RESULT FORCES TASTRAILS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHARIS COM I. Y. C.P. MARASHA

6N 60° 10N 105° 8N

The figure above shows three forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.

a) Find the magnitude of the resultant of the above three forces.

b) Give the direction of the resultant as a bearing.

manası

Question 2 (**)

The figure above shows four forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.

a) Find the magnitude of the resultant of the above four forces.

b) Give the direction of the resultant as a bearing.

nadası

The figure above shows four forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.

a) Find the magnitude of the resultant of the above four forces.

b) Give the direction of the resultant as a bearing.

The figure above shows four forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.

a) Find the magnitude of the resultant of the above four forces.

b) Give the direction of the resultant as a bearing.

Question 5 (**)

The figure above shows three forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.

- a) Find the magnitude of the resultant of the above three forces.
- **b**) Find the angle the resultant makes with the 5 N force.

The direction in which these three forces act can be changed.

c) State, with full justification, the least and the greatest magnitudes of the resultant force.

, $R \approx 9.17 \text{ N}$, $\approx 150.6^{\circ}$, $R_{\text{max}} = 32 \text{ N}$, $R_{\text{min}} = 0 \text{ N}$

Question 6 (***)

Two forces, F_1 N and F_2 N, are acting on a particle at right angles to each other, as shown in the figure above. The resultant of the two forces has magnitude 41 N.

- a) Given that the magnitude of F_1 is 9 N, find the magnitude of F_2 .
- **b**) Determine the angle the resultant makes with F_2 .

A third force F_3 is added on the particle so that all three forces are in equilibrium.

 $||F_1| = 40, \quad \approx 12.68^\circ,$

- c) State the magnitude of F_3 .
- **d**) Calculate the angle F_3 makes with F_2 .

LOOKING AT THE 15/2+ (F)2= R

 $||F_3| = 41|, ||$

≈167.32°

Question 7 (***+)

Three coplanar forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 act on a particle.

 $\mathbf{F}_{\!1}$ has magnitude 25 N , acting in a bearing of 270°.

 \mathbf{F}_2 has magnitude X N, acting in a bearing of 180°.

 \mathbf{F}_3 has magnitude (X+2) N, acting in a bearing of 90°.

The resultant of these three forces has magnitude 37 N.

Determine, as a bearing, the angle at which the resultant of these three forces is acting.

TRT WITH A DIAGRAM	N AND REDUCE IT	TO TWO FORES
fi 25	×₩2	(x+2-25) x-23
× ř ₂		× 37
PUTHHEORAS WE HAVE		
\implies $X^2 + (X-23)$	² = 37 ²	
→ X ² + X ² - 46	X + S29 = 1369	
⇒ 2x² + 46x -	840=0	
⇒ × ² - 23×-1	420 = 0	
⇒ (×-35)(×	+ 12)=0	
$\Rightarrow \times = <_{n}^{-n_{n}}$	SHAMOULE THE B	equilit of Fi milli her 180°
vanny me public		
A NOREN	taufes 35	
12	0=71	٥?
35 32	B	EMPENNE OF ENGLIGHT IS
V		90+71.07
		G 161° /

Question 8 (****)

30 N

Two forces, act on a particle P so that the angle between the two forces is 150° .

150°

The magnitude of one of these forces is 30 N and the magnitude of the other force is F N, as shown in the figure above.

The resultant of these two forces has magnitude R N, and acts at 60° to the force with magnitude F N.

Calculate in any order the value of R and the value of F.

, $R = 10\sqrt{3} \approx 17.3 \text{ N}$, $R = 20\sqrt{3} \approx 34.6 \text{ N}$

F N

The figure above shows two forces \mathbf{F}_1 and \mathbf{F}_2 , of magnitude 24 N and x N respectively, acting on a particle P.

The angle between the lines of action of \mathbf{F}_1 and \mathbf{F}_2 is 120°.

The resultant of \mathbf{F}_1 and \mathbf{F}_2 is the force **R**, whose magnitude is 2x N.

a) Show clearly that $x = -4 + 4\sqrt{13}$.

b) Calculate the value of $|\mathbf{F}_2 - \mathbf{F}_1|$, correct to three significant figures.

9 [AC]² = 1A8|²+ |BC|²-2|A8| |BC| G $= (2n)^2 = 2n^2 + n^2 = 2x 24x 3x$ (2+4)= 20F -4-)200 (200) ++ 1208 = - 4 + 4VB LOOKING AT THE DIAGO BY THE CO SINT RULE AGAN $|f_2 - f_1|^2 = |f_2|^2 + |-f_1|^2 - 2|f_2||-f_1| \cos |f_2|$ 37 + - 23x 24 x - 5 16-£1 (-++4VB)2+ 576 + 24(-4+41) 7552816 : [F2-F1]= 30-6 (3 st)

 $|\mathbf{F}_2 - \mathbf{F}_1| \approx 30.6 \text{ N}$

Question 10 (****+)

Two forces, F_1 N and F_2 N, are acting on a particle so that the resultant of the two forces has magnitude 120 N and acts on a bearing of 120°.

It is further given that the F_1 acts due North and has magnitude 80 N.

Calculate in any order ...

12

.K.C.

- **a**) ... the magnitude of F_2
- **b**) ... the direction in which F_2 acts, giving the answer as a bearing.

2

Maria