces in the three rods, further classifying each of them as a tension or as a thrust.
c) Determine the magnitude and direction of the reaction of the hinge onto the framework at B.
$P=100 \mathrm{~N}, T_{A B}=0, T_{A C}=100 \mathrm{~N}$, tension,$T_{B C}=80 \mathrm{~N}$, thrust,

$$
R=80 \mathrm{~N}, \text { in } B C
$$

Created by T. Madas

Question 3 (***)

A light rigid framework consists of 5 light pin jointed rods, $A B, A C, A D, B C$ and $B D$, where $|A B|=|A D|,|B C|=|B D|, \measuredangle A B C=\measuredangle A D C=30^{\circ}$ and $\measuredangle A C D=90^{\circ}$, as shown in the figure above.

The framework is freely hinged at D and a weight W is supported at B.

The framework is supported in equilibrium, with $B C D$ horizontal, by a force P which acts at B in the direction of $B A$
a) Find the magnitude, in terms of W, and the direction of the reaction force acting on the framework at D.
b) Determine, in terms of W, the magnitude of the internal force acting on each of the rods, classifying them where applicable as tension or thrust.

$$
R=W, \text { at } 60^{\circ} \text { to the upward vertical }, R_{A B}=2 W \text {, Tension }, R_{A C}=0 \text {, }
$$

$$
R_{A D}=W, \text { Tension, } R_{B C}=R_{C D}=\sqrt{3} \mathrm{~W} \text {, Thrust }
$$

Created by T. Madas
Question $5 \quad(* * *)$

A framework consists of 7 light rigid rods smoothly joined between them as shown in the figure above.

The rods $A B, B C, C D$ and $D A$ form a square of side length l. The $\operatorname{rod} B E$ is of length $3 l$, so that $A B E$ is a straight line. Two more rods, $B D$ and $C E$ complete a rigid structure smoothly hinged at a fixed point A.

When a mass of weight W is placed at E, it is required that $A B E$ remains in a horizontal position. This is achieved by an external force F acting at D, in the direction $D C$.

Determine, in terms of W, the magnitude of the forces acting on $B E, C E$ and $B D$, further classifying them as tension or thrust.
, $T_{B E}=3 W$, tension, $T_{C E}=\sqrt{10} W$, thrust,$T_{B D}=\sqrt{2} W$, thrust

Created by T. Madas

Created by T. Madas
Question 6 (***)

The figure above shows a framework $A B C$ consists of three light pin jointed rods $A B, B C$ and $A C$, freely hinged to a rigid support at B.

The framework supports a weight of 60 N at C and is kept in equilibrium with $A B$ horizontal by two vertical wires at A and B.

The lengths of the three rods, in metres, are marked on the diagram, and $\measuredangle B A C=90^{\circ}$.

Determine the magnitude force acting at $A B$.
\square ,$T_{A B}=28.8 \mathrm{~N}$, thrust

Created by T. Madas

Question $7 \quad(* * *+)$

A light rigid framework consists of 4 light pin jointed rods, $A B, A C, B C$ and $C D$, where $|A C|=|B C|, \measuredangle C A B=\measuredangle A B C=30^{\circ}$ and $\measuredangle A D C=\measuredangle B A D=90^{\circ}$, as shown in the figure above.

The framework is freely hinged at the points A and D and a weight of 1200 N is supported at B as shown the figure above.

Find the magnitude of the reaction forces acting on the framework at A and D, and the magnitudes of all the internal forces acting on each of the four rods, classifying them as tension or thrust.
\square $R_{A}=1200 \sqrt{13} \approx 4327 \mathrm{~N}$

$$
\begin{aligned}
R_{D}=2400 \sqrt{3} \approx 4157 \mathrm{~N} & R_{A B}=1200 \sqrt{3} \approx 2078 \mathrm{~N}, \text { thrust }, R_{B C}=2400, \text { tension }, \\
& R_{C D}=2400 \sqrt{3} \approx 4157 \mathrm{~N}, \text { tension }, R_{C A}=2400, \text { thrust }
\end{aligned}
$$

Created by T. Madas

Created by T. Madas

Question $8 \quad(* * *+)$

A ground crane is modelled as a light rigid framework consisting of 4 light pin jointed rods, $A B, B D, B C$ and $C D$, where $|A B|=25 \mathrm{~m},|B D|=24 \mathrm{~m},|B C|=18 \mathrm{~m}$ and $|C D|=30 \mathrm{~m}$, as shown in the figure above.

The crane is attached to the ground at the points A and D and a weight of 6300 N is suspended from C, as shown the figure above.

Find the magnitude of the reaction forces acting on the framework at A and D, and the magnitudes of all the internal forces acting on each of the four rods, classifying them as tension or thrust.
\square , $R_{A}=16875 \mathrm{~N}$ \square $R_{A B}=16875 \mathrm{~N}$, tension

$$
R_{B C}=4725 \text {, tension, } R_{C D}=7875 \mathrm{~N} \text {, thrust }, R_{B D}=16200, \text { thrust }
$$

Created by T. Madas

Question $9 \quad(* * *+)$

A rigid framework $A B C D E$ consists of seven identical light pin jointed rods as shown in the figure above. The framework rests at two fixed supports at the points A and D.

When the framework supports a weight of $W \mathrm{~N}$ at the midpoint $A E$, there is 600 N thrust on $A B$.

Determine the magnitude of each of the reaction forces at A and at C and the magnitude of each of the internal forces in the rods $E A, E B, E C, E D, C B$ and $C D$, further classifying each of them as a tension or as a thrust.
$\square, R_{A}=300 \sqrt{3} \mathrm{~N}, R_{D}=1050 \mathrm{~N}, T_{E A}=300 \mathrm{~N}$, tension,

$$
T_{E B}=600 \mathrm{~N}, \text { thrust }, T_{E C}=200 \mathrm{~N}, \text { tension }, T_{E D}=400 \mathrm{~N} \text {, tension, }
$$

$$
T_{C B}=600 \mathrm{~N}, \text { thrust }, T_{C D}=200 \mathrm{~N}, \text { thrust }
$$

Question $10 \quad(* * *+)$

Created by T. Madas

Question 11 (***+)

A bridge design is modelled by a framework $A B C D E$ consisting of seven identical light pin jointed rods as shown in the figure above.

The framework rests at two concrete plinths at A and C.

Two weights of 2100 N and 700 N are placed at E and D, respectively.
a) Determine the magnitude of the reaction force at A and at C.
b) Calculate the magnitude of each of the internal forces in the rods $A E, A B$, $E B$ and $E D$, further classifying each of them as a tension or as a thrust.

$$
\begin{aligned}
& R_{A}=1750 \mathrm{~N}, R_{B}=1050 \mathrm{~N}, T_{A E} \approx 2021 \mathrm{~N}, \text { thrust }, T_{A B} \approx 1010 \mathrm{~N}, \text { tension, } \\
& T_{E B} \approx 404 \mathrm{~N}, \text { thrust }, T_{E D} \approx 808 \mathrm{~N}, \text { thrust }
\end{aligned}
$$

Created by T. Madas

Created by T. Madas

Question $12 \quad\left({ }^{* * *}+\right.$)

A framework $A B C D$, consists of five light pin jointed rods, freely hinged to a rigid support at A. The framework supports a weight of $F \mathrm{~N}$ at D and is kept in equilibrium with $A B$ vertical by a horizontal force of 90 N as shown in the figure above. It is further given that the length of the $\operatorname{rod} A B$ is $4 l, \measuredangle A C B=\measuredangle A D C=90^{\circ}$ and $\measuredangle B A C=\measuredangle C A D=30^{\circ}$.
a) Find the exact value of F.
b) Calculate, in exact form where appropriate, the internal forces in the five rods, further classifying each of them as a tension or as a thrust.
$F=80 \sqrt{3} \mathrm{~N}, T_{A B}=30 \sqrt{3} \mathrm{~N}$, thrust,$T_{A C}=60 \mathrm{~N}$, thrust,$T_{A D}=40 \sqrt{3} \mathrm{~N}$, thrust ,

$$
T_{B C}=60 \sqrt{3} \mathrm{~N}, \text { tension }, T_{C D}=120 \mathrm{~N}, \text { tension }
$$

Created by T. Madas

Question $13 \quad(* * *+)$

The figure above shows part of a framework of several light rigid rods, freely pin jointed at their ends. All the rods jointed at A, B and C are shown in the figure but only some of the rods jointed at D, E, F, G and H are shown.

The joints D, A, B and E lie in a straight line, $\measuredangle D A G=\measuredangle E B H=\measuredangle A C B=90^{\circ}$, and $\measuredangle B A C=\theta$, where $\tan \theta=\frac{3}{4}$. The $\operatorname{rod} F C$ is also inclined to $B C$ at θ, as shown in the figure.

There is a tension of 45 N in $A D$ and a thrust of 90 N in $A G$.

Calculate, the internal forces in $A B, B C$ and $A C$, further classifying each of them as a tension or as a thrust.

$$
T_{A B}=75 \mathrm{~N}, \text { thrust }, T_{A C}=150 \mathrm{~N}, \text { tension, } T_{B C}=187.5 \mathrm{~N}, \text { tension },
$$

Created by T. Madas

Question $14 \quad(* * *+)$

A rigid framework $A B C D E$ consists of seven identical light pin jointed rods as shown in the figure above. The framework rests on a fixed support at the point A.

A weight of 600 N is suspended from D, and there is an external force acting at B acting in the direction $C B$.

Determine the magnitude of internal force acting in the $\operatorname{rod} B C$.

Created by T. Madas

Question 15 (****)
0

The figure above shows a crane, modelled as a framework of light rigid rods, freely pin jointed at their ends.

The rods are jointed at A, B, C and D.

The framework is freely hinged to a rigid support on a vertical wall at A.

A horizontal cable $E C$ has its end E attached to the same above mentioned vertical wall, with E directly above A.

The points A, D and C lie in a straight line such that $|A C|=30 \mathrm{~m}, \Varangle E A C=60^{\circ}$, $\measuredangle D A B=\measuredangle D C B=15^{\circ}$ and $\measuredangle A E C=\measuredangle C D B=90^{\circ}$.

There is a load of 36000 N hanging freely from C.
Calculate, the internal forces in $B C$ and $A C$.

Created by T. Madas

MULTISTRUCTURES

Created by T. Madas

Question 1 (***)

Two identical uniform rigid rods $A B$ and $B C$, each of weight 100 N , are freely joined at B and lie in the same vertical plane.

The $\operatorname{rod} A B$ is freely joined at A, a fixed point on a horizontal ceiling. The system is held in equilibrium by a force $F \mathrm{~N}$ acting at C, in a perpendicular direction to $B C$, as shown in the figure above.
$A B$ and $B C$ form angles φ and θ to the horizontal, respectively, where $\tan \theta=\frac{3}{4}$.
a) Find the value of F.
b) Calculate the magnitudes of the horizontal and vertical reaction forces, acting on $B C$ at B.
c) Determine, in degrees, the size of the angle φ.
\square $, F=40, R_{\rightarrow}=24 \mathrm{~N}, R_{\uparrow}=68 \mathrm{~N}, \varphi \approx 78.5^{\circ}$
3
\square
\square

Created by T. Madas

Created by T. Madas

Question 2 (***+)

The figure above shows two non uniform rigid rods $A B$ and $B C$, of respective weights 80 N and 125 N , freely joined at B. The rod $B C$ is also freely joined at C, a fixed point on level horizontal ground, which lies at a distance of 3 m from a rough vertical wall. The rod $A B$ has length 1.4 m and rest in a horizontal position in limiting equilibrium with its end A against the rough wall. The distance of A from the ground is 1.2 m and the coefficient of friction between the wall and $A B$ is 0.5 . The position of the centre of mass of $A B$ is 0.35 m from A. The two rods lies in the same vertical plane.
a) Calculate the magnitude of the horizontal reaction, acting on $A B$ at B.
b) Calculate the magnitude of the vertical reaction, acting on $A B$ at B.
c) Determine the distance of the position of the centre of mass of $B C$ from C.

Created by T. Madas

Question 3 (****)

A uniform $\operatorname{rod} A B$, of weight W and length $4 a$, rests in equilibrium at 60° to the horizontal, with A against a wall and B on horizontal ground. Another uniform rod $C D$, of weight $2 W$, is freely joined with its end C at the midpoint of $A B$ and D on horizontal ground. The two rods lie in the same vertical plane so that $B D=2 a$.

The contacts at A and D are smooth but the contact at B is rough.
Given that the system of the two rods is in limiting equilibrium, determine in exact form the coefficient of friction between $A B$ and the ground at B.

$$
\mu=\frac{1}{2 \sqrt{3}}=\frac{1}{6} \sqrt{3}
$$

Created by T. Madas

