RESULTANT FORCES

Created by T. Madas

Question 1 (**)

The figure above shows three forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.

Created by T. Madas

Question 2 (**)

The figure above shows four forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.
a) Find the magnitude of the resultant of the above four forces.
b) Give the direction of the resultant as a bearing.

Created by T. Madas

0

Question 3 (**)

The figure above shows four forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.
a) Find the magnitude of the resultant of the above four forces.
b) Give the direction of the resultant as a bearing.

Created by T. Madas

The figure above shows four forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.
a) Find the magnitude of the resultant of the above four forces.
b) Give the direction of the resultant as a bearing.

Created by T. Madas

Question 5 (**)

The figure above shows three forces which lie on the same plane, acting on a particle.

The magnitudes of these forces and their relative directions are shown in the figure.
a) Find the magnitude of the resultant of the above three forces.
b) Find the angle the resultant makes with the 5 N force.

The direction in which these three forces act can be changed.
c) State, with full justification, the least and the greatest magnitudes of the resultant force.

$$
\square, R \approx 9.17 \mathrm{~N}, \approx 150.6^{\circ}, R_{\max }=32 \mathrm{~N}, R_{\min }=0 \mathrm{~N}
$$

Created by T. Madas

Question 6 (***)

Two forces, $F_{1} \mathrm{~N}$ and $F_{2} \mathrm{~N}$, are acting on a particle at right angles to each other, as shown in the figure above. The resultant of the two forces has magnitude 41 N .
a) Given that the magnitude of F_{1} is 9 N , find the magnitude of F_{2}.
b) Determine the angle the resultant makes with F_{2}.

A third force F_{3} is added on the particle so that all three forces are in equilibrium.
c) State the magnitude of F_{3}.
d) Calculate the angle F_{3} makes with F_{2}.
\square $,\left|F_{1}\right|=40, \approx 12.68^{\circ}, \| F_{3} \mid=41, \approx 167.32^{\circ}$

Created by T. Madas

Question $7 \quad(* * *+$)
Three coplanar forces $\mathbf{F}_{1}, \mathbf{F}_{2}$ and \mathbf{F}_{3} act on a particle.
\mathbf{F}_{1} has magnitude 25 N , acting in a bearing of 270°.
\mathbf{F}_{2} has magnitude $X \mathrm{~N}$, acting in a bearing of 180°.
\mathbf{F}_{3} has magnitude $(X+2) \mathrm{N}$, acting in a bearing of 90°.

The resultant of these three forces has magnitude 37 N .

Determine, as a bearing, the angle at which the resultant of these three forces is acting.

Created by T. Madas

Created by T. Madas

Question 8 (****)

Two forces, act on a particle P so that the angle between the two forces is 150°.

The magnitude of one of these forces is 30 N and the magnitude of the other force is $F \mathrm{~N}$, as shown in the figure above.

The resultant of these two forces has magnitude $R \mathrm{~N}$, and acts at 60° to the force with magnitude $F \mathrm{~N}$.

Calculate in any order the value of R and the value of F.

Created by T. Madas

Created by T. Madas
Question 9 (****)

The figure above shows two forces \mathbf{F}_{1} and \mathbf{F}_{2}, of magnitude 24 N and $x \mathrm{~N}$ respectively, acting on a particle P.

The angle between the lines of action of \mathbf{F}_{1} and \mathbf{F}_{2} is 120°.

The resultant of \mathbf{F}_{1} and \mathbf{F}_{2} is the force \mathbf{R}, whose magnitude is $2 x \mathrm{~N}$.
a) Show clearly that $x=-4+4 \sqrt{13}$.
b) Calculate the value of $\left|\mathbf{F}_{2}-\mathbf{F}_{1}\right|$, correct to three significant figures,

$$
\left|\mathbf{F}_{2}-\mathbf{F}_{1}\right| \approx 30.6 \mathrm{~N}
$$

\square

Created by T. Madas

Created by T. Madas

Question 10 (****+)

Two forces, $F_{1} \mathrm{~N}$ and $F_{2} \mathrm{~N}$, are acting on a particle so that the resultant of the two forces has magnitude 120 N and acts on a bearing of 120°.

It is further given that the F_{1} acts due North and has magnitude 80 N .

Calculate in any order...
a) \ldots the magnitude of F_{2}
b) \ldots the direction in which F_{2} acts, giving the answer as a bearing.

