CENTRE

OF MASS

Question 1 (**)
Four particles A, B, C and D have masses $1 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg , respectively. The respective coordinates of the particles A, B, C and D are $(2,3),(4,0),(-1,5)$ and $(-3,-4)$.
a) Find the coordinates of the centre of mass of this system of four particles.

A fifth particle E of mass 10 kg is placed at the point P, so that the centre of mass of the five particles is now at the point with coordinates $(3,1)$.
b) Find the coordinates of P.

Created by T. Madas

Question 2 (**)

Three particles A, B and C have masses $2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 5 kg , respectively.

The respective coordinates of these three particles are $(2,2),(0,-5)$ and $(-3,1)$.
a) Find the coordinates of the centre of mass of this system of three particles.

A fourth particle D of mass 10 kg is placed at the point with coordinates $(2,3)$.
b) Find the coordinates of the centre of mass of the system of the four particles.

A fifth particle E of mass $k \mathrm{~kg}$ is placed at the point with coordinates $(-1, \lambda)$.

The coordinates of the centre of mass of the five particles is now at the origin.
c) Determine the values of k and λ.

$$
(-1.1,-0.6),(0.45,1.2), k=9, \lambda=-\frac{8}{3}
$$

Created by T. Madas

Question 3 (**)

The figure above shows a uniform lamina $A B C D E F$ where all corners are right angles and $|A F|=2 \mathrm{~cm},|F E|=4 \mathrm{~cm},|E D|=6 \mathrm{~cm}$ and $|D C|=4 \mathrm{~cm}$.
a) Determine the position of the centre of mass of the lamina from $A B$ and $B C$.

The lamina is suspended freely though a smooth pivot at B and hangs in equilibrium under its own weight.
b) Find the size of the angle that $A B$ makes with the vertical.
3.4 cm from $A B, 2.8 \mathrm{~cm}$ from $B C, \approx 50.5^{\circ}$

Created by T. Madas

Created by T. Madas

The figure above shows a uniform lamina $A B C D E F$ where all corners are right angles and $|A F|=6 \mathrm{~cm},|F E|=8 \mathrm{~cm},|E D|=4 \mathrm{~cm}$ and $|D C|=2 \mathrm{~cm}$.
a) Determine the position of the centre of mass of the lamina from $A B$ and $B C$.

The lamina is suspended freely though a smooth pivot at F and hangs in equilibrium under its own weight.
b) Find the size of the angle that $A F$ makes with the vertical.
$\approx 3.59 \mathrm{~cm}$ from $A B, \approx 4.53 \mathrm{~cm}$ from $B C, \approx 66.2^{\circ}$

Created by T. Madas

Question $5 \quad\left({ }^{* *}+\right.$)

The figure above shows a uniform lamina $A B C D E F G H$ where all corners are right angles and $|A H|=2 \mathrm{~cm},|E D|=8 \mathrm{~cm},|E F|=4 \mathrm{~cm},|B C|=12 \mathrm{~cm}$ and $|A B|=10 \mathrm{~cm}$.
a) Determine the position of the centre of mass of the lamina from $A B$ and $B C$.

The lamina is suspended freely though a smooth pivot at D and hangs in equilibrium under its own weight.
b) Find the size of the angle that $D C$ makes with the vertical.

$$
\approx 6.21 \mathrm{~cm} \text { from } A B, \approx 4.79 \mathrm{~cm} \text { from } B C, \approx 48.0^{\circ}
$$

Created by T. Madas

Question 6 (**+)
A uniform rectangular lamina $A B C D$ has mass 1.84 kg is loaded with a particle of mass 0.46 kg attached at the corner C. It is further given that $|A B|=|C D|=16 \mathrm{~cm}$ and $|B C|=|D A|=12 \mathrm{~cm}$.
a) Determine the position of the centre of mass of the loaded lamina from the edge $A D$ and from the edge $A B$.

The lamina is suspended in equilibrium with $A B$ horizontal by two vertical stringa one attached at A and one attached at B.
b) Calculate the tension in each of the two strings.
9.6 cm from $A D, 7.2 \mathrm{~cm}$ from $A B, T_{A}=9.016 \mathrm{~N}, T_{B}=13.524 \mathrm{~N}$

Question 7 (***)

figure 1

figure 2

Figure 1 shows a rectangular lamina $A B C D$ where $|A B|=16 \mathrm{~cm}$ and $|B C|=30 \mathrm{~cm}$.

The points M and N are the midpoints of $A B$ and $C D$.
A circle of radius 6 cm whose centre lies on $M N$ at a distance of 6 cm from $A B$, is removed from the lamina $A B C D$, forming a composite \mathbf{S}.
a) Determine the position of the centre of mass of \mathbf{S} from $A B$.

The circular section removed in part (a) is now attached to a new position on \mathbf{S} so that $B C$ and $C D$ are now tangents to the circular section. The new composite is shown in figure 2 and is denoted by \mathbf{T}.
b) Determine the distance of the centre of mass of \mathbf{T} from $A B$ and $B C$.

Created by T. Madas

Question 8 (***)

Created by T. Madas

Question 9 (***)

figure 1

figure 2

Figure 1 above shows a lamina $A B C D$ which is in the shape of a right angled trapezium, where $\measuredangle D A B=\measuredangle A B C=90^{\circ}$.

It is further given that $|A B|=3 a,|B C|=5 a$ and $|A D|=2 a$.
a) Determine the position of the centre of mass of the lamina from $A B$ and $B C$.

The lamina is next placed on plane inclined at an angle θ to the horizontal, as shown in figure 2 . The plane is sufficiently rough to prevent the lamina from sliding.
b) Given that the lamina is at the point of toppling find the value of θ.

Created by T. Madas

Question 10 (***)

The figure above shows a framework consisting of four small uniform rods $A B$, $B C, C D$ and $A D$.

It is given that $|A B|=8 \mathrm{~cm},|B C|=18 \mathrm{~cm},|A D|=12 \mathrm{~cm}$ and $\measuredangle A B C=\measuredangle D A B=90^{\circ}$.
a) Determine the distance of the position of the centre of mass of the framework from $A B$ and $B C$.

The framework is suspended freely though a smooth pivot at C and hangs in equilibrium under its own weight.
b) Find the size of the angle that $D C$ makes with the vertical.
\qquad , 8 cm from $A B$ \square 3.5 cm from $B C$ 33.8°

Created by T. Madas

Question $11 \quad\left({ }^{* * *}+\right)$

The figure above shows a lamina $A B C D$ consisting of a right angled isosceles triangle $A B D$ where $\measuredangle A B D=90^{\circ}$ and an isosceles triangle $B C D$ where $|B C|=|C D|$.

It is further given that $|A B|=6 \mathrm{~cm},|B D|=6 \mathrm{~cm}$ and the height of the triangle $B C D$ measured from C is 6 cm .
a) Explain why the centre of mass of the lamina $A B C D$ lies on $B D$.
b) Find the distance of the centre of mass of the lamina $A B C D$ from B.

The lamina $A B C D$ is smoothly pivoted at A and kept in a position with $B D$ horizontal and C below the level of $B D$ by a horizontal force F.
F acts through D, in the direction $B D$.
c) Given the mass of the lamina is m, find the size of F in terms of m and g.

Question 12 (***)

Figure 1 above shows a uniform composite lamina consisting of a rectangle $A B C D$ and a semicircle of diameter $A D$.

It is further given that $|A B|=18 \mathrm{~cm}$ and $|B C|=12 \mathrm{~cm}$.
a) Determine the position of the centre of mass of the lamina from $B C$.

The lamina is next placed on plane inclined at an angle θ to the horizontal, as shown in figure 2 . The plane is sufficiently rough to prevent the lamina from sliding,
b) Given that the lamina is at the point of toppling find the value of θ.

Created by T. Madas

Question 13 (***+)

The figure above shows a lamina $A B D C$ consisting of a semicircle centre at O and radius $2 a$ removed from a larger semicircle also with centre at O and radius $3 a$.
a) Find the distance of the centre of mass of the lamina from O.

The lamina is suspended freely though a smooth pivot at B and hangs in equilibrium under its own weight.
b) Find the size of the angle that $B C$ makes with the horizontal.

Created by T. Madas

Question 14 (***+)

The figure above shows a rigid framework $A B C D E F$, consisting of 6 uniform rods all of equal cross-section and of equal mass density.

It is further given that all the corners of the framework are right angles and $|B C|=2 \mathrm{~m}$, $|C D|=3 \mathrm{~m},|D E|=4 \mathrm{~m}$ and $|E F|=1 \mathrm{~m}$.
a) Find the position of the centre of mass of the framework from $A B$ and $A F$.

The framework is suspended freely though a smooth pivot at F and hangs in equilibrium under its own weight.
b) Show that the tangent of the angle which $D C$ makes with the vertical is $\frac{18}{7}$

Created by T. Madas

Created by T. Madas

Question $15 \quad(* * *+)$

A uniform lamina is in the sbape of on isosceles triangle $A B C$ with $\measuredangle A B C=90^{\circ}$ and $A B=B C=9 \mathrm{~cm}$. An isosceles triangle $D E F$ is removed from $A B C$, such that $\not \subset D E F=90^{\circ}$ and $D E=E F=5 \mathrm{~cm}$, forming a composite S, shown in figure 1,
a) Find the distance of the centre of mass of S
i. ... from $A B$.
ii. ... from $B C$.

The composite S is placed on the greatest slope of a plane inclined at an angle θ to the horizontal, as shown in figure 2 . The plane is sufficiently rough to prevent S from sliding.
b) Given that S is at the point of toppling over, calculate the value of θ.

$$
\frac{227}{84} \approx 2.70 \mathrm{~cm} \text { from } A B \text { and from } B C, \theta=45^{\circ}
$$

${ }^{1}$

Question 16 (****)

12 cm
figure 1

From a rectangle $B C E F$, an isosceles triangle $C D E$ is removed and attached to the rectangle so that the sides $C E$ and $B F$ coincide, and the point D is relabelled as A.

It is further given that $|C D|=|D E|,|B C|=16 \mathrm{~cm}$ and $|C E|=12 \mathrm{~cm}$. The height of the triangle $A B F$, measured from A, is 12 cm .

Figure 1 above, shows the composite which is modelled as a uniform lamina.
a) Show that the centre of mass of the lamina is located at a distance of 14 cm from $C E$.

The lamina is next placed on plane inclined at an angle θ to the horizontal, as shown in figure 2 . The plane is sufficiently rough to prevent the lamina from sliding.
b) Given that the lamina is at the point of toppling find the value of θ.

Created by T. Madas

Created by T. Madas

Question 17 (****)

The figure above shows a uniform lamina $A B C D E F$ in the shape of a regular hexagon of side length 6 cm , whose centre is at O. A rhombus $A E O F$ is removed from the hexagon forming a composite lamina S.
a) Determine the distance of the centre of mass of S from O.

The composite S is suspended from the point E and hangs freely in equilibrium. The side $O E$ makes an angle θ with the vertical.
b) Show that $\sin \theta=\frac{1}{14} \sqrt{7}$.

Created by T. Madas

Created by T. Madas

Question 18 (****)

Figure 1 shows a walking stick $A B C$, modelled as two uniform rods $A B$ and $B C$. The straight section $B C$ has length 84 cm and the section $A B$ is a circular arc of diameter 12 cm . A set of coordinate axes is defined with A as the origin as shown in figure 1.
a) Find the coordinates of the centre of mass of the walking stick.

The walking stick is placed with its end A at the end of a horizontal table and rests in equilibrium under its own weight as shown in figure 2 , without touching any other object.
b) Determine the size of the angle that $B C$ makes with the vertical .
\square $,(\bar{x}, \bar{y}) \approx(10.9,-33.6), \approx 18.0^{\circ}$

Created by T. Madas

Created by T. Madas

Question 19 (****)

The figure above shows a framework consisting of three thin uniform rods $A B$, $B C$ and $A C$. The rods $B C$ and $A C$ are straight lines, both of lengths 10 units. The $\operatorname{rod} A B$ is in the shape of a semicircular arc of radius 6 units with centre at O. A set of coordinate axes is defined with O as the origin, as shown in figure.
a) Determine the position of the centre of mass of the framework from O.

A particle of mass 4 kg is attached to the midpoint of $A B$. The centre of mass of the loaded framework is now at O.
b) Find the mass of the framework.
≈ 0.206 from $O, \approx 117 \mathrm{~kg}$

Created by T. Madas

Created by T. Madas

Question 20 (****)

A uniform lamina $A B C$ is the shape of an isosceles triangle where $A B=A C$, $B C=6 a$. The vertical height of $A B C$ is $9 h$, as shown in figure 1 . The lamina is to be folded along $D E$, where $D E$ is parallel to $B C$ and at a perpendicular distance of $6 h$ from A, as shown in figure 2 .
a) Show that the centre of mass of the trapezium $B D E C$ is $\frac{7}{5} h$ from $B C$.
b) Determine the position of the centre of mass of the folded lamina from $B C$.

The folded lamina is suspended from the point D and hangs freely in equilibrium. The side $D E$ is inclined at $\arctan \frac{2}{9}$ to the vertical.
c) Express a in terms of h.
\square , $\frac{11}{9} h$ from $B C$ $a=4 h$

Created by T. Madas

(****)

Figure 1 shows a walking stick $A B C$, modelled as two uniform rods $A B$ and $B C$. The straight section $B C$ has length 80 cm and the section $A B$ is a circular arc of diameter 10 cm . The semicircular section of the walking stick is four times as dense as the straight section. A set of coordinate axes is defined with B as the origin as shown in figure 1.
a) Find the coordinates of the centre of mass of the walking stick.

The walking stick is placed with its end A at the end of a horizontal table and rests in equilibrium under its own weight as shown in figure 2 , without touching any other object.
b) Determine the size of the angle that $B C$ makes with the vertical.
\square $,(\bar{x}, \bar{y}) \approx(-2.2,-21.0), \approx 20.4^{\circ}$

Created by T. Madas

Question 22 (****)

The figure above shows a lamina $A B C D$ in the shape of a square of side length 12 cm , made of sheet metal of uniform material and uniform thickness. The points M and N are the midpoints of $B C$ and $C D$, respectively.

The triangular section $M C N$ is folded over the lamina forming a new composite lamina L, as shown in the figure.
a) Find the position of the centre of mass of L from A.

A smooth pin is attached to L at D and L is kept in a equilibrium by a horizontal force F acting at B in the direction $A B$.
b) Given that the weight of L is W, determine ...
i. ... the value of F.
ii. ... the magnitude of the reaction force at the pin at D.

$$
\frac{23}{4} \sqrt{2} \approx 8.13 \mathrm{~cm} \text { from } O, \quad F=\frac{23}{48} W, \quad R \approx 1.11 W
$$

Created by T. Madas

Question 23

The figure above shows a rectangle $A B C D$ where $|B C|=36 \mathrm{~cm}$ and $|D C|=x \mathrm{~cm}$.

The straight edges of three identical semicircles of diameter 12 cm are attached to $A D$ forming a composite \mathbf{S}, modelled as a uniform lamina.
a) Show that the distance of the centre of mass of \mathbf{S} from $A D$ is

$$
\frac{\left|24-x^{2}\right|}{2 x+3 \pi} .
$$

The composite \mathbf{S} is suspended from B and hangs freely in equilibrium under its own weight, with $B C$ making an angle θ with the horizontal.
b) Given that $x=4$, show further that

$$
\tan \theta=\frac{72+27 \pi}{20+6 \pi}
$$

Created by T. Madas

Question 24 (****)

Created by T. Madas

Question 25 (****)

Created by T. Madas

Question 26 (****)

The figure above shows a logo $A B D C$.

The logo is formed by removing an isosceles triangle $B D C$ from a uniform lamina $A B C$, which is in the shape of an equilateral triangle of side 6 m .

Given that the centre of mass of the logo is located at D, determine the perpendicular height of the triangle $A B C$, measured from the vertex D to the side $B C$.

Created by T. Madas

Question 27 (****+)

The figure above shows a uniform lamina $O A B C D E$ where all corners are right angles. The following lengths are marked in the figure in terms of suitable units

$$
|A B|=6, \quad|B C|=a, \quad|E D|=a-2 \quad \text { and } \quad|O E|=9
$$

where a is a positive constant.
a) Show that the position of the centre of mass of the lamina from $O E$ is

$$
\frac{9 a^{2}-20 a+12}{10 a-12}
$$

and find a similar expression for the position of the centre of mass of the lamina from $O A$.

The lamina is suspended freely though a smooth pivot at O and hangs in equilibrium under its own weight. The side $O A$ lies at an angle of $\arctan \frac{5}{6}$ to the vertical.
b) Show clearly that $a=6$.

Created by T. Madas
Question $28 \quad(* * * *+)$

The figure above shows a framework consisting of three small uniform rods $A B$, $B C$ and $A C$.

It is further given that $|A B|=9 \mathrm{~cm},|B C|=12 \mathrm{~cm}$ and $\measuredangle A B C=90^{\circ}$.
b) Find the position of the centre of mass of the framework from $A B$ and $B C$.

The framework is suspended freely though a smooth pivot at A and hangs in equilibrium under its own weight.
c) Show clearly that the tangent of the angle that $A C$ makes with the vertical is exactly $\frac{7}{24}$.

Created by T. Madas

Created by T. Madas
Question $29 \quad(* * * *+)$

A rectangular lamina $A B C D$ has $|A D|=a$ and $|A B|=k a$, where a and k are positive constants with $k>1$. The point E lies on $C D$ so that $|C E|=a$.

The lamina is folded over along $E B$ so that the yertex C is now touching the point C^{\prime} on $A B$, as shown in the figures above.

A set of cartesian coordinate axes is defined with origin at $A, A B$ the direction of x increasing and $A D$ the direction of y increasing.

Determine the coordinates of the centre of mass of the folded lamina, giving the answer in terms of a and k.
θ

Created by T. Madas
Question $30 \quad(* * * *+)$

The figure above shows a uniform plane lamina $A B C D E F$, made of two congruent rhombuses, each of side length 50 cm .

It is given that $\measuredangle B A D=\measuredangle D A F=\measuredangle B C D=\measuredangle D F E=\theta$.
a) Given further that the centre of mass of the lamina is 50 cm from A, show that $\cos \theta=\frac{4}{5}$.

The weight of the lamina is W. A particle of weight $k W$, where k is a positive constant is fixed to the lamina at A. Another particle of weight $\frac{1}{5} W$ is fixed to the lamina at C.

The lamina is freely suspended from F and hangs in equilibrium with $A D$ horizontal.
b) Find the value of k.

Created by T. Madas

Question 31 (****+)

The figure above shows a lamina $A B C$ is in the shape of an isosceles triangle, with $|A B|=|A C|$ and $|B C|=2 a$, where a is a positive constant.

The point D is the midpoint of $B C$. The point E lies on $A C$ so that $|E C|=|E D|$.

The section of the lamina defined by the triangle $C D E$ is made of a material which is twice as dense as the material the rest of the lamina is made of.

A set of cartesian coordinate axes is defined with origin at $D, D C$ the direction of x increasing and $D A$ the direction of y increasing.
a) If $|A D|=a$ determine the coordinates of the centre of mass of the lamina $A B C$, giving the answer in terms of a.

The lamina $A B C$ is freely suspended from A and hangs in equilibrium.
b) Show that $A C$ is inclined at $\arctan \frac{3}{4}$ to the downward vertical.

Created by T. Madas

	ThiANug AmC	Tathoret EDC	coupesita
MnSs patio	$\pm a^{2} \times 2$	$\frac{1}{2} \times \frac{1}{2} a \times a$	
	a^{2}	布 a^{2}	
	4	1	5
2	0	$\frac{1}{2} 9$	\bar{x}
y	$\frac{1}{3} a$	$\frac{1}{3} \times \frac{1}{2} 4$	y

Ropunina $\frac{g}{}$ socurna spurtions

- $55=(4 \times 0)+1 \times \frac{1}{2} a$
$\begin{aligned} \bar{\pi} & =\frac{1}{2} a \\ \bar{x} & =-a\end{aligned}$
-
- $\begin{aligned} & 5 \bar{y}=4 \\ & 5 y=4 \\ & 5\end{aligned}$
$5 y=\frac{4}{3} a$
$5 y=\frac{3}{2} a$
$\bar{y}=\frac{3}{10} a$

$\tan \theta=\frac{\pi}{a-g}$
$\tan \theta=\frac{\tan }{a-\frac{2}{1} a}$
$\tan \theta=\frac{10}{b-3}$
 $\tan \theta=\frac{1}{7}$

THE RTMUEDD ANES is ψ
$\Rightarrow+\psi=45-\theta$
$\Rightarrow \tan \psi=\tan (45-\theta)$
$\Rightarrow \tan \varphi=\frac{\tan 4 s-\tan \theta}{1+\tan 4 \tan \theta}$
$\Rightarrow \tan \psi=\frac{1-\frac{1}{7}}{1+1 \times \frac{1}{7}}$
$\rightarrow \tan \psi=\frac{1-\frac{1}{7}}{1+\frac{1}{7}}$
$\rightarrow \tan \psi=\frac{2-1}{i+1}$
\Rightarrow tux $=\frac{6}{8}$
$\Rightarrow \quad \operatorname{tur}=\frac{3}{4}$
$\Rightarrow \quad \psi=\operatorname{uncan} \frac{2}{4}$

Created by T. Madas

Question $32 \quad(* * * *+)$

The figure above shows a uniform rectangular lamina $A B C D$, where $|A D|=|B C|=a$ and $|A B|=|D C|=2 a$. The midpoints of $A B$ and $D C$ are K and H, respectively.

A quarter circle of radius a and centred at C is removed from the rectangle $A B C D$.

The quarter circle then attached with its centre at D and one of its straight edges along $D H$ as shown in the figure.

Determine the position of the centre of mass of the resulting shape from $A B$.

$$
\bar{x}=\frac{5}{6} a
$$

Created by T. Madas

A composite uniform lamina is modelled by the finite region bounded by two circular discs, shown shaded in the figure above. The details, of the sizes and relative positions of these discs, are as follows.

The straight line $P O Q$ is a diameter of the larger circular disc, of radius $12 a$, whose centre is at the point O. The smaller circular disc, of radius $6 a$, has its centre at O^{\prime}, so that O^{\prime} lies on $O Q$ with $\left|O^{\prime} Q\right|=9 a$.

A heavy particle is attached to the lamina at Q.

The straight line $X O Y$ is perpendicular to $P O Q$.

When the lamina is freely suspended from X and hangs in equilibrium, with P higher than $Q, P O Q$ is inclined at $\arctan \frac{5}{12}$ to the horizontal.

Determine the ratio of the mass of the particle to the mass of the lamina.

Created by T. Madas

Created by T. Madas

\square

